xref: /linux/drivers/base/regmap/regmap.c (revision c75c5ab575af7db707689cdbb5a5c458e9a034bb)
1 /*
2  * Register map access API
3  *
4  * Copyright 2011 Wolfson Microelectronics plc
5  *
6  * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/mutex.h>
17 #include <linux/err.h>
18 #include <linux/rbtree.h>
19 #include <linux/sched.h>
20 
21 #define CREATE_TRACE_POINTS
22 #include <trace/events/regmap.h>
23 
24 #include "internal.h"
25 
26 /*
27  * Sometimes for failures during very early init the trace
28  * infrastructure isn't available early enough to be used.  For this
29  * sort of problem defining LOG_DEVICE will add printks for basic
30  * register I/O on a specific device.
31  */
32 #undef LOG_DEVICE
33 
34 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
35 			       unsigned int mask, unsigned int val,
36 			       bool *change);
37 
38 static int _regmap_bus_read(void *context, unsigned int reg,
39 			    unsigned int *val);
40 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
41 				       unsigned int val);
42 static int _regmap_bus_raw_write(void *context, unsigned int reg,
43 				 unsigned int val);
44 
45 static void async_cleanup(struct work_struct *work)
46 {
47 	struct regmap_async *async = container_of(work, struct regmap_async,
48 						  cleanup);
49 
50 	kfree(async->work_buf);
51 	kfree(async);
52 }
53 
54 bool regmap_reg_in_ranges(unsigned int reg,
55 			  const struct regmap_range *ranges,
56 			  unsigned int nranges)
57 {
58 	const struct regmap_range *r;
59 	int i;
60 
61 	for (i = 0, r = ranges; i < nranges; i++, r++)
62 		if (regmap_reg_in_range(reg, r))
63 			return true;
64 	return false;
65 }
66 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
67 
68 static bool _regmap_check_range_table(struct regmap *map,
69 				      unsigned int reg,
70 				      const struct regmap_access_table *table)
71 {
72 	/* Check "no ranges" first */
73 	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
74 		return false;
75 
76 	/* In case zero "yes ranges" are supplied, any reg is OK */
77 	if (!table->n_yes_ranges)
78 		return true;
79 
80 	return regmap_reg_in_ranges(reg, table->yes_ranges,
81 				    table->n_yes_ranges);
82 }
83 
84 bool regmap_writeable(struct regmap *map, unsigned int reg)
85 {
86 	if (map->max_register && reg > map->max_register)
87 		return false;
88 
89 	if (map->writeable_reg)
90 		return map->writeable_reg(map->dev, reg);
91 
92 	if (map->wr_table)
93 		return _regmap_check_range_table(map, reg, map->wr_table);
94 
95 	return true;
96 }
97 
98 bool regmap_readable(struct regmap *map, unsigned int reg)
99 {
100 	if (map->max_register && reg > map->max_register)
101 		return false;
102 
103 	if (map->format.format_write)
104 		return false;
105 
106 	if (map->readable_reg)
107 		return map->readable_reg(map->dev, reg);
108 
109 	if (map->rd_table)
110 		return _regmap_check_range_table(map, reg, map->rd_table);
111 
112 	return true;
113 }
114 
115 bool regmap_volatile(struct regmap *map, unsigned int reg)
116 {
117 	if (!regmap_readable(map, reg))
118 		return false;
119 
120 	if (map->volatile_reg)
121 		return map->volatile_reg(map->dev, reg);
122 
123 	if (map->volatile_table)
124 		return _regmap_check_range_table(map, reg, map->volatile_table);
125 
126 	return true;
127 }
128 
129 bool regmap_precious(struct regmap *map, unsigned int reg)
130 {
131 	if (!regmap_readable(map, reg))
132 		return false;
133 
134 	if (map->precious_reg)
135 		return map->precious_reg(map->dev, reg);
136 
137 	if (map->precious_table)
138 		return _regmap_check_range_table(map, reg, map->precious_table);
139 
140 	return false;
141 }
142 
143 static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
144 	size_t num)
145 {
146 	unsigned int i;
147 
148 	for (i = 0; i < num; i++)
149 		if (!regmap_volatile(map, reg + i))
150 			return false;
151 
152 	return true;
153 }
154 
155 static void regmap_format_2_6_write(struct regmap *map,
156 				     unsigned int reg, unsigned int val)
157 {
158 	u8 *out = map->work_buf;
159 
160 	*out = (reg << 6) | val;
161 }
162 
163 static void regmap_format_4_12_write(struct regmap *map,
164 				     unsigned int reg, unsigned int val)
165 {
166 	__be16 *out = map->work_buf;
167 	*out = cpu_to_be16((reg << 12) | val);
168 }
169 
170 static void regmap_format_7_9_write(struct regmap *map,
171 				    unsigned int reg, unsigned int val)
172 {
173 	__be16 *out = map->work_buf;
174 	*out = cpu_to_be16((reg << 9) | val);
175 }
176 
177 static void regmap_format_10_14_write(struct regmap *map,
178 				    unsigned int reg, unsigned int val)
179 {
180 	u8 *out = map->work_buf;
181 
182 	out[2] = val;
183 	out[1] = (val >> 8) | (reg << 6);
