1 // SPDX-License-Identifier: GPL-2.0 2 // 3 // Register map access API 4 // 5 // Copyright 2011 Wolfson Microelectronics plc 6 // 7 // Author: Mark Brown <broonie@opensource.wolfsonmicro.com> 8 9 #include <linux/device.h> 10 #include <linux/slab.h> 11 #include <linux/export.h> 12 #include <linux/mutex.h> 13 #include <linux/err.h> 14 #include <linux/property.h> 15 #include <linux/rbtree.h> 16 #include <linux/sched.h> 17 #include <linux/delay.h> 18 #include <linux/log2.h> 19 #include <linux/hwspinlock.h> 20 #include <linux/unaligned.h> 21 22 #define CREATE_TRACE_POINTS 23 #include "trace.h" 24 25 #include "internal.h" 26 27 /* 28 * Sometimes for failures during very early init the trace 29 * infrastructure isn't available early enough to be used. For this 30 * sort of problem defining LOG_DEVICE will add printks for basic 31 * register I/O on a specific device. 32 */ 33 #undef LOG_DEVICE 34 35 #ifdef LOG_DEVICE 36 static inline bool regmap_should_log(struct regmap *map) 37 { 38 return (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0); 39 } 40 #else 41 static inline bool regmap_should_log(struct regmap *map) { return false; } 42 #endif 43 44 45 static int _regmap_update_bits(struct regmap *map, unsigned int reg, 46 unsigned int mask, unsigned int val, 47 bool *change, bool force_write); 48 49 static int _regmap_bus_reg_read(void *context, unsigned int reg, 50 unsigned int *val); 51 static int _regmap_bus_read(void *context, unsigned int reg, 52 unsigned int *val); 53 static int _regmap_bus_formatted_write(void *context, unsigned int reg, 54 unsigned int val); 55 static int _regmap_bus_reg_write(void *context, unsigned int reg, 56 unsigned int val); 57 static int _regmap_bus_raw_write(void *context, unsigned int reg, 58 unsigned int val); 59 60 bool regmap_reg_in_ranges(unsigned int reg, 61 const struct regmap_range *ranges, 62 unsigned int nranges) 63 { 64 const struct regmap_range *r; 65 int i; 66 67 for (i = 0, r = ranges; i < nranges; i++, r++) 68 if (regmap_reg_in_range(reg, r)) 69 return true; 70 return false; 71 } 72 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges); 73 74 bool regmap_check_range_table(struct regmap *map, unsigned int reg, 75 const struct regmap_access_table *table) 76 { 77 /* Check "no ranges" first */ 78 if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges)) 79 return false; 80 81 /* In case zero "yes ranges" are supplied, any reg is OK */ 82 if (!table->n_yes_ranges) 83 return true; 84 85 return regmap_reg_in_ranges(reg, table->yes_ranges, 86 table->n_yes_ranges); 87 } 88 EXPORT_SYMBOL_GPL(regmap_check_range_table); 89 90 bool regmap_writeable(struct regmap *map, unsigned int reg) 91 { 92 if (map->max_register_is_set && reg > map->max_register) 93 return false; 94 95 if (map->writeable_reg) 96 return map->writeable_reg(map->dev, reg); 97 98 if (map->wr_table) 99 return regmap_check_range_table(map, reg, map->wr_table); 100 101 return true; 102 } 103 104 bool regmap_cached(struct regmap *map, unsigned int reg) 105 { 106 int ret; 107 unsigned int val; 108 109 if (map->cache_type == REGCACHE_NONE) 110 return false; 111 112 if (!map->cache_ops) 113 return false; 114 115 if (map->max_register_is_set && reg > map->max_register) 116 return false; 117 118 map->lock(map->lock_arg); 119 ret = regcache_read(map, reg, &val); 120 map->unlock(map->lock_arg); 121 if (ret) 122 return false; 123 124 return true; 125 } 126 127 bool regmap_readable(struct regmap *map, unsigned int reg) 128 { 129 if (!map->reg_read) 130 return false; 131 132 if (map->max_register_is_set && reg > map->max_register) 133 return false; 134 135 if (map->format.format_write) 136 return false; 137 138 if (map->readable_reg) 139 return map->readable_reg(map->dev, reg); 140 141 if (map->rd_table) 142 return regmap_check_range_table(map, reg, map->rd_table); 143 144 return true; 145 } 146 147 bool regmap_volatile(struct regmap *map, unsigned int reg) 148 { 149 if (!map->format.format_write && !regmap_readable(map, reg)) 150 return false; 151 152 if (map->volatile_reg) 153 return map->volatile_reg(map->dev, reg); 154 155 if (map->volatile_table) 156 return regmap_check_range_table(map, reg, map->volatile_table); 157 158 if (map->cache_ops) 159 return false; 160 else 161 return true; 162 } 163 164 bool regmap_precious(struct regmap *map, unsigned int reg) 165 { 166 if (!regmap_readable(map, reg)) 167 return false; 168 169 if (map->precious_reg) 170 return map->precious_reg(map->dev, reg); 171 172 if (map->precious_table) 173 return regmap_check_range_table(map, reg, map->precious_table); 174 175 return false; 176 } 177 178 bool regmap_writeable_noinc(struct regmap *map, unsigned int reg) 179 { 180 if (map->writeable_noinc_reg) 181 return map->writeable_noinc_reg(map->dev, reg); 182 183 if (map->wr_noinc_table) 184 return regmap_check_range_table(map, reg, map->wr_noinc_table); 185 186 return true; 187 } 188 189 bool regmap_readable_noinc(struct regmap *map, unsigned int reg) 190 { 191 if (map->readable_noinc_reg) 192 return map->readable_noinc_reg(map->dev, reg); 193 194 if (map->rd_noinc_table) 195 return regmap_check_range_table(map, reg, map->rd_noinc_table); 196 197 return true; 198 } 199 200 static bool regmap_volatile_range(struct regmap *map, unsigned int reg, 201 size_t num) 202 { 203 unsigned int i; 204 205 for (i = 0; i < num; i++) 206 if (!regmap_volatile(map, reg + regmap_get_offset(map, i))) 207 return false; 208 209 return true; 210 } 211 212 static void regmap_format_12_20_write(struct regmap *map, 213 unsigned int reg, unsigned int val) 214 { 215 u8 *out = map->work_buf; 216 217 out[0] = reg >> 4; 218 out[1] = (reg << 4) | (val >> 16); 219 out[2] = val >> 8; 220 out[3] = val; 221 } 222 223 224 static void regmap_format_2_6_write(struct regmap *map, 225 unsigned int reg, unsigned int val) 226 { 227 u8 *out = map->work_buf; 228 229 *out = (reg << 6) | val; 230 } 231 232 static void regmap_format_4_12_write(struct regmap *map, 233 unsigned int reg, unsigned int val) 234 { 235 __be16 *out = map->work_buf; 236 *out = cpu_to_be16((reg << 12) | val); 237 } 238 239 static void regmap_format_7_9_write(struct regmap *map, 240 unsigned int reg, unsigned int val) 241 { 242 __be16 *out = map->work_buf; 243 *out = cpu_to_be16((reg << 9) | val); 244 } 245 246 static void regmap_format_7_17_write(struct regmap *map, 247 unsigned int reg, unsigned int val) 248 { 249 u8 *out = map->work_buf; 250 251 out[2] = val; 252 out[1] = val >> 8; 253 out[0] = (val >> 16) | (reg << 1); 254 } 255 256 static void regmap_format_10_14_write(struct regmap *map, 257 unsigned int reg, unsigned int val) 258 { 259 u8 *out = map->work_buf; 260 261 out[2] = val; 262 out[1] = (val >> 8) | (reg << 6); 263 out[0] = reg >> 2; 264 } 265 266 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift) 267 { 268 u8 *b = buf; 269 270 b[0] = val << shift; 271 } 272 273 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift) 274 { 275 put_unaligned_be16(val << shift, buf); 276 } 277 278 static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift) 279 { 280 put_unaligned_le16(val << shift, buf); 281 } 282 283 static void regmap_format_16_native(void *buf, unsigned int val, 284 unsigned int shift) 285 { 286 u16 v = val << shift; 287 288 memcpy(buf, &v, sizeof(v)); 289 } 290 291 static void regmap_format_24_be(void *buf, unsigned int val, unsigned int shift) 292 { 293 put_unaligned_be24(val << shift, buf); 294 } 295 296 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift) 297 { 298 put_unaligned_be32(val << shift, buf); 299 } 300 301 static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift) 302 { 303 put_unaligned_le32(val << shift, buf); 304 } 305 306 static void regmap_format_32_native(void *buf, unsigned int val, 307 unsigned int shift) 308 { 309 u32 v = val << shift; 310 311 memcpy(buf, &v, sizeof(v)); 312 } 313 314 static void regmap_parse_inplace_noop(void *buf) 315 { 316 } 317 318 static unsigned int regmap_parse_8(const void *buf) 319 { 320 const u8 *b = buf; 321 322 return b[0]; 323 } 324 325 static unsigned int regmap_parse_16_be(const void *buf) 326 { 327 return get_unaligned_be16(buf); 328 } 329 330 static unsigned int regmap_parse_16_le(const void *buf) 331 { 332 return get_unaligned_le16(buf); 333 } 334 335 static void regmap_parse_16_be_inplace(void *buf) 336 { 337 u16 v = get_unaligned_be16(buf); 338 339 memcpy(buf, &v, sizeof(v)); 340 } 341 342 static void regmap_parse_16_le_inplace(void *buf) 343 { 344 u16 v = get_unaligned_le16(buf); 345 346 memcpy(buf, &v, sizeof(v)); 347 } 348 349 static unsigned int regmap_parse_16_native(const void *buf) 350 { 351 u16 v; 352 353 memcpy(&v, buf, sizeof(v)); 354 return v; 355 } 356 357 static unsigned int regmap_parse_24_be(const void *buf) 358 { 359 return get_unaligned_be24(buf); 360 } 361 362 static unsigned int regmap_parse_32_be(const void *buf) 363 { 364 return get_unaligned_be32(buf); 365 } 366 367 static unsigned int regmap_parse_32_le(const void *buf) 368 { 369 return get_unaligned_le32(buf); 370 } 371 372 static void regmap_parse_32_be_inplace(void *buf) 373 { 374 u32 v = get_unaligned_be32(buf); 375 376 memcpy(buf, &v, sizeof(v)); 377 } 378 379 static void regmap_parse_32_le_inplace(void *buf) 380 { 381 u32 v = get_unaligned_le32(buf); 382 383 memcpy(buf, &v, sizeof(v)); 384 } 385 386 static unsigned int regmap_parse_32_native(const void *buf) 387 { 388 u32 v; 389 390 memcpy(&v, buf, sizeof(v)); 391 return v; 392 } 393 394 static void regmap_lock_hwlock(void *__map) 395 { 396 struct regmap *map = __map; 397 398 hwspin_lock_timeout(map->hwlock, UINT_MAX); 399 } 400 401 static void regmap_lock_hwlock_irq(void *__map) 402 { 403 struct regmap *map = __map; 404 405 hwspin_lock_timeout_irq(map->hwlock, UINT_MAX); 406 } 407 408 static void regmap_lock_hwlock_irqsave(void *__map) 409 { 410 struct regmap *map = __map; 411 412 hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX, 413 &map->spinlock_flags); 414 } 415 416 static void regmap_unlock_hwlock(void *__map) 417 { 418 struct regmap *map = __map; 419 420 hwspin_unlock(map->hwlock); 421 } 422 423 static void regmap_unlock_hwlock_irq(void *__map) 424 { 425 struct regmap *map = __map; 426 427 hwspin_unlock_irq(map->hwlock); 428 } 429 430 static void regmap_unlock_hwlock_irqrestore(void *__map) 431 { 432 struct regmap *map = __map; 433 434 hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags); 435 } 436 437 static void regmap_lock_unlock_none(void *__map) 438 { 439 440 } 441 442 static void regmap_lock_mutex(void *__map) 443 { 444 struct regmap *map = __map; 445 mutex_lock(&map->mutex); 446 } 447 448 static void regmap_unlock_mutex(void *__map) 449 { 450 struct regmap *map = __map; 451 mutex_unlock(&map->mutex); 452 } 453 454 static void regmap_lock_spinlock(void *__map) 455 __acquires(&map->spinlock) 456 { 457 struct regmap *map = __map; 458 unsigned long flags; 459 460 spin_lock_irqsave(&map->spinlock, flags); 461 map->spinlock_flags = flags; 462 } 463 464 static void regmap_unlock_spinlock(void *__map) 465 __releases(&map->spinlock) 466 { 467 struct regmap *map = __map; 468 spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags); 469 } 470 471 static void regmap_lock_raw_spinlock(void *__map) 472 __acquires(&map->raw_spinlock) 473 { 474 struct regmap *map = __map; 475 unsigned long flags; 476 477 raw_spin_lock_irqsave(&map->raw_spinlock, flags); 478 map->raw_spinlock_flags = flags; 479 } 480 481 static void regmap_unlock_raw_spinlock(void *__map) 482 __releases(&map->raw_spinlock) 483 { 484 struct regmap *map = __map; 485 raw_spin_unlock_irqrestore(&map->raw_spinlock, map->raw_spinlock_flags); 486 } 487 488 static void dev_get_regmap_release(struct device *dev, void *res) 489 { 490 /* 491 * We don't actually have anything to do here; the goal here 492 * is not to manage the regmap but to provide a simple way to 493 * get the regmap back given a struct device. 