xref: /linux/drivers/base/regmap/regmap.c (revision e0bf6c5ca2d3281f231c5f0c9bf145e9513644de)
1 /*
2  * Register map access API
3  *
4  * Copyright 2011 Wolfson Microelectronics plc
5  *
6  * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/mutex.h>
17 #include <linux/err.h>
18 #include <linux/of.h>
19 #include <linux/rbtree.h>
20 #include <linux/sched.h>
21 
22 #define CREATE_TRACE_POINTS
23 #include <trace/events/regmap.h>
24 
25 #include "internal.h"
26 
27 /*
28  * Sometimes for failures during very early init the trace
29  * infrastructure isn't available early enough to be used.  For this
30  * sort of problem defining LOG_DEVICE will add printks for basic
31  * register I/O on a specific device.
32  */
33 #undef LOG_DEVICE
34 
35 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
36 			       unsigned int mask, unsigned int val,
37 			       bool *change);
38 
39 static int _regmap_bus_reg_read(void *context, unsigned int reg,
40 				unsigned int *val);
41 static int _regmap_bus_read(void *context, unsigned int reg,
42 			    unsigned int *val);
43 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
44 				       unsigned int val);
45 static int _regmap_bus_reg_write(void *context, unsigned int reg,
46 				 unsigned int val);
47 static int _regmap_bus_raw_write(void *context, unsigned int reg,
48 				 unsigned int val);
49 
50 bool regmap_reg_in_ranges(unsigned int reg,
51 			  const struct regmap_range *ranges,
52 			  unsigned int nranges)
53 {
54 	const struct regmap_range *r;
55 	int i;
56 
57 	for (i = 0, r = ranges; i < nranges; i++, r++)
58 		if (regmap_reg_in_range(reg, r))
59 			return true;
60 	return false;
61 }
62 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
63 
64 bool regmap_check_range_table(struct regmap *map, unsigned int reg,
65 			      const struct regmap_access_table *table)
66 {
67 	/* Check "no ranges" first */
68 	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
69 		return false;
70 
71 	/* In case zero "yes ranges" are supplied, any reg is OK */
72 	if (!table->n_yes_ranges)
73 		return true;
74 
75 	return regmap_reg_in_ranges(reg, table->yes_ranges,
76 				    table->n_yes_ranges);
77 }
78 EXPORT_SYMBOL_GPL(regmap_check_range_table);
79 
80 bool regmap_writeable(struct regmap *map, unsigned int reg)
81 {
82 	if (map->max_register && reg > map->max_register)
83 		return false;
84 
85 	if (map->writeable_reg)
86 		return map->writeable_reg(map->dev, reg);
87 
88 	if (map->wr_table)
89 		return regmap_check_range_table(map, reg, map->wr_table);
90 
91 	return true;
92 }
93 
94 bool regmap_readable(struct regmap *map, unsigned int reg)
95 {
96 	if (map->max_register && reg > map->max_register)
97 		return false;
98 
99 	if (map->format.format_write)
100 		return false;
101 
102 	if (map->readable_reg)
103 		return map->readable_reg(map->dev, reg);
104 
105 	if (map->rd_table)
106 		return regmap_check_range_table(map, reg, map->rd_table);
107 
108 	return true;
109 }
110 
111 bool regmap_volatile(struct regmap *map, unsigned int reg)
112 {
113 	if (!map->format.format_write && !regmap_readable(map, reg))
114 		return false;
115 
116 	if (map->volatile_reg)
117 		return map->volatile_reg(map->dev, reg);
118 
119 	if (map->volatile_table)
120 		return regmap_check_range_table(map, reg, map->volatile_table);
121 
122 	if (map->cache_ops)
123 		return false;
124 	else
125 		return true;
126 }
127 
128 bool regmap_precious(struct regmap *map, unsigned int reg)
129 {
130 	if (!regmap_readable(map, reg))
131 		return false;
132 
133 	if (map->precious_reg)
134 		return map->precious_reg(map->dev, reg);
135 
136 	if (map->precious_table)
137 		return regmap_check_range_table(map, reg, map->precious_table);
138 
139 	return false;
140 }
141 
142 static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
143 	size_t num)
144 {
145 	unsigned int i;
146 
147 	for (i = 0; i < num; i++)
148 		if (!regmap_volatile(map, reg + i))
149 			return false;
150 
151 	return true;
152 }
153 
154 static void regmap_format_2_6_write(struct regmap *map,
155 				     unsigned int reg, unsigned int val)
156 {
157 	u8 *out = map->work_buf;
158 
159 	*out = (reg << 6) | val;
160 }
161 
162 static void regmap_format_4_12_write(struct regmap *map,
163 				     unsigned int reg, unsigned int val)
164 {
165 	__be16 *out = map->work_buf;
166 	*out = cpu_to_be16((reg << 12) | val);
167 }
168 
169 static void regmap_format_7_9_write(struct regmap *map,
170 				    unsigned int reg, unsigned int val)
171 {
172 	__be16 *out = map->work_buf;
173 	*out = cpu_to_be16((reg << 9) | val);
174 }
175 
176 static void regmap_format_10_14_write(struct regmap *map,
177 				    unsigned int reg, unsigned int val)
178 {
179 	u8 *out = map->work_buf;
180 
181 	out[2] = val;
182 	out[1] = (val >> 8) | (reg << 6);
183 	out[0] = reg >> 2;
184 }
185 
186 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
187 {
188 	u8 *b = buf;
189 
190 	b[0] = val << shift;
191 }
192 
193 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
194 {
195 	__be16 *b = buf;
196 
197 	b[0] = cpu_to_be16(val << shift);
198 }
199 
200 static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
201 {
202 	__le16 *b = buf;
203 
204 	b[0] = cpu_to_le16(val << shift);
205 }
206 
207 static void regmap_format_16_native(void *buf, unsigned int val,
208 				    unsigned int shift)
209 {
210 	*(u16 *)buf = val << shift;
211 }
212 
213 static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
214 {
215 	u8 *b = buf;
216 
217 	val <<= shift;
218 
219 	b[0] = val >> 16;
220 	b[1] = val >> 8;
221 	b[2] = val;
222 }
223 
224 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
225 {
226 	__be32 *b = buf;
227 
228 	b[0] = cpu_to_be32(val << shift);
229 }
230 
231 static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
232 {
233 	__le32 *b = buf;
234 
235 	b[0] = cpu_to_le32(val << shift);
236 }
237 
238 static void regmap_format_32_native(void *buf, unsigned int val,
239 				    unsigned int shift)
240 {
241 	*(u32 *)buf = val << shift;
242 }
243 
244 static void regmap_parse_inplace_noop(void *buf)
245 {
246 }
247 
248 static unsigned int regmap_parse_8(const void *buf)
249 {
250 	const u8 *b = buf;
251 
252 	return b[0];
253 }
254 
255 static unsigned int regmap_parse_16_be(const void *buf)
256 {
257 	const __be16 *b = buf;
258 
259 	return be16_to_cpu(b[0]);
260 }
261 
262 static unsigned int regmap_parse_16_le(const void *buf)
263 {
264 	const __le16 *b = buf;
265 
266 	return le16_to_cpu(b[0]);
267 }
268 
269 static void regmap_parse_16_be_inplace(void *buf)
270 {
271 	__be16 *b = buf;
272 
273 	b[0] = be16_to_cpu(b[0]);
274 }
275 
276 static void regmap_parse_16_le_inplace(void *buf)
277 {
278 	__le16 *b = buf;
279 
280 	b[0] = le16_to_cpu(b[0]);
281 }
282 
283 static unsigned int regmap_parse_16_native(const void *buf)
284 {
285 	return *(u16 *)buf;
286 }
287 
288 static unsigned int regmap_parse_24(const void *buf)
289 {
290 	const u8 *b = buf;
291 	unsigned int ret = b[2];
292 	ret |= ((unsigned int)b[1]) << 8;
293 	ret |= ((unsigned int)b[0]) << 16;
294 
295 	return ret;
296 }
297 
298 static unsigned int regmap_parse_32_be(const void *buf)
299 {
300 	const __be32 *b = buf;
301 
302 	return be32_to_cpu(b[0]);
303 }
304 
305 static unsigned int regmap_parse_32_le(const void *buf)
306 {
307 	const __le32 *b = buf;
308 
309 	return le32_to_cpu(b[0]);
310 }
311 
312 static void regmap_parse_32_be_inplace(void *buf)
313 {
314 	__be32 *b = buf;
315 
316 	b[0] = be32_to_cpu(b[0]);
317 }
318 
319 static void regmap_parse_32_le_inplace(void *buf)
320 {
321 	__le32 *b = buf;
322 
323 	b[0] = le32_to_cpu(b[0]);
324 }
325 
326 static unsigned int regmap_parse_32_native(const void *buf)
327 {
328 	return *(u32 *)buf;
329 }
330 
331 static void regmap_lock_mutex(void *__map)
332 {
333 	struct regmap *map = __map;
334 	mutex_lock(&map->mutex);
335 }
336 
337 static void regmap_unlock_mutex(void *__map)
338 {
339 	struct regmap *map = __map;
340 	mutex_unlock(&map->mutex);
341 }
342 
343 static void regmap_lock_spinlock(void *__map)
344 __acquires(&map->spinlock)
345 {
346 	struct regmap *map = __map;
347 	unsigned long flags;
348 
349 	spin_lock_irqsave(&map->spinlock, flags);
350 	map->spinlock_flags = flags;
351 }
352 
353 static void regmap_unlock_spinlock(void *__map)
354 __releases(&map->spinlock)
355 {
356 	struct regmap *map = __map;
357 	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
358 }
359 
360 static void dev_get_regmap_release(struct device *dev, void *res)
361 {
362 	/*
363 	 * We don't actually have anything to do here; the goal here
364 	 * is not to manage the regmap but to provide a simple way to
365 	 * get the regmap back given a struct device.