184 	out[0] = reg >> 2;
185 }
186 
187 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
188 {
189 	u8 *b = buf;
190 
191 	b[0] = val << shift;
192 }
193 
194 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
195 {
196 	__be16 *b = buf;
197 
198 	b[0] = cpu_to_be16(val << shift);
199 }
200 
201 static void regmap_format_16_native(void *buf, unsigned int val,
202 				    unsigned int shift)
203 {
204 	*(u16 *)buf = val << shift;
205 }
206 
207 static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
208 {
209 	u8 *b = buf;
210 
211 	val <<= shift;
212 
213 	b[0] = val >> 16;
214 	b[1] = val >> 8;
215 	b[2] = val;
216 }
217 
218 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
219 {
220 	__be32 *b = buf;
221 
222 	b[0] = cpu_to_be32(val << shift);
223 }
224 
225 static void regmap_format_32_native(void *buf, unsigned int val,
226 				    unsigned int shift)
227 {
228 	*(u32 *)buf = val << shift;
229 }
230 
231 static unsigned int regmap_parse_8(void *buf)
232 {
233 	u8 *b = buf;
234 
235 	return b[0];
236 }
237 
238 static unsigned int regmap_parse_16_be(void *buf)
239 {
240 	__be16 *b = buf;
241 
242 	b[0] = be16_to_cpu(b[0]);
243 
244 	return b[0];
245 }
246 
247 static unsigned int regmap_parse_16_native(void *buf)
248 {
249 	return *(u16 *)buf;
250 }
251 
252 static unsigned int regmap_parse_24(void *buf)
253 {
254 	u8 *b = buf;
255 	unsigned int ret = b[2];
256 	ret |= ((unsigned int)b[1]) << 8;
257 	ret |= ((unsigned int)b[0]) << 16;
258 
259 	return ret;
260 }
261 
262 static unsigned int regmap_parse_32_be(void *buf)
263 {
264 	__be32 *b = buf;
265 
266 	b[0] = be32_to_cpu(b[0]);
267 
268 	return b[0];
269 }
270 
271 static unsigned int regmap_parse_32_native(void *buf)
272 {
273 	return *(u32 *)buf;
274 }
275 
276 static void regmap_lock_mutex(void *__map)
277 {
278 	struct regmap *map = __map;
279 	mutex_lock(&map->mutex);
280 }
281 
282 static void regmap_unlock_mutex(void *__map)
283 {
284 	struct regmap *map = __map;
285 	mutex_unlock(&map->mutex);
286 }
287 
288 static void regmap_lock_spinlock(void *__map)
289 {
290 	struct regmap *map = __map;
291 	spin_lock(&map->spinlock);
292 }
293 
294 static void regmap_unlock_spinlock(void *__map)
295 {
296 	struct regmap *map = __map;
297 	spin_unlock(&map->spinlock);
298 }
299 
300 static void dev_get_regmap_release(struct device *dev, void *res)
301 {
302 	/*
303 	 * We don't actually have anything to do here; the goal here
304 	 * is not to manage the regmap but to provide a simple way to
305 	 * get the regmap back given a struct device.
306 	 */
307 }
308 
309 static bool _regmap_range_add(struct regmap *map,
310 			      struct regmap_range_node *data)
311 {
312 	struct rb_root *root = &map->range_tree;
313 	struct rb_node **new = &(root->rb_node), *parent = NULL;
314 
315 	while (*new) {
316 		struct regmap_range_node *this =
317 			container_of(*new, struct regmap_range_node, node);
318 
319 		parent = *new;
320 		if (data->range_max < this->range_min)
321 			new = &((*new)->rb_left);
322 		else if (data->range_min > this->range_max)
323 			new = &((*new)->rb_right);
324 		else
325 			return false;
326 	}
327 
328 	rb_link_node(&data->node, parent, new);
329 	rb_insert_color(&data->node, root);
330 
331 	return true;
332 }
333 
334 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
335 						      unsigned int reg)
336 {
337 	struct rb_node *node = map->range_tree.rb_node;
338 
339 	while (node) {
340 		struct regmap_range_node *this =
341 			container_of(node, struct regmap_range_node, node);
342 
343 		if (reg < this->range_min)
344 			node = node->rb_left;
345 		else if (reg > this->range_max)
346 			node = node->rb_right;
347 		else
348 			return this;
349 	}
350 
351 	return NULL;
352 }
353 
354 static void regmap_range_exit(struct regmap *map)
355 {
356 	struct rb_node *next;
357 	struct regmap_range_node *range_node;
358 
359 	next = rb_first(&map->range_tree);
360 	while (next) {
361 		range_node = rb_entry(next, struct regmap_range_node, node);
362 		next = rb_next(&range_node->node);
363 		rb_erase(&range_node->node, &map->range_tree);
364 		kfree(range_node);
365 	}
366 
367 	kfree(map->selector_work_buf);
368 }
369 
370 /**
371  * regmap_init(): Initialise register map
372  *
373  * @dev: Device that will be interacted with
374  * @bus: Bus-specific callbacks to use with device
375  * @bus_context: Data passed to bus-specific callbacks
376  * @config: Configuration for register map
377  *
378  * The return value will be an ERR_PTR() on error or a valid pointer to
379  * a struct regmap.  This function should generally not be called
380  * directly, it should be called by bus-specific init functions.