494 */ 495 } 496 497 static bool _regmap_range_add(struct regmap *map, 498 struct regmap_range_node *data) 499 { 500 struct rb_root *root = &map->range_tree; 501 struct rb_node **new = &(root->rb_node), *parent = NULL; 502 503 while (*new) { 504 struct regmap_range_node *this = 505 rb_entry(*new, struct regmap_range_node, node); 506 507 parent = *new; 508 if (data->range_max < this->range_min) 509 new = &((*new)->rb_left); 510 else if (data->range_min > this->range_max) 511 new = &((*new)->rb_right); 512 else 513 return false; 514 } 515 516 rb_link_node(&data->node, parent, new); 517 rb_insert_color(&data->node, root); 518 519 return true; 520 } 521 522 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map, 523 unsigned int reg) 524 { 525 struct rb_node *node = map->range_tree.rb_node; 526 527 while (node) { 528 struct regmap_range_node *this = 529 rb_entry(node, struct regmap_range_node, node); 530 531 if (reg < this->range_min) 532 node = node->rb_left; 533 else if (reg > this->range_max) 534 node = node->rb_right; 535 else 536 return this; 537 } 538 539 return NULL; 540 } 541 542 static void regmap_range_exit(struct regmap *map) 543 { 544 struct rb_node *next; 545 struct regmap_range_node *range_node; 546 547 next = rb_first(&map->range_tree); 548 while (next) { 549 range_node = rb_entry(next, struct regmap_range_node, node); 550 next = rb_next(&range_node->node); 551 rb_erase(&range_node->node, &map->range_tree); 552 kfree(range_node); 553 } 554 555 kfree(map->selector_work_buf); 556 } 557 558 static int regmap_set_name(struct regmap *map, const struct regmap_config *config) 559 { 560 if (config->name) { 561 const char *name = kstrdup_const(config->name, GFP_KERNEL); 562 563 if (!name) 564 return -ENOMEM; 565 566 kfree_const(map->name); 567 map->name = name; 568 } 569 570 return 0; 571 } 572 573 int regmap_attach_dev(struct device *dev, struct regmap *map, 574 const struct regmap_config *config) 575 { 576 struct regmap **m; 577 int ret; 578 579 map->dev = dev; 580 581 ret = regmap_set_name(map, config); 582 if (ret) 583 return ret; 584 585 regmap_debugfs_exit(map); 586 regmap_debugfs_init(map); 587 588 /* Add a devres resource for dev_get_regmap() */ 589 m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL); 590 if (!m) { 591 regmap_debugfs_exit(map); 592 return -ENOMEM; 593 } 594 *m = map; 595 devres_add(dev, m); 596 597 return 0; 598 } 599 EXPORT_SYMBOL_GPL(regmap_attach_dev); 600 601 static int dev_get_regmap_match(struct device *dev, void *res, void *data); 602 603 static int regmap_detach_dev(struct device *dev, struct regmap *map) 604 { 605 if (!dev) 606 return 0; 607 608 return devres_release(dev, dev_get_regmap_release, 609 dev_get_regmap_match, (void *)map->name); 610 } 611 612 static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus, 613 const struct regmap_config *config) 614 { 615 enum regmap_endian endian; 616 617 /* Retrieve the endianness specification from the regmap config */ 618 endian = config->reg_format_endian; 619 620 /* If the regmap config specified a non-default value, use that */ 621 if (endian != REGMAP_ENDIAN_DEFAULT) 622 return endian; 623 624 /* Retrieve the endianness specification from the bus config */ 625 if (bus && bus->reg_format_endian_default) 626 endian = bus->reg_format_endian_default; 627 628 /* If the bus specified a non-default value, use that */ 629 if (endian != REGMAP_ENDIAN_DEFAULT) 630 return endian; 631 632 /* Use this if no other value was found */ 633 return REGMAP_ENDIAN_BIG; 634 } 635 636 enum regmap_endian regmap_get_val_endian(struct device *dev, 637 const struct regmap_bus *bus, 638 const struct regmap_config *config) 639 { 640 struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL; 641 enum regmap_endian endian; 642 643 /* Retrieve the endianness specification from the regmap config */ 644 endian = config->val_format_endian; 645 646 /* If the regmap config specified a non-default value, use that */ 647 if (endian != REGMAP_ENDIAN_DEFAULT) 648 return endian; 649 650 /* If the firmware node exist try to get endianness from it */ 651 if (fwnode_property_read_bool(fwnode, "big-endian")) 652 endian = REGMAP_ENDIAN_BIG; 653 else if (fwnode_property_read_bool(fwnode, "little-endian")) 654 endian = REGMAP_ENDIAN_LITTLE; 655 else if (fwnode_property_read_bool(fwnode, "native-endian")) 656 endian = REGMAP_ENDIAN_NATIVE; 657 658 /* If the endianness was specified in fwnode, use that */ 659 if (endian != REGMAP_ENDIAN_DEFAULT) 660 return endian; 661 662 /* Retrieve the endianness specification from the bus config */ 663 if (bus && bus->val_format_endian_default) 664 endian = bus->val_format_endian_default; 665 666 /* If the bus specified a non-default value, use that */ 667 if (endian != REGMAP_ENDIAN_DEFAULT) 668 return endian; 669 670 /* Use this if no other value was found */ 671 return REGMAP_ENDIAN_BIG; 672 } 673 EXPORT_SYMBOL_GPL(regmap_get_val_endian); 674 675 struct regmap *__regmap_init(struct device *dev, 676 const struct regmap_bus *bus, 677 void *bus_context, 678 const struct regmap_config *config, 679 struct lock_class_key *lock_key, 680 const char *lock_name) 681 { 682 struct regmap *map; 683 int ret = -EINVAL; 684 enum regmap_endian reg_endian, val_endian; 685 int i, j; 686 687 if (!config) 688 goto err; 689 690 map = kzalloc(sizeof(*map), GFP_KERNEL); 691 if (map == NULL) { 692 ret = -ENOMEM; 693 goto err; 694 } 695 696 ret = regmap_set_name(map, config); 697 if (ret) 698 goto err_map; 699 700 ret = -EINVAL; /* Later error paths rely on this */ 701 702 if (config->disable_locking) { 703 map->lock = map->unlock = regmap_lock_unlock_none; 704 map->can_sleep = config->can_sleep; 705 regmap_debugfs_disable(map); 706 } else if (config->lock && config->unlock) { 707 map->lock = config->lock; 708 map->unlock = config->unlock; 709 map->lock_arg = config->lock_arg; 710 map->can_sleep = config->can_sleep; 711 } else if (config->use_hwlock) { 712 map->hwlock = hwspin_lock_request_specific(config->hwlock_id); 713 if (!map->hwlock) { 714 ret = -ENXIO; 715 goto err_name; 716 } 717 718 switch (config->hwlock_mode) { 719 case HWLOCK_IRQSTATE: 720 map->lock = regmap_lock_hwlock_irqsave; 721 map->unlock = regmap_unlock_hwlock_irqrestore; 722 break; 723 case HWLOCK_IRQ: 724 map->lock = regmap_lock_hwlock_irq; 725 map->unlock = regmap_unlock_hwlock_irq; 726 break; 727 default: 728 map->lock = regmap_lock_hwlock; 729 map->unlock = regmap_unlock_hwlock; 730 break; 731 } 732 733 map->lock_arg = map; 734 } else { 735 if ((bus && bus->fast_io) || 736 config->fast_io) { 737 if (config->use_raw_spinlock) { 738 raw_spin_lock_init(&map->raw_spinlock); 739 map->lock = regmap_lock_raw_spinlock; 740 map->unlock = regmap_unlock_raw_spinlock; 741 lockdep_set_class_and_name(&map->raw_spinlock, 742 lock_key, lock_name); 743 } else { 744 spin_lock_init(&map->spinlock); 745 map->lock = regmap_lock_spinlock; 746 map->unlock = regmap_unlock_spinlock; 747 lockdep_set_class_and_name(&map->spinlock, 748 lock_key, lock_name); 749 } 750 } else { 751 mutex_init(&map->mutex); 752 map->lock = regmap_lock_mutex; 753 map->unlock = regmap_unlock_mutex; 754 map->can_sleep = true; 755 lockdep_set_class_and_name(&map->mutex, 756 lock_key, lock_name); 757 } 758 map->lock_arg = map; 759 map->lock_key = lock_key; 760 } 761 762 /* 763 * When we write in fast-paths with regmap_bulk_write() don't allocate 764 * scratch buffers with sleeping allocations. 765 */ 766 if ((bus && bus->fast_io) || config->fast_io) 767 map->alloc_flags = GFP_ATOMIC; 768 else 769 map->alloc_flags = GFP_KERNEL; 770 771 map->reg_base = config->reg_base; 772 map->reg_shift = config->pad_bits % 8; 773 774 map->format.pad_bytes = config->pad_bits / 8; 775 map->format.reg_shift = config->reg_shift; 776 map->format.reg_bytes = BITS_TO_BYTES(config->reg_bits); 777 map->format.val_bytes = BITS_TO_BYTES(config->val_bits); 778 map->format.buf_size = BITS_TO_BYTES(config->reg_bits + config->val_bits + config->pad_bits); 779 if (config->reg_stride) 780 map->reg_stride = config->reg_stride; 781 else 782 map->reg_stride = 1; 783 if (is_power_of_2(map->reg_stride)) 784 map->reg_stride_order = ilog2(map->reg_stride); 785 else 786 map->reg_stride_order = -1; 787 map->use_single_read = config->use_single_read || !(config->read || (bus && bus->read)); 788 map->use_single_write = config->use_single_write || !(config->write || (bus && bus->write)); 789 map->can_multi_write = config->can_multi_write && (config->write || (bus && bus->write)); 790 if (bus) { 791 map->max_raw_read = bus->max_raw_read; 792 map->max_raw_write = bus->max_raw_write; 793 } else if (config->max_raw_read && config->max_raw_write) { 794 map->max_raw_read = config->max_raw_read; 795 map->max_raw_write = config->max_raw_write; 796 } 797 map->dev = dev; 798 map->bus = bus; 799 map->bus_context = bus_context; 800 map->max_register = config->max_register; 801 map->max_register_is_set = map->max_register ?: config->max_register_is_0; 802 map->wr_table = config->wr_table; 803 map->rd_table = config->rd_table; 804 map->volatile_table = config->volatile_table; 805 map->precious_table = config->precious_table; 806 map->wr_noinc_table = config->wr_noinc_table; 807 map->rd_noinc_table = config->rd_noinc_table; 808 map->writeable_reg = config->writeable_reg; 809 map->readable_reg = config->readable_reg; 810 map->volatile_reg = config->volatile_reg; 811 map->precious_reg = config->precious_reg; 812 map->writeable_noinc_reg = config->writeable_noinc_reg; 813 map->readable_noinc_reg = config->readable_noinc_reg; 814 map->cache_type = config->cache_type; 815 816 spin_lock_init(&map->async_lock); 817 INIT_LIST_HEAD(&map->async_list); 818 INIT_LIST_HEAD(&map->async_free); 819 init_waitqueue_head(&map->async_waitq); 820 821 if (config->read_flag_mask || 822 config->write_flag_mask || 823 config->zero_flag_mask) { 824 map->read_flag_mask = config->read_flag_mask; 825 map->write_flag_mask = config->write_flag_mask; 826 } else if (bus) { 827 map->read_flag_mask = bus->read_flag_mask; 828 } 829 830 if (config && config->read && config->write) { 831 map->reg_read = _regmap_bus_read; 832 if (config->reg_update_bits) 833 map->reg_update_bits = config->reg_update_bits; 834 835 /* Bulk read/write */ 836 map->read = config->read; 837 map->write = config->write; 838 839 reg_endian = REGMAP_ENDIAN_NATIVE; 840 val_endian = REGMAP_ENDIAN_NATIVE; 841 } else if (!bus) { 842 map->reg_read = config->reg_read; 843 map->reg_write = config->reg_write; 844 map->reg_update_bits = config->reg_update_bits; 845 846 map->defer_caching = false; 847 goto skip_format_initialization; 848 } else if (!bus->read || !bus->write) { 849 map->reg_read = _regmap_bus_reg_read; 850 map->reg_write = _regmap_bus_reg_write; 851 map->reg_update_bits = bus->reg_update_bits; 852 853 map->defer_caching = false; 854 goto skip_format_initialization; 855 } else { 856 map->reg_read = _regmap_bus_read; 857 map->reg_update_bits = bus->reg_update_bits; 858 /* Bulk read/write */ 859 map->read = bus->read; 860 map->write = bus->write; 861 862 reg_endian = regmap_get_reg_endian(bus, config); 863 val_endian = regmap_get_val_endian(dev, bus, config); 864 } 865 866 switch (config->reg_bits + map->reg_shift) { 867 case 2: 868 switch (config->val_bits) { 869 case 6: 870 map->format.format_write = regmap_format_2_6_write; 871 break; 872 default: 873 goto err_hwlock; 874 } 875 break; 876 877 case 4: 878 switch (config->val_bits) { 879 case 12: 880 map->format.format_write = regmap_format_4_12_write; 881 break; 882 default: 883 goto err_hwlock; 884 } 885 break; 886 887 case 7: 888 switch (config->val_bits) { 889 case 9: 890 map->format.format_write = regmap_format_7_9_write; 891 break; 892 case 17: 893 map->format.format_write = regmap_format_7_17_write; 894 break; 895 default: 896 goto err_hwlock; 897 } 898 break; 899 900 case 10: 901 switch (config->val_bits) { 902 case 14: 903 map->format.format_write = regmap_format_10_14_write; 904 break; 905 default: 906 goto err_hwlock; 907 } 908 break; 909 910 case 12: 911 switch (config->val_bits) { 912 case 20: 913 map->format.format_write = regmap_format_12_20_write; 914 break; 915 default: 916 goto err_hwlock; 917 } 918 break; 919 920 case 8: 921 map->format.format_reg = regmap_format_8; 922 break; 923 924 case 16: 925 switch (reg_endian) { 926 case REGMAP_ENDIAN_BIG: 927 map->format.format_reg = regmap_format_16_be; 928 break; 929 case REGMAP_ENDIAN_LITTLE: 930 map->format.format_reg = regmap_format_16_le; 931 