1 /* 2 * Register map access API 3 * 4 * Copyright 2011 Wolfson Microelectronics plc 5 * 6 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License version 2 as 10 * published by the Free Software Foundation. 11 */ 12 13 #include <linux/device.h> 14 #include <linux/slab.h> 15 #include <linux/export.h> 16 #include <linux/mutex.h> 17 #include <linux/err.h> 18 #include <linux/of.h> 19 #include <linux/rbtree.h> 20 #include <linux/sched.h> 21 22 #define CREATE_TRACE_POINTS 23 #include <trace/events/regmap.h> 24 25 #include "internal.h" 26 27 /* 28 * Sometimes for failures during very early init the trace 29 * infrastructure isn't available early enough to be used. For this 30 * sort of problem defining LOG_DEVICE will add printks for basic 31 * register I/O on a specific device. 32 */ 33 #undef LOG_DEVICE 34 35 static int _regmap_update_bits(struct regmap *map, unsigned int reg, 36 unsigned int mask, unsigned int val, 37 bool *change); 38 39 static int _regmap_bus_reg_read(void *context, unsigned int reg, 40 unsigned int *val); 41 static int _regmap_bus_read(void *context, unsigned int reg, 42 unsigned int *val); 43 static int _regmap_bus_formatted_write(void *context, unsigned int reg, 44 unsigned int val); 45 static int _regmap_bus_reg_write(void *context, unsigned int reg, 46 unsigned int val); 47 static int _regmap_bus_raw_write(void *context, unsigned int reg, 48 unsigned int val); 49 50 bool regmap_reg_in_ranges(unsigned int reg, 51 const struct regmap_range *ranges, 52 unsigned int nranges) 53 { 54 const struct regmap_range *r; 55 int i; 56 57 for (i = 0, r = ranges; i < nranges; i++, r++) 58 if (regmap_reg_in_range(reg, r)) 59 return true; 60 return false; 61 } 62 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges); 63 64 bool regmap_check_range_table(struct regmap *map, unsigned int reg, 65 const struct regmap_access_table *table) 66 { 67 /* Check "no ranges" first */ 68 if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges)) 69 return false; 70 71 /* In case zero "yes ranges" are supplied, any reg is OK */ 72 if (!table->n_yes_ranges) 73 return true; 74 75 return regmap_reg_in_ranges(reg, table->yes_ranges, 76 table->n_yes_ranges); 77 } 78 EXPORT_SYMBOL_GPL(regmap_check_range_table); 79 80 bool regmap_writeable(struct regmap *map, unsigned int reg) 81 { 82 if (map->max_register && reg > map->max_register) 83 return false; 84 85 if (map->writeable_reg) 86 return map->writeable_reg(map->dev, reg); 87 88 if (map->wr_table) 89 return regmap_check_range_table(map, reg, map->wr_table); 90 91 return true; 92 } 93 94 bool regmap_readable(struct regmap *map, unsigned int reg) 95 { 96 if (map->max_register && reg > map->max_register) 97 return false; 98 99 if (map->format.format_write) 100 return false; 101 102 if (map->readable_reg) 103 return map->readable_reg(map->dev, reg); 104 105 if (map->rd_table) 106 return regmap_check_range_table(map, reg, map->rd_table); 107 108 return true; 109 } 110 111 bool regmap_volatile(struct regmap *map, unsigned int reg) 112 { 113 if (!map->format.format_write && !regmap_readable(map, reg)) 114 return false; 115 116 if (map->volatile_reg) 117 return map->volatile_reg(map->dev, reg); 118 119 if (map->volatile_table) 120 return regmap_check_range_table(map, reg, map->volatile_table); 121 122 if (map->cache_ops) 123 return false; 124 else 125 return true; 126 } 127 128 bool regmap_precious(struct regmap *map, unsigned int reg) 129 { 130 if (!regmap_readable(map, reg)) 131 return false; 132 133 if (map->precious_reg) 134 return map->precious_reg(map->dev, reg); 135 136 if (map->precious_table) 137 return regmap_check_range_table(map, reg, map->precious_table); 138 139 return false; 140 } 141 142 static bool regmap_volatile_range(struct regmap *map, unsigned int reg, 143 size_t num) 144 { 145 unsigned int i; 146 147 for (i = 0; i < num; i++) 148 if (!regmap_volatile(map, reg + i)) 149 return false; 150 151 return true; 152 } 153 154 static void regmap_format_2_6_write(struct regmap *map, 155 unsigned int reg, unsigned int val) 156 { 157 u8 *out = map->work_buf; 158 159 *out = (reg << 6) | val; 160 } 161 162 static void regmap_format_4_12_write(struct regmap *map, 163 unsigned int reg, unsigned int val) 164 { 165 __be16 *out = map->work_buf; 166 *out = cpu_to_be16((reg << 12) | val); 167 } 168 169 static void regmap_format_7_9_write(struct regmap *map, 170 unsigned int reg, unsigned int val) 171 { 172 __be16 *out = map->work_buf; 173 *out = cpu_to_be16((reg << 9) | val); 174 } 175 176 static void regmap_format_10_14_write(struct regmap *map, 177 unsigned int reg, unsigned int val) 178 { 179 u8 *out = map->work_buf; 180 181 out[2] = val; 182 out[1] = (val >> 8) | (reg << 6); 183 out[0] = reg >> 2; 184 } 185 186 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift) 187 { 188 u8 *b = buf; 189 190 b[0] = val << shift; 191 } 192 193 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift) 194 { 195 __be16 *b = buf; 196 197 b[0] = cpu_to_be16(val << shift); 198 } 199 200 static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift) 201 { 202 __le16 *b = buf; 203 204 b[0] = cpu_to_le16(val << shift); 205 } 206 207 static void regmap_format_16_native(void *buf, unsigned int val, 208 unsigned int shift) 209 { 210 *(u16 *)buf = val << shift; 211 } 212 213 static void regmap_format_24(void *buf, unsigned int val, unsigned int shift) 214 { 215 u8 *b = buf; 216 217 val <<= shift; 218 219 b[0] = val >> 16; 220 b[1] = val >> 8; 221 b[2] = val; 222 } 223 224 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift) 225 { 226 __be32 *b = buf; 227 228 b[0] = cpu_to_be32(val << shift); 229 } 230 231 static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift) 232 { 233 __le32 *b = buf; 234 235 b[0] = cpu_to_le32(val << shift); 236 } 237 238 static void regmap_format_32_native(void *buf, unsigned int val, 239 unsigned int shift) 240 { 241 *(u32 *)buf = val << shift; 242 } 243 244 static void regmap_parse_inplace_noop(void *buf) 245 { 246 } 247 248 static unsigned int regmap_parse_8(const void *buf) 249 { 250 const u8 *b = buf; 251 252 return b[0]; 253 } 254 255 static unsigned int regmap_parse_16_be(const void *buf) 256 { 257 const __be16 *b = buf; 258 259 return be16_to_cpu(b[0]); 260 } 261 262 static unsigned int regmap_parse_16_le(const void *buf) 263 { 264 const __le16 *b = buf; 265 266 return le16_to_cpu(b[0]); 267 } 268 269 static void regmap_parse_16_be_inplace(void *buf) 270 { 271 __be16 *b = buf; 272 273 b[0] = be16_to_cpu(b[0]); 274 } 275 276 static void regmap_parse_16_le_inplace(void *buf) 277 { 278 __le16 *b = buf; 279 280 b[0] = le16_to_cpu(b[0]); 281 } 282 283 static unsigned int regmap_parse_16_native(const void *buf) 284 { 285 return *(u16 *)buf; 286 } 287 288 static unsigned int regmap_parse_24(const void *buf) 289 { 290 const u8 *b = buf; 291 unsigned int ret = b[2]; 292 ret |= ((unsigned int)b[1]) << 8; 293 ret |= ((unsigned int)b[0]) << 16; 294 295 return ret; 296 } 297 298 static unsigned int regmap_parse_32_be(const void *buf) 299 { 300 const __be32 *b = buf; 301 302 return be32_to_cpu(b[0]); 303 } 304 305 static unsigned int regmap_parse_32_le(const void *buf) 306 { 307 const __le32 *b = buf; 308 309 return le32_to_cpu(b[0]); 310 } 311 312 static void regmap_parse_32_be_inplace(void *buf) 313 { 314 __be32 *b = buf; 315 316 b[0] = be32_to_cpu(b[0]); 317 } 318 319 static void regmap_parse_32_le_inplace(void *buf) 320 { 321 __le32 *b = buf; 322 323 b[0] = le32_to_cpu(b[0]); 324 } 325 326 static unsigned int regmap_parse_32_native(const void *buf) 327 { 328 return *(u32 *)buf; 329 } 330 331 static void regmap_lock_mutex(void *__map) 332 { 333 struct regmap *map = __map; 334 mutex_lock(&map->mutex); 335 } 336 337 static void regmap_unlock_mutex(void *__map) 338 { 339 struct regmap *map = __map; 340 mutex_unlock(&map->mutex); 341 } 342 343 static void regmap_lock_spinlock(void *__map) 344 __acquires(&map->spinlock) 345 { 346 struct regmap *map = __map; 347 unsigned long flags; 348 349 spin_lock_irqsave(&map->spinlock, flags); 350 map->spinlock_flags = flags; 351 } 352 353 static void regmap_unlock_spinlock(void *__map) 354 __releases(&map->spinlock) 355 { 356 struct regmap *map = __map; 357 spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags); 358 } 359 360 static void dev_get_regmap_release(struct device *dev, void *res) 361 { 362 /* 363 * We don't actually have anything to do here; the goal here 364 * is not to manage the regmap but to provide a simple way to 365 * get the regmap back given a struct device. 