381  */
382 struct regmap *regmap_init(struct device *dev,
383 			   const struct regmap_bus *bus,
384 			   void *bus_context,
385 			   const struct regmap_config *config)
386 {
387 	struct regmap *map, **m;
388 	int ret = -EINVAL;
389 	enum regmap_endian reg_endian, val_endian;
390 	int i, j;
391 
392 	if (!config)
393 		goto err;
394 
395 	map = kzalloc(sizeof(*map), GFP_KERNEL);
396 	if (map == NULL) {
397 		ret = -ENOMEM;
398 		goto err;
399 	}
400 
401 	if (config->lock && config->unlock) {
402 		map->lock = config->lock;
403 		map->unlock = config->unlock;
404 		map->lock_arg = config->lock_arg;
405 	} else {
406 		if ((bus && bus->fast_io) ||
407 		    config->fast_io) {
408 			spin_lock_init(&map->spinlock);
409 			map->lock = regmap_lock_spinlock;
410 			map->unlock = regmap_unlock_spinlock;
411 		} else {
412 			mutex_init(&map->mutex);
413 			map->lock = regmap_lock_mutex;
414 			map->unlock = regmap_unlock_mutex;
415 		}
416 		map->lock_arg = map;
417 	}
418 	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
419 	map->format.pad_bytes = config->pad_bits / 8;
420 	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
421 	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
422 			config->val_bits + config->pad_bits, 8);
423 	map->reg_shift = config->pad_bits % 8;
424 	if (config->reg_stride)
425 		map->reg_stride = config->reg_stride;
426 	else
427 		map->reg_stride = 1;
428 	map->use_single_rw = config->use_single_rw;
429 	map->dev = dev;
430 	map->bus = bus;
431 	map->bus_context = bus_context;
432 	map->max_register = config->max_register;
433 	map->wr_table = config->wr_table;
434 	map->rd_table = config->rd_table;
435 	map->volatile_table = config->volatile_table;
436 	map->precious_table = config->precious_table;
437 	map->writeable_reg = config->writeable_reg;
438 	map->readable_reg = config->readable_reg;
439 	map->volatile_reg = config->volatile_reg;
440 	map->precious_reg = config->precious_reg;
441 	map->cache_type = config->cache_type;
442 	map->name = config->name;
443 
444 	spin_lock_init(&map->async_lock);
445 	INIT_LIST_HEAD(&map->async_list);
446 	init_waitqueue_head(&map->async_waitq);
447 
448 	if (config->read_flag_mask || config->write_flag_mask) {
449 		map->read_flag_mask = config->read_flag_mask;
450 		map->write_flag_mask = config->write_flag_mask;
451 	} else if (bus) {
452 		map->read_flag_mask = bus->read_flag_mask;
453 	}
454 
455 	if (!bus) {
456 		map->reg_read  = config->reg_read;
457 		map->reg_write = config->reg_write;
458 
459 		map->defer_caching = false;
460 		goto skip_format_initialization;
461 	} else {
462 		map->reg_read  = _regmap_bus_read;
463 	}
464 
465 	reg_endian = config->reg_format_endian;
466 	if (reg_endian == REGMAP_ENDIAN_DEFAULT)
467 		reg_endian = bus->reg_format_endian_default;
468 	if (reg_endian == REGMAP_ENDIAN_DEFAULT)
469 		reg_endian = REGMAP_ENDIAN_BIG;
470 
471 	val_endian = config->val_format_endian;
472 	if (val_endian == REGMAP_ENDIAN_DEFAULT)
473 		val_endian = bus->val_format_endian_default;
474 	if (val_endian == REGMAP_ENDIAN_DEFAULT)
475 		val_endian = REGMAP_ENDIAN_BIG;
476 
477 	switch (config->reg_bits + map->reg_shift) {
478 	case 2:
479 		switch (config->val_bits) {
480 		case 6:
481 			map->format.format_write = regmap_format_2_6_write;
482 			break;
483 		default:
484 			goto err_map;
485 		}
486 		break;
487 
488 	case 4:
489 		switch (config->val_bits) {
490 		case 12:
491 			map->format.format_write = regmap_format_4_12_write;
492 			break;
493 		default:
494 			goto err_map;
495 		}
496 		break;
497 
498 	case 7:
499 		switch (config->val_bits) {
500 		case 9:
501 			map->format.format_write = regmap_format_7_9_write;
502 			break;
503 		default:
504 			goto err_map;
505 		}
506 		break;
507 
508 	case 10:
509 		switch (config->val_bits) {
510 		case 14:
511 			map->format.format_write = regmap_format_10_14_write;
512 			break;
513 		default:
514 			goto err_map;
515 		}
516 		break;
517 
518 	case 8:
519 		map->format.format_reg = regmap_format_8;
520 		break;
521 
522 	case 16:
523 		switch (reg_endian) {
524 		case REGMAP_ENDIAN_BIG:
525 			map->format.format_reg = regmap_format_16_be;
526 			break;
527 		case REGMAP_ENDIAN_NATIVE:
528 			map->format.format_reg = regmap_format_16_native;
529 			break;
530 		default:
531 			goto err_map;
532 		}
533 		break;
534 
535 	case 24:
536 		if (reg_endian != REGMAP_ENDIAN_BIG)
537 			goto err_map;
538 		map->format.format_reg = regmap_format_24;
539 		break;
540 
541 	case 32:
542 		switch (reg_endian) {
543 		case REGMAP_ENDIAN_BIG:
544 			map->format.format_reg = regmap_format_32_be;
545 			break;
546 		case REGMAP_ENDIAN_NATIVE:
547 			map->format.format_reg = regmap_format_32_native;
548 			break;
549 		default:
550 			goto err_map;
551 		}
552 		break;
553 
554 	default:
555 		goto err_map;
556 	}
557 
558 	switch (config->val_bits) {
559 	case 8:
560 		map->format.format_val = regmap_format_8;
561 		map->format.parse_val = regmap_parse_8;
562 		break;
563 	case 16:
564 		switch (val_endian) {
565 		case REGMAP_ENDIAN_BIG:
566 			map->format.format_val = regmap_format_16_be;
567 			map->format.parse_val = regmap_parse_16_be;
568 			break;
569 		case REGMAP_ENDIAN_NATIVE:
570 			map->format.format_val = regmap_format_16_native;
571 			map->format.parse_val = regmap_parse_16_native;
572 			break;
573 		default:
574 			goto err_map;
575 		}
576 		break;
577 	case 24:
578 		if (val_endian != REGMAP_ENDIAN_BIG)
579 			goto err_map;
580 		map->format.format_val = regmap_format_24;
581 		map->format.parse_val = regmap_parse_24;
582 		break;
583 	case 32:
584 		switch (val_endian) {
585 		case REGMAP_ENDIAN_BIG:
586 			map->format.format_val = regmap_format_32_be;
587 			map->format.parse_val = regmap_parse_32_be;