break; 932 case REGMAP_ENDIAN_NATIVE: 933 map->format.format_reg = regmap_format_16_native; 934 break; 935 default: 936 goto err_hwlock; 937 } 938 break; 939 940 case 24: 941 switch (reg_endian) { 942 case REGMAP_ENDIAN_BIG: 943 map->format.format_reg = regmap_format_24_be; 944 break; 945 default: 946 goto err_hwlock; 947 } 948 break; 949 950 case 32: 951 switch (reg_endian) { 952 case REGMAP_ENDIAN_BIG: 953 map->format.format_reg = regmap_format_32_be; 954 break; 955 case REGMAP_ENDIAN_LITTLE: 956 map->format.format_reg = regmap_format_32_le; 957 break; 958 case REGMAP_ENDIAN_NATIVE: 959 map->format.format_reg = regmap_format_32_native; 960 break; 961 default: 962 goto err_hwlock; 963 } 964 break; 965 966 default: 967 goto err_hwlock; 968 } 969 970 if (val_endian == REGMAP_ENDIAN_NATIVE) 971 map->format.parse_inplace = regmap_parse_inplace_noop; 972 973 switch (config->val_bits) { 974 case 8: 975 map->format.format_val = regmap_format_8; 976 map->format.parse_val = regmap_parse_8; 977 map->format.parse_inplace = regmap_parse_inplace_noop; 978 break; 979 case 16: 980 switch (val_endian) { 981 case REGMAP_ENDIAN_BIG: 982 map->format.format_val = regmap_format_16_be; 983 map->format.parse_val = regmap_parse_16_be; 984 map->format.parse_inplace = regmap_parse_16_be_inplace; 985 break; 986 case REGMAP_ENDIAN_LITTLE: 987 map->format.format_val = regmap_format_16_le; 988 map->format.parse_val = regmap_parse_16_le; 989 map->format.parse_inplace = regmap_parse_16_le_inplace; 990 break; 991 case REGMAP_ENDIAN_NATIVE: 992 map->format.format_val = regmap_format_16_native; 993 map->format.parse_val = regmap_parse_16_native; 994 break; 995 default: 996 goto err_hwlock; 997 } 998 break; 999 case 24: 1000 switch (val_endian) { 1001 case REGMAP_ENDIAN_BIG: 1002 map->format.format_val = regmap_format_24_be; 1003 map->format.parse_val = regmap_parse_24_be; 1004 break; 1005 default: 1006 goto err_hwlock; 1007 } 1008 break; 1009 case 32: 1010 switch (val_endian) { 1011 case REGMAP_ENDIAN_BIG: 1012 map->format.format_val = regmap_format_32_be; 1013 map->format.parse_val = regmap_parse_32_be; 1014 map->format.parse_inplace = regmap_parse_32_be_inplace; 1015 break; 1016 case REGMAP_ENDIAN_LITTLE: 1017 map->format.format_val = regmap_format_32_le; 1018 map->format.parse_val = regmap_parse_32_le; 1019 map->format.parse_inplace = regmap_parse_32_le_inplace; 1020 break; 1021 case REGMAP_ENDIAN_NATIVE: 1022 map->format.format_val = regmap_format_32_native; 1023 map->format.parse_val = regmap_parse_32_native; 1024 break; 1025 default: 1026 goto err_hwlock; 1027 } 1028 break; 1029 } 1030 1031 if (map->format.format_write) { 1032 if ((reg_endian != REGMAP_ENDIAN_BIG) || 1033 (val_endian != REGMAP_ENDIAN_BIG)) 1034 goto err_hwlock; 1035 map->use_single_write = true; 1036 } 1037 1038 if (!map->format.format_write && 1039 !(map->format.format_reg && map->format.format_val)) 1040 goto err_hwlock; 1041 1042 map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL); 1043 if (map->work_buf == NULL) { 1044 ret = -ENOMEM; 1045 goto err_hwlock; 1046 } 1047 1048 if (map->format.format_write) { 1049 map->defer_caching = false; 1050 map->reg_write = _regmap_bus_formatted_write; 1051 } else if (map->format.format_val) { 1052 map->defer_caching = true; 1053 map->reg_write = _regmap_bus_raw_write; 1054 } 1055 1056 skip_format_initialization: 1057 1058 map->range_tree = RB_ROOT; 1059 for (i = 0; i < config->num_ranges; i++) { 1060 const struct regmap_range_cfg *range_cfg = &config->ranges[i]; 1061 struct regmap_range_node *new; 1062 1063 /* Sanity check */ 1064 if (range_cfg->range_max < range_cfg->range_min) { 1065 dev_err(map->dev, "Invalid range %d: %u < %u\n", i, 1066 range_cfg->range_max, range_cfg->range_min); 1067 goto err_range; 1068 } 1069 1070 if (range_cfg->range_max > map->max_register) { 1071 dev_err(map->dev, "Invalid range %d: %u > %u\n", i, 1072 range_cfg->range_max, map->max_register); 1073 goto err_range; 1074 } 1075 1076 if (range_cfg->selector_reg > map->max_register) { 1077 dev_err(map->dev, 1078 "Invalid range %d: selector out of map\n", i); 1079 goto err_range; 1080 } 1081 1082 if (range_cfg->window_len == 0) { 1083 dev_err(map->dev, "Invalid range %d: window_len 0\n", 1084 i); 1085 goto err_range; 1086 } 1087 1088 /* Make sure, that this register range has no selector 1089 or data window within its boundary */ 1090 for (j = 0; j < config->num_ranges; j++) { 1091 unsigned int sel_reg = config->ranges[j].selector_reg; 1092 unsigned int win_min = config->ranges[j].window_start; 1093 unsigned int win_max = win_min + 1094 config->ranges[j].window_len - 1; 1095 1096 /* Allow data window inside its own virtual range */ 1097 if (j == i) 1098 continue; 1099 1100 if (range_cfg->range_min <= sel_reg && 1101 sel_reg <= range_cfg->range_max) { 1102 dev_err(map->dev, 1103 "Range %d: selector for %d in window\n", 1104 i, j); 1105 goto err_range; 1106 } 1107 1108 if (!(win_max < range_cfg->range_min || 1109 win_min > range_cfg->range_max)) { 1110 dev_err(map->dev, 1111 "Range %d: window for %d in window\n", 1112 i, j); 1113 goto err_range; 1114 } 1115 } 1116 1117 new = kzalloc(sizeof(*new), GFP_KERNEL); 1118 if (new == NULL) { 1119 ret = -ENOMEM; 1120 goto err_range; 1121 } 1122 1123 new->map = map; 1124 new->name = range_cfg->name; 1125 new->range_min = range_cfg->range_min; 1126 new->range_max = range_cfg->range_max; 1127 new->selector_reg = range_cfg->selector_reg; 1128 new->selector_mask = range_cfg->selector_mask; 1129 new->selector_shift = range_cfg->selector_shift; 1130 new->window_start = range_cfg->window_start; 1131 new->window_len = range_cfg->window_len; 1132 1133 if (!_regmap_range_add(map, new)) { 1134 dev_err(map->dev, "Failed to add range %d\n", i); 1135 kfree(new); 1136 goto err_range; 1137 } 1138 1139 if (map->selector_work_buf == NULL) { 1140 map->selector_work_buf = 1141 kzalloc(map->format.buf_size, GFP_KERNEL); 1142 if (map->selector_work_buf == NULL) { 1143 ret = -ENOMEM; 1144 goto err_range; 1145 } 1146 } 1147 } 1148 1149 ret = regcache_init(map, config); 1150 if (ret != 0) 1151 goto err_range; 1152 1153 if (dev) { 1154 ret = regmap_attach_dev(dev, map, config); 1155 if (ret != 0) 1156 goto err_regcache; 1157 } else { 1158 regmap_debugfs_init(map); 1159 } 1160 1161 return map; 1162 1163 err_regcache: 1164 regcache_exit(map); 1165 err_range: 1166 regmap_range_exit(map); 1167 kfree(map->work_buf); 1168 err_hwlock: 1169 if (map->hwlock) 1170 hwspin_lock_free(map->hwlock); 1171 err_name: 1172 kfree_const(map->name); 1173 err_map: 1174 kfree(map); 1175 err: 1176 return ERR_PTR(ret); 1177 } 1178 EXPORT_SYMBOL_GPL(__regmap_init); 1179 1180 static void devm_regmap_release(struct device *dev, void *res) 1181 { 1182 regmap_exit(*(struct regmap **)res); 1183 } 1184 1185 struct regmap *__devm_regmap_init(struct device *dev, 1186 const struct regmap_bus *bus, 1187 void *bus_context, 1188 const struct regmap_config *config, 1189 struct lock_class_key *lock_key, 1190 const char *lock_name) 1191 { 1192 struct regmap **ptr, *regmap; 1193 1194 ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL); 1195 if (!ptr) 1196 return ERR_PTR(-ENOMEM); 1197 1198 regmap = __regmap_init(dev, bus, bus_context, config, 1199 lock_key, lock_name); 1200 if (!IS_ERR(regmap)) { 1201 *ptr = regmap; 1202 devres_add(dev, ptr); 1203 } else { 1204 devres_free(ptr); 1205 } 1206 1207 return regmap; 1208 } 1209 EXPORT_SYMBOL_GPL(__devm_regmap_init); 1210 1211 static void regmap_field_init(struct regmap_field *rm_field, 1212 struct regmap *regmap, struct reg_field reg_field) 1213 { 1214 rm_field->regmap = regmap; 1215 rm_field->reg = reg_field.reg; 1216 rm_field->shift = reg_field.lsb; 1217 rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb); 1218 1219 WARN_ONCE(rm_field->mask == 0, "invalid empty mask defined\n"); 1220 1221 rm_field->id_size = reg_field.id_size; 1222 rm_field->id_offset = reg_field.id_offset; 1223 } 1224 1225 /** 1226 * devm_regmap_field_alloc() - Allocate and initialise a register field. 1227 * 1228 * @dev: Device that will be interacted with 1229 * @regmap: regmap bank in which this register field is located. 1230 * @reg_field: Register field with in the bank. 1231 * 1232 * The return value will be an ERR_PTR() on error or a valid pointer 1233 * to a struct regmap_field. The regmap_field will be automatically freed 1234 * by the device management code. 1235 */ 1236 struct regmap_field *devm_regmap_field_alloc(struct device *dev, 1237 struct regmap *regmap, struct reg_field reg_field) 1238 { 1239 struct regmap_field *rm_field = devm_kzalloc(dev, 1240 sizeof(*rm_field), GFP_KERNEL); 1241 if (!rm_field) 1242 return ERR_PTR(-ENOMEM); 1243 1244 regmap_field_init(rm_field, regmap, reg_field); 1245 1246 return rm_field; 1247 1248 } 1249 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc); 1250 1251 1252 /** 1253 * regmap_field_bulk_alloc() - Allocate and initialise a bulk register field. 1254 * 1255 * @regmap: regmap bank in which this register field is located. 1256 * @rm_field: regmap register fields within the bank. 1257 * @reg_field: Register fields within the bank. 1258 * @num_fields: Number of register fields. 1259 * 1260 * The return value will be an -ENOMEM on error or zero for success. 1261 * Newly allocated regmap_fields should be freed by calling 1262 * regmap_field_bulk_free() 1263 */ 1264 int regmap_field_bulk_alloc(struct regmap *regmap, 1265 struct regmap_field **rm_field, 1266 const struct reg_field *reg_field, 1267 int num_fields) 1268 { 1269 struct regmap_field *rf; 1270 int i; 1271 1272 rf = kcalloc(num_fields, sizeof(*rf), GFP_KERNEL); 1273 if (!rf) 1274 return -ENOMEM; 1275 1276 for (i = 0; i < num_fields; i++) { 1277 regmap_field_init(&rf[i], regmap, reg_field[i]); 1278 rm_field[i] = &rf[i]; 1279 } 1280 1281 return 0; 1282 } 1283 EXPORT_SYMBOL_GPL(regmap_field_bulk_alloc); 1284 1285 /** 1286 * devm_regmap_field_bulk_alloc() - Allocate and initialise a bulk register 1287 * fields. 1288 * 1289 * @dev: Device that will be interacted with 1290 * @regmap: regmap bank in which this register field is located. 1291 * @rm_field: regmap register fields within the bank. 1292 * @reg_field: Register fields within the bank. 1293 * @num_fields: Number of register fields. 1294 * 1295 * The return value will be an -ENOMEM on error or zero for success. 1296 * Newly allocated regmap_fields will be automatically freed by the 1297 * device management code. 1298 */ 1299 int devm_regmap_field_bulk_alloc(struct device *dev, 1300 struct regmap *regmap, 1301 struct regmap_field **rm_field, 1302 const struct reg_field *reg_field, 1303 int num_fields) 1304 { 1305 struct regmap_field *rf; 1306 int i; 1307 1308 rf = devm_kcalloc(dev, num_fields, sizeof(*rf), GFP_KERNEL); 1309 if (!rf) 1310 return -ENOMEM; 1311 1312 for (i = 0; i < num_fields; i++) { 1313 regmap_field_init(&rf[i], regmap, reg_field[i]); 1314 rm_field[i] = &rf[i]; 1315 } 1316 1317 return 0; 1318 } 1319 EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_alloc); 1320 1321 /** 1322 * regmap_field_bulk_free() - Free register field allocated using 1323 * regmap_field_bulk_alloc. 1324 * 1325 * @field: regmap fields which should be freed. 1326 */ 1327 void regmap_field_bulk_free(struct regmap_field *field) 1328 { 1329 kfree(field); 1330 } 1331 EXPORT_SYMBOL_GPL(regmap_field_bulk_free); 1332 1333 /** 1334 * devm_regmap_field_bulk_free() - Free a bulk register field allocated using 1335 * devm_regmap_field_bulk_alloc. 1336 * 1337 * @dev: Device that will be interacted with 1338 * @field: regmap field which should be freed. 1339 * 1340 * Free register field allocated using devm_regmap_field_bulk_alloc(). Usually 1341 * drivers need not call this function, as the memory allocated via devm 1342 * will be freed as per device-driver life-cycle. 1343 */ 1344 void devm_regmap_field_bulk_free(struct device *dev, 1345 struct regmap_field *field) 1346 { 1347 devm_kfree(dev, field); 1348 } 1349 EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_free); 1350 1351 /** 1352 * devm_regmap_field_free() - Free a register field allocated using 1353 * devm_regmap_field_alloc. 1354 * 1355 * @dev: Device that will be interacted with 1356 * @field: regmap field which should be freed. 