366 	 */
367 }
368 
369 static bool _regmap_range_add(struct regmap *map,
370 			      struct regmap_range_node *data)
371 {
372 	struct rb_root *root = &map->range_tree;
373 	struct rb_node **new = &(root->rb_node), *parent = NULL;
374 
375 	while (*new) {
376 		struct regmap_range_node *this =
377 			container_of(*new, struct regmap_range_node, node);
378 
379 		parent = *new;
380 		if (data->range_max < this->range_min)
381 			new = &((*new)->rb_left);
382 		else if (data->range_min > this->range_max)
383 			new = &((*new)->rb_right);
384 		else
385 			return false;
386 	}
387 
388 	rb_link_node(&data->node, parent, new);
389 	rb_insert_color(&data->node, root);
390 
391 	return true;
392 }
393 
394 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
395 						      unsigned int reg)
396 {
397 	struct rb_node *node = map->range_tree.rb_node;
398 
399 	while (node) {
400 		struct regmap_range_node *this =
401 			container_of(node, struct regmap_range_node, node);
402 
403 		if (reg < this->range_min)
404 			node = node->rb_left;
405 		else if (reg > this->range_max)
406 			node = node->rb_right;
407 		else
408 			return this;
409 	}
410 
411 	return NULL;
412 }
413 
414 static void regmap_range_exit(struct regmap *map)
415 {
416 	struct rb_node *next;
417 	struct regmap_range_node *range_node;
418 
419 	next = rb_first(&map->range_tree);
420 	while (next) {
421 		range_node = rb_entry(next, struct regmap_range_node, node);
422 		next = rb_next(&range_node->node);
423 		rb_erase(&range_node->node, &map->range_tree);
424 		kfree(range_node);
425 	}
426 
427 	kfree(map->selector_work_buf);
428 }
429 
430 int regmap_attach_dev(struct device *dev, struct regmap *map,
431 		      const struct regmap_config *config)
432 {
433 	struct regmap **m;
434 
435 	map->dev = dev;
436 
437 	regmap_debugfs_init(map, config->name);
438 
439 	/* Add a devres resource for dev_get_regmap() */
440 	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
441 	if (!m) {
442 		regmap_debugfs_exit(map);
443 		return -ENOMEM;
444 	}
445 	*m = map;
446 	devres_add(dev, m);
447 
448 	return 0;
449 }
450 EXPORT_SYMBOL_GPL(regmap_attach_dev);
451 
452 static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
453 					const struct regmap_config *config)
454 {
455 	enum regmap_endian endian;
456 
457 	/* Retrieve the endianness specification from the regmap config */
458 	endian = config->reg_format_endian;
459 
460 	/* If the regmap config specified a non-default value, use that */
461 	if (endian != REGMAP_ENDIAN_DEFAULT)
462 		return endian;
463 
464 	/* Retrieve the endianness specification from the bus config */
465 	if (bus && bus->reg_format_endian_default)
466 		endian = bus->reg_format_endian_default;
467 
468 	/* If the bus specified a non-default value, use that */
469 	if (endian != REGMAP_ENDIAN_DEFAULT)
470 		return endian;
471 
472 	/* Use this if no other value was found */
473 	return REGMAP_ENDIAN_BIG;
474 }
475 
476 enum regmap_endian regmap_get_val_endian(struct device *dev,
477 					 const struct regmap_bus *bus,
478 					 const struct regmap_config *config)
479 {
480 	struct device_node *np;
481 	enum regmap_endian endian;
482 
483 	/* Retrieve the endianness specification from the regmap config */
484 	endian = config->val_format_endian;
485 
486 	/* If the regmap config specified a non-default value, use that */
487 	if (endian != REGMAP_ENDIAN_DEFAULT)
488 		return endian;
489 
490 	/* If the dev and dev->of_node exist try to get endianness from DT */
491 	if (dev && dev->of_node) {
492 		np = dev->of_node;
493 
494 		/* Parse the device's DT node for an endianness specification */
495 		if (of_property_read_bool(np, "big-endian"))
496 			endian = REGMAP_ENDIAN_BIG;
497 		else if (of_property_read_bool(np, "little-endian"))
498 			endian = REGMAP_ENDIAN_LITTLE;
499 
500 		/* If the endianness was specified in DT, use that */
501 		if (endian != REGMAP_ENDIAN_DEFAULT)
502 			return endian;
503 	}
504 
505 	/* Retrieve the endianness specification from the bus config */
506 	if (bus && bus->val_format_endian_default)
507 		endian = bus->val_format_endian_default;
508 
509 	/* If the bus specified a non-default value, use that */
510 	if (endian != REGMAP_ENDIAN_DEFAULT)
511 		return endian;
512 
513 	/* Use this if no other value was found */
514 	return REGMAP_ENDIAN_BIG;
515 }
516 EXPORT_SYMBOL_GPL(regmap_get_val_endian);
517 
518 /**
519  * regmap_init(): Initialise register map
520  *
521  * @dev: Device that will be interacted with
522  * @bus: Bus-specific callbacks to use with device
523  * @bus_context: Data passed to bus-specific callbacks
524  * @config: Configuration for register map
525  *
526  * The return value will be an ERR_PTR() on error or a valid pointer to
527  * a struct regmap.  This function should generally not be called
528  * directly, it should be called by bus-specific init functions.
529  */
530 struct regmap *regmap_init(struct device *dev,
531 			   const struct regmap_bus *bus,
532 			   void *bus_context,
533 			   const struct regmap_config *config)
534 {
535 	struct regmap *map;
536 	int ret = -EINVAL;
537 	enum regmap_endian reg_endian, val_endian;
538 	int i, j;
539 
540 	if (!config)
541 		goto err;
542 
543 	map = kzalloc(sizeof(*map), GFP_KERNEL);
544 	if (map == NULL) {
545 		ret = -ENOMEM;
546 		goto err;
547 	}
548 
549 	if (config->lock && config->unlock) {
550 		map->lock = config->lock;
551 		map->unlock = config->unlock;
552 		map->lock_arg = config->lock_arg;
553 	} else {
554 		if ((bus && bus->fast_io) ||
555 		    config->fast_io) {
556 			spin_lock_init(&map->spinlock);
557 			map->lock = regmap_lock_spinlock;
558 			map->unlock = regmap_unlock_spinlock;
559 		} else {
560 			mutex_init(&map->mutex);
561 			map->lock = regmap_lock_mutex;
562 			map->unlock = regmap_unlock_mutex;
563 		}
564 		map->lock_arg = map;
565 	}
566 	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
567 	map->format.pad_bytes = config->pad_bits / 8;
568 	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
569 	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
570 			config->val_bits + config->pad_bits, 8);
571 	map->reg_shift = config->pad_bits % 8;
572 	if (config->reg_stride)
573 		map->reg_stride = config->reg_stride;
574 	else
575 		map->reg_stride = 1;
576 	map->use_single_rw = config->use_single_rw;
577 	map->can_multi_write = config->can_multi_write;
578 	map->dev = dev;
579 	map->bus = bus;
580 	map->bus_context = bus_context;
581 	map->max_register = config->max_register;
582 	map->wr_table = config->wr_table;
583 	map->rd_table = config->rd_table;
584 	map->volatile_table = config->volatile_table;
585 	map->precious_table = config->precious_table;
586 	map->writeable_reg = config->writeable_reg;
587 	map->readable_reg = config->readable_reg;
588 	map->volatile_reg = config->volatile_reg;
589 	map->precious_reg = config->precious_reg;
590 	map->cache_type = config->cache_type;
591 	map->name = config->name;
592 
593 	spin_lock_init(&map->async_lock);
594 	INIT_LIST_HEAD(&map->async_list);
595 	INIT_LIST_HEAD(&map->async_free);
596 	init_waitqueue_head(&map->async_waitq);
597 
598 	if (config->read_flag_mask || config->write_flag_mask) {
599 		map->read_flag_mask = config->read_flag_mask;
600 		map->write_flag_mask = config->write_flag_mask;
601 	} else if (bus) {
602 		map->read_flag_mask = bus->read_flag_mask;
603 	}
604 
605 	if (!bus) {
606 		map->reg_read  = config->reg_read;
607 		map->reg_write = config->reg_write;
608 
609 		map->defer_caching = false;
610 		goto skip_format_initialization;
611 	} else if (!bus->read || !bus->write) {
612 		map->reg_read = _regmap_bus_reg_read;
613 		map->reg_write = _regmap_bus_reg_write;
614 
615 		map->defer_caching = false;
616 		goto skip_format_initialization;
617 	} else {
618 		map->reg_read  = _regmap_bus_read;
619 	}
620 
621 	reg_endian = regmap_get_reg_endian(bus, config);
622 	val_endian = regmap_get_val_endian(dev, bus, config);
623 
624 	switch (config->reg_bits + map->reg_shift) {
625 	case 2:
626 		switch (config->val_bits) {
627 		case 6:
628 			map->format.format_write = regmap_format_2_6_write;
629 			break;
630 		default:
631 			goto err_map;
632 		}
633 		break;
634 
635 	case 4:
636 		switch (config->val_bits) {
637 		case 12:
638 			map->format.format_write = regmap_format_4_12_write;
639 			break;
640 		default:
641 			goto err_map;
642 		}
643 		break;
644 
645 	case 7:
646 		switch (config->val_bits) {
647 		case 9:
648 			map->format.format_write = regmap_format_7_9_write;
649 			break;
650 		default:
651 			goto err_map;
652 		}
653 		break;
654 
655 	case 10:
656 		switch (config->val_bits) {
657 		case 14:
658 			map->format.format_write = regmap_format_10_14_write;
659 			break;
660 		default:
661 			goto err_map;
662 		}
663 		break;
664 
665 	case 8:
666 		map->format.format_reg = regmap_format_8;
667 		break;
668 
669 	case 16:
670 		switch (reg_endian) {
671 		case REGMAP_ENDIAN_BIG:
672 			map->format.format_reg = regmap_format_16_be;
673 			break;
674 		case REGMAP_ENDIAN_NATIVE:
675 			map->format.format_reg = regmap_format_16_native;
676 			break;
677 		default:
678 			goto err_map;
679 		}
680 		break;
681 
682 	case 24:
683 		if (reg_endian != REGMAP_ENDIAN_BIG)
684 			goto err_map;
685 		map->format.format_reg = regmap_format_24;
686 		break;
687 
688 	case 32:
689 		switch (reg_endian) {
690 		case REGMAP_ENDIAN_BIG:
691 			map->format.format_reg = regmap_format_32_be;
692 			break;
693 		case REGMAP_ENDIAN_NATIVE:
694 			map->format.format_reg = regmap_format_32_native;
695 			break;
696 		default:
697 			goto err_map;
698 		}
699 		break;
700 
701 	default:
702 		goto err_map;
703 	}
704 
705 	if (val_endian == REGMAP_ENDIAN_NATIVE)
706 		map->format.parse_inplace = regmap_parse_inplace_noop;
707 
708 	switch (config->val_bits) {
709 	case 8:
710 		map->format.format_val = regmap_format_8;