366 */ 367 } 368 369 static bool _regmap_range_add(struct regmap *map, 370 struct regmap_range_node *data) 371 { 372 struct rb_root *root = &map->range_tree; 373 struct rb_node **new = &(root->rb_node), *parent = NULL; 374 375 while (*new) { 376 struct regmap_range_node *this = 377 container_of(*new, struct regmap_range_node, node); 378 379 parent = *new; 380 if (data->range_max < this->range_min) 381 new = &((*new)->rb_left); 382 else if (data->range_min > this->range_max) 383 new = &((*new)->rb_right); 384 else 385 return false; 386 } 387 388 rb_link_node(&data->node, parent, new); 389 rb_insert_color(&data->node, root); 390 391 return true; 392 } 393 394 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map, 395 unsigned int reg) 396 { 397 struct rb_node *node = map->range_tree.rb_node; 398 399 while (node) { 400 struct regmap_range_node *this = 401 container_of(node, struct regmap_range_node, node); 402 403 if (reg < this->range_min) 404 node = node->rb_left; 405 else if (reg > this->range_max) 406 node = node->rb_right; 407 else 408 return this; 409 } 410 411 return NULL; 412 } 413 414 static void regmap_range_exit(struct regmap *map) 415 { 416 struct rb_node *next; 417 struct regmap_range_node *range_node; 418 419 next = rb_first(&map->range_tree); 420 while (next) { 421 range_node = rb_entry(next, struct regmap_range_node, node); 422 next = rb_next(&range_node->node); 423 rb_erase(&range_node->node, &map->range_tree); 424 kfree(range_node); 425 } 426 427 kfree(map->selector_work_buf); 428 } 429 430 int regmap_attach_dev(struct device *dev, struct regmap *map, 431 const struct regmap_config *config) 432 { 433 struct regmap **m; 434 435 map->dev = dev; 436 437 regmap_debugfs_init(map, config->name); 438 439 /* Add a devres resource for dev_get_regmap() */ 440 m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL); 441 if (!m) { 442 regmap_debugfs_exit(map); 443 return -ENOMEM; 444 } 445 *m = map; 446 devres_add(dev, m); 447 448 return 0; 449 } 450 EXPORT_SYMBOL_GPL(regmap_attach_dev); 451 452 static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus, 453 const struct regmap_config *config) 454 { 455 enum regmap_endian endian; 456 457 /* Retrieve the endianness specification from the regmap config */ 458 endian = config->reg_format_endian; 459 460 /* If the regmap config specified a non-default value, use that */ 461 if (endian != REGMAP_ENDIAN_DEFAULT) 462 return endian; 463 464 /* Retrieve the endianness specification from the bus config */ 465 if (bus && bus->reg_format_endian_default) 466 endian = bus->reg_format_endian_default; 467 468 /* If the bus specified a non-default value, use that */ 469 if (endian != REGMAP_ENDIAN_DEFAULT) 470 return endian; 471 472 /* Use this if no other value was found */ 473 return REGMAP_ENDIAN_BIG; 474 } 475 476 enum regmap_endian regmap_get_val_endian(struct device *dev, 477 const struct regmap_bus *bus, 478 const struct regmap_config *config) 479 { 480 struct device_node *np; 481 enum regmap_endian endian; 482 483 /* Retrieve the endianness specification from the regmap config */ 484 endian = config->val_format_endian; 485 486 /* If the regmap config specified a non-default value, use that */ 487 if (endian != REGMAP_ENDIAN_DEFAULT) 488 return endian; 489 490 /* If the dev and dev->of_node exist try to get endianness from DT */ 491 if (dev && dev->of_node) { 492 np = dev->of_node; 493 494 /* Parse the device's DT node for an endianness specification */ 495 if (of_property_read_bool(np, "big-endian")) 496 endian = REGMAP_ENDIAN_BIG; 497 else if (of_property_read_bool(np, "little-endian")) 498 endian = REGMAP_ENDIAN_LITTLE; 499 500 /* If the endianness was specified in DT, use that */ 501 if (endian != REGMAP_ENDIAN_DEFAULT) 502 return endian; 503 } 504 505 /* Retrieve the endianness specification from the bus config */ 506 if (bus && bus->val_format_endian_default) 507 endian = bus->val_format_endian_default; 508 509 /* If the bus specified a non-default value, use that */ 510 if (endian != REGMAP_ENDIAN_DEFAULT) 511 return endian; 512 513 /* Use this if no other value was found */ 514 return REGMAP_ENDIAN_BIG; 515 } 516 EXPORT_SYMBOL_GPL(regmap_get_val_endian); 517 518 /** 519 * regmap_init(): Initialise register map 520 * 521 * @dev: Device that will be interacted with 522 * @bus: Bus-specific callbacks to use with device 523 * @bus_context: Data passed to bus-specific callbacks 524 * @config: Configuration for register map 525 * 526 * The return value will be an ERR_PTR() on error or a valid pointer to 527 * a struct regmap. This function should generally not be called 528 * directly, it should be called by bus-specific init functions. 529 */ 530 struct regmap *regmap_init(struct device *dev, 531 const struct regmap_bus *bus, 532 void *bus_context, 533 const struct regmap_config *config) 534 { 535 struct regmap *map; 536 int ret = -EINVAL; 537 enum regmap_endian reg_endian, val_endian; 538 int i, j; 539 540 if (!config) 541 goto err; 542 543 map = kzalloc(sizeof(*map), GFP_KERNEL); 544 if (map == NULL) { 545 ret = -ENOMEM; 546 goto err; 547 } 548 549 if (config->lock && config->unlock) { 550 map->lock = config->lock; 551 map->unlock = config->unlock; 552 map->lock_arg = config->lock_arg; 553 } else { 554 if ((bus && bus->fast_io) || 555 config->fast_io) { 556 spin_lock_init(&map->spinlock); 557 map->lock = regmap_lock_spinlock; 558 map->unlock = regmap_unlock_spinlock; 559 } else { 560 mutex_init(&map->mutex); 561 map->lock = regmap_lock_mutex; 562 map->unlock = regmap_unlock_mutex; 563 } 564 map->lock_arg = map; 565 } 566 map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8); 567 map->format.pad_bytes = config->pad_bits / 8; 568 map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8); 569 map->format.buf_size = DIV_ROUND_UP(config->reg_bits + 570 config->val_bits + config->pad_bits, 8); 571 map->reg_shift = config->pad_bits % 8; 572 if (config->reg_stride) 573 map->reg_stride = config->reg_stride; 574 else 575 map->reg_stride = 1; 576 map->use_single_rw = config->use_single_rw; 577 map->can_multi_write = config->can_multi_write; 578 map->dev = dev; 579 map->bus = bus; 580 map->bus_context = bus_context; 581 map->max_register = config->max_register; 582 map->wr_table = config->wr_table; 583 map->rd_table = config->rd_table; 584 map->volatile_table = config->volatile_table; 585 map->precious_table = config->precious_table; 586 map->writeable_reg = config->writeable_reg; 587 map->readable_reg = config->readable_reg; 588 map->volatile_reg = config->volatile_reg; 589 map->precious_reg = config->precious_reg; 590 map->cache_type = config->cache_type; 591 map->name = config->name; 592 593 spin_lock_init(&map->async_lock); 594 INIT_LIST_HEAD(&map->async_list); 595 INIT_LIST_HEAD(&map->async_free); 596 init_waitqueue_head(&map->async_waitq); 597 598 if (config->read_flag_mask || config->write_flag_mask) { 599 map->read_flag_mask = config->read_flag_mask; 600 map->write_flag_mask = config->write_flag_mask; 601 } else if (bus) { 602 map->read_flag_mask = bus->read_flag_mask; 603 } 604 605 if (!bus) { 606 map->reg_read = config->reg_read; 607 map->reg_write = config->reg_write; 608 609 map->defer_caching = false; 610 goto skip_format_initialization; 611 } else if (!bus->read || !bus->write) { 612 map->reg_read = _regmap_bus_reg_read; 613 map->reg_write = _regmap_bus_reg_write; 614 615 map->defer_caching = false; 616 goto skip_format_initialization; 617 } else { 618 map->reg_read = _regmap_bus_read; 619 } 620 621 reg_endian = regmap_get_reg_endian(bus, config); 622 val_endian = regmap_get_val_endian(dev, bus, config); 623 624 switch (config->reg_bits + map->reg_shift) { 625 case 2: 626 switch (config->val_bits) { 627 case 6: 628 map->format.format_write = regmap_format_2_6_write; 629 break; 630 default: 631 goto err_map; 632 } 633 break; 634 635 case 4: 636 switch (config->val_bits) { 637 case 12: 638 map->format.format_write = regmap_format_4_12_write; 639 break; 640 default: 641 goto err_map; 642 } 643 break; 644 645 case 7: 646 switch (config->val_bits) { 647 case 9: 648 map->format.format_write = regmap_format_7_9_write; 649 break; 650 default: 651 goto err_map; 652 } 653 break; 654 655 case 10: 656 switch (config->val_bits) { 657 case 14: 658 map->format.format_write = regmap_format_10_14_write; 659 break; 660 default: 661 goto err_map; 662 } 663 break; 664 665 case 8: 666 map->format.format_reg = regmap_format_8; 667 break; 668 669 case 16: 670 switch (reg_endian) { 671 case REGMAP_ENDIAN_BIG: 672 map->format.format_reg = regmap_format_16_be; 673 break; 674 case REGMAP_ENDIAN_NATIVE: 675 map->format.format_reg = regmap_format_16_native; 676 break; 677 default: 678 goto err_map; 679 } 680 break; 681 682 case 24: 683 if (reg_endian != REGMAP_ENDIAN_BIG) 684 goto err_map; 685 map->format.format_reg = regmap_format_24; 686 break; 687 688 case 32: 689 switch (reg_endian) { 690 case REGMAP_ENDIAN_BIG: 691 map->format.format_reg = regmap_format_32_be; 692 break; 693 case REGMAP_ENDIAN_NATIVE: 694 map->format.format_reg = regmap_format_32_native; 695 break; 696 default: 697 goto err_map; 698 } 699 break; 700 701 default: 702 goto err_map; 703 } 704 705 if (val_endian == REGMAP_ENDIAN_NATIVE) 706 map->format.parse_inplace = regmap_parse_inplace_noop; 707 708 switch (config->val_bits) { 709 case 8: 710 map->format.format_val = regmap_format_8; 711 map->format.parse_val = regmap_parse_8; 712 map->format.parse_inplace = regmap_parse_inplace_noop; 713 break; 714 