1357 * 1358 * Free register field allocated using devm_regmap_field_alloc(). Usually 1359 * drivers need not call this function, as the memory allocated via devm 1360 * will be freed as per device-driver life-cyle. 1361 */ 1362 void devm_regmap_field_free(struct device *dev, 1363 struct regmap_field *field) 1364 { 1365 devm_kfree(dev, field); 1366 } 1367 EXPORT_SYMBOL_GPL(devm_regmap_field_free); 1368 1369 /** 1370 * regmap_field_alloc() - Allocate and initialise a register field. 1371 * 1372 * @regmap: regmap bank in which this register field is located. 1373 * @reg_field: Register field with in the bank. 1374 * 1375 * The return value will be an ERR_PTR() on error or a valid pointer 1376 * to a struct regmap_field. The regmap_field should be freed by the 1377 * user once its finished working with it using regmap_field_free(). 1378 */ 1379 struct regmap_field *regmap_field_alloc(struct regmap *regmap, 1380 struct reg_field reg_field) 1381 { 1382 struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL); 1383 1384 if (!rm_field) 1385 return ERR_PTR(-ENOMEM); 1386 1387 regmap_field_init(rm_field, regmap, reg_field); 1388 1389 return rm_field; 1390 } 1391 EXPORT_SYMBOL_GPL(regmap_field_alloc); 1392 1393 /** 1394 * regmap_field_free() - Free register field allocated using 1395 * regmap_field_alloc. 1396 * 1397 * @field: regmap field which should be freed. 1398 */ 1399 void regmap_field_free(struct regmap_field *field) 1400 { 1401 kfree(field); 1402 } 1403 EXPORT_SYMBOL_GPL(regmap_field_free); 1404 1405 /** 1406 * regmap_reinit_cache() - Reinitialise the current register cache 1407 * 1408 * @map: Register map to operate on. 1409 * @config: New configuration. Only the cache data will be used. 1410 * 1411 * Discard any existing register cache for the map and initialize a 1412 * new cache. This can be used to restore the cache to defaults or to 1413 * update the cache configuration to reflect runtime discovery of the 1414 * hardware. 1415 * 1416 * No explicit locking is done here, the user needs to ensure that 1417 * this function will not race with other calls to regmap. 1418 */ 1419 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config) 1420 { 1421 int ret; 1422 1423 regcache_exit(map); 1424 regmap_debugfs_exit(map); 1425 1426 map->max_register = config->max_register; 1427 map->max_register_is_set = map->max_register ?: config->max_register_is_0; 1428 map->writeable_reg = config->writeable_reg; 1429 map->readable_reg = config->readable_reg; 1430 map->volatile_reg = config->volatile_reg; 1431 map->precious_reg = config->precious_reg; 1432 map->writeable_noinc_reg = config->writeable_noinc_reg; 1433 map->readable_noinc_reg = config->readable_noinc_reg; 1434 map->cache_type = config->cache_type; 1435 1436 ret = regmap_set_name(map, config); 1437 if (ret) 1438 return ret; 1439 1440 regmap_debugfs_init(map); 1441 1442 map->cache_bypass = false; 1443 map->cache_only = false; 1444 1445 return regcache_init(map, config); 1446 } 1447 EXPORT_SYMBOL_GPL(regmap_reinit_cache); 1448 1449 /** 1450 * regmap_exit() - Free a previously allocated register map 1451 * 1452 * @map: Register map to operate on. 1453 */ 1454 void regmap_exit(struct regmap *map) 1455 { 1456 struct regmap_async *async; 1457 1458 regmap_detach_dev(map->dev, map); 1459 regcache_exit(map); 1460 1461 regmap_debugfs_exit(map); 1462 regmap_range_exit(map); 1463 if (map->bus && map->bus->free_context) 1464 map->bus->free_context(map->bus_context); 1465 kfree(map->work_buf); 1466 while (!list_empty(&map->async_free)) { 1467 async = list_first_entry_or_null(&map->async_free, 1468 struct regmap_async, 1469 list); 1470 list_del(&async->list); 1471 kfree(async->work_buf); 1472 kfree(async); 1473 } 1474 if (map->hwlock) 1475 hwspin_lock_free(map->hwlock); 1476 if (map->lock == regmap_lock_mutex) 1477 mutex_destroy(&map->mutex); 1478 kfree_const(map->name); 1479 kfree(map->patch); 1480 if (map->bus && map->bus->free_on_exit) 1481 kfree(map->bus); 1482 kfree(map); 1483 } 1484 EXPORT_SYMBOL_GPL(regmap_exit); 1485 1486 static int dev_get_regmap_match(struct device *dev, void *res, void *data) 1487 { 1488 struct regmap **r = res; 1489 if (!r || !*r) { 1490 WARN_ON(!r || !*r); 1491 return 0; 1492 } 1493 1494 /* If the user didn't specify a name match any */ 1495 if (data) 1496 return (*r)->name && !strcmp((*r)->name, data); 1497 else 1498 return 1; 1499 } 1500 1501 /** 1502 * dev_get_regmap() - Obtain the regmap (if any) for a device 1503 * 1504 * @dev: Device to retrieve the map for 1505 * @name: Optional name for the register map, usually NULL. 1506 * 1507 * Returns the regmap for the device if one is present, or NULL. If 1508 * name is specified then it must match the name specified when 1509 * registering the device, if it is NULL then the first regmap found 1510 * will be used. Devices with multiple register maps are very rare, 1511 * generic code should normally not need to specify a name. 1512 */ 1513 struct regmap *dev_get_regmap(struct device *dev, const char *name) 1514 { 1515 struct regmap **r = devres_find(dev, dev_get_regmap_release, 1516 dev_get_regmap_match, (void *)name); 1517 1518 if (!r) 1519 return NULL; 1520 return *r; 1521 } 1522 EXPORT_SYMBOL_GPL(dev_get_regmap); 1523 1524 /** 1525 * regmap_get_device() - Obtain the device from a regmap 1526 * 1527 * @map: Register map to operate on. 1528 * 1529 * Returns the underlying device that the regmap has been created for. 1530 */ 1531 struct device *regmap_get_device(struct regmap *map) 1532 { 1533 return map->dev; 1534 } 1535 EXPORT_SYMBOL_GPL(regmap_get_device); 1536 1537 static int _regmap_select_page(struct regmap *map, unsigned int *reg, 1538 struct regmap_range_node *range, 1539 unsigned int val_num) 1540 { 1541 void *orig_work_buf; 1542 unsigned int win_offset; 1543 unsigned int win_page; 1544 bool page_chg; 1545 int ret; 1546 1547 win_offset = (*reg - range->range_min) % range->window_len; 1548 win_page = (*reg - range->range_min) / range->window_len; 1549 1550 if (val_num > 1) { 1551 /* Bulk write shouldn't cross range boundary */ 1552 if (*reg + val_num - 1 > range->range_max) 1553 return -EINVAL; 1554 1555 /* ... or single page boundary */ 1556 if (val_num > range->window_len - win_offset) 1557 return -EINVAL; 1558 } 1559 1560 /* It is possible to have selector register inside data window. 1561 In that case, selector register is located on every page and 1562 it needs no page switching, when accessed alone. */ 1563 if (val_num > 1 || 1564 range->window_start + win_offset != range->selector_reg) { 1565 /* Use separate work_buf during page switching */ 1566 orig_work_buf = map->work_buf; 1567 map->work_buf = map->selector_work_buf; 1568 1569 ret = _regmap_update_bits(map, range->selector_reg, 1570 range->selector_mask, 1571 win_page << range->selector_shift, 1572 &page_chg, false); 1573 1574 map->work_buf = orig_work_buf; 1575 1576 if (ret != 0) 1577 return ret; 1578 } 1579 1580 *reg = range->window_start + win_offset; 1581 1582 return 0; 1583 } 1584 1585 static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes, 1586 unsigned long mask) 1587 { 1588 u8 *buf; 1589 int i; 1590 1591 if (!mask || !map->work_buf) 1592 return; 1593 1594 buf = map->work_buf; 1595 1596 for (i = 0; i < max_bytes; i++) 1597 buf[i] |= (mask >> (8 * i)) & 0xff; 1598 } 1599 1600 static unsigned int regmap_reg_addr(struct regmap *map, unsigned int reg) 1601 { 1602 reg += map->reg_base; 1603 1604 if (map->format.reg_shift > 0) 1605 reg >>= map->format.reg_shift; 1606 else if (map->format.reg_shift < 0) 1607 reg <<= -(map->format.reg_shift); 1608 1609 return reg; 1610 } 1611 1612 static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg, 1613 const void *val, size_t val_len, bool noinc) 1614 { 1615 struct regmap_range_node *range; 1616 unsigned long flags; 1617 void *work_val = map->work_buf + map->format.reg_bytes + 1618 map->format.pad_bytes; 1619 void *buf; 1620 int ret = -ENOTSUPP; 1621 size_t len; 1622 int i; 1623 1624 /* Check for unwritable or noinc registers in range 1625 * before we start 1626 */ 1627 if (!regmap_writeable_noinc(map, reg)) { 1628 for (i = 0; i < val_len / map->format.val_bytes; i++) { 1629 unsigned int element = 1630 reg + regmap_get_offset(map, i); 1631 if (!regmap_writeable(map, element) || 1632 regmap_writeable_noinc(map, element)) 1633 return -EINVAL; 1634 } 1635 } 1636 1637 if (!map->cache_bypass && map->format.parse_val) { 1638 unsigned int ival, offset; 1639 int val_bytes = map->format.val_bytes; 1640 1641 /* Cache the last written value for noinc writes */ 1642 i = noinc ? val_len - val_bytes : 0; 1643 for (; i < val_len; i += val_bytes) { 1644 ival = map->format.parse_val(val + i); 1645 offset = noinc ? 0 : regmap_get_offset(map, i / val_bytes); 1646 ret = regcache_write(map, reg + offset, ival); 1647 if (ret) { 1648 dev_err(map->dev, 1649 "Error in caching of register: %x ret: %d\n", 1650 reg + offset, ret); 1651 return ret; 1652 } 1653 } 1654 if (map->cache_only) { 1655 map->cache_dirty = true; 1656 return 0; 1657 } 1658 } 1659 1660 range = _regmap_range_lookup(map, reg); 1661 if (range) { 1662 int val_num = val_len / map->format.val_bytes; 1663 int win_offset = (reg - range->range_min) % range->window_len; 1664 int win_residue = range->window_len - win_offset; 1665 1666 /* If the write goes beyond the end of the window split it */ 1667 while (val_num > win_residue) { 1668 dev_dbg(map->dev, "Writing window %d/%zu\n", 1669 win_residue, val_len / map->format.val_bytes); 1670 ret = _regmap_raw_write_impl(map, reg, val, 1671 win_residue * 1672 map->format.val_bytes, noinc); 1673 if (ret != 0) 1674 return ret; 1675 1676 reg += win_residue; 1677 val_num -= win_residue; 1678 val += win_residue * map->format.val_bytes; 1679 val_len -= win_residue * map->format.val_bytes; 1680 1681 win_offset = (reg - range->range_min) % 1682 range->window_len; 1683 win_residue = range->window_len - win_offset; 1684 } 1685 1686 ret = _regmap_select_page(map, ®, range, noinc ? 1 : val_num); 1687 if (ret != 0) 1688 return ret; 1689 } 1690 1691 reg = regmap_reg_addr(map, reg); 1692 map->format.format_reg(map->work_buf, reg, map->reg_shift); 1693 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes, 1694 map->write_flag_mask); 1695 1696 /* 1697 * Essentially all I/O mechanisms will be faster with a single 1698 * buffer to write. Since register syncs often generate raw 1699 * writes of single registers optimise that case. 1700 */ 1701 if (val != work_val && val_len == map->format.val_bytes) { 1702 memcpy(work_val, val, map->format.val_bytes); 1703 val = work_val; 1704 } 1705 1706 if (map->async && map->bus && map->bus->async_write) { 1707 struct regmap_async *async; 1708 1709 trace_regmap_async_write_start(map, reg, val_len); 1710 1711 spin_lock_irqsave(&map->async_lock, flags); 1712 async = list_first_entry_or_null(&map->async_free, 1713 struct regmap_async, 1714 list); 1715 if (async) 1716 list_del(&async->list); 1717 spin_unlock_irqrestore(&map->async_lock, flags); 1718 1719 if (!async) { 1720 async = map->bus->async_alloc(); 1721 if (!async) 1722 return -ENOMEM; 1723 1724 async->work_buf = kzalloc(map->format.buf_size, 1725 GFP_KERNEL | GFP_DMA); 1726 if (!async->work_buf) { 1727 kfree(async); 1728 return -ENOMEM; 1729 } 1730 } 1731 1732 async->map = map; 1733 1734 /* If the caller supplied the value we can use it safely. */ 1735 memcpy(async->work_buf, map->work_buf, map->format.pad_bytes + 1736 map->format.reg_bytes + map->format.val_bytes); 1737 1738 spin_lock_irqsave(&map->async_lock, flags); 1739 list_add_tail(&async->list, &map->async_list); 1740 spin_unlock_irqrestore(&map->async_lock, flags); 1741 1742 if (val != work_val) 1743 ret = map->bus->async_write(map->bus_context, 1744 async->work_buf, 1745 map->format.reg_bytes + 1746 map->format.pad_bytes, 1747 val, val_len, async); 1748 else 1749 ret = map->bus->async_write(map->bus_context, 1750 async->work_buf, 1751 map->format.reg_bytes + 1752 map->format.pad_bytes + 1753 val_len, NULL, 0, async); 1754 1755 if (ret != 0) { 1756 dev_err(map->dev, "Failed to schedule write: %d\n", 1757 ret); 1758 1759 spin_lock_irqsave(&map->async_lock, flags); 1760 list_move(&async->list, &map->async_free); 1761 spin_unlock_irqrestore(&map->async_lock, flags); 1762 } 1763 1764 return ret; 1765 } 1766 1767 trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes); 1768 1769 /* If we're doing a single register write we can probably just 1770 * send the work_buf directly, otherwise try to do a gather 1771 * write. 