588 			break;
589 		case REGMAP_ENDIAN_NATIVE:
590 			map->format.format_val = regmap_format_32_native;
591 			map->format.parse_val = regmap_parse_32_native;
592 			break;
593 		default:
594 			goto err_map;
595 		}
596 		break;
597 	}
598 
599 	if (map->format.format_write) {
600 		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
601 		    (val_endian != REGMAP_ENDIAN_BIG))
602 			goto err_map;
603 		map->use_single_rw = true;
604 	}
605 
606 	if (!map->format.format_write &&
607 	    !(map->format.format_reg && map->format.format_val))
608 		goto err_map;
609 
610 	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
611 	if (map->work_buf == NULL) {
612 		ret = -ENOMEM;
613 		goto err_map;
614 	}
615 
616 	if (map->format.format_write) {
617 		map->defer_caching = false;
618 		map->reg_write = _regmap_bus_formatted_write;
619 	} else if (map->format.format_val) {
620 		map->defer_caching = true;
621 		map->reg_write = _regmap_bus_raw_write;
622 	}
623 
624 skip_format_initialization:
625 
626 	map->range_tree = RB_ROOT;
627 	for (i = 0; i < config->num_ranges; i++) {
628 		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
629 		struct regmap_range_node *new;
630 
631 		/* Sanity check */
632 		if (range_cfg->range_max < range_cfg->range_min) {
633 			dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
634 				range_cfg->range_max, range_cfg->range_min);
635 			goto err_range;
636 		}
637 
638 		if (range_cfg->range_max > map->max_register) {
639 			dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
640 				range_cfg->range_max, map->max_register);
641 			goto err_range;
642 		}
643 
644 		if (range_cfg->selector_reg > map->max_register) {
645 			dev_err(map->dev,
646 				"Invalid range %d: selector out of map\n", i);
647 			goto err_range;
648 		}
649 
650 		if (range_cfg->window_len == 0) {
651 			dev_err(map->dev, "Invalid range %d: window_len 0\n",
652 				i);
653 			goto err_range;
654 		}
655 
656 		/* Make sure, that this register range has no selector
657 		   or data window within its boundary */
658 		for (j = 0; j < config->num_ranges; j++) {
659 			unsigned sel_reg = config->ranges[j].selector_reg;
660 			unsigned win_min = config->ranges[j].window_start;
661 			unsigned win_max = win_min +
662 					   config->ranges[j].window_len - 1;
663 
664 			if (range_cfg->range_min <= sel_reg &&
665 			    sel_reg <= range_cfg->range_max) {
666 				dev_err(map->dev,
667 					"Range %d: selector for %d in window\n",
668 					i, j);
669 				goto err_range;
670 			}
671 
672 			if (!(win_max < range_cfg->range_min ||
673 			      win_min > range_cfg->range_max)) {
674 				dev_err(map->dev,
675 					"Range %d: window for %d in window\n",
676 					i, j);
677 				goto err_range;
678 			}
679 		}
680 
681 		new = kzalloc(sizeof(*new), GFP_KERNEL);
682 		if (new == NULL) {
683 			ret = -ENOMEM;
684 			goto err_range;
685 		}
686 
687 		new->map = map;
688 		new->name = range_cfg->name;
689 		new->range_min = range_cfg->range_min;
690 		new->range_max = range_cfg->range_max;
691 		new->selector_reg = range_cfg->selector_reg;
692 		new->selector_mask = range_cfg->selector_mask;
693 		new->selector_shift = range_cfg->selector_shift;
694 		new->window_start = range_cfg->window_start;
695 		new->window_len = range_cfg->window_len;
696 
697 		if (_regmap_range_add(map, new) == false) {
698 			dev_err(map->dev, "Failed to add range %d\n", i);
699 			kfree(new);
700 			goto err_range;
701 		}
702 
703 		if (map->selector_work_buf == NULL) {
704 			map->selector_work_buf =
705 				kzalloc(map->format.buf_size, GFP_KERNEL);
706 			if (map->selector_work_buf == NULL) {
707 				ret = -ENOMEM;
708 				goto err_range;
709 			}
710 		}
711 	}
712 
713 	regmap_debugfs_init(map, config->name);
714 
715 	ret = regcache_init(map, config);
716 	if (ret != 0)
717 		goto err_range;
718 
719 	/* Add a devres resource for dev_get_regmap() */
720 	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
721 	if (!m) {
722 		ret = -ENOMEM;
723 		goto err_debugfs;
724 	}
725 	*m = map;
726 	devres_add(dev, m);
727 
728 	return map;
729 
730 err_debugfs:
731 	regmap_debugfs_exit(map);
732 	regcache_exit(map);
733 err_range:
734 	regmap_range_exit(map);
735 	kfree(map->work_buf);
736 err_map:
737 	kfree(map);
738 err:
739 	return ERR_PTR(ret);
740 }
741 EXPORT_SYMBOL_GPL(regmap_init);
742 
743 static void devm_regmap_release(struct device *dev, void *res)
744 {
745 	regmap_exit(*(struct regmap **)res);
746 }
747 
748 /**
749  * devm_regmap_init(): Initialise managed register map
750  *
751  * @dev: Device that will be interacted with
752  * @bus: Bus-specific callbacks to use with device
753  * @bus_context: Data passed to bus-specific callbacks
754  * @config: Configuration for register map
755  *
756  * The return value will be an ERR_PTR() on error or a valid pointer
757  * to a struct regmap.  This function should generally not be called
758  * directly, it should be called by bus-specific init functions.  The
759  * map will be automatically freed by the device management code.
760  */
761 struct regmap *devm_regmap_init(struct device *dev,
762 				const struct regmap_bus *bus,
763 				void *bus_context,
764 				const struct regmap_config *config)
765 {
766 	struct regmap **ptr, *regmap;
767 
768 	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
769 	if (!ptr)
770 		return ERR_PTR(-ENOMEM);
771 
772 	regmap = regmap_init(dev, bus, bus_context, config);
773 	if (!IS_ERR(regmap)) {
774 		*ptr = regmap;
775 		devres_add(dev, ptr);
776 	} else {
777 		devres_free(ptr);
778 	}
779 
780 	return regmap;
781 }
782 EXPORT_SYMBOL_GPL(devm_regmap_init);
783 
784 /**
785  * regmap_reinit_cache(): Reinitialise the current register cache
786  *
787  * @map: Register map to operate on.