case 16: 715 switch (val_endian) { 716 case REGMAP_ENDIAN_BIG: 717 map->format.format_val = regmap_format_16_be; 718 map->format.parse_val = regmap_parse_16_be; 719 map->format.parse_inplace = regmap_parse_16_be_inplace; 720 break; 721 case REGMAP_ENDIAN_LITTLE: 722 map->format.format_val = regmap_format_16_le; 723 map->format.parse_val = regmap_parse_16_le; 724 map->format.parse_inplace = regmap_parse_16_le_inplace; 725 break; 726 case REGMAP_ENDIAN_NATIVE: 727 map->format.format_val = regmap_format_16_native; 728 map->format.parse_val = regmap_parse_16_native; 729 break; 730 default: 731 goto err_map; 732 } 733 break; 734 case 24: 735 if (val_endian != REGMAP_ENDIAN_BIG) 736 goto err_map; 737 map->format.format_val = regmap_format_24; 738 map->format.parse_val = regmap_parse_24; 739 break; 740 case 32: 741 switch (val_endian) { 742 case REGMAP_ENDIAN_BIG: 743 map->format.format_val = regmap_format_32_be; 744 map->format.parse_val = regmap_parse_32_be; 745 map->format.parse_inplace = regmap_parse_32_be_inplace; 746 break; 747 case REGMAP_ENDIAN_LITTLE: 748 map->format.format_val = regmap_format_32_le; 749 map->format.parse_val = regmap_parse_32_le; 750 map->format.parse_inplace = regmap_parse_32_le_inplace; 751 break; 752 case REGMAP_ENDIAN_NATIVE: 753 map->format.format_val = regmap_format_32_native; 754 map->format.parse_val = regmap_parse_32_native; 755 break; 756 default: 757 goto err_map; 758 } 759 break; 760 } 761 762 if (map->format.format_write) { 763 if ((reg_endian != REGMAP_ENDIAN_BIG) || 764 (val_endian != REGMAP_ENDIAN_BIG)) 765 goto err_map; 766 map->use_single_rw = true; 767 } 768 769 if (!map->format.format_write && 770 !(map->format.format_reg && map->format.format_val)) 771 goto err_map; 772 773 map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL); 774 if (map->work_buf == NULL) { 775 ret = -ENOMEM; 776 goto err_map; 777 } 778 779 if (map->format.format_write) { 780 map->defer_caching = false; 781 map->reg_write = _regmap_bus_formatted_write; 782 } else if (map->format.format_val) { 783 map->defer_caching = true; 784 map->reg_write = _regmap_bus_raw_write; 785 } 786 787 skip_format_initialization: 788 789 map->range_tree = RB_ROOT; 790 for (i = 0; i < config->num_ranges; i++) { 791 const struct regmap_range_cfg *range_cfg = &config->ranges[i]; 792 struct regmap_range_node *new; 793 794 /* Sanity check */ 795 if (range_cfg->range_max < range_cfg->range_min) { 796 dev_err(map->dev, "Invalid range %d: %d < %d\n", i, 797 range_cfg->range_max, range_cfg->range_min); 798 goto err_range; 799 } 800 801 if (range_cfg->range_max > map->max_register) { 802 dev_err(map->dev, "Invalid range %d: %d > %d\n", i, 803 range_cfg->range_max, map->max_register); 804 goto err_range; 805 } 806 807 if (range_cfg->selector_reg > map->max_register) { 808 dev_err(map->dev, 809 "Invalid range %d: selector out of map\n", i); 810 goto err_range; 811 } 812 813 if (range_cfg->window_len == 0) { 814 dev_err(map->dev, "Invalid range %d: window_len 0\n", 815 i); 816 goto err_range; 817 } 818 819 /* Make sure, that this register range has no selector 820 or data window within its boundary */ 821 for (j = 0; j < config->num_ranges; j++) { 822 unsigned sel_reg = config->ranges[j].selector_reg; 823 unsigned win_min = config->ranges[j].window_start; 824 unsigned win_max = win_min + 825 config->ranges[j].window_len - 1; 826 827 /* Allow data window inside its own virtual range */ 828 if (j == i) 829 continue; 830 831 if (range_cfg->range_min <= sel_reg && 832 sel_reg <= range_cfg->range_max) { 833 dev_err(map->dev, 834 "Range %d: selector for %d in window\n", 835 i, j); 836 goto err_range; 837 } 838 839 if (!(win_max < range_cfg->range_min || 840 win_min > range_cfg->range_max)) { 841 dev_err(map->dev, 842 "Range %d: window for %d in window\n", 843 i, j); 844 goto err_range; 845 } 846 } 847 848 new = kzalloc(sizeof(*new), GFP_KERNEL); 849 if (new == NULL) { 850 ret = -ENOMEM; 851 goto err_range; 852 } 853 854 new->map = map; 855 new->name = range_cfg->name; 856 new->range_min = range_cfg->range_min; 857 new->range_max = range_cfg->range_max; 858 new->selector_reg = range_cfg->selector_reg; 859 new->selector_mask = range_cfg->selector_mask; 860 new->selector_shift = range_cfg->selector_shift; 861 new->window_start = range_cfg->window_start; 862 new->window_len = range_cfg->window_len; 863 864 if (!_regmap_range_add(map, new)) { 865 dev_err(map->dev, "Failed to add range %d\n", i); 866 kfree(new); 867 goto err_range; 868 } 869 870 if (map->selector_work_buf == NULL) { 871 map->selector_work_buf = 872 kzalloc(map->format.buf_size, GFP_KERNEL); 873 if (map->selector_work_buf == NULL) { 874 ret = -ENOMEM; 875 goto err_range; 876 } 877 } 878 } 879 880 ret = regcache_init(map, config); 881 if (ret != 0) 882 goto err_range; 883 884 if (dev) { 885 ret = regmap_attach_dev(dev, map, config); 886 if (ret != 0) 887 goto err_regcache; 888 } 889 890 return map; 891 892 err_regcache: 893 regcache_exit(map); 894 err_range: 895 regmap_range_exit(map); 896 kfree(map->work_buf); 897 err_map: 898 kfree(map); 899 err: 900 return ERR_PTR(ret); 901 } 902 EXPORT_SYMBOL_GPL(regmap_init); 903 904 static void devm_regmap_release(struct device *dev, void *res) 905 { 906 regmap_exit(*(struct regmap **)res); 907 } 908 909 /** 910 * devm_regmap_init(): Initialise managed register map 911 * 912 * @dev: Device that will be interacted with 913 * @bus: Bus-specific callbacks to use with device 914 * @bus_context: Data passed to bus-specific callbacks 915 * @config: Configuration for register map 916 * 917 * The return value will be an ERR_PTR() on error or a valid pointer 918 * to a struct regmap. This function should generally not be called 919 * directly, it should be called by bus-specific init functions. The 920 * map will be automatically freed by the device management code. 921 */ 922 struct regmap *devm_regmap_init(struct device *dev, 923 const struct regmap_bus *bus, 924 void *bus_context, 925 const struct regmap_config *config) 926 { 927 struct regmap **ptr, *regmap; 928 929 ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL); 930 if (!ptr) 931 return ERR_PTR(-ENOMEM); 932 933 regmap = regmap_init(dev, bus, bus_context, config); 934 if (!IS_ERR(regmap)) { 935 *ptr = regmap; 936 devres_add(dev, ptr); 937 } else { 938 devres_free(ptr); 939 } 940 941 return regmap; 942 } 943 EXPORT_SYMBOL_GPL(devm_regmap_init); 944 945 static void regmap_field_init(struct regmap_field *rm_field, 946 struct regmap *regmap, struct reg_field reg_field) 947 { 948 int field_bits = reg_field.msb - reg_field.lsb + 1; 949 rm_field->regmap = regmap; 950 rm_field->reg = reg_field.reg; 951 rm_field->shift = reg_field.lsb; 952 rm_field->mask = ((BIT(field_bits) - 1) << reg_field.lsb); 953 rm_field->id_size = reg_field.id_size; 954 rm_field->id_offset = reg_field.id_offset; 955 } 956 957 /** 958 * devm_regmap_field_alloc(): Allocate and initialise a register field 959 * in a register map. 960 * 961 * @dev: Device that will be interacted with 962 * @regmap: regmap bank in which this register field is located. 963 * @reg_field: Register field with in the bank. 964 * 965 * The return value will be an ERR_PTR() on error or a valid pointer 966 * to a struct regmap_field. The regmap_field will be automatically freed 967 * by the device management code. 968 */ 969 struct regmap_field *devm_regmap_field_alloc(struct device *dev, 970 struct regmap *regmap, struct reg_field reg_field) 971 { 972 struct regmap_field *rm_field = devm_kzalloc(dev, 973 sizeof(*rm_field), GFP_KERNEL); 974 if (!rm_field) 975 return ERR_PTR(-ENOMEM); 976 977 regmap_field_init(rm_field, regmap, reg_field); 978 979 return rm_field; 980 981 } 982 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc); 983 984 /** 985 * devm_regmap_field_free(): Free register field allocated using 986 * devm_regmap_field_alloc. Usally drivers need not call this function, 987 * as the memory allocated via devm will be freed as per device-driver 988 * life-cyle. 989 * 990 * @dev: Device that will be interacted with 991 * @field: regmap field which should be freed. 992 */ 993 void devm_regmap_field_free(struct device *dev, 994 struct regmap_field *field) 995 { 996 devm_kfree(dev, field); 997 } 998 EXPORT_SYMBOL_GPL(devm_regmap_field_free); 999 1000 /** 1001 * regmap_field_alloc(): Allocate and initialise a register field 1002 * in a register map. 1003 * 1004 * @regmap: regmap bank in which this register field is located. 1005 * @reg_field: Register field with in the bank. 1006 * 1007 * The return value will be an ERR_PTR() on error or a valid pointer 1008 * to a struct regmap_field. The regmap_field should be freed by the 1009 * user once its finished working with it using regmap_field_free(). 1010 */ 1011 struct regmap_field *regmap_field_alloc(struct regmap *regmap, 1012 struct reg_field reg_field) 1013 { 1014 struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL); 1015 1016 if (!rm_field) 1017 return ERR_PTR(-ENOMEM); 1018 1019 regmap_field_init(rm_field, regmap, reg_field); 1020 1021 return rm_field; 1022 } 1023 EXPORT_SYMBOL_GPL(regmap_field_alloc); 1024 1025 /** 1026 * regmap_field_free(): Free register field allocated using regmap_field_alloc 1027 * 1028 * @field: regmap field which should be freed. 