1772 */ 1773 if (val == work_val) 1774 ret = map->write(map->bus_context, map->work_buf, 1775 map->format.reg_bytes + 1776 map->format.pad_bytes + 1777 val_len); 1778 else if (map->bus && map->bus->gather_write) 1779 ret = map->bus->gather_write(map->bus_context, map->work_buf, 1780 map->format.reg_bytes + 1781 map->format.pad_bytes, 1782 val, val_len); 1783 else 1784 ret = -ENOTSUPP; 1785 1786 /* If that didn't work fall back on linearising by hand. */ 1787 if (ret == -ENOTSUPP) { 1788 len = map->format.reg_bytes + map->format.pad_bytes + val_len; 1789 buf = kzalloc(len, GFP_KERNEL); 1790 if (!buf) 1791 return -ENOMEM; 1792 1793 memcpy(buf, map->work_buf, map->format.reg_bytes); 1794 memcpy(buf + map->format.reg_bytes + map->format.pad_bytes, 1795 val, val_len); 1796 ret = map->write(map->bus_context, buf, len); 1797 1798 kfree(buf); 1799 } else if (ret != 0 && !map->cache_bypass && map->format.parse_val) { 1800 /* regcache_drop_region() takes lock that we already have, 1801 * thus call map->cache_ops->drop() directly 1802 */ 1803 if (map->cache_ops && map->cache_ops->drop) 1804 map->cache_ops->drop(map, reg, reg + 1); 1805 } 1806 1807 trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes); 1808 1809 return ret; 1810 } 1811 1812 /** 1813 * regmap_can_raw_write - Test if regmap_raw_write() is supported 1814 * 1815 * @map: Map to check. 1816 */ 1817 bool regmap_can_raw_write(struct regmap *map) 1818 { 1819 return map->write && map->format.format_val && map->format.format_reg; 1820 } 1821 EXPORT_SYMBOL_GPL(regmap_can_raw_write); 1822 1823 /** 1824 * regmap_get_raw_read_max - Get the maximum size we can read 1825 * 1826 * @map: Map to check. 1827 */ 1828 size_t regmap_get_raw_read_max(struct regmap *map) 1829 { 1830 return map->max_raw_read; 1831 } 1832 EXPORT_SYMBOL_GPL(regmap_get_raw_read_max); 1833 1834 /** 1835 * regmap_get_raw_write_max - Get the maximum size we can read 1836 * 1837 * @map: Map to check. 1838 */ 1839 size_t regmap_get_raw_write_max(struct regmap *map) 1840 { 1841 return map->max_raw_write; 1842 } 1843 EXPORT_SYMBOL_GPL(regmap_get_raw_write_max); 1844 1845 static int _regmap_bus_formatted_write(void *context, unsigned int reg, 1846 unsigned int val) 1847 { 1848 int ret; 1849 struct regmap_range_node *range; 1850 struct regmap *map = context; 1851 1852 WARN_ON(!map->format.format_write); 1853 1854 range = _regmap_range_lookup(map, reg); 1855 if (range) { 1856 ret = _regmap_select_page(map, ®, range, 1); 1857 if (ret != 0) 1858 return ret; 1859 } 1860 1861 reg = regmap_reg_addr(map, reg); 1862 map->format.format_write(map, reg, val); 1863 1864 trace_regmap_hw_write_start(map, reg, 1); 1865 1866 ret = map->write(map->bus_context, map->work_buf, map->format.buf_size); 1867 1868 trace_regmap_hw_write_done(map, reg, 1); 1869 1870 return ret; 1871 } 1872 1873 static int _regmap_bus_reg_write(void *context, unsigned int reg, 1874 unsigned int val) 1875 { 1876 struct regmap *map = context; 1877 struct regmap_range_node *range; 1878 int ret; 1879 1880 range = _regmap_range_lookup(map, reg); 1881 if (range) { 1882 ret = _regmap_select_page(map, ®, range, 1); 1883 if (ret != 0) 1884 return ret; 1885 } 1886 1887 reg = regmap_reg_addr(map, reg); 1888 return map->bus->reg_write(map->bus_context, reg, val); 1889 } 1890 1891 static int _regmap_bus_raw_write(void *context, unsigned int reg, 1892 unsigned int val) 1893 { 1894 struct regmap *map = context; 1895 1896 WARN_ON(!map->format.format_val); 1897 1898 map->format.format_val(map->work_buf + map->format.reg_bytes 1899 + map->format.pad_bytes, val, 0); 1900 return _regmap_raw_write_impl(map, reg, 1901 map->work_buf + 1902 map->format.reg_bytes + 1903 map->format.pad_bytes, 1904 map->format.val_bytes, 1905 false); 1906 } 1907 1908 static inline void *_regmap_map_get_context(struct regmap *map) 1909 { 1910 return (map->bus || (!map->bus && map->read)) ? map : map->bus_context; 1911 } 1912 1913 int _regmap_write(struct regmap *map, unsigned int reg, 1914 unsigned int val) 1915 { 1916 int ret; 1917 void *context = _regmap_map_get_context(map); 1918 1919 if (!regmap_writeable(map, reg)) 1920 return -EIO; 1921 1922 if (!map->cache_bypass && !map->defer_caching) { 1923 ret = regcache_write(map, reg, val); 1924 if (ret != 0) 1925 return ret; 1926 if (map->cache_only) { 1927 map->cache_dirty = true; 1928 return 0; 1929 } 1930 } 1931 1932 ret = map->reg_write(context, reg, val); 1933 if (ret == 0) { 1934 if (regmap_should_log(map)) 1935 dev_info(map->dev, "%x <= %x\n", reg, val); 1936 1937 trace_regmap_reg_write(map, reg, val); 1938 } 1939 1940 return ret; 1941 } 1942 1943 /** 1944 * regmap_write() - Write a value to a single register 1945 * 1946 * @map: Register map to write to 1947 * @reg: Register to write to 1948 * @val: Value to be written 1949 * 1950 * A value of zero will be returned on success, a negative errno will 1951 * be returned in error cases. 1952 */ 1953 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val) 1954 { 1955 int ret; 1956 1957 if (!IS_ALIGNED(reg, map->reg_stride)) 1958 return -EINVAL; 1959 1960 map->lock(map->lock_arg); 1961 1962 ret = _regmap_write(map, reg, val); 1963 1964 map->unlock(map->lock_arg); 1965 1966 return ret; 1967 } 1968 EXPORT_SYMBOL_GPL(regmap_write); 1969 1970 /** 1971 * regmap_write_async() - Write a value to a single register asynchronously 1972 * 1973 * @map: Register map to write to 1974 * @reg: Register to write to 1975 * @val: Value to be written 1976 * 1977 * A value of zero will be returned on success, a negative errno will 1978 * be returned in error cases. 1979 */ 1980 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val) 1981 { 1982 int ret; 1983 1984 if (!IS_ALIGNED(reg, map->reg_stride)) 1985 return -EINVAL; 1986 1987 map->lock(map->lock_arg); 1988 1989 map->async = true; 1990 1991 ret = _regmap_write(map, reg, val); 1992 1993 map->async = false; 1994 1995 map->unlock(map->lock_arg); 1996 1997 return ret; 1998 } 1999 EXPORT_SYMBOL_GPL(regmap_write_async); 2000 2001 int _regmap_raw_write(struct regmap *map, unsigned int reg, 2002 const void *val, size_t val_len, bool noinc) 2003 { 2004 size_t val_bytes = map->format.val_bytes; 2005 size_t val_count = val_len / val_bytes; 2006 size_t chunk_count, chunk_bytes; 2007 size_t chunk_regs = val_count; 2008 int ret, i; 2009 2010 if (!val_count) 2011 return -EINVAL; 2012 2013 if (map->use_single_write) 2014 chunk_regs = 1; 2015 else if (map->max_raw_write && val_len > map->max_raw_write) 2016 chunk_regs = map->max_raw_write / val_bytes; 2017 2018 chunk_count = val_count / chunk_regs; 2019 chunk_bytes = chunk_regs * val_bytes; 2020 2021 /* Write as many bytes as possible with chunk_size */ 2022 for (i = 0; i < chunk_count; i++) { 2023 ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes, noinc); 2024 if (ret) 2025 return ret; 2026 2027 reg += regmap_get_offset(map, chunk_regs); 2028 val += chunk_bytes; 2029 val_len -= chunk_bytes; 2030 } 2031 2032 /* Write remaining bytes */ 2033 if (val_len) 2034 ret = _regmap_raw_write_impl(map, reg, val, val_len, noinc); 2035 2036 return ret; 2037 } 2038 2039 /** 2040 * regmap_raw_write() - Write raw values to one or more registers 2041 * 2042 * @map: Register map to write to 2043 * @reg: Initial register to write to 2044 * @val: Block of data to be written, laid out for direct transmission to the 2045 * device 2046 * @val_len: Length of data pointed to by val. 2047 * 2048 * This function is intended to be used for things like firmware 2049 * download where a large block of data needs to be transferred to the 2050 * device. No formatting will be done on the data provided. 2051 * 2052 * A value of zero will be returned on success, a negative errno will 2053 * be returned in error cases. 2054 */ 2055 int regmap_raw_write(struct regmap *map, unsigned int reg, 2056 const void *val, size_t val_len) 2057 { 2058 int ret; 2059 2060 if (!regmap_can_raw_write(map)) 2061 return -EINVAL; 2062 if (val_len % map->format.val_bytes) 2063 return -EINVAL; 2064 2065 map->lock(map->lock_arg); 2066 2067 ret = _regmap_raw_write(map, reg, val, val_len, false); 2068 2069 map->unlock(map->lock_arg); 2070 2071 return ret; 2072 } 2073 EXPORT_SYMBOL_GPL(regmap_raw_write); 2074 2075 static int regmap_noinc_readwrite(struct regmap *map, unsigned int reg, 2076 void *val, unsigned int val_len, bool write) 2077 { 2078 size_t val_bytes = map->format.val_bytes; 2079 size_t val_count = val_len / val_bytes; 2080 unsigned int lastval; 2081 u8 *u8p; 2082 u16 *u16p; 2083 u32 *u32p; 2084 int ret; 2085 int i; 2086 2087 switch (val_bytes) { 2088 case 1: 2089 u8p = val; 2090 if (write) 2091 lastval = (unsigned int)u8p[val_count - 1]; 2092 break; 2093 case 2: 2094 u16p = val; 2095 if (write) 2096 lastval = (unsigned int)u16p[val_count - 1]; 2097 break; 2098 case 4: 2099 u32p = val; 2100 if (write) 2101 lastval = (unsigned int)u32p[val_count - 1]; 2102 break; 2103 default: 2104 return -EINVAL; 2105 } 2106 2107 /* 2108 * Update the cache with the last value we write, the rest is just 2109 * gone down in the hardware FIFO. We can't cache FIFOs. This makes 2110 * sure a single read from the cache will work. 2111 */ 2112 if (write) { 2113 if (!map->cache_bypass && !map->defer_caching) { 2114 ret = regcache_write(map, reg, lastval); 2115 if (ret != 0) 2116 return ret; 2117 if (map->cache_only) { 2118 map->cache_dirty = true; 2119 return 0; 2120 } 2121 } 2122 ret = map->bus->reg_noinc_write(map->bus_context, reg, val, val_count); 2123 } else { 2124 ret = map->bus->reg_noinc_read(map->bus_context, reg, val, val_count); 2125 } 2126 2127 if (!ret && regmap_should_log(map)) { 2128 dev_info(map->dev, "%x %s [", reg, write ? "<=" : "=>"); 2129 for (i = 0; i < val_count; i++) { 2130 switch (val_bytes) { 2131 case 1: 2132 pr_cont("%x", u8p[i]); 2133 break; 2134 case 2: 2135 pr_cont("%x", u16p[i]); 2136 break; 2137 case 4: 2138 pr_cont("%x", u32p[i]); 2139 break; 2140 default: 2141 break; 2142 } 2143 if (i == (val_count - 1)) 2144 pr_cont("]\n"); 2145 else 2146 pr_cont(","); 2147 } 2148 } 2149 2150 return 0; 2151 } 2152 2153 /** 2154 * regmap_noinc_write(): Write data to a register without incrementing the 2155 * register number 2156 * 2157 * @map: Register map to write to 2158 * @reg: Register to write to 2159 * @val: Pointer to data buffer 2160 * @val_len: Length of output buffer in bytes. 2161 * 2162 * The regmap API usually assumes that bulk bus write operations will write a 2163 * range of registers. Some devices have certain registers for which a write 2164 * operation can write to an internal FIFO. 2165 * 2166 * The target register must be volatile but registers after it can be 2167 * completely unrelated cacheable registers. 2168 * 2169 * This will attempt multiple writes as required to write val_len bytes. 2170 * 2171 * A value of zero will be returned on success, a negative errno will be 2172 * returned in error cases. 2173 */ 2174 int regmap_noinc_write(struct regmap *map, unsigned int reg, 2175 const void *val, size_t val_len) 2176 { 2177 size_t write_len; 2178 int ret; 2179 2180 if (!map->write && !(map->bus && map->bus->reg_noinc_write)) 2181 return -EINVAL; 2182 if (val_len % map->format.val_bytes) 2183 return -EINVAL; 2184 if (!IS_ALIGNED(reg, map->reg_stride)) 2185 return -EINVAL; 2186 if (val_len == 0) 2187 return -EINVAL; 2188 2189 map->lock(map->lock_arg); 2190 2191 if (!regmap_volatile(map, reg) || !regmap_writeable_noinc(map, reg)) { 2192 ret = -EINVAL; 2193 goto out_unlock; 2194 } 2195 2196 /* 2197 * Use the accelerated operation if we can. The val drops the const 2198 * typing in order to facilitate code reuse in regmap_noinc_readwrite(). 