711 		map->format.parse_val = regmap_parse_8;
712 		map->format.parse_inplace = regmap_parse_inplace_noop;
713 		break;
714 	case 16:
715 		switch (val_endian) {
716 		case REGMAP_ENDIAN_BIG:
717 			map->format.format_val = regmap_format_16_be;
718 			map->format.parse_val = regmap_parse_16_be;
719 			map->format.parse_inplace = regmap_parse_16_be_inplace;
720 			break;
721 		case REGMAP_ENDIAN_LITTLE:
722 			map->format.format_val = regmap_format_16_le;
723 			map->format.parse_val = regmap_parse_16_le;
724 			map->format.parse_inplace = regmap_parse_16_le_inplace;
725 			break;
726 		case REGMAP_ENDIAN_NATIVE:
727 			map->format.format_val = regmap_format_16_native;
728 			map->format.parse_val = regmap_parse_16_native;
729 			break;
730 		default:
731 			goto err_map;
732 		}
733 		break;
734 	case 24:
735 		if (val_endian != REGMAP_ENDIAN_BIG)
736 			goto err_map;
737 		map->format.format_val = regmap_format_24;
738 		map->format.parse_val = regmap_parse_24;
739 		break;
740 	case 32:
741 		switch (val_endian) {
742 		case REGMAP_ENDIAN_BIG:
743 			map->format.format_val = regmap_format_32_be;
744 			map->format.parse_val = regmap_parse_32_be;
745 			map->format.parse_inplace = regmap_parse_32_be_inplace;
746 			break;
747 		case REGMAP_ENDIAN_LITTLE:
748 			map->format.format_val = regmap_format_32_le;
749 			map->format.parse_val = regmap_parse_32_le;
750 			map->format.parse_inplace = regmap_parse_32_le_inplace;
751 			break;
752 		case REGMAP_ENDIAN_NATIVE:
753 			map->format.format_val = regmap_format_32_native;
754 			map->format.parse_val = regmap_parse_32_native;
755 			break;
756 		default:
757 			goto err_map;
758 		}
759 		break;
760 	}
761 
762 	if (map->format.format_write) {
763 		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
764 		    (val_endian != REGMAP_ENDIAN_BIG))
765 			goto err_map;
766 		map->use_single_rw = true;
767 	}
768 
769 	if (!map->format.format_write &&
770 	    !(map->format.format_reg && map->format.format_val))
771 		goto err_map;
772 
773 	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
774 	if (map->work_buf == NULL) {
775 		ret = -ENOMEM;
776 		goto err_map;
777 	}
778 
779 	if (map->format.format_write) {
780 		map->defer_caching = false;
781 		map->reg_write = _regmap_bus_formatted_write;
782 	} else if (map->format.format_val) {
783 		map->defer_caching = true;
784 		map->reg_write = _regmap_bus_raw_write;
785 	}
786 
787 skip_format_initialization:
788 
789 	map->range_tree = RB_ROOT;
790 	for (i = 0; i < config->num_ranges; i++) {
791 		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
792 		struct regmap_range_node *new;
793 
794 		/* Sanity check */
795 		if (range_cfg->range_max < range_cfg->range_min) {
796 			dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
797 				range_cfg->range_max, range_cfg->range_min);
798 			goto err_range;
799 		}
800 
801 		if (range_cfg->range_max > map->max_register) {
802 			dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
803 				range_cfg->range_max, map->max_register);
804 			goto err_range;
805 		}
806 
807 		if (range_cfg->selector_reg > map->max_register) {
808 			dev_err(map->dev,
809 				"Invalid range %d: selector out of map\n", i);
810 			goto err_range;
811 		}
812 
813 		if (range_cfg->window_len == 0) {
814 			dev_err(map->dev, "Invalid range %d: window_len 0\n",
815 				i);
816 			goto err_range;
817 		}
818 
819 		/* Make sure, that this register range has no selector
820 		   or data window within its boundary */
821 		for (j = 0; j < config->num_ranges; j++) {
822 			unsigned sel_reg = config->ranges[j].selector_reg;
823 			unsigned win_min = config->ranges[j].window_start;
824 			unsigned win_max = win_min +
825 					   config->ranges[j].window_len - 1;
826 
827 			/* Allow data window inside its own virtual range */
828 			if (j == i)
829 				continue;
830 
831 			if (range_cfg->range_min <= sel_reg &&
832 			    sel_reg <= range_cfg->range_max) {
833 				dev_err(map->dev,
834 					"Range %d: selector for %d in window\n",
835 					i, j);
836 				goto err_range;
837 			}
838 
839 			if (!(win_max < range_cfg->range_min ||
840 			      win_min > range_cfg->range_max)) {
841 				dev_err(map->dev,
842 					"Range %d: window for %d in window\n",
843 					i, j);
844 				goto err_range;
845 			}
846 		}
847 
848 		new = kzalloc(sizeof(*new), GFP_KERNEL);
849 		if (new == NULL) {
850 			ret = -ENOMEM;
851 			goto err_range;
852 		}
853 
854 		new->map = map;
855 		new->name = range_cfg->name;
856 		new->range_min = range_cfg->range_min;
857 		new->range_max = range_cfg->range_max;
858 		new->selector_reg = range_cfg->selector_reg;
859 		new->selector_mask = range_cfg->selector_mask;
860 		new->selector_shift = range_cfg->selector_shift;
861 		new->window_start = range_cfg->window_start;
862 		new->window_len = range_cfg->window_len;
863 
864 		if (!_regmap_range_add(map, new)) {
865 			dev_err(map->dev, "Failed to add range %d\n", i);
866 			kfree(new);
867 			goto err_range;
868 		}
869 
870 		if (map->selector_work_buf == NULL) {
871 			map->selector_work_buf =
872 				kzalloc(map->format.buf_size, GFP_KERNEL);
873 			if (map->selector_work_buf == NULL) {
874 				ret = -ENOMEM;
875 				goto err_range;
876 			}
877 		}
878 	}
879 
880 	ret = regcache_init(map, config);
881 	if (ret != 0)
882 		goto err_range;
883 
884 	if (dev) {
885 		ret = regmap_attach_dev(dev, map, config);
886 		if (ret != 0)
887 			goto err_regcache;
888 	}
889 
890 	return map;
891 
892 err_regcache:
893 	regcache_exit(map);
894 err_range:
895 	regmap_range_exit(map);
896 	kfree(map->work_buf);
897 err_map:
898 	kfree(map);
899 err:
900 	return ERR_PTR(ret);
901 }
902 EXPORT_SYMBOL_GPL(regmap_init);
903 
904 static void devm_regmap_release(struct device *dev, void *res)
905 {
906 	regmap_exit(*(struct regmap **)res);
907 }
908 
909 /**
910  * devm_regmap_init(): Initialise managed register map
911  *
912  * @dev: Device that will be interacted with
913  * @bus: Bus-specific callbacks to use with device
914  * @bus_context: Data passed to bus-specific callbacks
915  * @config: Configuration for register map
916  *
917  * The return value will be an ERR_PTR() on error or a valid pointer
918  * to a struct regmap.  This function should generally not be called
919  * directly, it should be called by bus-specific init functions.  The
920  * map will be automatically freed by the device management code.
921  */
922 struct regmap *devm_regmap_init(struct device *dev,
923 				const struct regmap_bus *bus,
924 				void *bus_context,
925 				const struct regmap_config *config)
926 {
927 	struct regmap **ptr, *regmap;
928 
929 	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
930 	if (!ptr)
931 		return ERR_PTR(-ENOMEM);
932 
933 	regmap = regmap_init(dev, bus, bus_context, config);
934 	if (!IS_ERR(regmap)) {
935 		*ptr = regmap;
936 		devres_add(dev, ptr);
937 	} else {
938 		devres_free(ptr);
939 	}
940 
941 	return regmap;
942 }
943 EXPORT_SYMBOL_GPL(devm_regmap_init);
944 
945 static void regmap_field_init(struct regmap_field *rm_field,
946 	struct regmap *regmap, struct reg_field reg_field)
947 {
948 	int field_bits = reg_field.msb - reg_field.lsb + 1;
949 	rm_field->regmap = regmap;
950 	rm_field->reg = reg_field.reg;
951 	rm_field->shift = reg_field.lsb;
952 	rm_field->mask = ((BIT(field_bits) - 1) << reg_field.lsb);
953 	rm_field->id_size = reg_field.id_size;
954 	rm_field->id_offset = reg_field.id_offset;
955 }
956 
957 /**
958  * devm_regmap_field_alloc(): Allocate and initialise a register field
959  * in a register map.
960  *
961  * @dev: Device that will be interacted with
962  * @regmap: regmap bank in which this register field is located.
963  * @reg_field: Register field with in the bank.
964  *
965  * The return value will be an ERR_PTR() on error or a valid pointer
966  * to a struct regmap_field. The regmap_field will be automatically freed
967  * by the device management code.
968  */
969 struct regmap_field *devm_regmap_field_alloc(struct device *dev,
970 		struct regmap *regmap, struct reg_field reg_field)
971 {
972 	struct regmap_field *rm_field = devm_kzalloc(dev,
973 					sizeof(*rm_field), GFP_KERNEL);
974 	if (!rm_field)
975 		return ERR_PTR(-ENOMEM);
976 
977 	regmap_field_init(rm_field, regmap, reg_field);
978 
979 	return rm_field;
980 
981 }
982 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
983 
984 /**
985  * devm_regmap_field_free(): Free register field allocated using
986  * devm_regmap_field_alloc. Usally drivers need not call this function,
987  * as the memory allocated via devm will be freed as per device-driver
988  * life-cyle.
989  *
990  * @dev: Device that will be interacted with
991  * @field: regmap field which should be freed.
992  */
993 void devm_regmap_field_free(struct device *dev,
994 	struct regmap_field *field)
995 {
996 	devm_kfree(dev, field);
997 }
998 EXPORT_SYMBOL_GPL(devm_regmap_field_free);
999 
1000 /**
1001  * regmap_field_alloc(): Allocate and initialise a register field
1002  * in a register map.
1003  *
1004  * @regmap: regmap bank in which this register field is located.
1005  * @reg_field: Register field with in the bank.
1006  *
1007  * The return value will be an ERR_PTR() on error or a valid pointer
1008  * to a struct regmap_field. The regmap_field should be freed by the
1009  * user once its finished working with it using regmap_field_free().
1010  */
1011 struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1012 		struct reg_field reg_field)
1013 {
1014 	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1015 
1016 	if (!rm_field)
1017 		return ERR_PTR(-ENOMEM);
1018 
1019 	regmap_field_init(rm_field, regmap, reg_field);
1020 
1021 	return rm_field;
1022 }
1023 EXPORT_SYMBOL_GPL(regmap_field_alloc);
1024 
1025 /**
1026  * regmap_field_free(): Free register field allocated using regmap_field_alloc
1027  *
1028  * @field: regmap field which should be freed.