1029 */ 1030 void regmap_field_free(struct regmap_field *field) 1031 { 1032 kfree(field); 1033 } 1034 EXPORT_SYMBOL_GPL(regmap_field_free); 1035 1036 /** 1037 * regmap_reinit_cache(): Reinitialise the current register cache 1038 * 1039 * @map: Register map to operate on. 1040 * @config: New configuration. Only the cache data will be used. 1041 * 1042 * Discard any existing register cache for the map and initialize a 1043 * new cache. This can be used to restore the cache to defaults or to 1044 * update the cache configuration to reflect runtime discovery of the 1045 * hardware. 1046 * 1047 * No explicit locking is done here, the user needs to ensure that 1048 * this function will not race with other calls to regmap. 1049 */ 1050 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config) 1051 { 1052 regcache_exit(map); 1053 regmap_debugfs_exit(map); 1054 1055 map->max_register = config->max_register; 1056 map->writeable_reg = config->writeable_reg; 1057 map->readable_reg = config->readable_reg; 1058 map->volatile_reg = config->volatile_reg; 1059 map->precious_reg = config->precious_reg; 1060 map->cache_type = config->cache_type; 1061 1062 regmap_debugfs_init(map, config->name); 1063 1064 map->cache_bypass = false; 1065 map->cache_only = false; 1066 1067 return regcache_init(map, config); 1068 } 1069 EXPORT_SYMBOL_GPL(regmap_reinit_cache); 1070 1071 /** 1072 * regmap_exit(): Free a previously allocated register map 1073 */ 1074 void regmap_exit(struct regmap *map) 1075 { 1076 struct regmap_async *async; 1077 1078 regcache_exit(map); 1079 regmap_debugfs_exit(map); 1080 regmap_range_exit(map); 1081 if (map->bus && map->bus->free_context) 1082 map->bus->free_context(map->bus_context); 1083 kfree(map->work_buf); 1084 while (!list_empty(&map->async_free)) { 1085 async = list_first_entry_or_null(&map->async_free, 1086 struct regmap_async, 1087 list); 1088 list_del(&async->list); 1089 kfree(async->work_buf); 1090 kfree(async); 1091 } 1092 kfree(map); 1093 } 1094 EXPORT_SYMBOL_GPL(regmap_exit); 1095 1096 static int dev_get_regmap_match(struct device *dev, void *res, void *data) 1097 { 1098 struct regmap **r = res; 1099 if (!r || !*r) { 1100 WARN_ON(!r || !*r); 1101 return 0; 1102 } 1103 1104 /* If the user didn't specify a name match any */ 1105 if (data) 1106 return (*r)->name == data; 1107 else 1108 return 1; 1109 } 1110 1111 /** 1112 * dev_get_regmap(): Obtain the regmap (if any) for a device 1113 * 1114 * @dev: Device to retrieve the map for 1115 * @name: Optional name for the register map, usually NULL. 1116 * 1117 * Returns the regmap for the device if one is present, or NULL. If 1118 * name is specified then it must match the name specified when 1119 * registering the device, if it is NULL then the first regmap found 1120 * will be used. Devices with multiple register maps are very rare, 1121 * generic code should normally not need to specify a name. 1122 */ 1123 struct regmap *dev_get_regmap(struct device *dev, const char *name) 1124 { 1125 struct regmap **r = devres_find(dev, dev_get_regmap_release, 1126 dev_get_regmap_match, (void *)name); 1127 1128 if (!r) 1129 return NULL; 1130 return *r; 1131 } 1132 EXPORT_SYMBOL_GPL(dev_get_regmap); 1133 1134 /** 1135 * regmap_get_device(): Obtain the device from a regmap 1136 * 1137 * @map: Register map to operate on. 1138 * 1139 * Returns the underlying device that the regmap has been created for. 1140 */ 1141 struct device *regmap_get_device(struct regmap *map) 1142 { 1143 return map->dev; 1144 } 1145 EXPORT_SYMBOL_GPL(regmap_get_device); 1146 1147 static int _regmap_select_page(struct regmap *map, unsigned int *reg, 1148 struct regmap_range_node *range, 1149 unsigned int val_num) 1150 { 1151 void *orig_work_buf; 1152 unsigned int win_offset; 1153 unsigned int win_page; 1154 bool page_chg; 1155 int ret; 1156 1157 win_offset = (*reg - range->range_min) % range->window_len; 1158 win_page = (*reg - range->range_min) / range->window_len; 1159 1160 if (val_num > 1) { 1161 /* Bulk write shouldn't cross range boundary */ 1162 if (*reg + val_num - 1 > range->range_max) 1163 return -EINVAL; 1164 1165 /* ... or single page boundary */ 1166 if (val_num > range->window_len - win_offset) 1167 return -EINVAL; 1168 } 1169 1170 /* It is possible to have selector register inside data window. 1171 In that case, selector register is located on every page and 1172 it needs no page switching, when accessed alone. */ 1173 if (val_num > 1 || 1174 range->window_start + win_offset != range->selector_reg) { 1175 /* Use separate work_buf during page switching */ 1176 orig_work_buf = map->work_buf; 1177 map->work_buf = map->selector_work_buf; 1178 1179 ret = _regmap_update_bits(map, range->selector_reg, 1180 range->selector_mask, 1181 win_page << range->selector_shift, 1182 &page_chg); 1183 1184 map->work_buf = orig_work_buf; 1185 1186 if (ret != 0) 1187 return ret; 1188 } 1189 1190 *reg = range->window_start + win_offset; 1191 1192 return 0; 1193 } 1194 1195 int _regmap_raw_write(struct regmap *map, unsigned int reg, 1196 const void *val, size_t val_len) 1197 { 1198 struct regmap_range_node *range; 1199 unsigned long flags; 1200 u8 *u8 = map->work_buf; 1201 void *work_val = map->work_buf + map->format.reg_bytes + 1202 map->format.pad_bytes; 1203 void *buf; 1204 int ret = -ENOTSUPP; 1205 size_t len; 1206 int i; 1207 1208 WARN_ON(!map->bus); 1209 1210 /* Check for unwritable registers before we start */ 1211 if (map->writeable_reg) 1212 for (i = 0; i < val_len / map->format.val_bytes; i++) 1213 if (!map->writeable_reg(map->dev, 1214 reg + (i * map->reg_stride))) 1215 return -EINVAL; 1216 1217 if (!map->cache_bypass && map->format.parse_val) { 1218 unsigned int ival; 1219 int val_bytes = map->format.val_bytes; 1220 for (i = 0; i < val_len / val_bytes; i++) { 1221 ival = map->format.parse_val(val + (i * val_bytes)); 1222 ret = regcache_write(map, reg + (i * map->reg_stride), 1223 ival); 1224 if (ret) { 1225 dev_err(map->dev, 1226 "Error in caching of register: %x ret: %d\n", 1227 reg + i, ret); 1228 return ret; 1229 } 1230 } 1231 if (map->cache_only) { 1232 map->cache_dirty = true; 1233 return 0; 1234 } 1235 } 1236 1237 range = _regmap_range_lookup(map, reg); 1238 if (range) { 1239 int val_num = val_len / map->format.val_bytes; 1240 int win_offset = (reg - range->range_min) % range->window_len; 1241 int win_residue = range->window_len - win_offset; 1242 1243 /* If the write goes beyond the end of the window split it */ 1244 while (val_num > win_residue) { 1245 dev_dbg(map->dev, "Writing window %d/%zu\n", 1246 win_residue, val_len / map->format.val_bytes); 1247 ret = _regmap_raw_write(map, reg, val, win_residue * 1248 map->format.val_bytes); 1249 if (ret != 0) 1250 return ret; 1251 1252 reg += win_residue; 1253 val_num -= win_residue; 1254 val += win_residue * map->format.val_bytes; 1255 val_len -= win_residue * map->format.val_bytes; 1256 1257 win_offset = (reg - range->range_min) % 1258 range->window_len; 1259 win_residue = range->window_len - win_offset; 1260 } 1261 1262 ret = _regmap_select_page(map, ®, range, val_num); 1263 if (ret != 0) 1264 return ret; 1265 } 1266 1267 map->format.format_reg(map->work_buf, reg, map->reg_shift); 1268 1269 u8[0] |= map->write_flag_mask; 1270 1271 /* 1272 * Essentially all I/O mechanisms will be faster with a single 1273 * buffer to write. Since register syncs often generate raw 1274 * writes of single registers optimise that case. 1275 */ 1276 if (val != work_val && val_len == map->format.val_bytes) { 1277 memcpy(work_val, val, map->format.val_bytes); 1278 val = work_val; 1279 } 1280 1281 if (map->async && map->bus->async_write) { 1282 struct regmap_async *async; 1283 1284 trace_regmap_async_write_start(map, reg, val_len); 1285 1286 spin_lock_irqsave(&map->async_lock, flags); 1287 async = list_first_entry_or_null(&map->async_free, 1288 struct regmap_async, 1289 list); 1290 if (async) 1291 list_del(&async->list); 1292 spin_unlock_irqrestore(&map->async_lock, flags); 1293 1294 if (!async) { 1295 async = map->bus->async_alloc(); 1296 if (!async) 1297 return -ENOMEM; 1298 1299 async->work_buf = kzalloc(map->format.buf_size, 1300 GFP_KERNEL | GFP_DMA); 1301 if (!async->work_buf) { 1302 kfree(async); 1303 return -ENOMEM; 1304 } 1305 } 1306 1307 async->map = map; 1308 1309 /* If the caller supplied the value we can use it safely. */ 1310 memcpy(async->work_buf, map->work_buf, map->format.pad_bytes + 1311 map->format.reg_bytes + map->format.val_bytes); 1312 1313 spin_lock_irqsave(&map->async_lock, flags); 1314 list_add_tail(&async->list, &map->async_list); 1315 spin_unlock_irqrestore(&map->async_lock, flags); 1316 1317 if (val != work_val) 1318 ret = map->bus->async_write(map->bus_context, 1319 async->work_buf, 1320 map->format.reg_bytes + 1321 map->format.pad_bytes, 1322 val, val_len, async); 1323 else 1324 ret = map->bus->async_write(map->bus_context, 1325 async->work_buf, 1326 map->format.reg_bytes + 1327 map->format.pad_bytes + 1328 val_len, NULL, 0, async); 1329 1330 if (ret != 0) { 1331 dev_err(map->dev, "Failed to schedule write: %d\n", 1332 ret); 1333 1334 spin_lock_irqsave(&map->async_lock, flags); 1335 list_move(&async->list, &map->async_free); 1336 spin_unlock_irqrestore(&map->async_lock, flags); 1337 } 1338 1339 return ret; 1340 } 1341 1342 trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes); 1343 1344 /* If we're doing a single register write we can probably just 1345 * send the work_buf directly, otherwise try to do a gather 1346 * write. 