788  * @config: New configuration.  Only the cache data will be used.
789  *
790  * Discard any existing register cache for the map and initialize a
791  * new cache.  This can be used to restore the cache to defaults or to
792  * update the cache configuration to reflect runtime discovery of the
793  * hardware.
794  *
795  * No explicit locking is done here, the user needs to ensure that
796  * this function will not race with other calls to regmap.
797  */
798 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
799 {
800 	regcache_exit(map);
801 	regmap_debugfs_exit(map);
802 
803 	map->max_register = config->max_register;
804 	map->writeable_reg = config->writeable_reg;
805 	map->readable_reg = config->readable_reg;
806 	map->volatile_reg = config->volatile_reg;
807 	map->precious_reg = config->precious_reg;
808 	map->cache_type = config->cache_type;
809 
810 	regmap_debugfs_init(map, config->name);
811 
812 	map->cache_bypass = false;
813 	map->cache_only = false;
814 
815 	return regcache_init(map, config);
816 }
817 EXPORT_SYMBOL_GPL(regmap_reinit_cache);
818 
819 /**
820  * regmap_exit(): Free a previously allocated register map
821  */
822 void regmap_exit(struct regmap *map)
823 {
824 	regcache_exit(map);
825 	regmap_debugfs_exit(map);
826 	regmap_range_exit(map);
827 	if (map->bus && map->bus->free_context)
828 		map->bus->free_context(map->bus_context);
829 	kfree(map->work_buf);
830 	kfree(map);
831 }
832 EXPORT_SYMBOL_GPL(regmap_exit);
833 
834 static int dev_get_regmap_match(struct device *dev, void *res, void *data)
835 {
836 	struct regmap **r = res;
837 	if (!r || !*r) {
838 		WARN_ON(!r || !*r);
839 		return 0;
840 	}
841 
842 	/* If the user didn't specify a name match any */
843 	if (data)
844 		return (*r)->name == data;
845 	else
846 		return 1;
847 }
848 
849 /**
850  * dev_get_regmap(): Obtain the regmap (if any) for a device
851  *
852  * @dev: Device to retrieve the map for
853  * @name: Optional name for the register map, usually NULL.
854  *
855  * Returns the regmap for the device if one is present, or NULL.  If
856  * name is specified then it must match the name specified when
857  * registering the device, if it is NULL then the first regmap found
858  * will be used.  Devices with multiple register maps are very rare,
859  * generic code should normally not need to specify a name.
860  */
861 struct regmap *dev_get_regmap(struct device *dev, const char *name)
862 {
863 	struct regmap **r = devres_find(dev, dev_get_regmap_release,
864 					dev_get_regmap_match, (void *)name);
865 
866 	if (!r)
867 		return NULL;
868 	return *r;
869 }
870 EXPORT_SYMBOL_GPL(dev_get_regmap);
871 
872 static int _regmap_select_page(struct regmap *map, unsigned int *reg,
873 			       struct regmap_range_node *range,
874 			       unsigned int val_num)
875 {
876 	void *orig_work_buf;
877 	unsigned int win_offset;
878 	unsigned int win_page;
879 	bool page_chg;
880 	int ret;
881 
882 	win_offset = (*reg - range->range_min) % range->window_len;
883 	win_page = (*reg - range->range_min) / range->window_len;
884 
885 	if (val_num > 1) {
886 		/* Bulk write shouldn't cross range boundary */
887 		if (*reg + val_num - 1 > range->range_max)
888 			return -EINVAL;
889 
890 		/* ... or single page boundary */
891 		if (val_num > range->window_len - win_offset)
892 			return -EINVAL;
893 	}
894 
895 	/* It is possible to have selector register inside data window.
896 	   In that case, selector register is located on every page and
897 	   it needs no page switching, when accessed alone. */
898 	if (val_num > 1 ||
899 	    range->window_start + win_offset != range->selector_reg) {
900 		/* Use separate work_buf during page switching */
901 		orig_work_buf = map->work_buf;
902 		map->work_buf = map->selector_work_buf;
903 
904 		ret = _regmap_update_bits(map, range->selector_reg,
905 					  range->selector_mask,
906 					  win_page << range->selector_shift,
907 					  &page_chg);
908 
909 		map->work_buf = orig_work_buf;
910 
911 		if (ret != 0)
912 			return ret;
913 	}
914 
915 	*reg = range->window_start + win_offset;
916 
917 	return 0;
918 }
919 
920 static int _regmap_raw_write(struct regmap *map, unsigned int reg,
921 			     const void *val, size_t val_len, bool async)
922 {
923 	struct regmap_range_node *range;
924 	unsigned long flags;
925 	u8 *u8 = map->work_buf;
926 	void *work_val = map->work_buf + map->format.reg_bytes +
927 		map->format.pad_bytes;
928 	void *buf;
929 	int ret = -ENOTSUPP;
930 	size_t len;
931 	int i;
932 
933 	BUG_ON(!map->bus);
934 
935 	/* Check for unwritable registers before we start */
936 	if (map->writeable_reg)
937 		for (i = 0; i < val_len / map->format.val_bytes; i++)
938 			if (!map->writeable_reg(map->dev,
939 						reg + (i * map->reg_stride)))
940 				return -EINVAL;
941 
942 	if (!map->cache_bypass && map->format.parse_val) {
943 		unsigned int ival;
944 		int val_bytes = map->format.val_bytes;
945 		for (i = 0; i < val_len / val_bytes; i++) {
946 			memcpy(map->work_buf, val + (i * val_bytes), val_bytes);
947 			ival = map->format.parse_val(map->work_buf);
948 			ret = regcache_write(map, reg + (i * map->reg_stride),
949 					     ival);
950 			if (ret) {
951 				dev_err(map->dev,
952 					"Error in caching of register: %x ret: %d\n",
953 					reg + i, ret);
954 				return ret;
955 			}
956 		}
957 		if (map->cache_only) {
958 			map->cache_dirty = true;
959 			return 0;
960 		}
961 	}
962 
963 	range = _regmap_range_lookup(map, reg);
964 	if (range) {
965 		int val_num = val_len / map->format.val_bytes;
966 		int win_offset = (reg - range->range_min) % range->window_len;
967 		int win_residue = range->window_len - win_offset;
968 
969 		/* If the write goes beyond the end of the window split it */
970 		while (val_num > win_residue) {
971 			dev_dbg(map->dev, "Writing window %d/%zu\n",