2199 */ 2200 if (map->bus->reg_noinc_write) { 2201 ret = regmap_noinc_readwrite(map, reg, (void *)val, val_len, true); 2202 goto out_unlock; 2203 } 2204 2205 while (val_len) { 2206 if (map->max_raw_write && map->max_raw_write < val_len) 2207 write_len = map->max_raw_write; 2208 else 2209 write_len = val_len; 2210 ret = _regmap_raw_write(map, reg, val, write_len, true); 2211 if (ret) 2212 goto out_unlock; 2213 val = ((u8 *)val) + write_len; 2214 val_len -= write_len; 2215 } 2216 2217 out_unlock: 2218 map->unlock(map->lock_arg); 2219 return ret; 2220 } 2221 EXPORT_SYMBOL_GPL(regmap_noinc_write); 2222 2223 /** 2224 * regmap_field_update_bits_base() - Perform a read/modify/write cycle a 2225 * register field. 2226 * 2227 * @field: Register field to write to 2228 * @mask: Bitmask to change 2229 * @val: Value to be written 2230 * @change: Boolean indicating if a write was done 2231 * @async: Boolean indicating asynchronously 2232 * @force: Boolean indicating use force update 2233 * 2234 * Perform a read/modify/write cycle on the register field with change, 2235 * async, force option. 2236 * 2237 * A value of zero will be returned on success, a negative errno will 2238 * be returned in error cases. 2239 */ 2240 int regmap_field_update_bits_base(struct regmap_field *field, 2241 unsigned int mask, unsigned int val, 2242 bool *change, bool async, bool force) 2243 { 2244 mask = (mask << field->shift) & field->mask; 2245 2246 return regmap_update_bits_base(field->regmap, field->reg, 2247 mask, val << field->shift, 2248 change, async, force); 2249 } 2250 EXPORT_SYMBOL_GPL(regmap_field_update_bits_base); 2251 2252 /** 2253 * regmap_field_test_bits() - Check if all specified bits are set in a 2254 * register field. 2255 * 2256 * @field: Register field to operate on 2257 * @bits: Bits to test 2258 * 2259 * Returns -1 if the underlying regmap_field_read() fails, 0 if at least one of the 2260 * tested bits is not set and 1 if all tested bits are set. 2261 */ 2262 int regmap_field_test_bits(struct regmap_field *field, unsigned int bits) 2263 { 2264 unsigned int val, ret; 2265 2266 ret = regmap_field_read(field, &val); 2267 if (ret) 2268 return ret; 2269 2270 return (val & bits) == bits; 2271 } 2272 EXPORT_SYMBOL_GPL(regmap_field_test_bits); 2273 2274 /** 2275 * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a 2276 * register field with port ID 2277 * 2278 * @field: Register field to write to 2279 * @id: port ID 2280 * @mask: Bitmask to change 2281 * @val: Value to be written 2282 * @change: Boolean indicating if a write was done 2283 * @async: Boolean indicating asynchronously 2284 * @force: Boolean indicating use force update 2285 * 2286 * A value of zero will be returned on success, a negative errno will 2287 * be returned in error cases. 2288 */ 2289 int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id, 2290 unsigned int mask, unsigned int val, 2291 bool *change, bool async, bool force) 2292 { 2293 if (id >= field->id_size) 2294 return -EINVAL; 2295 2296 mask = (mask << field->shift) & field->mask; 2297 2298 return regmap_update_bits_base(field->regmap, 2299 field->reg + (field->id_offset * id), 2300 mask, val << field->shift, 2301 change, async, force); 2302 } 2303 EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base); 2304 2305 /** 2306 * regmap_bulk_write() - Write multiple registers to the device 2307 * 2308 * @map: Register map to write to 2309 * @reg: First register to be write from 2310 * @val: Block of data to be written, in native register size for device 2311 * @val_count: Number of registers to write 2312 * 2313 * This function is intended to be used for writing a large block of 2314 * data to the device either in single transfer or multiple transfer. 2315 * 2316 * A value of zero will be returned on success, a negative errno will 2317 * be returned in error cases. 2318 */ 2319 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val, 2320 size_t val_count) 2321 { 2322 int ret = 0, i; 2323 size_t val_bytes = map->format.val_bytes; 2324 2325 if (!IS_ALIGNED(reg, map->reg_stride)) 2326 return -EINVAL; 2327 2328 /* 2329 * Some devices don't support bulk write, for them we have a series of 2330 * single write operations. 2331 */ 2332 if (!map->write || !map->format.parse_inplace) { 2333 map->lock(map->lock_arg); 2334 for (i = 0; i < val_count; i++) { 2335 unsigned int ival; 2336 2337 switch (val_bytes) { 2338 case 1: 2339 ival = *(u8 *)(val + (i * val_bytes)); 2340 break; 2341 case 2: 2342 ival = *(u16 *)(val + (i * val_bytes)); 2343 break; 2344 case 4: 2345 ival = *(u32 *)(val + (i * val_bytes)); 2346 break; 2347 default: 2348 ret = -EINVAL; 2349 goto out; 2350 } 2351 2352 ret = _regmap_write(map, 2353 reg + regmap_get_offset(map, i), 2354 ival); 2355 if (ret != 0) 2356 goto out; 2357 } 2358 out: 2359 map->unlock(map->lock_arg); 2360 } else { 2361 void *wval; 2362 2363 wval = kmemdup_array(val, val_count, val_bytes, map->alloc_flags); 2364 if (!wval) 2365 return -ENOMEM; 2366 2367 for (i = 0; i < val_count * val_bytes; i += val_bytes) 2368 map->format.parse_inplace(wval + i); 2369 2370 ret = regmap_raw_write(map, reg, wval, val_bytes * val_count); 2371 2372 kfree(wval); 2373 } 2374 2375 if (!ret) 2376 trace_regmap_bulk_write(map, reg, val, val_bytes * val_count); 2377 2378 return ret; 2379 } 2380 EXPORT_SYMBOL_GPL(regmap_bulk_write); 2381 2382 /* 2383 * _regmap_raw_multi_reg_write() 2384 * 2385 * the (register,newvalue) pairs in regs have not been formatted, but 2386 * they are all in the same page and have been changed to being page 2387 * relative. The page register has been written if that was necessary. 2388 */ 2389 static int _regmap_raw_multi_reg_write(struct regmap *map, 2390 const struct reg_sequence *regs, 2391 size_t num_regs) 2392 { 2393 int ret; 2394 void *buf; 2395 int i; 2396 u8 *u8; 2397 size_t val_bytes = map->format.val_bytes; 2398 size_t reg_bytes = map->format.reg_bytes; 2399 size_t pad_bytes = map->format.pad_bytes; 2400 size_t pair_size = reg_bytes + pad_bytes + val_bytes; 2401 size_t len = pair_size * num_regs; 2402 2403 if (!len) 2404 return -EINVAL; 2405 2406 buf = kzalloc(len, GFP_KERNEL); 2407 if (!buf) 2408 return -ENOMEM; 2409 2410 /* We have to linearise by hand. */ 2411 2412 u8 = buf; 2413 2414 for (i = 0; i < num_regs; i++) { 2415 unsigned int reg = regs[i].reg; 2416 unsigned int val = regs[i].def; 2417 trace_regmap_hw_write_start(map, reg, 1); 2418 reg = regmap_reg_addr(map, reg); 2419 map->format.format_reg(u8, reg, map->reg_shift); 2420 u8 += reg_bytes + pad_bytes; 2421 map->format.format_val(u8, val, 0); 2422 u8 += val_bytes; 2423 } 2424 u8 = buf; 2425 *u8 |= map->write_flag_mask; 2426 2427 ret = map->write(map->bus_context, buf, len); 2428 2429 kfree(buf); 2430 2431 for (i = 0; i < num_regs; i++) { 2432 int reg = regs[i].reg; 2433 trace_regmap_hw_write_done(map, reg, 1); 2434 } 2435 return ret; 2436 } 2437 2438 static unsigned int _regmap_register_page(struct regmap *map, 2439 unsigned int reg, 2440 struct regmap_range_node *range) 2441 { 2442 unsigned int win_page = (reg - range->range_min) / range->window_len; 2443 2444 return win_page; 2445 } 2446 2447 static int _regmap_range_multi_paged_reg_write(struct regmap *map, 2448 struct reg_sequence *regs, 2449 size_t num_regs) 2450 { 2451 int ret; 2452 int i, n; 2453 struct reg_sequence *base; 2454 unsigned int this_page = 0; 2455 unsigned int page_change = 0; 2456 /* 2457 * the set of registers are not neccessarily in order, but 2458 * since the order of write must be preserved this algorithm 2459 * chops the set each time the page changes. This also applies 2460 * if there is a delay required at any point in the sequence. 2461 */ 2462 base = regs; 2463 for (i = 0, n = 0; i < num_regs; i++, n++) { 2464 unsigned int reg = regs[i].reg; 2465 struct regmap_range_node *range; 2466 2467 range = _regmap_range_lookup(map, reg); 2468 if (range) { 2469 unsigned int win_page = _regmap_register_page(map, reg, 2470 range); 2471 2472 if (i == 0) 2473 this_page = win_page; 2474 if (win_page != this_page) { 2475 this_page = win_page; 2476 page_change = 1; 2477 } 2478 } 2479 2480 /* If we have both a page change and a delay make sure to 2481 * write the regs and apply the delay before we change the 2482 * page. 2483 */ 2484 2485 if (page_change || regs[i].delay_us) { 2486 2487 /* For situations where the first write requires 2488 * a delay we need to make sure we don't call 2489 * raw_multi_reg_write with n=0 2490 * This can't occur with page breaks as we 2491 * never write on the first iteration 2492 */ 2493 if (regs[i].delay_us && i == 0) 2494 n = 1; 2495 2496 ret = _regmap_raw_multi_reg_write(map, base, n); 2497 if (ret != 0) 2498 return ret; 2499 2500 if (regs[i].delay_us) { 2501 if (map->can_sleep) 2502 fsleep(regs[i].delay_us); 2503 else 2504 udelay(regs[i].delay_us); 2505 } 2506 2507 base += n; 2508 n = 0; 2509 2510 if (page_change) { 2511 ret = _regmap_select_page(map, 2512 &base[n].reg, 2513 range, 1); 2514 if (ret != 0) 2515 return ret; 2516 2517 page_change = 0; 2518 } 2519 2520 } 2521 2522 } 2523 if (n > 0) 2524 return _regmap_raw_multi_reg_write(map, base, n); 2525 return 0; 2526 } 2527 2528 static int _regmap_multi_reg_write(struct regmap *map, 2529 const struct reg_sequence *regs, 2530 size_t num_regs) 2531 { 2532 int i; 2533 int ret; 2534 2535 if (!map->can_multi_write) { 2536 for (i = 0; i < num_regs; i++) { 2537 ret = _regmap_write(map, regs[i].reg, regs[i].def); 2538 if (ret != 0) 2539 return ret; 2540 2541 if (regs[i].delay_us) { 2542 if (map->can_sleep) 2543 fsleep(regs[i].delay_us); 2544 else 2545 udelay(regs[i].delay_us); 2546 } 2547 } 2548 return 0; 2549 } 2550 2551 if (!map->format.parse_inplace) 2552 return -EINVAL; 2553 2554 if (map->writeable_reg) 2555 for (i = 0; i < num_regs; i++) { 2556 int reg = regs[i].reg; 2557 if (!map->writeable_reg(map->dev, reg)) 2558 return -EINVAL; 2559 if (!IS_ALIGNED(reg, map->reg_stride)) 2560 return -EINVAL; 2561 } 2562 2563 if (!map->cache_bypass) { 2564 for (i = 0; i < num_regs; i++) { 2565 unsigned int val = regs[i].def; 2566 unsigned int reg = regs[i].reg; 2567 ret = regcache_write(map, reg, val); 2568 if (ret) { 2569 dev_err(map->dev, 2570 "Error in caching of register: %x ret: %d\n", 2571 reg, ret); 2572 return ret; 2573 } 2574 } 2575 if (map->cache_only) { 2576 map->cache_dirty = true; 2577 return 0; 2578 } 2579 } 2580 2581 WARN_ON(!map->bus); 2582 2583 for (i = 0; i < num_regs; i++) { 2584 unsigned int reg = regs[i].reg; 2585 struct regmap_range_node *range; 2586 2587 /* Coalesce all the writes between a page break or a delay 2588 * in a sequence 2589 */ 2590 range = _regmap_range_lookup(map, reg); 2591 if (range || regs[i].delay_us) { 2592 size_t len = sizeof(struct reg_sequence)*num_regs; 2593 struct reg_sequence *base = kmemdup(regs, len, 2594 GFP_KERNEL); 2595 if (!base) 2596 return -ENOMEM; 2597 ret = _regmap_range_multi_paged_reg_write(map, base, 2598 num_regs); 2599 kfree(base); 2600 2601 return ret; 2602 } 2603 } 2604 return _regmap_raw_multi_reg_write(map, regs, num_regs); 2605 } 2606 2607 /** 2608 * regmap_multi_reg_write() - Write multiple registers to the device 2609 * 2610 * @map: Register map to write to 2611 * @regs: Array of structures containing register,value to be written 2612 * @num_regs: Number of registers to write 2613 * 2614 * Write multiple registers to the device where the set of register, value 2615 * pairs are supplied in any order, possibly not all in a single range. 2616 * 2617 * The 'normal' block write mode will send ultimately send data on the 2618 * target bus as R,V1,V2,V3,..,Vn where successively higher registers are 2619 * addressed. However, this alternative block multi write mode will send 2620 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device 2621 * must of course support the mode. 2622 * 2623 * A value of zero will be returned on success, a negative errno will be 2624 * returned in error cases. 2625 */ 2626 int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs, 2627 int num_regs) 2628 { 2629 int ret; 2630 2631 map->lock(map->lock_arg); 2632 2633 ret = _regmap_multi_reg_write(map, regs, num_regs); 2634 2635 map->unlock(map->lock_arg); 2636 2637 return ret; 2638 } 2639 EXPORT_SYMBOL_GPL(regmap_multi_reg_write); 2640 2641 /** 2642 * regmap_multi_reg_write_bypassed() - Write multiple registers to the 2643 * device but not the cache 2644 * 2645 * @map: Register map to write to 2646 * @regs: Array of structures containing register,value to be written 2647 * @num_regs: Number of registers to write 2648 * 2649 * Write multiple registers to the device but not the cache where the set 2650 * of register are supplied in any order. 