1347 */ 1348 if (val == work_val) 1349 ret = map->bus->write(map->bus_context, map->work_buf, 1350 map->format.reg_bytes + 1351 map->format.pad_bytes + 1352 val_len); 1353 else if (map->bus->gather_write) 1354 ret = map->bus->gather_write(map->bus_context, map->work_buf, 1355 map->format.reg_bytes + 1356 map->format.pad_bytes, 1357 val, val_len); 1358 1359 /* If that didn't work fall back on linearising by hand. */ 1360 if (ret == -ENOTSUPP) { 1361 len = map->format.reg_bytes + map->format.pad_bytes + val_len; 1362 buf = kzalloc(len, GFP_KERNEL); 1363 if (!buf) 1364 return -ENOMEM; 1365 1366 memcpy(buf, map->work_buf, map->format.reg_bytes); 1367 memcpy(buf + map->format.reg_bytes + map->format.pad_bytes, 1368 val, val_len); 1369 ret = map->bus->write(map->bus_context, buf, len); 1370 1371 kfree(buf); 1372 } 1373 1374 trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes); 1375 1376 return ret; 1377 } 1378 1379 /** 1380 * regmap_can_raw_write - Test if regmap_raw_write() is supported 1381 * 1382 * @map: Map to check. 1383 */ 1384 bool regmap_can_raw_write(struct regmap *map) 1385 { 1386 return map->bus && map->format.format_val && map->format.format_reg; 1387 } 1388 EXPORT_SYMBOL_GPL(regmap_can_raw_write); 1389 1390 static int _regmap_bus_formatted_write(void *context, unsigned int reg, 1391 unsigned int val) 1392 { 1393 int ret; 1394 struct regmap_range_node *range; 1395 struct regmap *map = context; 1396 1397 WARN_ON(!map->bus || !map->format.format_write); 1398 1399 range = _regmap_range_lookup(map, reg); 1400 if (range) { 1401 ret = _regmap_select_page(map, ®, range, 1); 1402 if (ret != 0) 1403 return ret; 1404 } 1405 1406 map->format.format_write(map, reg, val); 1407 1408 trace_regmap_hw_write_start(map, reg, 1); 1409 1410 ret = map->bus->write(map->bus_context, map->work_buf, 1411 map->format.buf_size); 1412 1413 trace_regmap_hw_write_done(map, reg, 1); 1414 1415 return ret; 1416 } 1417 1418 static int _regmap_bus_reg_write(void *context, unsigned int reg, 1419 unsigned int val) 1420 { 1421 struct regmap *map = context; 1422 1423 return map->bus->reg_write(map->bus_context, reg, val); 1424 } 1425 1426 static int _regmap_bus_raw_write(void *context, unsigned int reg, 1427 unsigned int val) 1428 { 1429 struct regmap *map = context; 1430 1431 WARN_ON(!map->bus || !map->format.format_val); 1432 1433 map->format.format_val(map->work_buf + map->format.reg_bytes 1434 + map->format.pad_bytes, val, 0); 1435 return _regmap_raw_write(map, reg, 1436 map->work_buf + 1437 map->format.reg_bytes + 1438 map->format.pad_bytes, 1439 map->format.val_bytes); 1440 } 1441 1442 static inline void *_regmap_map_get_context(struct regmap *map) 1443 { 1444 return (map->bus) ? map : map->bus_context; 1445 } 1446 1447 int _regmap_write(struct regmap *map, unsigned int reg, 1448 unsigned int val) 1449 { 1450 int ret; 1451 void *context = _regmap_map_get_context(map); 1452 1453 if (!regmap_writeable(map, reg)) 1454 return -EIO; 1455 1456 if (!map->cache_bypass && !map->defer_caching) { 1457 ret = regcache_write(map, reg, val); 1458 if (ret != 0) 1459 return ret; 1460 if (map->cache_only) { 1461 map->cache_dirty = true; 1462 return 0; 1463 } 1464 } 1465 1466 #ifdef LOG_DEVICE 1467 if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0) 1468 dev_info(map->dev, "%x <= %x\n", reg, val); 1469 #endif 1470 1471 trace_regmap_reg_write(map, reg, val); 1472 1473 return map->reg_write(context, reg, val); 1474 } 1475 1476 /** 1477 * regmap_write(): Write a value to a single register 1478 * 1479 * @map: Register map to write to 1480 * @reg: Register to write to 1481 * @val: Value to be written 1482 * 1483 * A value of zero will be returned on success, a negative errno will 1484 * be returned in error cases. 1485 */ 1486 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val) 1487 { 1488 int ret; 1489 1490 if (reg % map->reg_stride) 1491 return -EINVAL; 1492 1493 map->lock(map->lock_arg); 1494 1495 ret = _regmap_write(map, reg, val); 1496 1497 map->unlock(map->lock_arg); 1498 1499 return ret; 1500 } 1501 EXPORT_SYMBOL_GPL(regmap_write); 1502 1503 /** 1504 * regmap_write_async(): Write a value to a single register asynchronously 1505 * 1506 * @map: Register map to write to 1507 * @reg: Register to write to 1508 * @val: Value to be written 1509 * 1510 * A value of zero will be returned on success, a negative errno will 1511 * be returned in error cases. 1512 */ 1513 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val) 1514 { 1515 int ret; 1516 1517 if (reg % map->reg_stride) 1518 return -EINVAL; 1519 1520 map->lock(map->lock_arg); 1521 1522 map->async = true; 1523 1524 ret = _regmap_write(map, reg, val); 1525 1526 map->async = false; 1527 1528 map->unlock(map->lock_arg); 1529 1530 return ret; 1531 } 1532 EXPORT_SYMBOL_GPL(regmap_write_async); 1533 1534 /** 1535 * regmap_raw_write(): Write raw values to one or more registers 1536 * 1537 * @map: Register map to write to 1538 * @reg: Initial register to write to 1539 * @val: Block of data to be written, laid out for direct transmission to the 1540 * device 1541 * @val_len: Length of data pointed to by val. 1542 * 1543 * This function is intended to be used for things like firmware 1544 * download where a large block of data needs to be transferred to the 1545 * device. No formatting will be done on the data provided. 1546 * 1547 * A value of zero will be returned on success, a negative errno will 1548 * be returned in error cases. 1549 */ 1550 int regmap_raw_write(struct regmap *map, unsigned int reg, 1551 const void *val, size_t val_len) 1552 { 1553 int ret; 1554 1555 if (!regmap_can_raw_write(map)) 1556 return -EINVAL; 1557 if (val_len % map->format.val_bytes) 1558 return -EINVAL; 1559 1560 map->lock(map->lock_arg); 1561 1562 ret = _regmap_raw_write(map, reg, val, val_len); 1563 1564 map->unlock(map->lock_arg); 1565 1566 return ret; 1567 } 1568 EXPORT_SYMBOL_GPL(regmap_raw_write); 1569 1570 /** 1571 * regmap_field_write(): Write a value to a single register field 1572 * 1573 * @field: Register field to write to 1574 * @val: Value to be written 1575 * 1576 * A value of zero will be returned on success, a negative errno will 1577 * be returned in error cases. 1578 */ 1579 int regmap_field_write(struct regmap_field *field, unsigned int val) 1580 { 1581 return regmap_update_bits(field->regmap, field->reg, 1582 field->mask, val << field->shift); 1583 } 1584 EXPORT_SYMBOL_GPL(regmap_field_write); 1585 1586 /** 1587 * regmap_field_update_bits(): Perform a read/modify/write cycle 1588 * on the register field 1589 * 1590 * @field: Register field to write to 1591 * @mask: Bitmask to change 1592 * @val: Value to be written 1593 * 1594 * A value of zero will be returned on success, a negative errno will 1595 * be returned in error cases. 1596 */ 1597 int regmap_field_update_bits(struct regmap_field *field, unsigned int mask, unsigned int val) 1598 { 1599 mask = (mask << field->shift) & field->mask; 1600 1601 return regmap_update_bits(field->regmap, field->reg, 1602 mask, val << field->shift); 1603 } 1604 EXPORT_SYMBOL_GPL(regmap_field_update_bits); 1605 1606 /** 1607 * regmap_fields_write(): Write a value to a single register field with port ID 1608 * 1609 * @field: Register field to write to 1610 * @id: port ID 1611 * @val: Value to be written 1612 * 1613 * A value of zero will be returned on success, a negative errno will 1614 * be returned in error cases. 1615 */ 1616 int regmap_fields_write(struct regmap_field *field, unsigned int id, 1617 unsigned int val) 1618 { 1619 if (id >= field->id_size) 1620 return -EINVAL; 1621 1622 return regmap_update_bits(field->regmap, 1623 field->reg + (field->id_offset * id), 1624 field->mask, val << field->shift); 1625 } 1626 EXPORT_SYMBOL_GPL(regmap_fields_write); 1627 1628 /** 1629 * regmap_fields_update_bits(): Perform a read/modify/write cycle 1630 * on the register field 1631 * 1632 * @field: Register field to write to 1633 * @id: port ID 1634 * @mask: Bitmask to change 1635 * @val: Value to be written 1636 * 1637 * A value of zero will be returned on success, a negative errno will 1638 * be returned in error cases. 