1029  */
1030 void regmap_field_free(struct regmap_field *field)
1031 {
1032 	kfree(field);
1033 }
1034 EXPORT_SYMBOL_GPL(regmap_field_free);
1035 
1036 /**
1037  * regmap_reinit_cache(): Reinitialise the current register cache
1038  *
1039  * @map: Register map to operate on.
1040  * @config: New configuration.  Only the cache data will be used.
1041  *
1042  * Discard any existing register cache for the map and initialize a
1043  * new cache.  This can be used to restore the cache to defaults or to
1044  * update the cache configuration to reflect runtime discovery of the
1045  * hardware.
1046  *
1047  * No explicit locking is done here, the user needs to ensure that
1048  * this function will not race with other calls to regmap.
1049  */
1050 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1051 {
1052 	regcache_exit(map);
1053 	regmap_debugfs_exit(map);
1054 
1055 	map->max_register = config->max_register;
1056 	map->writeable_reg = config->writeable_reg;
1057 	map->readable_reg = config->readable_reg;
1058 	map->volatile_reg = config->volatile_reg;
1059 	map->precious_reg = config->precious_reg;
1060 	map->cache_type = config->cache_type;
1061 
1062 	regmap_debugfs_init(map, config->name);
1063 
1064 	map->cache_bypass = false;
1065 	map->cache_only = false;
1066 
1067 	return regcache_init(map, config);
1068 }
1069 EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1070 
1071 /**
1072  * regmap_exit(): Free a previously allocated register map
1073  */
1074 void regmap_exit(struct regmap *map)
1075 {
1076 	struct regmap_async *async;
1077 
1078 	regcache_exit(map);
1079 	regmap_debugfs_exit(map);
1080 	regmap_range_exit(map);
1081 	if (map->bus && map->bus->free_context)
1082 		map->bus->free_context(map->bus_context);
1083 	kfree(map->work_buf);
1084 	while (!list_empty(&map->async_free)) {
1085 		async = list_first_entry_or_null(&map->async_free,
1086 						 struct regmap_async,
1087 						 list);
1088 		list_del(&async->list);
1089 		kfree(async->work_buf);
1090 		kfree(async);
1091 	}
1092 	kfree(map);
1093 }
1094 EXPORT_SYMBOL_GPL(regmap_exit);
1095 
1096 static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1097 {
1098 	struct regmap **r = res;
1099 	if (!r || !*r) {
1100 		WARN_ON(!r || !*r);
1101 		return 0;
1102 	}
1103 
1104 	/* If the user didn't specify a name match any */
1105 	if (data)
1106 		return (*r)->name == data;
1107 	else
1108 		return 1;
1109 }
1110 
1111 /**
1112  * dev_get_regmap(): Obtain the regmap (if any) for a device
1113  *
1114  * @dev: Device to retrieve the map for
1115  * @name: Optional name for the register map, usually NULL.
1116  *
1117  * Returns the regmap for the device if one is present, or NULL.  If
1118  * name is specified then it must match the name specified when
1119  * registering the device, if it is NULL then the first regmap found
1120  * will be used.  Devices with multiple register maps are very rare,
1121  * generic code should normally not need to specify a name.
1122  */
1123 struct regmap *dev_get_regmap(struct device *dev, const char *name)
1124 {
1125 	struct regmap **r = devres_find(dev, dev_get_regmap_release,
1126 					dev_get_regmap_match, (void *)name);
1127 
1128 	if (!r)
1129 		return NULL;
1130 	return *r;
1131 }
1132 EXPORT_SYMBOL_GPL(dev_get_regmap);
1133 
1134 /**
1135  * regmap_get_device(): Obtain the device from a regmap
1136  *
1137  * @map: Register map to operate on.
1138  *
1139  * Returns the underlying device that the regmap has been created for.
1140  */
1141 struct device *regmap_get_device(struct regmap *map)
1142 {
1143 	return map->dev;
1144 }
1145 EXPORT_SYMBOL_GPL(regmap_get_device);
1146 
1147 static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1148 			       struct regmap_range_node *range,
1149 			       unsigned int val_num)
1150 {
1151 	void *orig_work_buf;
1152 	unsigned int win_offset;
1153 	unsigned int win_page;
1154 	bool page_chg;
1155 	int ret;
1156 
1157 	win_offset = (*reg - range->range_min) % range->window_len;
1158 	win_page = (*reg - range->range_min) / range->window_len;
1159 
1160 	if (val_num > 1) {
1161 		/* Bulk write shouldn't cross range boundary */
1162 		if (*reg + val_num - 1 > range->range_max)
1163 			return -EINVAL;
1164 
1165 		/* ... or single page boundary */
1166 		if (val_num > range->window_len - win_offset)
1167 			return -EINVAL;
1168 	}
1169 
1170 	/* It is possible to have selector register inside data window.
1171 	   In that case, selector register is located on every page and
1172 	   it needs no page switching, when accessed alone. */
1173 	if (val_num > 1 ||
1174 	    range->window_start + win_offset != range->selector_reg) {
1175 		/* Use separate work_buf during page switching */
1176 		orig_work_buf = map->work_buf;
1177 		map->work_buf = map->selector_work_buf;
1178 
1179 		ret = _regmap_update_bits(map, range->selector_reg,
1180 					  range->selector_mask,
1181 					  win_page << range->selector_shift,
1182 					  &page_chg);
1183 
1184 		map->work_buf = orig_work_buf;
1185 
1186 		if (ret != 0)
1187 			return ret;
1188 	}
1189 
1190 	*reg = range->window_start + win_offset;
1191 
1192 	return 0;
1193 }
1194 
1195 int _regmap_raw_write(struct regmap *map, unsigned int reg,
1196 		      const void *val, size_t val_len)
1197 {
1198 	struct regmap_range_node *range;
1199 	unsigned long flags;
1200 	u8 *u8 = map->work_buf;
1201 	void *work_val = map->work_buf + map->format.reg_bytes +
1202 		map->format.pad_bytes;
1203 	void *buf;
1204 	int ret = -ENOTSUPP;
1205 	size_t len;
1206 	int i;
1207 
1208 	WARN_ON(!map->bus);
1209 
1210 	/* Check for unwritable registers before we start */
1211 	if (map->writeable_reg)
1212 		for (i = 0; i < val_len / map->format.val_bytes; i++)
1213 			if (!map->writeable_reg(map->dev,
1214 						reg + (i * map->reg_stride)))
1215 				return -EINVAL;
1216 
1217 	if (!map->cache_bypass && map->format.parse_val) {
1218 		unsigned int ival;
1219 		int val_bytes = map->format.val_bytes;
1220 		for (i = 0; i < val_len / val_bytes; i++) {
1221 			ival = map->format.parse_val(val + (i * val_bytes));
1222 			ret = regcache_write(map, reg + (i * map->reg_stride),
1223 					     ival);
1224 			if (ret) {
1225 				dev_err(map->dev,
1226 					"Error in caching of register: %x ret: %d\n",
1227 					reg + i, ret);
1228 				return ret;
1229 			}
1230 		}
1231 		if (map->cache_only) {
1232 			map->cache_dirty = true;
1233 			return 0;
1234 		}
1235 	}
1236 
1237 	range = _regmap_range_lookup(map, reg);
1238 	if (range) {
1239 		int val_num = val_len / map->format.val_bytes;
1240 		int win_offset = (reg - range->range_min) % range->window_len;
1241 		int win_residue = range->window_len - win_offset;
1242 
1243 		/* If the write goes beyond the end of the window split it */
1244 		while (val_num > win_residue) {
1245 			dev_dbg(map->dev, "Writing window %d/%zu\n",
1246 				win_residue, val_len / map->format.val_bytes);
1247 			ret = _regmap_raw_write(map, reg, val, win_residue *
1248 						map->format.val_bytes);
1249 			if (ret != 0)
1250 				return ret;
1251 
1252 			reg += win_residue;
1253 			val_num -= win_residue;
1254 			val += win_residue * map->format.val_bytes;
1255 			val_len -= win_residue * map->format.val_bytes;
1256 
1257 			win_offset = (reg - range->range_min) %
1258 				range->window_len;
1259 			win_residue = range->window_len - win_offset;
1260 		}
1261 
1262 		ret = _regmap_select_page(map, &reg, range, val_num);
1263 		if (ret != 0)
1264 			return ret;
1265 	}
1266 
1267 	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1268 
1269 	u8[0] |= map->write_flag_mask;
1270 
1271 	/*
1272 	 * Essentially all I/O mechanisms will be faster with a single
1273 	 * buffer to write.  Since register syncs often generate raw
1274 	 * writes of single registers optimise that case.
1275 	 */
1276 	if (val != work_val && val_len == map->format.val_bytes) {
1277 		memcpy(work_val, val, map->format.val_bytes);
1278 		val = work_val;
1279 	}
1280 
1281 	if (map->async && map->bus->async_write) {
1282 		struct regmap_async *async;
1283 
1284 		trace_regmap_async_write_start(map, reg, val_len);
1285 
1286 		spin_lock_irqsave(&map->async_lock, flags);
1287 		async = list_first_entry_or_null(&map->async_free,
1288 						 struct regmap_async,
1289 						 list);
1290 		if (async)
1291 			list_del(&async->list);
1292 		spin_unlock_irqrestore(&map->async_lock, flags);
1293 
1294 		if (!async) {
1295 			async = map->bus->async_alloc();
1296 			if (!async)
1297 				return -ENOMEM;
1298 
1299 			async->work_buf = kzalloc(map->format.buf_size,
1300 						  GFP_KERNEL | GFP_DMA);
1301 			if (!async->work_buf) {
1302 				kfree(async);
1303 				return -ENOMEM;
1304 			}
1305 		}
1306 
1307 		async->map = map;
1308 
1309 		/* If the caller supplied the value we can use it safely. */
1310 		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1311 		       map->format.reg_bytes + map->format.val_bytes);
1312 
1313 		spin_lock_irqsave(&map->async_lock, flags);
1314 		list_add_tail(&async->list, &map->async_list);
1315 		spin_unlock_irqrestore(&map->async_lock, flags);
1316 
1317 		if (val != work_val)
1318 			ret = map->bus->async_write(map->bus_context,
1319 						    async->work_buf,
1320 						    map->format.reg_bytes +
1321 						    map->format.pad_bytes,
1322 						    val, val_len, async);
1323 		else
1324 			ret = map->bus->async_write(map->bus_context,
1325 						    async->work_buf,
1326 						    map->format.reg_bytes +
1327 						    map->format.pad_bytes +
1328 						    val_len, NULL, 0, async);
1329 
1330 		if (ret != 0) {
1331 			dev_err(map->dev, "Failed to schedule write: %d\n",
1332 				ret);
1333 
1334 			spin_lock_irqsave(&map->async_lock, flags);
1335 			list_move(&async->list, &map->async_free);
1336 			spin_unlock_irqrestore(&map->async_lock, flags);
1337 		}
1338 
1339 		return ret;
1340 	}
1341 
1342 	trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1343 
1344 	/* If we're doing a single register write we can probably just
1345 	 * send the work_buf directly, otherwise try to do a gather
1346 	 * write.