972 				win_residue, val_len / map->format.val_bytes);
973 			ret = _regmap_raw_write(map, reg, val, win_residue *
974 						map->format.val_bytes, async);
975 			if (ret != 0)
976 				return ret;
977 
978 			reg += win_residue;
979 			val_num -= win_residue;
980 			val += win_residue * map->format.val_bytes;
981 			val_len -= win_residue * map->format.val_bytes;
982 
983 			win_offset = (reg - range->range_min) %
984 				range->window_len;
985 			win_residue = range->window_len - win_offset;
986 		}
987 
988 		ret = _regmap_select_page(map, &reg, range, val_num);
989 		if (ret != 0)
990 			return ret;
991 	}
992 
993 	map->format.format_reg(map->work_buf, reg, map->reg_shift);
994 
995 	u8[0] |= map->write_flag_mask;
996 
997 	if (async && map->bus->async_write) {
998 		struct regmap_async *async = map->bus->async_alloc();
999 		if (!async)
1000 			return -ENOMEM;
1001 
1002 		async->work_buf = kzalloc(map->format.buf_size,
1003 					  GFP_KERNEL | GFP_DMA);
1004 		if (!async->work_buf) {
1005 			kfree(async);
1006 			return -ENOMEM;
1007 		}
1008 
1009 		INIT_WORK(&async->cleanup, async_cleanup);
1010 		async->map = map;
1011 
1012 		/* If the caller supplied the value we can use it safely. */
1013 		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1014 		       map->format.reg_bytes + map->format.val_bytes);
1015 		if (val == work_val)
1016 			val = async->work_buf + map->format.pad_bytes +
1017 				map->format.reg_bytes;
1018 
1019 		spin_lock_irqsave(&map->async_lock, flags);
1020 		list_add_tail(&async->list, &map->async_list);
1021 		spin_unlock_irqrestore(&map->async_lock, flags);
1022 
1023 		ret = map->bus->async_write(map->bus_context, async->work_buf,
1024 					    map->format.reg_bytes +
1025 					    map->format.pad_bytes,
1026 					    val, val_len, async);
1027 
1028 		if (ret != 0) {
1029 			dev_err(map->dev, "Failed to schedule write: %d\n",
1030 				ret);
1031 
1032 			spin_lock_irqsave(&map->async_lock, flags);
1033 			list_del(&async->list);
1034 			spin_unlock_irqrestore(&map->async_lock, flags);
1035 
1036 			kfree(async->work_buf);
1037 			kfree(async);
1038 		}
1039 
1040 		return ret;
1041 	}
1042 
1043 	trace_regmap_hw_write_start(map->dev, reg,
1044 				    val_len / map->format.val_bytes);
1045 
1046 	/* If we're doing a single register write we can probably just
1047 	 * send the work_buf directly, otherwise try to do a gather
1048 	 * write.
1049 	 */
1050 	if (val == work_val)
1051 		ret = map->bus->write(map->bus_context, map->work_buf,
1052 				      map->format.reg_bytes +
1053 				      map->format.pad_bytes +
1054 				      val_len);
1055 	else if (map->bus->gather_write)
1056 		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1057 					     map->format.reg_bytes +
1058 					     map->format.pad_bytes,
1059 					     val, val_len);
1060 
1061 	/* If that didn't work fall back on linearising by hand. */
1062 	if (ret == -ENOTSUPP) {
1063 		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1064 		buf = kzalloc(len, GFP_KERNEL);
1065 		if (!buf)
1066 			return -ENOMEM;
1067 
1068 		memcpy(buf, map->work_buf, map->format.reg_bytes);
1069 		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1070 		       val, val_len);
1071 		ret = map->bus->write(map->bus_context, buf, len);
1072 
1073 		kfree(buf);
1074 	}
1075 
1076 	trace_regmap_hw_write_done(map->dev, reg,
1077 				   val_len / map->format.val_bytes);
1078 
1079 	return ret;
1080 }
1081 
1082 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1083 				       unsigned int val)
1084 {
1085 	int ret;
1086 	struct regmap_range_node *range;
1087 	struct regmap *map = context;
1088 
1089 	BUG_ON(!map->bus || !map->format.format_write);
1090 
1091 	range = _regmap_range_lookup(map, reg);
1092 	if (range) {
1093 		ret = _regmap_select_page(map, &reg, range, 1);
1094 		if (ret != 0)
1095 			return ret;
1096 	}
1097 
1098 	map->format.format_write(map, reg, val);
1099 
1100 	trace_regmap_hw_write_start(map->dev, reg, 1);
1101 
1102 	ret = map->bus->write(map->bus_context, map->work_buf,
1103 			      map->format.buf_size);
1104 
1105 	trace_regmap_hw_write_done(map->dev, reg, 1);
1106 
1107 	return ret;
1108 }
1109 
1110 static int _regmap_bus_raw_write(void *context, unsigned int reg,
1111 				 unsigned int val)
1112 {
1113 	struct regmap *map = context;
1114 
1115 	BUG_ON(!map->bus || !map->format.format_val);
1116 
1117 	map->format.format_val(map->work_buf + map->format.reg_bytes
1118 			       + map->format.pad_bytes, val, 0);
1119 	return _regmap_raw_write(map, reg,
1120 				 map->work_buf +
1121 				 map->format.reg_bytes +
1122 				 map->format.pad_bytes,
1123 				 map->format.val_bytes, false);
1124 }
1125 
1126 static inline void *_regmap_map_get_context(struct regmap *map)
1127 {
1128 	return (map->bus) ? map : map->bus_context;
1129 }
1130 
1131 int _regmap_write(struct regmap *map, unsigned int reg,
1132 		  unsigned int val)
1133 {
1134 	int ret;
1135 	void *context = _regmap_map_get_context(map);
1136 
1137 	if (!map->cache_bypass && !map->defer_caching) {
1138 		ret = regcache_write(map, reg, val);
1139 		if (ret != 0)
1140 			return ret;
1141 		if (map->cache_only) {
1142 			map->cache_dirty = true;
1143 			return 0;
1144 		}
1145 	}
1146 
1147 #ifdef LOG_DEVICE
1148 	if (strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1149 		dev_info(map->dev, "%x <= %x\n", reg, val);
1150 #endif
1151 
1152 	trace_regmap_reg_write(map->dev, reg, val);
1153 
1154 	return map->reg_write(context, reg, val);
1155 }
1156 
1157 /**
1158  * regmap_write(): Write a value to a single register
1159  *
1160  * @map: Register map to write to
1161  * @reg: Register to write to
1162  * @val: Value to be written
1163  *
1164  * A value of zero will be returned on success, a negative errno will
1165  * be returned in error cases.