1639 */ 1640 int regmap_fields_update_bits(struct regmap_field *field, unsigned int id, 1641 unsigned int mask, unsigned int val) 1642 { 1643 if (id >= field->id_size) 1644 return -EINVAL; 1645 1646 mask = (mask << field->shift) & field->mask; 1647 1648 return regmap_update_bits(field->regmap, 1649 field->reg + (field->id_offset * id), 1650 mask, val << field->shift); 1651 } 1652 EXPORT_SYMBOL_GPL(regmap_fields_update_bits); 1653 1654 /* 1655 * regmap_bulk_write(): Write multiple registers to the device 1656 * 1657 * @map: Register map to write to 1658 * @reg: First register to be write from 1659 * @val: Block of data to be written, in native register size for device 1660 * @val_count: Number of registers to write 1661 * 1662 * This function is intended to be used for writing a large block of 1663 * data to the device either in single transfer or multiple transfer. 1664 * 1665 * A value of zero will be returned on success, a negative errno will 1666 * be returned in error cases. 1667 */ 1668 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val, 1669 size_t val_count) 1670 { 1671 int ret = 0, i; 1672 size_t val_bytes = map->format.val_bytes; 1673 1674 if (map->bus && !map->format.parse_inplace) 1675 return -EINVAL; 1676 if (reg % map->reg_stride) 1677 return -EINVAL; 1678 1679 /* 1680 * Some devices don't support bulk write, for 1681 * them we have a series of single write operations. 1682 */ 1683 if (!map->bus || map->use_single_rw) { 1684 map->lock(map->lock_arg); 1685 for (i = 0; i < val_count; i++) { 1686 unsigned int ival; 1687 1688 switch (val_bytes) { 1689 case 1: 1690 ival = *(u8 *)(val + (i * val_bytes)); 1691 break; 1692 case 2: 1693 ival = *(u16 *)(val + (i * val_bytes)); 1694 break; 1695 case 4: 1696 ival = *(u32 *)(val + (i * val_bytes)); 1697 break; 1698 #ifdef CONFIG_64BIT 1699 case 8: 1700 ival = *(u64 *)(val + (i * val_bytes)); 1701 break; 1702 #endif 1703 default: 1704 ret = -EINVAL; 1705 goto out; 1706 } 1707 1708 ret = _regmap_write(map, reg + (i * map->reg_stride), 1709 ival); 1710 if (ret != 0) 1711 goto out; 1712 } 1713 out: 1714 map->unlock(map->lock_arg); 1715 } else { 1716 void *wval; 1717 1718 if (!val_count) 1719 return -EINVAL; 1720 1721 wval = kmemdup(val, val_count * val_bytes, GFP_KERNEL); 1722 if (!wval) { 1723 dev_err(map->dev, "Error in memory allocation\n"); 1724 return -ENOMEM; 1725 } 1726 for (i = 0; i < val_count * val_bytes; i += val_bytes) 1727 map->format.parse_inplace(wval + i); 1728 1729 map->lock(map->lock_arg); 1730 ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count); 1731 map->unlock(map->lock_arg); 1732 1733 kfree(wval); 1734 } 1735 return ret; 1736 } 1737 EXPORT_SYMBOL_GPL(regmap_bulk_write); 1738 1739 /* 1740 * _regmap_raw_multi_reg_write() 1741 * 1742 * the (register,newvalue) pairs in regs have not been formatted, but 1743 * they are all in the same page and have been changed to being page 1744 * relative. The page register has been written if that was neccessary. 1745 */ 1746 static int _regmap_raw_multi_reg_write(struct regmap *map, 1747 const struct reg_default *regs, 1748 size_t num_regs) 1749 { 1750 int ret; 1751 void *buf; 1752 int i; 1753 u8 *u8; 1754 size_t val_bytes = map->format.val_bytes; 1755 size_t reg_bytes = map->format.reg_bytes; 1756 size_t pad_bytes = map->format.pad_bytes; 1757 size_t pair_size = reg_bytes + pad_bytes + val_bytes; 1758 size_t len = pair_size * num_regs; 1759 1760 if (!len) 1761 return -EINVAL; 1762 1763 buf = kzalloc(len, GFP_KERNEL); 1764 if (!buf) 1765 return -ENOMEM; 1766 1767 /* We have to linearise by hand. */ 1768 1769 u8 = buf; 1770 1771 for (i = 0; i < num_regs; i++) { 1772 int reg = regs[i].reg; 1773 int val = regs[i].def; 1774 trace_regmap_hw_write_start(map, reg, 1); 1775 map->format.format_reg(u8, reg, map->reg_shift); 1776 u8 += reg_bytes + pad_bytes; 1777 map->format.format_val(u8, val, 0); 1778 u8 += val_bytes; 1779 } 1780 u8 = buf; 1781 *u8 |= map->write_flag_mask; 1782 1783 ret = map->bus->write(map->bus_context, buf, len); 1784 1785 kfree(buf); 1786 1787 for (i = 0; i < num_regs; i++) { 1788 int reg = regs[i].reg; 1789 trace_regmap_hw_write_done(map, reg, 1); 1790 } 1791 return ret; 1792 } 1793 1794 static unsigned int _regmap_register_page(struct regmap *map, 1795 unsigned int reg, 1796 struct regmap_range_node *range) 1797 { 1798 unsigned int win_page = (reg - range->range_min) / range->window_len; 1799 1800 return win_page; 1801 } 1802 1803 static int _regmap_range_multi_paged_reg_write(struct regmap *map, 1804 struct reg_default *regs, 1805 size_t num_regs) 1806 { 1807 int ret; 1808 int i, n; 1809 struct reg_default *base; 1810 unsigned int this_page = 0; 1811 /* 1812 * the set of registers are not neccessarily in order, but 1813 * since the order of write must be preserved this algorithm 1814 * chops the set each time the page changes 1815 */ 1816 base = regs; 1817 for (i = 0, n = 0; i < num_regs; i++, n++) { 1818 unsigned int reg = regs[i].reg; 1819 struct regmap_range_node *range; 1820 1821 range = _regmap_range_lookup(map, reg); 1822 if (range) { 1823 unsigned int win_page = _regmap_register_page(map, reg, 1824 range); 1825 1826 if (i == 0) 1827 this_page = win_page; 1828 if (win_page != this_page) { 1829 this_page = win_page; 1830 ret = _regmap_raw_multi_reg_write(map, base, n); 1831 if (ret != 0) 1832 return ret; 1833 base += n; 1834 n = 0; 1835 } 1836 ret = _regmap_select_page(map, &base[n].reg, range, 1); 1837 if (ret != 0) 1838 return ret; 1839 } 1840 } 1841 if (n > 0) 1842 return _regmap_raw_multi_reg_write(map, base, n); 1843 return 0; 1844 } 1845 1846 static int _regmap_multi_reg_write(struct regmap *map, 1847 const struct reg_default *regs, 1848 size_t num_regs) 1849 { 1850 int i; 1851 int ret; 1852 1853 if (!map->can_multi_write) { 1854 for (i = 0; i < num_regs; i++) { 1855 ret = _regmap_write(map, regs[i].reg, regs[i].def); 1856 if (ret != 0) 1857 return ret; 1858 } 1859 return 0; 1860 } 1861 1862 if (!map->format.parse_inplace) 1863 return -EINVAL; 1864 1865 if (map->writeable_reg) 1866 for (i = 0; i < num_regs; i++) { 1867 int reg = regs[i].reg; 1868 if (!map->writeable_reg(map->dev, reg)) 1869 return -EINVAL; 1870 if (reg % map->reg_stride) 1871 return -EINVAL; 1872 } 1873 1874 if (!map->cache_bypass) { 1875 for (i = 0; i < num_regs; i++) { 1876 unsigned int val = regs[i].def; 1877 unsigned int reg = regs[i].reg; 1878 ret = regcache_write(map, reg, val); 1879 if (ret) { 1880 dev_err(map->dev, 1881 "Error in caching of register: %x ret: %d\n", 1882 reg, ret); 1883 return ret; 1884 } 1885 } 1886 if (map->cache_only) { 1887 map->cache_dirty = true; 1888 return 0; 1889 } 1890 } 1891 1892 WARN_ON(!map->bus); 1893 1894 for (i = 0; i < num_regs; i++) { 1895 unsigned int reg = regs[i].reg; 1896 struct regmap_range_node *range; 1897 range = _regmap_range_lookup(map, reg); 1898 if (range) { 1899 size_t len = sizeof(struct reg_default)*num_regs; 1900 struct reg_default *base = kmemdup(regs, len, 1901 GFP_KERNEL); 1902 if (!base) 1903 return -ENOMEM; 1904 ret = _regmap_range_multi_paged_reg_write(map, base, 1905 num_regs); 1906 kfree(base); 1907 1908 return ret; 1909 } 1910 } 1911 return _regmap_raw_multi_reg_write(map, regs, num_regs); 1912 } 1913 1914 /* 1915 * regmap_multi_reg_write(): Write multiple registers to the device 1916 * 1917 * where the set of register,value pairs are supplied in any order, 1918 * possibly not all in a single range. 1919 * 1920 * @map: Register map to write to 1921 * @regs: Array of structures containing register,value to be written 1922 * @num_regs: Number of registers to write 1923 * 1924 * The 'normal' block write mode will send ultimately send data on the 1925 * target bus as R,V1,V2,V3,..,Vn where successively higer registers are 1926 * addressed. However, this alternative block multi write mode will send 1927 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device 1928 * must of course support the mode. 1929 * 1930 * A value of zero will be returned on success, a negative errno will be 1931 * returned in error cases. 1932 */ 1933 int regmap_multi_reg_write(struct regmap *map, const struct reg_default *regs, 1934 int num_regs) 1935 { 1936 int ret; 1937 1938 map->lock(map->lock_arg); 1939 1940 ret = _regmap_multi_reg_write(map, regs, num_regs); 1941 1942 map->unlock(map->lock_arg); 1943 1944 return ret; 1945 } 1946 EXPORT_SYMBOL_GPL(regmap_multi_reg_write); 1947 1948 /* 1949 * regmap_multi_reg_write_bypassed(): Write multiple registers to the 1950 * device but not the cache 1951 * 1952 * where the set of register are supplied in any order 1953 * 1954 * @map: Register map to write to 1955 * @regs: Array of structures containing register,value to be written 1956 * @num_regs: Number of registers to write 1957 * 1958 * This function is intended to be used for writing a large block of data 1959 * atomically to the device in single transfer for those I2C client devices 1960 * that implement this alternative block write mode. 1961 * 1962 * A value of zero will be returned on success, a negative errno will 1963 * be returned in error cases. 