1347 	 */
1348 	if (val == work_val)
1349 		ret = map->bus->write(map->bus_context, map->work_buf,
1350 				      map->format.reg_bytes +
1351 				      map->format.pad_bytes +
1352 				      val_len);
1353 	else if (map->bus->gather_write)
1354 		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1355 					     map->format.reg_bytes +
1356 					     map->format.pad_bytes,
1357 					     val, val_len);
1358 
1359 	/* If that didn't work fall back on linearising by hand. */
1360 	if (ret == -ENOTSUPP) {
1361 		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1362 		buf = kzalloc(len, GFP_KERNEL);
1363 		if (!buf)
1364 			return -ENOMEM;
1365 
1366 		memcpy(buf, map->work_buf, map->format.reg_bytes);
1367 		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1368 		       val, val_len);
1369 		ret = map->bus->write(map->bus_context, buf, len);
1370 
1371 		kfree(buf);
1372 	}
1373 
1374 	trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1375 
1376 	return ret;
1377 }
1378 
1379 /**
1380  * regmap_can_raw_write - Test if regmap_raw_write() is supported
1381  *
1382  * @map: Map to check.
1383  */
1384 bool regmap_can_raw_write(struct regmap *map)
1385 {
1386 	return map->bus && map->format.format_val && map->format.format_reg;
1387 }
1388 EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1389 
1390 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1391 				       unsigned int val)
1392 {
1393 	int ret;
1394 	struct regmap_range_node *range;
1395 	struct regmap *map = context;
1396 
1397 	WARN_ON(!map->bus || !map->format.format_write);
1398 
1399 	range = _regmap_range_lookup(map, reg);
1400 	if (range) {
1401 		ret = _regmap_select_page(map, &reg, range, 1);
1402 		if (ret != 0)
1403 			return ret;
1404 	}
1405 
1406 	map->format.format_write(map, reg, val);
1407 
1408 	trace_regmap_hw_write_start(map, reg, 1);
1409 
1410 	ret = map->bus->write(map->bus_context, map->work_buf,
1411 			      map->format.buf_size);
1412 
1413 	trace_regmap_hw_write_done(map, reg, 1);
1414 
1415 	return ret;
1416 }
1417 
1418 static int _regmap_bus_reg_write(void *context, unsigned int reg,
1419 				 unsigned int val)
1420 {
1421 	struct regmap *map = context;
1422 
1423 	return map->bus->reg_write(map->bus_context, reg, val);
1424 }
1425 
1426 static int _regmap_bus_raw_write(void *context, unsigned int reg,
1427 				 unsigned int val)
1428 {
1429 	struct regmap *map = context;
1430 
1431 	WARN_ON(!map->bus || !map->format.format_val);
1432 
1433 	map->format.format_val(map->work_buf + map->format.reg_bytes
1434 			       + map->format.pad_bytes, val, 0);
1435 	return _regmap_raw_write(map, reg,
1436 				 map->work_buf +
1437 				 map->format.reg_bytes +
1438 				 map->format.pad_bytes,
1439 				 map->format.val_bytes);
1440 }
1441 
1442 static inline void *_regmap_map_get_context(struct regmap *map)
1443 {
1444 	return (map->bus) ? map : map->bus_context;
1445 }
1446 
1447 int _regmap_write(struct regmap *map, unsigned int reg,
1448 		  unsigned int val)
1449 {
1450 	int ret;
1451 	void *context = _regmap_map_get_context(map);
1452 
1453 	if (!regmap_writeable(map, reg))
1454 		return -EIO;
1455 
1456 	if (!map->cache_bypass && !map->defer_caching) {
1457 		ret = regcache_write(map, reg, val);
1458 		if (ret != 0)
1459 			return ret;
1460 		if (map->cache_only) {
1461 			map->cache_dirty = true;
1462 			return 0;
1463 		}
1464 	}
1465 
1466 #ifdef LOG_DEVICE
1467 	if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1468 		dev_info(map->dev, "%x <= %x\n", reg, val);
1469 #endif
1470 
1471 	trace_regmap_reg_write(map, reg, val);
1472 
1473 	return map->reg_write(context, reg, val);
1474 }
1475 
1476 /**
1477  * regmap_write(): Write a value to a single register
1478  *
1479  * @map: Register map to write to
1480  * @reg: Register to write to
1481  * @val: Value to be written
1482  *
1483  * A value of zero will be returned on success, a negative errno will
1484  * be returned in error cases.
1485  */
1486 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1487 {
1488 	int ret;
1489 
1490 	if (reg % map->reg_stride)
1491 		return -EINVAL;
1492 
1493 	map->lock(map->lock_arg);
1494 
1495 	ret = _regmap_write(map, reg, val);
1496 
1497 	map->unlock(map->lock_arg);
1498 
1499 	return ret;
1500 }
1501 EXPORT_SYMBOL_GPL(regmap_write);
1502 
1503 /**
1504  * regmap_write_async(): Write a value to a single register asynchronously
1505  *
1506  * @map: Register map to write to
1507  * @reg: Register to write to
1508  * @val: Value to be written
1509  *
1510  * A value of zero will be returned on success, a negative errno will
1511  * be returned in error cases.
1512  */
1513 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1514 {
1515 	int ret;
1516 
1517 	if (reg % map->reg_stride)
1518 		return -EINVAL;
1519 
1520 	map->lock(map->lock_arg);
1521 
1522 	map->async = true;
1523 
1524 	ret = _regmap_write(map, reg, val);
1525 
1526 	map->async = false;
1527 
1528 	map->unlock(map->lock_arg);
1529 
1530 	return ret;
1531 }
1532 EXPORT_SYMBOL_GPL(regmap_write_async);
1533 
1534 /**
1535  * regmap_raw_write(): Write raw values to one or more registers
1536  *
1537  * @map: Register map to write to
1538  * @reg: Initial register to write to
1539  * @val: Block of data to be written, laid out for direct transmission to the
1540  *       device
1541  * @val_len: Length of data pointed to by val.
1542  *
1543  * This function is intended to be used for things like firmware
1544  * download where a large block of data needs to be transferred to the
1545  * device.  No formatting will be done on the data provided.
1546  *
1547  * A value of zero will be returned on success, a negative errno will
1548  * be returned in error cases.
1549  */
1550 int regmap_raw_write(struct regmap *map, unsigned int reg,
1551 		     const void *val, size_t val_len)
1552 {
1553 	int ret;
1554 
1555 	if (!regmap_can_raw_write(map))
1556 		return -EINVAL;
1557 	if (val_len % map->format.val_bytes)
1558 		return -EINVAL;
1559 
1560 	map->lock(map->lock_arg);
1561 
1562 	ret = _regmap_raw_write(map, reg, val, val_len);
1563 
1564 	map->unlock(map->lock_arg);
1565 
1566 	return ret;
1567 }
1568 EXPORT_SYMBOL_GPL(regmap_raw_write);
1569 
1570 /**
1571  * regmap_field_write(): Write a value to a single register field
1572  *
1573  * @field: Register field to write to
1574  * @val: Value to be written
1575  *
1576  * A value of zero will be returned on success, a negative errno will
1577  * be returned in error cases.
1578  */
1579 int regmap_field_write(struct regmap_field *field, unsigned int val)
1580 {
1581 	return regmap_update_bits(field->regmap, field->reg,
1582 				field->mask, val << field->shift);
1583 }
1584 EXPORT_SYMBOL_GPL(regmap_field_write);
1585 
1586 /**
1587  * regmap_field_update_bits():	Perform a read/modify/write cycle
1588  *                              on the register field
1589  *
1590  * @field: Register field to write to
1591  * @mask: Bitmask to change
1592  * @val: Value to be written
1593  *
1594  * A value of zero will be returned on success, a negative errno will
1595  * be returned in error cases.
1596  */
1597 int regmap_field_update_bits(struct regmap_field *field, unsigned int mask, unsigned int val)
1598 {
1599 	mask = (mask << field->shift) & field->mask;
1600 
1601 	return regmap_update_bits(field->regmap, field->reg,
1602 				  mask, val << field->shift);
1603 }
1604 EXPORT_SYMBOL_GPL(regmap_field_update_bits);
1605 
1606 /**
1607  * regmap_fields_write(): Write a value to a single register field with port ID
1608  *
1609  * @field: Register field to write to
1610  * @id: port ID
1611  * @val: Value to be written
1612  *
1613  * A value of zero will be returned on success, a negative errno will
1614  * be returned in error cases.
1615  */
1616 int regmap_fields_write(struct regmap_field *field, unsigned int id,
1617 			unsigned int val)
1618 {
1619 	if (id >= field->id_size)
1620 		return -EINVAL;
1621 
1622 	return regmap_update_bits(field->regmap,
1623 				  field->reg + (field->id_offset * id),
1624 				  field->mask, val << field->shift);
1625 }
1626 EXPORT_SYMBOL_GPL(regmap_fields_write);
1627 
1628 /**
1629  * regmap_fields_update_bits():	Perform a read/modify/write cycle
1630  *                              on the register field
1631  *
1632  * @field: Register field to write to
1633  * @id: port ID
1634  * @mask: Bitmask to change
1635  * @val: Value to be written
1636  *
1637  * A value of zero will be returned on success, a negative errno will
1638  * be returned in error cases.
1639  */
1640 int regmap_fields_update_bits(struct regmap_field *field,  unsigned int id,
1641 			      unsigned int mask, unsigned int val)
1642 {
1643 	if (id >= field->id_size)
1644 		return -EINVAL;
1645 
1646 	mask = (mask << field->shift) & field->mask;
1647 
1648 	return regmap_update_bits(field->regmap,
1649 				  field->reg + (field->id_offset * id),
1650 				  mask, val << field->shift);
1651 }
1652 EXPORT_SYMBOL_GPL(regmap_fields_update_bits);
1653 
1654 /*
1655  * regmap_bulk_write(): Write multiple registers to the device
1656  *
1657  * @map: Register map to write to
1658  * @reg: First register to be write from
1659  * @val: Block of data to be written, in native register size for device
1660  * @val_count: Number of registers to write
1661  *
1662  * This function is intended to be used for writing a large block of
1663  * data to the device either in single transfer or multiple transfer.