1166  */
1167 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1168 {
1169 	int ret;
1170 
1171 	if (reg % map->reg_stride)
1172 		return -EINVAL;
1173 
1174 	map->lock(map->lock_arg);
1175 
1176 	ret = _regmap_write(map, reg, val);
1177 
1178 	map->unlock(map->lock_arg);
1179 
1180 	return ret;
1181 }
1182 EXPORT_SYMBOL_GPL(regmap_write);
1183 
1184 /**
1185  * regmap_raw_write(): Write raw values to one or more registers
1186  *
1187  * @map: Register map to write to
1188  * @reg: Initial register to write to
1189  * @val: Block of data to be written, laid out for direct transmission to the
1190  *       device
1191  * @val_len: Length of data pointed to by val.
1192  *
1193  * This function is intended to be used for things like firmware
1194  * download where a large block of data needs to be transferred to the
1195  * device.  No formatting will be done on the data provided.
1196  *
1197  * A value of zero will be returned on success, a negative errno will
1198  * be returned in error cases.
1199  */
1200 int regmap_raw_write(struct regmap *map, unsigned int reg,
1201 		     const void *val, size_t val_len)
1202 {
1203 	int ret;
1204 
1205 	if (!map->bus)
1206 		return -EINVAL;
1207 	if (val_len % map->format.val_bytes)
1208 		return -EINVAL;
1209 	if (reg % map->reg_stride)
1210 		return -EINVAL;
1211 
1212 	map->lock(map->lock_arg);
1213 
1214 	ret = _regmap_raw_write(map, reg, val, val_len, false);
1215 
1216 	map->unlock(map->lock_arg);
1217 
1218 	return ret;
1219 }
1220 EXPORT_SYMBOL_GPL(regmap_raw_write);
1221 
1222 /*
1223  * regmap_bulk_write(): Write multiple registers to the device
1224  *
1225  * @map: Register map to write to
1226  * @reg: First register to be write from
1227  * @val: Block of data to be written, in native register size for device
1228  * @val_count: Number of registers to write
1229  *
1230  * This function is intended to be used for writing a large block of
1231  * data to the device either in single transfer or multiple transfer.
1232  *
1233  * A value of zero will be returned on success, a negative errno will
1234  * be returned in error cases.
1235  */
1236 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
1237 		     size_t val_count)
1238 {
1239 	int ret = 0, i;
1240 	size_t val_bytes = map->format.val_bytes;
1241 	void *wval;
1242 
1243 	if (!map->bus)
1244 		return -EINVAL;
1245 	if (!map->format.parse_val)
1246 		return -EINVAL;
1247 	if (reg % map->reg_stride)
1248 		return -EINVAL;
1249 
1250 	map->lock(map->lock_arg);
1251 
1252 	/* No formatting is require if val_byte is 1 */
1253 	if (val_bytes == 1) {
1254 		wval = (void *)val;
1255 	} else {
1256 		wval = kmemdup(val, val_count * val_bytes, GFP_KERNEL);
1257 		if (!wval) {
1258 			ret = -ENOMEM;
1259 			dev_err(map->dev, "Error in memory allocation\n");
1260 			goto out;
1261 		}
1262 		for (i = 0; i < val_count * val_bytes; i += val_bytes)
1263 			map->format.parse_val(wval + i);
1264 	}
1265 	/*
1266 	 * Some devices does not support bulk write, for
1267 	 * them we have a series of single write operations.
1268 	 */
1269 	if (map->use_single_rw) {
1270 		for (i = 0; i < val_count; i++) {
1271 			ret = regmap_raw_write(map,
1272 					       reg + (i * map->reg_stride),
1273 					       val + (i * val_bytes),
1274 					       val_bytes);
1275 			if (ret != 0)
1276 				return ret;
1277 		}
1278 	} else {
1279 		ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count,
1280 					false);
1281 	}
1282 
1283 	if (val_bytes != 1)
1284 		kfree(wval);
1285 
1286 out:
1287 	map->unlock(map->lock_arg);
1288 	return ret;
1289 }
1290 EXPORT_SYMBOL_GPL(regmap_bulk_write);
1291 
1292 /**
1293  * regmap_raw_write_async(): Write raw values to one or more registers
1294  *                           asynchronously
1295  *
1296  * @map: Register map to write to
1297  * @reg: Initial register to write to
1298  * @val: Block of data to be written, laid out for direct transmission to the
1299  *       device.  Must be valid until regmap_async_complete() is called.