1964 */ 1965 int regmap_multi_reg_write_bypassed(struct regmap *map, 1966 const struct reg_default *regs, 1967 int num_regs) 1968 { 1969 int ret; 1970 bool bypass; 1971 1972 map->lock(map->lock_arg); 1973 1974 bypass = map->cache_bypass; 1975 map->cache_bypass = true; 1976 1977 ret = _regmap_multi_reg_write(map, regs, num_regs); 1978 1979 map->cache_bypass = bypass; 1980 1981 map->unlock(map->lock_arg); 1982 1983 return ret; 1984 } 1985 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed); 1986 1987 /** 1988 * regmap_raw_write_async(): Write raw values to one or more registers 1989 * asynchronously 1990 * 1991 * @map: Register map to write to 1992 * @reg: Initial register to write to 1993 * @val: Block of data to be written, laid out for direct transmission to the 1994 * device. Must be valid until regmap_async_complete() is called. 1995 * @val_len: Length of data pointed to by val. 1996 * 1997 * This function is intended to be used for things like firmware 1998 * download where a large block of data needs to be transferred to the 1999 * device. No formatting will be done on the data provided. 2000 * 2001 * If supported by the underlying bus the write will be scheduled 2002 * asynchronously, helping maximise I/O speed on higher speed buses 2003 * like SPI. regmap_async_complete() can be called to ensure that all 2004 * asynchrnous writes have been completed. 2005 * 2006 * A value of zero will be returned on success, a negative errno will 2007 * be returned in error cases. 2008 */ 2009 int regmap_raw_write_async(struct regmap *map, unsigned int reg, 2010 const void *val, size_t val_len) 2011 { 2012 int ret; 2013 2014 if (val_len % map->format.val_bytes) 2015 return -EINVAL; 2016 if (reg % map->reg_stride) 2017 return -EINVAL; 2018 2019 map->lock(map->lock_arg); 2020 2021 map->async = true; 2022 2023 ret = _regmap_raw_write(map, reg, val, val_len); 2024 2025 map->async = false; 2026 2027 map->unlock(map->lock_arg); 2028 2029 return ret; 2030 } 2031 EXPORT_SYMBOL_GPL(regmap_raw_write_async); 2032 2033 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val, 2034 unsigned int val_len) 2035 { 2036 struct regmap_range_node *range; 2037 u8 *u8 = map->work_buf; 2038 int ret; 2039 2040 WARN_ON(!map->bus); 2041 2042 range = _regmap_range_lookup(map, reg); 2043 if (range) { 2044 ret = _regmap_select_page(map, ®, range, 2045 val_len / map->format.val_bytes); 2046 if (ret != 0) 2047 return ret; 2048 } 2049 2050 map->format.format_reg(map->work_buf, reg, map->reg_shift); 2051 2052 /* 2053 * Some buses or devices flag reads by setting the high bits in the 2054 * register addresss; since it's always the high bits for all 2055 * current formats we can do this here rather than in 2056 * formatting. This may break if we get interesting formats. 2057 */ 2058 u8[0] |= map->read_flag_mask; 2059 2060 trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes); 2061 2062 ret = map->bus->read(map->bus_context, map->work_buf, 2063 map->format.reg_bytes + map->format.pad_bytes, 2064 val, val_len); 2065 2066 trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes); 2067 2068 return ret; 2069 } 2070 2071 static int _regmap_bus_reg_read(void *context, unsigned int reg, 2072 unsigned int *val) 2073 { 2074 struct regmap *map = context; 2075 2076 return map->bus->reg_read(map->bus_context, reg, val); 2077 } 2078 2079 static int _regmap_bus_read(void *context, unsigned int reg, 2080 unsigned int *val) 2081 { 2082 int ret; 2083 struct regmap *map = context; 2084 2085 if (!map->format.parse_val) 2086 return -EINVAL; 2087 2088 ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes); 2089 if (ret == 0) 2090 *val = map->format.parse_val(map->work_buf); 2091 2092 return ret; 2093 } 2094 2095 static int _regmap_read(struct regmap *map, unsigned int reg, 2096 unsigned int *val) 2097 { 2098 int ret; 2099 void *context = _regmap_map_get_context(map); 2100 2101 WARN_ON(!map->reg_read); 2102 2103 if (!map->cache_bypass) { 2104 ret = regcache_read(map, reg, val); 2105 if (ret == 0) 2106 return 0; 2107 } 2108 2109 if (map->cache_only) 2110 return -EBUSY; 2111 2112 if (!regmap_readable(map, reg)) 2113 return -EIO; 2114 2115 ret = map->reg_read(context, reg, val); 2116 if (ret == 0) { 2117 #ifdef LOG_DEVICE 2118 if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0) 2119 dev_info(map->dev, "%x => %x\n", reg, *val); 2120 #endif 2121 2122 trace_regmap_reg_read(map, reg, *val); 2123 2124 if (!map->cache_bypass) 2125 regcache_write(map, reg, *val); 2126 } 2127 2128 return ret; 2129 } 2130 2131 /** 2132 * regmap_read(): Read a value from a single register 2133 * 2134 * @map: Register map to read from 2135 * @reg: Register to be read from 2136 * @val: Pointer to store read value 2137 * 2138 * A value of zero will be returned on success, a negative errno will 2139 * be returned in error cases. 2140 */ 2141 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val) 2142 { 2143 int ret; 2144 2145 if (reg % map->reg_stride) 2146 return -EINVAL; 2147 2148 map->lock(map->lock_arg); 2149 2150 ret = _regmap_read(map, reg, val); 2151 2152 map->unlock(map->lock_arg); 2153 2154 return ret; 2155 } 2156 EXPORT_SYMBOL_GPL(regmap_read); 2157 2158 /** 2159 * regmap_raw_read(): Read raw data from the device 2160 * 2161 * @map: Register map to read from 2162 * @reg: First register to be read from 2163 * @val: Pointer to store read value 2164 * @val_len: Size of data to read 2165 * 2166 * A value of zero will be returned on success, a negative errno will 2167 * be returned in error cases. 2168 */ 2169 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val, 2170 size_t val_len) 2171 { 2172 size_t val_bytes = map->format.val_bytes; 2173 size_t val_count = val_len / val_bytes; 2174 unsigned int v; 2175 int ret, i; 2176 2177 if (!map->bus) 2178 return -EINVAL; 2179 if (val_len % map->format.val_bytes) 2180 return -EINVAL; 2181 if (reg % map->reg_stride) 2182 return -EINVAL; 2183 2184 map->lock(map->lock_arg); 2185 2186 if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass || 2187 map->cache_type == REGCACHE_NONE) { 2188 /* Physical block read if there's no cache involved */ 2189 ret = _regmap_raw_read(map, reg, val, val_len); 2190 2191 } else { 2192 /* Otherwise go word by word for the cache; should be low 2193 * cost as we expect to hit the cache. 2194 */ 2195 for (i = 0; i < val_count; i++) { 2196 ret = _regmap_read(map, reg + (i * map->reg_stride), 2197 &v); 2198 if (ret != 0) 2199 goto out; 2200 2201 map->format.format_val(val + (i * val_bytes), v, 0); 2202 } 2203 } 2204 2205 out: 2206 map->unlock(map->lock_arg); 2207 2208 return ret; 2209 } 2210 EXPORT_SYMBOL_GPL(regmap_raw_read); 2211 2212 /** 2213 * regmap_field_read(): Read a value to a single register field 2214 * 2215 * @field: Register field to read from 2216 * @val: Pointer to store read value 2217 * 2218 * A value of zero will be returned on success, a negative errno will 2219 * be returned in error cases. 2220 */ 2221 int regmap_field_read(struct regmap_field *field, unsigned int *val) 2222 { 2223 int ret; 2224 unsigned int reg_val; 2225 ret = regmap_read(field->regmap, field->reg, ®_val); 2226 if (ret != 0) 2227 return ret; 2228 2229 reg_val &= field->mask; 2230 reg_val >>= field->shift; 2231 *val = reg_val; 2232 2233 return ret; 2234 } 2235 EXPORT_SYMBOL_GPL(regmap_field_read); 2236 2237 /** 2238 * regmap_fields_read(): Read a value to a single register field with port ID 2239 * 2240 * @field: Register field to read from 2241 * @id: port ID 2242 * @val: Pointer to store read value 2243 * 2244 * A value of zero will be returned on success, a negative errno will 2245 * be returned in error cases. 2246 */ 2247 int regmap_fields_read(struct regmap_field *field, unsigned int id, 2248 unsigned int *val) 2249 { 2250 int ret; 2251 unsigned int reg_val; 2252 2253 if (id >= field->id_size) 2254 return -EINVAL; 2255 2256 ret = regmap_read(field->regmap, 2257 field->reg + (field->id_offset * id), 2258 ®_val); 2259 if (ret != 0) 2260 return ret; 2261 2262 reg_val &= field->mask; 2263 reg_val >>= field->shift; 2264 *val = reg_val; 2265 2266 return ret; 2267 } 2268 EXPORT_SYMBOL_GPL(regmap_fields_read); 2269 2270 /** 2271 * regmap_bulk_read(): Read multiple registers from the device 2272 * 2273 * @map: Register map to read from 2274 * @reg: First register to be read from 2275 * @val: Pointer to store read value, in native register size for device 2276 * @val_count: Number of registers to read 2277 * 2278 * A value of zero will be returned on success, a negative errno will 2279 * be returned in error cases. 2280 */ 2281 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val, 2282 size_t val_count) 2283 { 2284 int ret, i; 2285 size_t val_bytes = map->format.val_bytes; 2286 bool vol = regmap_volatile_range(map, reg, val_count); 2287 2288 if (reg % map->reg_stride) 2289 return -EINVAL; 2290 2291 if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) { 2292 /* 2293 * Some devices does not support bulk read, for 2294 * them we have a series of single read operations. 