2651 * 2652 * This function is intended to be used for writing a large block of data 2653 * atomically to the device in single transfer for those I2C client devices 2654 * that implement this alternative block write mode. 2655 * 2656 * A value of zero will be returned on success, a negative errno will 2657 * be returned in error cases. 2658 */ 2659 int regmap_multi_reg_write_bypassed(struct regmap *map, 2660 const struct reg_sequence *regs, 2661 int num_regs) 2662 { 2663 int ret; 2664 bool bypass; 2665 2666 map->lock(map->lock_arg); 2667 2668 bypass = map->cache_bypass; 2669 map->cache_bypass = true; 2670 2671 ret = _regmap_multi_reg_write(map, regs, num_regs); 2672 2673 map->cache_bypass = bypass; 2674 2675 map->unlock(map->lock_arg); 2676 2677 return ret; 2678 } 2679 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed); 2680 2681 /** 2682 * regmap_raw_write_async() - Write raw values to one or more registers 2683 * asynchronously 2684 * 2685 * @map: Register map to write to 2686 * @reg: Initial register to write to 2687 * @val: Block of data to be written, laid out for direct transmission to the 2688 * device. Must be valid until regmap_async_complete() is called. 2689 * @val_len: Length of data pointed to by val. 2690 * 2691 * This function is intended to be used for things like firmware 2692 * download where a large block of data needs to be transferred to the 2693 * device. No formatting will be done on the data provided. 2694 * 2695 * If supported by the underlying bus the write will be scheduled 2696 * asynchronously, helping maximise I/O speed on higher speed buses 2697 * like SPI. regmap_async_complete() can be called to ensure that all 2698 * asynchrnous writes have been completed. 2699 * 2700 * A value of zero will be returned on success, a negative errno will 2701 * be returned in error cases. 2702 */ 2703 int regmap_raw_write_async(struct regmap *map, unsigned int reg, 2704 const void *val, size_t val_len) 2705 { 2706 int ret; 2707 2708 if (val_len % map->format.val_bytes) 2709 return -EINVAL; 2710 if (!IS_ALIGNED(reg, map->reg_stride)) 2711 return -EINVAL; 2712 2713 map->lock(map->lock_arg); 2714 2715 map->async = true; 2716 2717 ret = _regmap_raw_write(map, reg, val, val_len, false); 2718 2719 map->async = false; 2720 2721 map->unlock(map->lock_arg); 2722 2723 return ret; 2724 } 2725 EXPORT_SYMBOL_GPL(regmap_raw_write_async); 2726 2727 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val, 2728 unsigned int val_len, bool noinc) 2729 { 2730 struct regmap_range_node *range; 2731 int ret; 2732 2733 if (!map->read) 2734 return -EINVAL; 2735 2736 range = _regmap_range_lookup(map, reg); 2737 if (range) { 2738 ret = _regmap_select_page(map, ®, range, 2739 noinc ? 1 : val_len / map->format.val_bytes); 2740 if (ret != 0) 2741 return ret; 2742 } 2743 2744 reg = regmap_reg_addr(map, reg); 2745 map->format.format_reg(map->work_buf, reg, map->reg_shift); 2746 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes, 2747 map->read_flag_mask); 2748 trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes); 2749 2750 ret = map->read(map->bus_context, map->work_buf, 2751 map->format.reg_bytes + map->format.pad_bytes, 2752 val, val_len); 2753 2754 trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes); 2755 2756 return ret; 2757 } 2758 2759 static int _regmap_bus_reg_read(void *context, unsigned int reg, 2760 unsigned int *val) 2761 { 2762 struct regmap *map = context; 2763 struct regmap_range_node *range; 2764 int ret; 2765 2766 range = _regmap_range_lookup(map, reg); 2767 if (range) { 2768 ret = _regmap_select_page(map, ®, range, 1); 2769 if (ret != 0) 2770 return ret; 2771 } 2772 2773 reg = regmap_reg_addr(map, reg); 2774 return map->bus->reg_read(map->bus_context, reg, val); 2775 } 2776 2777 static int _regmap_bus_read(void *context, unsigned int reg, 2778 unsigned int *val) 2779 { 2780 int ret; 2781 struct regmap *map = context; 2782 void *work_val = map->work_buf + map->format.reg_bytes + 2783 map->format.pad_bytes; 2784 2785 if (!map->format.parse_val) 2786 return -EINVAL; 2787 2788 ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes, false); 2789 if (ret == 0) 2790 *val = map->format.parse_val(work_val); 2791 2792 return ret; 2793 } 2794 2795 static int _regmap_read(struct regmap *map, unsigned int reg, 2796 unsigned int *val) 2797 { 2798 int ret; 2799 void *context = _regmap_map_get_context(map); 2800 2801 if (!map->cache_bypass) { 2802 ret = regcache_read(map, reg, val); 2803 if (ret == 0) 2804 return 0; 2805 } 2806 2807 if (map->cache_only) 2808 return -EBUSY; 2809 2810 if (!regmap_readable(map, reg)) 2811 return -EIO; 2812 2813 ret = map->reg_read(context, reg, val); 2814 if (ret == 0) { 2815 if (regmap_should_log(map)) 2816 dev_info(map->dev, "%x => %x\n", reg, *val); 2817 2818 trace_regmap_reg_read(map, reg, *val); 2819 2820 if (!map->cache_bypass) 2821 regcache_write(map, reg, *val); 2822 } 2823 2824 return ret; 2825 } 2826 2827 /** 2828 * regmap_read() - Read a value from a single register 2829 * 2830 * @map: Register map to read from 2831 * @reg: Register to be read from 2832 * @val: Pointer to store read value 2833 * 2834 * A value of zero will be returned on success, a negative errno will 2835 * be returned in error cases. 2836 */ 2837 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val) 2838 { 2839 int ret; 2840 2841 if (!IS_ALIGNED(reg, map->reg_stride)) 2842 return -EINVAL; 2843 2844 map->lock(map->lock_arg); 2845 2846 ret = _regmap_read(map, reg, val); 2847 2848 map->unlock(map->lock_arg); 2849 2850 return ret; 2851 } 2852 EXPORT_SYMBOL_GPL(regmap_read); 2853 2854 /** 2855 * regmap_read_bypassed() - Read a value from a single register direct 2856 * from the device, bypassing the cache 2857 * 2858 * @map: Register map to read from 2859 * @reg: Register to be read from 2860 * @val: Pointer to store read value 2861 * 2862 * A value of zero will be returned on success, a negative errno will 2863 * be returned in error cases. 2864 */ 2865 int regmap_read_bypassed(struct regmap *map, unsigned int reg, unsigned int *val) 2866 { 2867 int ret; 2868 bool bypass, cache_only; 2869 2870 if (!IS_ALIGNED(reg, map->reg_stride)) 2871 return -EINVAL; 2872 2873 map->lock(map->lock_arg); 2874 2875 bypass = map->cache_bypass; 2876 cache_only = map->cache_only; 2877 map->cache_bypass = true; 2878 map->cache_only = false; 2879 2880 ret = _regmap_read(map, reg, val); 2881 2882 map->cache_bypass = bypass; 2883 map->cache_only = cache_only; 2884 2885 map->unlock(map->lock_arg); 2886 2887 return ret; 2888 } 2889 EXPORT_SYMBOL_GPL(regmap_read_bypassed); 2890 2891 /** 2892 * regmap_raw_read() - Read raw data from the device 2893 * 2894 * @map: Register map to read from 2895 * @reg: First register to be read from 2896 * @val: Pointer to store read value 2897 * @val_len: Size of data to read 2898 * 2899 * A value of zero will be returned on success, a negative errno will 2900 * be returned in error cases. 2901 */ 2902 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val, 2903 size_t val_len) 2904 { 2905 size_t val_bytes = map->format.val_bytes; 2906 size_t val_count = val_len / val_bytes; 2907 unsigned int v; 2908 int ret, i; 2909 2910 if (val_len % map->format.val_bytes) 2911 return -EINVAL; 2912 if (!IS_ALIGNED(reg, map->reg_stride)) 2913 return -EINVAL; 2914 if (val_count == 0) 2915 return -EINVAL; 2916 2917 map->lock(map->lock_arg); 2918 2919 if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass || 2920 map->cache_type == REGCACHE_NONE) { 2921 size_t chunk_count, chunk_bytes; 2922 size_t chunk_regs = val_count; 2923 2924 if (!map->cache_bypass && map->cache_only) { 2925 ret = -EBUSY; 2926 goto out; 2927 } 2928 2929 if (!map->read) { 2930 ret = -ENOTSUPP; 2931 goto out; 2932 } 2933 2934 if (map->use_single_read) 2935 chunk_regs = 1; 2936 else if (map->max_raw_read && val_len > map->max_raw_read) 2937 chunk_regs = map->max_raw_read / val_bytes; 2938 2939 chunk_count = val_count / chunk_regs; 2940 chunk_bytes = chunk_regs * val_bytes; 2941 2942 /* Read bytes that fit into whole chunks */ 2943 for (i = 0; i < chunk_count; i++) { 2944 ret = _regmap_raw_read(map, reg, val, chunk_bytes, false); 2945 if (ret != 0) 2946 goto out; 2947 2948 reg += regmap_get_offset(map, chunk_regs); 2949 val += chunk_bytes; 2950 val_len -= chunk_bytes; 2951 } 2952 2953 /* Read remaining bytes */ 2954 if (val_len) { 2955 ret = _regmap_raw_read(map, reg, val, val_len, false); 2956 if (ret != 0) 2957 goto out; 2958 } 2959 } else { 2960 /* Otherwise go word by word for the cache; should be low 2961 * cost as we expect to hit the cache. 2962 */ 2963 for (i = 0; i < val_count; i++) { 2964 ret = _regmap_read(map, reg + regmap_get_offset(map, i), 2965 &v); 2966 if (ret != 0) 2967 goto out; 2968 2969 map->format.format_val(val + (i * val_bytes), v, 0); 2970 } 2971 } 2972 2973 out: 2974 map->unlock(map->lock_arg); 2975 2976 return ret; 2977 } 2978 EXPORT_SYMBOL_GPL(regmap_raw_read); 2979 2980 /** 2981 * regmap_noinc_read(): Read data from a register without incrementing the 2982 * register number 2983 * 2984 * @map: Register map to read from 2985 * @reg: Register to read from 2986 * @val: Pointer to data buffer 2987 * @val_len: Length of output buffer in bytes. 2988 * 2989 * The regmap API usually assumes that bulk read operations will read a 2990 * range of registers. Some devices have certain registers for which a read 2991 * operation read will read from an internal FIFO. 2992 * 2993 * The target register must be volatile but registers after it can be 2994 * completely unrelated cacheable registers. 2995 * 2996 * This will attempt multiple reads as required to read val_len bytes. 2997 * 2998 * A value of zero will be returned on success, a negative errno will be 2999 * returned in error cases. 3000 */ 3001 int regmap_noinc_read(struct regmap *map, unsigned int reg, 3002 void *val, size_t val_len) 3003 { 3004 size_t read_len; 3005 int ret; 3006 3007 if (!map->read) 3008 return -ENOTSUPP; 3009 3010 if (val_len % map->format.val_bytes) 3011 return -EINVAL; 3012 if (!IS_ALIGNED(reg, map->reg_stride)) 3013 return -EINVAL; 3014 if (val_len == 0) 3015 return -EINVAL; 3016 3017 map->lock(map->lock_arg); 3018 3019 if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) { 3020 ret = -EINVAL; 3021 goto out_unlock; 3022 } 3023 3024 /* 3025 * We have not defined the FIFO semantics for cache, as the 3026 * cache is just one value deep. Should we return the last 3027 * written value? Just avoid this by always reading the FIFO 3028 * even when using cache. Cache only will not work. 3029 */ 3030 if (!map->cache_bypass && map->cache_only) { 3031 ret = -EBUSY; 3032 goto out_unlock; 3033 } 3034 3035 /* Use the accelerated operation if we can */ 3036 if (map->bus->reg_noinc_read) { 3037 ret = regmap_noinc_readwrite(map, reg, val, val_len, false); 3038 goto out_unlock; 3039 } 3040 3041 while (val_len) { 3042 if (map->max_raw_read && map->max_raw_read < val_len) 3043 read_len = map->max_raw_read; 3044 else 3045 read_len = val_len; 3046 ret = _regmap_raw_read(map, reg, val, read_len, true); 3047 if (ret) 3048 goto out_unlock; 3049 val = ((u8 *)val) + read_len; 3050 val_len -= read_len; 3051 } 3052 3053 out_unlock: 3054 map->unlock(map->lock_arg); 3055 return ret; 3056 } 3057 EXPORT_SYMBOL_GPL(regmap_noinc_read); 3058 3059 /** 3060 * regmap_field_read(): Read a value to a single register field 3061 * 3062 * @field: Register field to read from 3063 * @val: Pointer to store read value 3064 * 3065 * A value of zero will be returned on success, a negative errno will 3066 * be returned in error cases. 