1664  *
1665  * A value of zero will be returned on success, a negative errno will
1666  * be returned in error cases.
1667  */
1668 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
1669 		     size_t val_count)
1670 {
1671 	int ret = 0, i;
1672 	size_t val_bytes = map->format.val_bytes;
1673 
1674 	if (map->bus && !map->format.parse_inplace)
1675 		return -EINVAL;
1676 	if (reg % map->reg_stride)
1677 		return -EINVAL;
1678 
1679 	/*
1680 	 * Some devices don't support bulk write, for
1681 	 * them we have a series of single write operations.
1682 	 */
1683 	if (!map->bus || map->use_single_rw) {
1684 		map->lock(map->lock_arg);
1685 		for (i = 0; i < val_count; i++) {
1686 			unsigned int ival;
1687 
1688 			switch (val_bytes) {
1689 			case 1:
1690 				ival = *(u8 *)(val + (i * val_bytes));
1691 				break;
1692 			case 2:
1693 				ival = *(u16 *)(val + (i * val_bytes));
1694 				break;
1695 			case 4:
1696 				ival = *(u32 *)(val + (i * val_bytes));
1697 				break;
1698 #ifdef CONFIG_64BIT
1699 			case 8:
1700 				ival = *(u64 *)(val + (i * val_bytes));
1701 				break;
1702 #endif
1703 			default:
1704 				ret = -EINVAL;
1705 				goto out;
1706 			}
1707 
1708 			ret = _regmap_write(map, reg + (i * map->reg_stride),
1709 					ival);
1710 			if (ret != 0)
1711 				goto out;
1712 		}
1713 out:
1714 		map->unlock(map->lock_arg);
1715 	} else {
1716 		void *wval;
1717 
1718 		if (!val_count)
1719 			return -EINVAL;
1720 
1721 		wval = kmemdup(val, val_count * val_bytes, GFP_KERNEL);
1722 		if (!wval) {
1723 			dev_err(map->dev, "Error in memory allocation\n");
1724 			return -ENOMEM;
1725 		}
1726 		for (i = 0; i < val_count * val_bytes; i += val_bytes)
1727 			map->format.parse_inplace(wval + i);
1728 
1729 		map->lock(map->lock_arg);
1730 		ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count);
1731 		map->unlock(map->lock_arg);
1732 
1733 		kfree(wval);
1734 	}
1735 	return ret;
1736 }
1737 EXPORT_SYMBOL_GPL(regmap_bulk_write);
1738 
1739 /*
1740  * _regmap_raw_multi_reg_write()
1741  *
1742  * the (register,newvalue) pairs in regs have not been formatted, but
1743  * they are all in the same page and have been changed to being page
1744  * relative. The page register has been written if that was neccessary.
1745  */
1746 static int _regmap_raw_multi_reg_write(struct regmap *map,
1747 				       const struct reg_default *regs,
1748 				       size_t num_regs)
1749 {
1750 	int ret;
1751 	void *buf;
1752 	int i;
1753 	u8 *u8;
1754 	size_t val_bytes = map->format.val_bytes;
1755 	size_t reg_bytes = map->format.reg_bytes;
1756 	size_t pad_bytes = map->format.pad_bytes;
1757 	size_t pair_size = reg_bytes + pad_bytes + val_bytes;
1758 	size_t len = pair_size * num_regs;
1759 
1760 	if (!len)
1761 		return -EINVAL;
1762 
1763 	buf = kzalloc(len, GFP_KERNEL);
1764 	if (!buf)
1765 		return -ENOMEM;
1766 
1767 	/* We have to linearise by hand. */
1768 
1769 	u8 = buf;
1770 
1771 	for (i = 0; i < num_regs; i++) {
1772 		int reg = regs[i].reg;
1773 		int val = regs[i].def;
1774 		trace_regmap_hw_write_start(map, reg, 1);
1775 		map->format.format_reg(u8, reg, map->reg_shift);
1776 		u8 += reg_bytes + pad_bytes;
1777 		map->format.format_val(u8, val, 0);
1778 		u8 += val_bytes;
1779 	}
1780 	u8 = buf;
1781 	*u8 |= map->write_flag_mask;
1782 
1783 	ret = map->bus->write(map->bus_context, buf, len);
1784 
1785 	kfree(buf);
1786 
1787 	for (i = 0; i < num_regs; i++) {
1788 		int reg = regs[i].reg;
1789 		trace_regmap_hw_write_done(map, reg, 1);
1790 	}
1791 	return ret;
1792 }
1793 
1794 static unsigned int _regmap_register_page(struct regmap *map,
1795 					  unsigned int reg,
1796 					  struct regmap_range_node *range)
1797 {
1798 	unsigned int win_page = (reg - range->range_min) / range->window_len;
1799 
1800 	return win_page;
1801 }
1802 
1803 static int _regmap_range_multi_paged_reg_write(struct regmap *map,
1804 					       struct reg_default *regs,
1805 					       size_t num_regs)
1806 {
1807 	int ret;
1808 	int i, n;
1809 	struct reg_default *base;
1810 	unsigned int this_page = 0;
1811 	/*
1812 	 * the set of registers are not neccessarily in order, but
1813 	 * since the order of write must be preserved this algorithm
1814 	 * chops the set each time the page changes
1815 	 */
1816 	base = regs;
1817 	for (i = 0, n = 0; i < num_regs; i++, n++) {
1818 		unsigned int reg = regs[i].reg;
1819 		struct regmap_range_node *range;
1820 
1821 		range = _regmap_range_lookup(map, reg);
1822 		if (range) {
1823 			unsigned int win_page = _regmap_register_page(map, reg,
1824 								      range);
1825 
1826 			if (i == 0)
1827 				this_page = win_page;
1828 			if (win_page != this_page) {
1829 				this_page = win_page;
1830 				ret = _regmap_raw_multi_reg_write(map, base, n);
1831 				if (ret != 0)
1832 					return ret;
1833 				base += n;
1834 				n = 0;
1835 			}
1836 			ret = _regmap_select_page(map, &base[n].reg, range, 1);
1837 			if (ret != 0)
1838 				return ret;
1839 		}
1840 	}
1841 	if (n > 0)
1842 		return _regmap_raw_multi_reg_write(map, base, n);
1843 	return 0;
1844 }
1845 
1846 static int _regmap_multi_reg_write(struct regmap *map,
1847 				   const struct reg_default *regs,
1848 				   size_t num_regs)
1849 {
1850 	int i;
1851 	int ret;
1852 
1853 	if (!map->can_multi_write) {
1854 		for (i = 0; i < num_regs; i++) {
1855 			ret = _regmap_write(map, regs[i].reg, regs[i].def);
1856 			if (ret != 0)
1857 				return ret;
1858 		}
1859 		return 0;
1860 	}
1861 
1862 	if (!map->format.parse_inplace)
1863 		return -EINVAL;
1864 
1865 	if (map->writeable_reg)
1866 		for (i = 0; i < num_regs; i++) {
1867 			int reg = regs[i].reg;
1868 			if (!map->writeable_reg(map->dev, reg))
1869 				return -EINVAL;
1870 			if (reg % map->reg_stride)
1871 				return -EINVAL;
1872 		}
1873 
1874 	if (!map->cache_bypass) {
1875 		for (i = 0; i < num_regs; i++) {
1876 			unsigned int val = regs[i].def;
1877 			unsigned int reg = regs[i].reg;
1878 			ret = regcache_write(map, reg, val);
1879 			if (ret) {
1880 				dev_err(map->dev,
1881 				"Error in caching of register: %x ret: %d\n",
1882 								reg, ret);
1883 				return ret;
1884 			}
1885 		}
1886 		if (map->cache_only) {
1887 			map->cache_dirty = true;
1888 			return 0;
1889 		}
1890 	}
1891 
1892 	WARN_ON(!map->bus);
1893 
1894 	for (i = 0; i < num_regs; i++) {
1895 		unsigned int reg = regs[i].reg;
1896 		struct regmap_range_node *range;
1897 		range = _regmap_range_lookup(map, reg);
1898 		if (range) {
1899 			size_t len = sizeof(struct reg_default)*num_regs;
1900 			struct reg_default *base = kmemdup(regs, len,
1901 							   GFP_KERNEL);
1902 			if (!base)
1903 				return -ENOMEM;
1904 			ret = _regmap_range_multi_paged_reg_write(map, base,
1905 								  num_regs);
1906 			kfree(base);
1907 
1908 			return ret;
1909 		}
1910 	}
1911 	return _regmap_raw_multi_reg_write(map, regs, num_regs);
1912 }
1913 
1914 /*
1915  * regmap_multi_reg_write(): Write multiple registers to the device
1916  *
1917  * where the set of register,value pairs are supplied in any order,
1918  * possibly not all in a single range.
1919  *
1920  * @map: Register map to write to
1921  * @regs: Array of structures containing register,value to be written
1922  * @num_regs: Number of registers to write
1923  *
1924  * The 'normal' block write mode will send ultimately send data on the
1925  * target bus as R,V1,V2,V3,..,Vn where successively higer registers are
1926  * addressed. However, this alternative block multi write mode will send
1927  * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
1928  * must of course support the mode.
1929  *
1930  * A value of zero will be returned on success, a negative errno will be
1931  * returned in error cases.
1932  */
1933 int regmap_multi_reg_write(struct regmap *map, const struct reg_default *regs,
1934 			   int num_regs)
1935 {
1936 	int ret;
1937 
1938 	map->lock(map->lock_arg);
1939 
1940 	ret = _regmap_multi_reg_write(map, regs, num_regs);
1941 
1942 	map->unlock(map->lock_arg);
1943 
1944 	return ret;
1945 }
1946 EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
1947 
1948 /*
1949  * regmap_multi_reg_write_bypassed(): Write multiple registers to the
1950  *                                    device but not the cache
1951  *
1952  * where the set of register are supplied in any order
1953  *
1954  * @map: Register map to write to
1955  * @regs: Array of structures containing register,value to be written
1956  * @num_regs: Number of registers to write
1957  *
1958  * This function is intended to be used for writing a large block of data
1959  * atomically to the device in single transfer for those I2C client devices
1960  * that implement this alternative block write mode.