2295 */ 2296 if (map->use_single_rw) { 2297 for (i = 0; i < val_count; i++) { 2298 ret = regmap_raw_read(map, 2299 reg + (i * map->reg_stride), 2300 val + (i * val_bytes), 2301 val_bytes); 2302 if (ret != 0) 2303 return ret; 2304 } 2305 } else { 2306 ret = regmap_raw_read(map, reg, val, 2307 val_bytes * val_count); 2308 if (ret != 0) 2309 return ret; 2310 } 2311 2312 for (i = 0; i < val_count * val_bytes; i += val_bytes) 2313 map->format.parse_inplace(val + i); 2314 } else { 2315 for (i = 0; i < val_count; i++) { 2316 unsigned int ival; 2317 ret = regmap_read(map, reg + (i * map->reg_stride), 2318 &ival); 2319 if (ret != 0) 2320 return ret; 2321 memcpy(val + (i * val_bytes), &ival, val_bytes); 2322 } 2323 } 2324 2325 return 0; 2326 } 2327 EXPORT_SYMBOL_GPL(regmap_bulk_read); 2328 2329 static int _regmap_update_bits(struct regmap *map, unsigned int reg, 2330 unsigned int mask, unsigned int val, 2331 bool *change) 2332 { 2333 int ret; 2334 unsigned int tmp, orig; 2335 2336 ret = _regmap_read(map, reg, &orig); 2337 if (ret != 0) 2338 return ret; 2339 2340 tmp = orig & ~mask; 2341 tmp |= val & mask; 2342 2343 if (tmp != orig) { 2344 ret = _regmap_write(map, reg, tmp); 2345 if (change) 2346 *change = true; 2347 } else { 2348 if (change) 2349 *change = false; 2350 } 2351 2352 return ret; 2353 } 2354 2355 /** 2356 * regmap_update_bits: Perform a read/modify/write cycle on the register map 2357 * 2358 * @map: Register map to update 2359 * @reg: Register to update 2360 * @mask: Bitmask to change 2361 * @val: New value for bitmask 2362 * 2363 * Returns zero for success, a negative number on error. 2364 */ 2365 int regmap_update_bits(struct regmap *map, unsigned int reg, 2366 unsigned int mask, unsigned int val) 2367 { 2368 int ret; 2369 2370 map->lock(map->lock_arg); 2371 ret = _regmap_update_bits(map, reg, mask, val, NULL); 2372 map->unlock(map->lock_arg); 2373 2374 return ret; 2375 } 2376 EXPORT_SYMBOL_GPL(regmap_update_bits); 2377 2378 /** 2379 * regmap_update_bits_async: Perform a read/modify/write cycle on the register 2380 * map asynchronously 2381 * 2382 * @map: Register map to update 2383 * @reg: Register to update 2384 * @mask: Bitmask to change 2385 * @val: New value for bitmask 2386 * 2387 * With most buses the read must be done synchronously so this is most 2388 * useful for devices with a cache which do not need to interact with 2389 * the hardware to determine the current register value. 2390 * 2391 * Returns zero for success, a negative number on error. 2392 */ 2393 int regmap_update_bits_async(struct regmap *map, unsigned int reg, 2394 unsigned int mask, unsigned int val) 2395 { 2396 int ret; 2397 2398 map->lock(map->lock_arg); 2399 2400 map->async = true; 2401 2402 ret = _regmap_update_bits(map, reg, mask, val, NULL); 2403 2404 map->async = false; 2405 2406 map->unlock(map->lock_arg); 2407 2408 return ret; 2409 } 2410 EXPORT_SYMBOL_GPL(regmap_update_bits_async); 2411 2412 /** 2413 * regmap_update_bits_check: Perform a read/modify/write cycle on the 2414 * register map and report if updated 2415 * 2416 * @map: Register map to update 2417 * @reg: Register to update 2418 * @mask: Bitmask to change 2419 * @val: New value for bitmask 2420 * @change: Boolean indicating if a write was done 2421 * 2422 * Returns zero for success, a negative number on error. 2423 */ 2424 int regmap_update_bits_check(struct regmap *map, unsigned int reg, 2425 unsigned int mask, unsigned int val, 2426 bool *change) 2427 { 2428 int ret; 2429 2430 map->lock(map->lock_arg); 2431 ret = _regmap_update_bits(map, reg, mask, val, change); 2432 map->unlock(map->lock_arg); 2433 return ret; 2434 } 2435 EXPORT_SYMBOL_GPL(regmap_update_bits_check); 2436 2437 /** 2438 * regmap_update_bits_check_async: Perform a read/modify/write cycle on the 2439 * register map asynchronously and report if 2440 * updated 2441 * 2442 * @map: Register map to update 2443 * @reg: Register to update 2444 * @mask: Bitmask to change 2445 * @val: New value for bitmask 2446 * @change: Boolean indicating if a write was done 2447 * 2448 * With most buses the read must be done synchronously so this is most 2449 * useful for devices with a cache which do not need to interact with 2450 * the hardware to determine the current register value. 2451 * 2452 * Returns zero for success, a negative number on error. 2453 */ 2454 int regmap_update_bits_check_async(struct regmap *map, unsigned int reg, 2455 unsigned int mask, unsigned int val, 2456 bool *change) 2457 { 2458 int ret; 2459 2460 map->lock(map->lock_arg); 2461 2462 map->async = true; 2463 2464 ret = _regmap_update_bits(map, reg, mask, val, change); 2465 2466 map->async = false; 2467 2468 map->unlock(map->lock_arg); 2469 2470 return ret; 2471 } 2472 EXPORT_SYMBOL_GPL(regmap_update_bits_check_async); 2473 2474 void regmap_async_complete_cb(struct regmap_async *async, int ret) 2475 { 2476 struct regmap *map = async->map; 2477 bool wake; 2478 2479 trace_regmap_async_io_complete(map); 2480 2481 spin_lock(&map->async_lock); 2482 list_move(&async->list, &map->async_free); 2483 wake = list_empty(&map->async_list); 2484 2485 if (ret != 0) 2486 map->async_ret = ret; 2487 2488 spin_unlock(&map->async_lock); 2489 2490 if (wake) 2491 wake_up(&map->async_waitq); 2492 } 2493 EXPORT_SYMBOL_GPL(regmap_async_complete_cb); 2494 2495 static int regmap_async_is_done(struct regmap *map) 2496 { 2497 unsigned long flags; 2498 int ret; 2499 2500 spin_lock_irqsave(&map->async_lock, flags); 2501 ret = list_empty(&map->async_list); 2502 spin_unlock_irqrestore(&map->async_lock, flags); 2503 2504 return ret; 2505 } 2506 2507 /** 2508 * regmap_async_complete: Ensure all asynchronous I/O has completed. 2509 * 2510 * @map: Map to operate on. 2511 * 2512 * Blocks until any pending asynchronous I/O has completed. Returns 2513 * an error code for any failed I/O operations. 2514 */ 2515 int regmap_async_complete(struct regmap *map) 2516 { 2517 unsigned long flags; 2518 int ret; 2519 2520 /* Nothing to do with no async support */ 2521 if (!map->bus || !map->bus->async_write) 2522 return 0; 2523 2524 trace_regmap_async_complete_start(map); 2525 2526 wait_event(map->async_waitq, regmap_async_is_done(map)); 2527 2528 spin_lock_irqsave(&map->async_lock, flags); 2529 ret = map->async_ret; 2530 map->async_ret = 0; 2531 spin_unlock_irqrestore(&map->async_lock, flags); 2532 2533 trace_regmap_async_complete_done(map); 2534 2535 return ret; 2536 } 2537 EXPORT_SYMBOL_GPL(regmap_async_complete); 2538 2539 /** 2540 * regmap_register_patch: Register and apply register updates to be applied 2541 * on device initialistion 2542 * 2543 * @map: Register map to apply updates to. 2544 * @regs: Values to update. 2545 * @num_regs: Number of entries in regs. 2546 * 2547 * Register a set of register updates to be applied to the device 2548 * whenever the device registers are synchronised with the cache and 2549 * apply them immediately. Typically this is used to apply 2550 * corrections to be applied to the device defaults on startup, such 2551 * as the updates some vendors provide to undocumented registers. 2552 * 2553 * The caller must ensure that this function cannot be called 2554 * concurrently with either itself or regcache_sync(). 2555 */ 2556 int regmap_register_patch(struct regmap *map, const struct reg_default *regs, 2557 int num_regs) 2558 { 2559 struct reg_default *p; 2560 int ret; 2561 bool bypass; 2562 2563 if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n", 2564 num_regs)) 2565 return 0; 2566 2567 p = krealloc(map->patch, 2568 sizeof(struct reg_default) * (map->patch_regs + num_regs), 2569 GFP_KERNEL); 2570 if (p) { 2571 memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs)); 2572 map->patch = p; 2573 map->patch_regs += num_regs; 2574 } else { 2575 return -ENOMEM; 2576 } 2577 2578 map->lock(map->lock_arg); 2579 2580 bypass = map->cache_bypass; 2581 2582 map->cache_bypass = true; 2583 map->async = true; 2584 2585 ret = _regmap_multi_reg_write(map, regs, num_regs); 2586 if (ret != 0) 2587 goto out; 2588 2589 out: 2590 map->async = false; 2591 map->cache_bypass = bypass; 2592 2593 map->unlock(map->lock_arg); 2594 2595 regmap_async_complete(map); 2596 2597 return ret; 2598 } 2599 EXPORT_SYMBOL_GPL(regmap_register_patch); 2600 2601 /* 2602 * regmap_get_val_bytes(): Report the size of a register value 2603 * 2604 * Report the size of a register value, mainly intended to for use by 2605 * generic infrastructure built on top of regmap. 2606 */ 2607 int regmap_get_val_bytes(struct regmap *map) 2608 { 2609 if (map->format.format_write) 2610 return -EINVAL; 2611 2612 return map->format.val_bytes; 2613 } 2614 EXPORT_SYMBOL_GPL(regmap_get_val_bytes); 2615 2616 int regmap_parse_val(struct regmap *map, const void *buf, 2617 unsigned int *val) 2618 { 2619 if (!map->format.parse_val) 2620 return -EINVAL; 2621 2622 *val = map->format.parse_val(buf); 2623 2624 return 0; 2625 } 2626 EXPORT_SYMBOL_GPL(regmap_parse_val); 2627 2628 static int __init regmap_initcall(void) 2629 { 2630 regmap_debugfs_initcall(); 2631 2632 return 0; 2633 } 2634 postcore_initcall(regmap_initcall); 2635