3067 */ 3068 int regmap_field_read(struct regmap_field *field, unsigned int *val) 3069 { 3070 int ret; 3071 unsigned int reg_val; 3072 ret = regmap_read(field->regmap, field->reg, ®_val); 3073 if (ret != 0) 3074 return ret; 3075 3076 reg_val &= field->mask; 3077 reg_val >>= field->shift; 3078 *val = reg_val; 3079 3080 return ret; 3081 } 3082 EXPORT_SYMBOL_GPL(regmap_field_read); 3083 3084 /** 3085 * regmap_fields_read() - Read a value to a single register field with port ID 3086 * 3087 * @field: Register field to read from 3088 * @id: port ID 3089 * @val: Pointer to store read value 3090 * 3091 * A value of zero will be returned on success, a negative errno will 3092 * be returned in error cases. 3093 */ 3094 int regmap_fields_read(struct regmap_field *field, unsigned int id, 3095 unsigned int *val) 3096 { 3097 int ret; 3098 unsigned int reg_val; 3099 3100 if (id >= field->id_size) 3101 return -EINVAL; 3102 3103 ret = regmap_read(field->regmap, 3104 field->reg + (field->id_offset * id), 3105 ®_val); 3106 if (ret != 0) 3107 return ret; 3108 3109 reg_val &= field->mask; 3110 reg_val >>= field->shift; 3111 *val = reg_val; 3112 3113 return ret; 3114 } 3115 EXPORT_SYMBOL_GPL(regmap_fields_read); 3116 3117 static int _regmap_bulk_read(struct regmap *map, unsigned int reg, 3118 const unsigned int *regs, void *val, size_t val_count) 3119 { 3120 u32 *u32 = val; 3121 u16 *u16 = val; 3122 u8 *u8 = val; 3123 int ret, i; 3124 3125 map->lock(map->lock_arg); 3126 3127 for (i = 0; i < val_count; i++) { 3128 unsigned int ival; 3129 3130 if (regs) { 3131 if (!IS_ALIGNED(regs[i], map->reg_stride)) { 3132 ret = -EINVAL; 3133 goto out; 3134 } 3135 ret = _regmap_read(map, regs[i], &ival); 3136 } else { 3137 ret = _regmap_read(map, reg + regmap_get_offset(map, i), &ival); 3138 } 3139 if (ret != 0) 3140 goto out; 3141 3142 switch (map->format.val_bytes) { 3143 case 4: 3144 u32[i] = ival; 3145 break; 3146 case 2: 3147 u16[i] = ival; 3148 break; 3149 case 1: 3150 u8[i] = ival; 3151 break; 3152 default: 3153 ret = -EINVAL; 3154 goto out; 3155 } 3156 } 3157 out: 3158 map->unlock(map->lock_arg); 3159 return ret; 3160 } 3161 3162 /** 3163 * regmap_bulk_read() - Read multiple sequential registers from the device 3164 * 3165 * @map: Register map to read from 3166 * @reg: First register to be read from 3167 * @val: Pointer to store read value, in native register size for device 3168 * @val_count: Number of registers to read 3169 * 3170 * A value of zero will be returned on success, a negative errno will 3171 * be returned in error cases. 3172 */ 3173 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val, 3174 size_t val_count) 3175 { 3176 int ret, i; 3177 size_t val_bytes = map->format.val_bytes; 3178 bool vol = regmap_volatile_range(map, reg, val_count); 3179 3180 if (!IS_ALIGNED(reg, map->reg_stride)) 3181 return -EINVAL; 3182 if (val_count == 0) 3183 return -EINVAL; 3184 3185 if (map->read && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) { 3186 ret = regmap_raw_read(map, reg, val, val_bytes * val_count); 3187 if (ret != 0) 3188 return ret; 3189 3190 for (i = 0; i < val_count * val_bytes; i += val_bytes) 3191 map->format.parse_inplace(val + i); 3192 } else { 3193 ret = _regmap_bulk_read(map, reg, NULL, val, val_count); 3194 } 3195 if (!ret) 3196 trace_regmap_bulk_read(map, reg, val, val_bytes * val_count); 3197 return ret; 3198 } 3199 EXPORT_SYMBOL_GPL(regmap_bulk_read); 3200 3201 /** 3202 * regmap_multi_reg_read() - Read multiple non-sequential registers from the device 3203 * 3204 * @map: Register map to read from 3205 * @regs: Array of registers to read from 3206 * @val: Pointer to store read value, in native register size for device 3207 * @val_count: Number of registers to read 3208 * 3209 * A value of zero will be returned on success, a negative errno will 3210 * be returned in error cases. 3211 */ 3212 int regmap_multi_reg_read(struct regmap *map, const unsigned int *regs, void *val, 3213 size_t val_count) 3214 { 3215 if (val_count == 0) 3216 return -EINVAL; 3217 3218 return _regmap_bulk_read(map, 0, regs, val, val_count); 3219 } 3220 EXPORT_SYMBOL_GPL(regmap_multi_reg_read); 3221 3222 static int _regmap_update_bits(struct regmap *map, unsigned int reg, 3223 unsigned int mask, unsigned int val, 3224 bool *change, bool force_write) 3225 { 3226 int ret; 3227 unsigned int tmp, orig; 3228 3229 if (change) 3230 *change = false; 3231 3232 if (regmap_volatile(map, reg) && map->reg_update_bits) { 3233 reg = regmap_reg_addr(map, reg); 3234 ret = map->reg_update_bits(map->bus_context, reg, mask, val); 3235 if (ret == 0 && change) 3236 *change = true; 3237 } else { 3238 ret = _regmap_read(map, reg, &orig); 3239 if (ret != 0) 3240 return ret; 3241 3242 tmp = orig & ~mask; 3243 tmp |= val & mask; 3244 3245 if (force_write || (tmp != orig) || map->force_write_field) { 3246 ret = _regmap_write(map, reg, tmp); 3247 if (ret == 0 && change) 3248 *change = true; 3249 } 3250 } 3251 3252 return ret; 3253 } 3254 3255 /** 3256 * regmap_update_bits_base() - Perform a read/modify/write cycle on a register 3257 * 3258 * @map: Register map to update 3259 * @reg: Register to update 3260 * @mask: Bitmask to change 3261 * @val: New value for bitmask 3262 * @change: Boolean indicating if a write was done 3263 * @async: Boolean indicating asynchronously 3264 * @force: Boolean indicating use force update 3265 * 3266 * Perform a read/modify/write cycle on a register map with change, async, force 3267 * options. 3268 * 3269 * If async is true: 3270 * 3271 * With most buses the read must be done synchronously so this is most useful 3272 * for devices with a cache which do not need to interact with the hardware to 3273 * determine the current register value. 3274 * 3275 * Returns zero for success, a negative number on error. 3276 */ 3277 int regmap_update_bits_base(struct regmap *map, unsigned int reg, 3278 unsigned int mask, unsigned int val, 3279 bool *change, bool async, bool force) 3280 { 3281 int ret; 3282 3283 map->lock(map->lock_arg); 3284 3285 map->async = async; 3286 3287 ret = _regmap_update_bits(map, reg, mask, val, change, force); 3288 3289 map->async = false; 3290 3291 map->unlock(map->lock_arg); 3292 3293 return ret; 3294 } 3295 EXPORT_SYMBOL_GPL(regmap_update_bits_base); 3296 3297 /** 3298 * regmap_test_bits() - Check if all specified bits are set in a register. 3299 * 3300 * @map: Register map to operate on 3301 * @reg: Register to read from 3302 * @bits: Bits to test 3303 * 3304 * Returns 0 if at least one of the tested bits is not set, 1 if all tested 3305 * bits are set and a negative error number if the underlying regmap_read() 3306 * fails. 3307 */ 3308 int regmap_test_bits(struct regmap *map, unsigned int reg, unsigned int bits) 3309 { 3310 unsigned int val, ret; 3311 3312 ret = regmap_read(map, reg, &val); 3313 if (ret) 3314 return ret; 3315 3316 return (val & bits) == bits; 3317 } 3318 EXPORT_SYMBOL_GPL(regmap_test_bits); 3319 3320 void regmap_async_complete_cb(struct regmap_async *async, int ret) 3321 { 3322 struct regmap *map = async->map; 3323 bool wake; 3324 3325 trace_regmap_async_io_complete(map); 3326 3327 spin_lock(&map->async_lock); 3328 list_move(&async->list, &map->async_free); 3329 wake = list_empty(&map->async_list); 3330 3331 if (ret != 0) 3332 map->async_ret = ret; 3333 3334 spin_unlock(&map->async_lock); 3335 3336 if (wake) 3337 wake_up(&map->async_waitq); 3338 } 3339 EXPORT_SYMBOL_GPL(regmap_async_complete_cb); 3340 3341 static int regmap_async_is_done(struct regmap *map) 3342 { 3343 unsigned long flags; 3344 int ret; 3345 3346 spin_lock_irqsave(&map->async_lock, flags); 3347 ret = list_empty(&map->async_list); 3348 spin_unlock_irqrestore(&map->async_lock, flags); 3349 3350 return ret; 3351 } 3352 3353 /** 3354 * regmap_async_complete - Ensure all asynchronous I/O has completed. 3355 * 3356 * @map: Map to operate on. 3357 * 3358 * Blocks until any pending asynchronous I/O has completed. Returns 3359 * an error code for any failed I/O operations. 3360 */ 3361 int regmap_async_complete(struct regmap *map) 3362 { 3363 unsigned long flags; 3364 int ret; 3365 3366 /* Nothing to do with no async support */ 3367 if (!map->bus || !map->bus->async_write) 3368 return 0; 3369 3370 trace_regmap_async_complete_start(map); 3371 3372 wait_event(map->async_waitq, regmap_async_is_done(map)); 3373 3374 spin_lock_irqsave(&map->async_lock, flags); 3375 ret = map->async_ret; 3376 map->async_ret = 0; 3377 spin_unlock_irqrestore(&map->async_lock, flags); 3378 3379 trace_regmap_async_complete_done(map); 3380 3381 return ret; 3382 } 3383 EXPORT_SYMBOL_GPL(regmap_async_complete); 3384 3385 /** 3386 * regmap_register_patch - Register and apply register updates to be applied 3387 * on device initialistion 3388 * 3389 * @map: Register map to apply updates to. 3390 * @regs: Values to update. 3391 * @num_regs: Number of entries in regs. 3392 * 3393 * Register a set of register updates to be applied to the device 3394 * whenever the device registers are synchronised with the cache and 3395 * apply them immediately. Typically this is used to apply 3396 * corrections to be applied to the device defaults on startup, such 3397 * as the updates some vendors provide to undocumented registers. 3398 * 3399 * The caller must ensure that this function cannot be called 3400 * concurrently with either itself or regcache_sync(). 3401 */ 3402 int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs, 3403 int num_regs) 3404 { 3405 struct reg_sequence *p; 3406 int ret; 3407 bool bypass; 3408 3409 if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n", 3410 num_regs)) 3411 return 0; 3412 3413 p = krealloc(map->patch, 3414 sizeof(struct reg_sequence) * (map->patch_regs + num_regs), 3415 GFP_KERNEL); 3416 if (p) { 3417 memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs)); 3418 map->patch = p; 3419 map->patch_regs += num_regs; 3420 } else { 3421 return -ENOMEM; 3422 } 3423 3424 map->lock(map->lock_arg); 3425 3426 bypass = map->cache_bypass; 3427 3428 map->cache_bypass = true; 3429 map->async = true; 3430 3431 ret = _regmap_multi_reg_write(map, regs, num_regs); 3432 3433 map->async = false; 3434 map->cache_bypass = bypass; 3435 3436 map->unlock(map->lock_arg); 3437 3438 regmap_async_complete(map); 3439 3440 return ret; 3441 } 3442 EXPORT_SYMBOL_GPL(regmap_register_patch); 3443 3444 /** 3445 * regmap_get_val_bytes() - Report the size of a register value 3446 * 3447 * @map: Register map to operate on. 3448 * 3449 * Report the size of a register value, mainly intended to for use by 3450 * generic infrastructure built on top of regmap. 3451 */ 3452 int regmap_get_val_bytes(struct regmap *map) 3453 { 3454 if (map->format.format_write) 3455 return -EINVAL; 3456 3457 return map->format.val_bytes; 3458 } 3459 EXPORT_SYMBOL_GPL(regmap_get_val_bytes); 3460 3461 /** 3462 * regmap_get_max_register() - Report the max register value 3463 * 3464 * @map: Register map to operate on. 3465 * 3466 * Report the max register value, mainly intended to for use by 3467 * generic infrastructure built on top of regmap. 3468 */ 3469 int regmap_get_max_register(struct regmap *map) 3470 { 3471 return map->max_register_is_set ? map->max_register : -EINVAL; 3472 } 3473 EXPORT_SYMBOL_GPL(regmap_get_max_register); 3474 3475 /** 3476 * regmap_get_reg_stride() - Report the register address stride 3477 * 3478 * @map: Register map to operate on. 3479 * 3480 * Report the register address stride, mainly intended to for use by 3481 * generic infrastructure built on top of regmap. 3482 */ 3483 int regmap_get_reg_stride(struct regmap *map) 3484 { 3485 return map->reg_stride; 3486 } 3487 EXPORT_SYMBOL_GPL(regmap_get_reg_stride); 3488 3489 /** 3490 * regmap_might_sleep() - Returns whether a regmap access might sleep. 3491 * 3492 * @map: Register map to operate on. 3493 * 3494 * Returns true if an access to the register might sleep, else false. 3495 */ 3496 bool regmap_might_sleep(struct regmap *map) 3497 { 3498 return map->can_sleep; 3499 } 3500 EXPORT_SYMBOL_GPL(regmap_might_sleep); 3501 3502 int regmap_parse_val(struct regmap *map, const void *buf, 3503 unsigned int *val) 3504 { 3505 if (!map->format.parse_val) 3506 return -EINVAL; 3507 3508 *val = map->format.parse_val(buf); 3509 3510 return 0; 3511 } 3512 EXPORT_SYMBOL_GPL(regmap_parse_val); 3513 3514 static int __init regmap_initcall(void) 3515 { 3516 regmap_debugfs_initcall(); 3517 3518 return 0; 3519 } 3520 postcore_initcall(regmap_initcall); 3521