1961  *
1962  * A value of zero will be returned on success, a negative errno will
1963  * be returned in error cases.
1964  */
1965 int regmap_multi_reg_write_bypassed(struct regmap *map,
1966 				    const struct reg_default *regs,
1967 				    int num_regs)
1968 {
1969 	int ret;
1970 	bool bypass;
1971 
1972 	map->lock(map->lock_arg);
1973 
1974 	bypass = map->cache_bypass;
1975 	map->cache_bypass = true;
1976 
1977 	ret = _regmap_multi_reg_write(map, regs, num_regs);
1978 
1979 	map->cache_bypass = bypass;
1980 
1981 	map->unlock(map->lock_arg);
1982 
1983 	return ret;
1984 }
1985 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
1986 
1987 /**
1988  * regmap_raw_write_async(): Write raw values to one or more registers
1989  *                           asynchronously
1990  *
1991  * @map: Register map to write to
1992  * @reg: Initial register to write to
1993  * @val: Block of data to be written, laid out for direct transmission to the
1994  *       device.  Must be valid until regmap_async_complete() is called.
1995  * @val_len: Length of data pointed to by val.
1996  *
1997  * This function is intended to be used for things like firmware
1998  * download where a large block of data needs to be transferred to the
1999  * device.  No formatting will be done on the data provided.
2000  *
2001  * If supported by the underlying bus the write will be scheduled
2002  * asynchronously, helping maximise I/O speed on higher speed buses
2003  * like SPI.  regmap_async_complete() can be called to ensure that all
2004  * asynchrnous writes have been completed.
2005  *
2006  * A value of zero will be returned on success, a negative errno will
2007  * be returned in error cases.
2008  */
2009 int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2010 			   const void *val, size_t val_len)
2011 {
2012 	int ret;
2013 
2014 	if (val_len % map->format.val_bytes)
2015 		return -EINVAL;
2016 	if (reg % map->reg_stride)
2017 		return -EINVAL;
2018 
2019 	map->lock(map->lock_arg);
2020 
2021 	map->async = true;
2022 
2023 	ret = _regmap_raw_write(map, reg, val, val_len);
2024 
2025 	map->async = false;
2026 
2027 	map->unlock(map->lock_arg);
2028 
2029 	return ret;
2030 }
2031 EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2032 
2033 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2034 			    unsigned int val_len)
2035 {
2036 	struct regmap_range_node *range;
2037 	u8 *u8 = map->work_buf;
2038 	int ret;
2039 
2040 	WARN_ON(!map->bus);
2041 
2042 	range = _regmap_range_lookup(map, reg);
2043 	if (range) {
2044 		ret = _regmap_select_page(map, &reg, range,
2045 					  val_len / map->format.val_bytes);
2046 		if (ret != 0)
2047 			return ret;
2048 	}
2049 
2050 	map->format.format_reg(map->work_buf, reg, map->reg_shift);
2051 
2052 	/*
2053 	 * Some buses or devices flag reads by setting the high bits in the
2054 	 * register addresss; since it's always the high bits for all
2055 	 * current formats we can do this here rather than in
2056 	 * formatting.  This may break if we get interesting formats.
2057 	 */
2058 	u8[0] |= map->read_flag_mask;
2059 
2060 	trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2061 
2062 	ret = map->bus->read(map->bus_context, map->work_buf,
2063 			     map->format.reg_bytes + map->format.pad_bytes,
2064 			     val, val_len);
2065 
2066 	trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2067 
2068 	return ret;
2069 }
2070 
2071 static int _regmap_bus_reg_read(void *context, unsigned int reg,
2072 				unsigned int *val)
2073 {
2074 	struct regmap *map = context;
2075 
2076 	return map->bus->reg_read(map->bus_context, reg, val);
2077 }
2078 
2079 static int _regmap_bus_read(void *context, unsigned int reg,
2080 			    unsigned int *val)
2081 {
2082 	int ret;
2083 	struct regmap *map = context;
2084 
2085 	if (!map->format.parse_val)
2086 		return -EINVAL;
2087 
2088 	ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes);
2089 	if (ret == 0)
2090 		*val = map->format.parse_val(map->work_buf);
2091 
2092 	return ret;
2093 }
2094 
2095 static int _regmap_read(struct regmap *map, unsigned int reg,
2096 			unsigned int *val)
2097 {
2098 	int ret;
2099 	void *context = _regmap_map_get_context(map);
2100 
2101 	WARN_ON(!map->reg_read);
2102 
2103 	if (!map->cache_bypass) {
2104 		ret = regcache_read(map, reg, val);
2105 		if (ret == 0)
2106 			return 0;
2107 	}
2108 
2109 	if (map->cache_only)
2110 		return -EBUSY;
2111 
2112 	if (!regmap_readable(map, reg))
2113 		return -EIO;
2114 
2115 	ret = map->reg_read(context, reg, val);
2116 	if (ret == 0) {
2117 #ifdef LOG_DEVICE
2118 		if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
2119 			dev_info(map->dev, "%x => %x\n", reg, *val);
2120 #endif
2121 
2122 		trace_regmap_reg_read(map, reg, *val);
2123 
2124 		if (!map->cache_bypass)
2125 			regcache_write(map, reg, *val);
2126 	}
2127 
2128 	return ret;
2129 }
2130 
2131 /**
2132  * regmap_read(): Read a value from a single register
2133  *
2134  * @map: Register map to read from
2135  * @reg: Register to be read from
2136  * @val: Pointer to store read value
2137  *
2138  * A value of zero will be returned on success, a negative errno will
2139  * be returned in error cases.
2140  */
2141 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2142 {
2143 	int ret;
2144 
2145 	if (reg % map->reg_stride)
2146 		return -EINVAL;
2147 
2148 	map->lock(map->lock_arg);
2149 
2150 	ret = _regmap_read(map, reg, val);
2151 
2152 	map->unlock(map->lock_arg);
2153 
2154 	return ret;
2155 }
2156 EXPORT_SYMBOL_GPL(regmap_read);
2157 
2158 /**
2159  * regmap_raw_read(): Read raw data from the device
2160  *
2161  * @map: Register map to read from
2162  * @reg: First register to be read from
2163  * @val: Pointer to store read value
2164  * @val_len: Size of data to read
2165  *
2166  * A value of zero will be returned on success, a negative errno will
2167  * be returned in error cases.
2168  */
2169 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2170 		    size_t val_len)
2171 {
2172 	size_t val_bytes = map->format.val_bytes;
2173 	size_t val_count = val_len / val_bytes;
2174 	unsigned int v;
2175 	int ret, i;
2176 
2177 	if (!map->bus)
2178 		return -EINVAL;
2179 	if (val_len % map->format.val_bytes)
2180 		return -EINVAL;
2181 	if (reg % map->reg_stride)
2182 		return -EINVAL;
2183 
2184 	map->lock(map->lock_arg);
2185 
2186 	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2187 	    map->cache_type == REGCACHE_NONE) {
2188 		/* Physical block read if there's no cache involved */
2189 		ret = _regmap_raw_read(map, reg, val, val_len);
2190 
2191 	} else {
2192 		/* Otherwise go word by word for the cache; should be low
2193 		 * cost as we expect to hit the cache.
2194 		 */
2195 		for (i = 0; i < val_count; i++) {
2196 			ret = _regmap_read(map, reg + (i * map->reg_stride),
2197 					   &v);
2198 			if (ret != 0)
2199 				goto out;
2200 
2201 			map->format.format_val(val + (i * val_bytes), v, 0);
2202 		}
2203 	}
2204 
2205  out:
2206 	map->unlock(map->lock_arg);
2207 
2208 	return ret;
2209 }
2210 EXPORT_SYMBOL_GPL(regmap_raw_read);
2211 
2212 /**
2213  * regmap_field_read(): Read a value to a single register field
2214  *
2215  * @field: Register field to read from
2216  * @val: Pointer to store read value
2217  *
2218  * A value of zero will be returned on success, a negative errno will
2219  * be returned in error cases.
2220  */
2221 int regmap_field_read(struct regmap_field *field, unsigned int *val)
2222 {
2223 	int ret;
2224 	unsigned int reg_val;
2225 	ret = regmap_read(field->regmap, field->reg, &reg_val);
2226 	if (ret != 0)
2227 		return ret;
2228 
2229 	reg_val &= field->mask;
2230 	reg_val >>= field->shift;
2231 	*val = reg_val;
2232 
2233 	return ret;
2234 }
2235 EXPORT_SYMBOL_GPL(regmap_field_read);
2236 
2237 /**
2238  * regmap_fields_read(): Read a value to a single register field with port ID
2239  *
2240  * @field: Register field to read from
2241  * @id: port ID
2242  * @val: Pointer to store read value
2243  *
2244  * A value of zero will be returned on success, a negative errno will
2245  * be returned in error cases.
2246  */
2247 int regmap_fields_read(struct regmap_field *field, unsigned int id,
2248 		       unsigned int *val)
2249 {
2250 	int ret;
2251 	unsigned int reg_val;
2252 
2253 	if (id >= field->id_size)
2254 		return -EINVAL;
2255 
2256 	ret = regmap_read(field->regmap,
2257 			  field->reg + (field->id_offset * id),
2258 			  &reg_val);
2259 	if (ret != 0)
2260 		return ret;
2261 
2262 	reg_val &= field->mask;
2263 	reg_val >>= field->shift;
2264 	*val = reg_val;
2265 
2266 	return ret;
2267 }
2268 EXPORT_SYMBOL_GPL(regmap_fields_read);
2269 
2270 /**
2271  * regmap_bulk_read(): Read multiple registers from the device
2272  *
2273  * @map: Register map to read from
2274  * @reg: First register to be read from
2275  * @val: Pointer to store read value, in native register size for device
2276  * @val_count: Number of registers to read
2277  *
2278  * A value of zero will be returned on success, a negative errno will
2279  * be returned in error cases.
2280  */
2281 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2282 		     size_t val_count)
2283 {
2284 	int ret, i;
2285 	size_t val_bytes = map->format.val_bytes;
2286 	bool vol = regmap_volatile_range(map, reg, val_count);
2287 
2288 	if (reg % map->reg_stride)
2289 		return -EINVAL;
2290 
2291 	if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2292 		/*
2293 		 * Some devices does not support bulk read, for
2294 		 * them we have a series of single read operations.
2295 		 */
2296 		if (map->use_single_rw) {
2297 			for (i = 0; i < val_count; i++) {
2298 				ret = regmap_raw_read(map,
2299 						reg + (i * map->reg_stride),
2300 						val + (i * val_bytes),
2301 						val_bytes);
2302 				if (ret != 0)
2303 					return ret;
2304 			}
2305 		} else {
2306 			ret = regmap_raw_read(map, reg, val,
2307 					      val_bytes * val_count);
2308 			if (ret != 0)
2309 				return ret;
2310 		}
2311 
2312 		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2313 			map->format.parse_inplace(val + i);
2314 	} else {
2315 		for (i = 0; i < val_count; i++) {
2316 			unsigned int ival;
2317 			ret = regmap_read(map, reg + (i * map->reg_stride),
2318 					  &ival);
2319 			if (ret != 0)
2320 				return ret;
2321 			memcpy(val + (i * val_bytes), &ival, val_bytes);
2322 		}
2323 	}
2324 
2325 	return 0;
2326 }
2327 EXPORT_SYMBOL_GPL(regmap_bulk_read);
2328 
2329 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
2330 			       unsigned int mask, unsigned int val,
2331 			       bool *change)
2332 {
2333 	int ret;
2334 	unsigned int tmp, orig;
2335 
2336 	ret = _regmap_read(map, reg, &orig);
2337 	if (ret != 0)
2338 		return ret;
2339 
2340 	tmp = orig & ~mask;
2341 	tmp |= val & mask;
2342 
2343 	if (tmp != orig) {
2344 		ret = _regmap_write(map, reg, tmp);
2345 		if (change)
2346 			*change = true;
2347 	} else {
2348 		if (change)
2349 			*change = false;
2350 	}
2351 
2352 	return ret;
2353 }
2354 
2355 /**
2356  * regmap_update_bits: Perform a read/modify/write cycle on the register map
2357  *
2358  * @map: Register map to update
2359  * @reg: Register to update
2360  * @mask: Bitmask to change
2361  * @val: New value for bitmask
2362  *
2363  * Returns zero for success, a negative number on error.
2364  */
2365 int regmap_update_bits(struct regmap *map, unsigned int reg,
2366 		       unsigned int mask, unsigned int val)
2367 {
2368 	int ret;
2369 
2370 	map->lock(map->lock_arg);
2371 	ret = _regmap_update_bits(map, reg, mask, val, NULL);
2372 	map->unlock(map->lock_arg);
2373 
2374 	return ret;
2375 }
2376 EXPORT_SYMBOL_GPL(regmap_update_bits);
2377 
2378 /**
2379  * regmap_update_bits_async: Perform a read/modify/write cycle on the register
2380  *                           map asynchronously
2381  *
2382  * @map: Register map to update
2383  * @reg: Register to update
2384  * @mask: Bitmask to change
2385  * @val: New value for bitmask
2386  *
2387  * With most buses the read must be done synchronously so this is most
2388  * useful for devices with a cache which do not need to interact with
2389  * the hardware to determine the current register value.
2390  *
2391  * Returns zero for success, a negative number on error.
2392  */
2393 int regmap_update_bits_async(struct regmap *map, unsigned int reg,
2394 			     unsigned int mask, unsigned int val)
2395 {
2396 	int ret;
2397 
2398 	map->lock(map->lock_arg);
2399 
2400 	map->async = true;
2401 
2402 	ret = _regmap_update_bits(map, reg, mask, val, NULL);
2403 
2404 	map->async = false;
2405 
2406 	map->unlock(map->lock_arg);
2407 
2408 	return ret;
2409 }
2410 EXPORT_SYMBOL_GPL(regmap_update_bits_async);
2411 
2412 /**
2413  * regmap_update_bits_check: Perform a read/modify/write cycle on the
2414  *                           register map and report if updated
2415  *
2416  * @map: Register map to update
2417  * @reg: Register to update
2418  * @mask: Bitmask to change
2419  * @val: New value for bitmask
2420  * @change: Boolean indicating if a write was done
2421  *
2422  * Returns zero for success, a negative number on error.
2423  */
2424 int regmap_update_bits_check(struct regmap *map, unsigned int reg,
2425 			     unsigned int mask, unsigned int val,
2426 			     bool *change)
2427 {
2428 	int ret;
2429 
2430 	map->lock(map->lock_arg);
2431 	ret = _regmap_update_bits(map, reg, mask, val, change);
2432 	map->unlock(map->lock_arg);
2433 	return ret;
2434 }
2435 EXPORT_SYMBOL_GPL(regmap_update_bits_check);
2436 
2437 /**
2438  * regmap_update_bits_check_async: Perform a read/modify/write cycle on the
2439  *                                 register map asynchronously and report if
2440  *                                 updated
2441  *
2442  * @map: Register map to update
2443  * @reg: Register to update
2444  * @mask: Bitmask to change
2445  * @val: New value for bitmask
2446  * @change: Boolean indicating if a write was done
2447  *
2448  * With most buses the read must be done synchronously so this is most
2449  * useful for devices with a cache which do not need to interact with
2450  * the hardware to determine the current register value.
2451  *
2452  * Returns zero for success, a negative number on error.
2453  */
2454 int regmap_update_bits_check_async(struct regmap *map, unsigned int reg,
2455 				   unsigned int mask, unsigned int val,
2456 				   bool *change)
2457 {
2458 	int ret;
2459 
2460 	map->lock(map->lock_arg);
2461 
2462 	map->async = true;
2463 
2464 	ret = _regmap_update_bits(map, reg, mask, val, change);
2465 
2466 	map->async = false;
2467 
2468 	map->unlock(map->lock_arg);
2469 
2470 	return ret;
2471 }
2472 EXPORT_SYMBOL_GPL(regmap_update_bits_check_async);
2473 
2474 void regmap_async_complete_cb(struct regmap_async *async, int ret)
2475 {
2476 	struct regmap *map = async->map;
2477 	bool wake;
2478 
2479 	trace_regmap_async_io_complete(map);
2480 
2481 	spin_lock(&map->async_lock);
2482 	list_move(&async->list, &map->async_free);
2483 	wake = list_empty(&map->async_list);
2484 
2485 	if (ret != 0)
2486 		map->async_ret = ret;
2487 
2488 	spin_unlock(&map->async_lock);
2489 
2490 	if (wake)
2491 		wake_up(&map->async_waitq);
2492 }
2493 EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2494 
2495 static int regmap_async_is_done(struct regmap *map)
2496 {
2497 	unsigned long flags;
2498 	int ret;
2499 
2500 	spin_lock_irqsave(&map->async_lock, flags);
2501 	ret = list_empty(&map->async_list);
2502 	spin_unlock_irqrestore(&map->async_lock, flags);
2503 
2504 	return ret;
2505 }
2506 
2507 /**
2508  * regmap_async_complete: Ensure all asynchronous I/O has completed.
2509  *
2510  * @map: Map to operate on.
2511  *
2512  * Blocks until any pending asynchronous I/O has completed.  Returns
2513  * an error code for any failed I/O operations.
2514  */
2515 int regmap_async_complete(struct regmap *map)
2516 {
2517 	unsigned long flags;
2518 	int ret;
2519 
2520 	/* Nothing to do with no async support */
2521 	if (!map->bus || !map->bus->async_write)
2522 		return 0;
2523 
2524 	trace_regmap_async_complete_start(map);
2525 
2526 	wait_event(map->async_waitq, regmap_async_is_done(map));
2527 
2528 	spin_lock_irqsave(&map->async_lock, flags);
2529 	ret = map->async_ret;
2530 	map->async_ret = 0;
2531 	spin_unlock_irqrestore(&map->async_lock, flags);
2532 
2533 	trace_regmap_async_complete_done(map);
2534 
2535 	return ret;
2536 }
2537 EXPORT_SYMBOL_GPL(regmap_async_complete);
2538 
2539 /**
2540  * regmap_register_patch: Register and apply register updates to be applied
2541  *                        on device initialistion
2542  *
2543  * @map: Register map to apply updates to.
2544  * @regs: Values to update.
2545  * @num_regs: Number of entries in regs.
2546  *
2547  * Register a set of register updates to be applied to the device
2548  * whenever the device registers are synchronised with the cache and
2549  * apply them immediately.  Typically this is used to apply
2550  * corrections to be applied to the device defaults on startup, such
2551  * as the updates some vendors provide to undocumented registers.
2552  *
2553  * The caller must ensure that this function cannot be called
2554  * concurrently with either itself or regcache_sync().
2555  */
2556 int regmap_register_patch(struct regmap *map, const struct reg_default *regs,
2557 			  int num_regs)
2558 {
2559 	struct reg_default *p;
2560 	int ret;
2561 	bool bypass;
2562 
2563 	if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
2564 	    num_regs))
2565 		return 0;
2566 
2567 	p = krealloc(map->patch,
2568 		     sizeof(struct reg_default) * (map->patch_regs + num_regs),
2569 		     GFP_KERNEL);
2570 	if (p) {
2571 		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
2572 		map->patch = p;
2573 		map->patch_regs += num_regs;
2574 	} else {
2575 		return -ENOMEM;
2576 	}
2577 
2578 	map->lock(map->lock_arg);
2579 
2580 	bypass = map->cache_bypass;
2581 
2582 	map->cache_bypass = true;
2583 	map->async = true;
2584 
2585 	ret = _regmap_multi_reg_write(map, regs, num_regs);
2586 	if (ret != 0)
2587 		goto out;
2588 
2589 out:
2590 	map->async = false;
2591 	map->cache_bypass = bypass;
2592 
2593 	map->unlock(map->lock_arg);
2594 
2595 	regmap_async_complete(map);
2596 
2597 	return ret;
2598 }
2599 EXPORT_SYMBOL_GPL(regmap_register_patch);
2600 
2601 /*
2602  * regmap_get_val_bytes(): Report the size of a register value
2603  *
2604  * Report the size of a register value, mainly intended to for use by
2605  * generic infrastructure built on top of regmap.
2606  */
2607 int regmap_get_val_bytes(struct regmap *map)
2608 {
2609 	if (map->format.format_write)
2610 		return -EINVAL;
2611 
2612 	return map->format.val_bytes;
2613 }
2614 EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
2615 
2616 int regmap_parse_val(struct regmap *map, const void *buf,
2617 			unsigned int *val)
2618 {
2619 	if (!map->format.parse_val)
2620 		return -EINVAL;
2621 
2622 	*val = map->format.parse_val(buf);
2623 
2624 	return 0;
2625 }
2626 EXPORT_SYMBOL_GPL(regmap_parse_val);
2627 
2628 static int __init regmap_initcall(void)
2629 {
2630 	regmap_debugfs_initcall();
2631 
2632 	return 0;
2633 }
2634 postcore_initcall(regmap_initcall);
2635