1300  * @val_len: Length of data pointed to by val.
1301  *
1302  * This function is intended to be used for things like firmware
1303  * download where a large block of data needs to be transferred to the
1304  * device.  No formatting will be done on the data provided.
1305  *
1306  * If supported by the underlying bus the write will be scheduled
1307  * asynchronously, helping maximise I/O speed on higher speed buses
1308  * like SPI.  regmap_async_complete() can be called to ensure that all
1309  * asynchrnous writes have been completed.
1310  *
1311  * A value of zero will be returned on success, a negative errno will
1312  * be returned in error cases.
1313  */
1314 int regmap_raw_write_async(struct regmap *map, unsigned int reg,
1315 			   const void *val, size_t val_len)
1316 {
1317 	int ret;
1318 
1319 	if (val_len % map->format.val_bytes)
1320 		return -EINVAL;
1321 	if (reg % map->reg_stride)
1322 		return -EINVAL;
1323 
1324 	map->lock(map->lock_arg);
1325 
1326 	ret = _regmap_raw_write(map, reg, val, val_len, true);
1327 
1328 	map->unlock(map->lock_arg);
1329 
1330 	return ret;
1331 }
1332 EXPORT_SYMBOL_GPL(regmap_raw_write_async);
1333 
1334 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
1335 			    unsigned int val_len)
1336 {
1337 	struct regmap_range_node *range;
1338 	u8 *u8 = map->work_buf;
1339 	int ret;
1340 
1341 	BUG_ON(!map->bus);
1342 
1343 	range = _regmap_range_lookup(map, reg);
1344 	if (range) {
1345 		ret = _regmap_select_page(map, &reg, range,
1346 					  val_len / map->format.val_bytes);
1347 		if (ret != 0)
1348 			return ret;
1349 	}
1350 
1351 	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1352 
1353 	/*
1354 	 * Some buses or devices flag reads by setting the high bits in the
1355 	 * register addresss; since it's always the high bits for all
1356 	 * current formats we can do this here rather than in
1357 	 * formatting.  This may break if we get interesting formats.
1358 	 */
1359 	u8[0] |= map->read_flag_mask;
1360 
1361 	trace_regmap_hw_read_start(map->dev, reg,
1362 				   val_len / map->format.val_bytes);
1363 
1364 	ret = map->bus->read(map->bus_context, map->work_buf,
1365 			     map->format.reg_bytes + map->format.pad_bytes,
1366 			     val, val_len);
1367 
1368 	trace_regmap_hw_read_done(map->dev, reg,
1369 				  val_len / map->format.val_bytes);
1370 
1371 	return ret;
1372 }
1373 
1374 static int _regmap_bus_read(void *context, unsigned int reg,
1375 			    unsigned int *val)
1376 {
1377 	int ret;
1378 	struct regmap *map = context;
1379 
1380 	if (!map->format.parse_val)
1381 		return -EINVAL;
1382 
1383 	ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes);
1384 	if (ret == 0)
1385 		*val = map->format.parse_val(map->work_buf);
1386 
1387 	return ret;
1388 }
1389 
1390 static int _regmap_read(struct regmap *map, unsigned int reg,
1391 			unsigned int *val)
1392 {
1393 	int ret;
1394 	void *context = _regmap_map_get_context(map);
1395 
1396 	BUG_ON(!map->reg_read);
1397 
1398 	if (!map->cache_bypass) {
1399 		ret = regcache_read(map, reg, val);
1400 		if (ret == 0)
1401 			return 0;
1402 	}
1403 
1404 	if (map->cache_only)
1405 		return -EBUSY;
1406 
1407 	ret = map->reg_read(context, reg, val);
1408 	if (ret == 0) {
1409 #ifdef LOG_DEVICE
1410 		if (strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1411 			dev_info(map->dev, "%x => %x\n", reg, *val);
1412 #endif
1413 
1414 		trace_regmap_reg_read(map->dev, reg, *val);
1415 
1416 		if (!map->cache_bypass)
1417 			regcache_write(map, reg, *val);
1418 	}
1419 
1420 	return ret;
1421 }
1422 
1423 /**
1424  * regmap_read(): Read a value from a single register
1425  *
1426  * @map: Register map to write to
1427  * @reg: Register to be read from
1428  * @val: Pointer to store read value
1429  *
1430  * A value of zero will be returned on success, a negative errno will
1431  * be returned in error cases.
1432  */
1433 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
1434 {
1435 	int ret;
1436 
1437 	if (reg % map->reg_stride)
1438 		return -EINVAL;
1439 
1440 	map->lock(map->lock_arg);
1441 
1442 	ret = _regmap_read(map, reg, val);
1443 
1444 	map->unlock(map->lock_arg);
1445 
1446 	return ret;
1447 }
1448 EXPORT_SYMBOL_GPL(regmap_read);
1449 
1450 /**
1451  * regmap_raw_read(): Read raw data from the device
1452  *
1453  * @map: Register map to write to
1454  * @reg: First register to be read from
1455  * @val: Pointer to store read value
1456  * @val_len: Size of data to read
1457  *
1458  * A value of zero will be returned on success, a negative errno will
1459  * be returned in error cases.
1460  */
1461 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
1462 		    size_t val_len)
1463 {
1464 	size_t val_bytes = map->format.val_bytes;
1465 	size_t val_count = val_len / val_bytes;
1466 	unsigned int v;
1467 	int ret, i;
1468 
1469 	if (!map->bus)
1470 		return -EINVAL;
1471 	if (val_len % map->format.val_bytes)
1472 		return -EINVAL;
1473 	if (reg % map->reg_stride)
1474 		return -EINVAL;
1475 
1476 	map->lock(map->lock_arg);
1477 
1478 	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
1479 	    map->cache_type == REGCACHE_NONE) {
1480 		/* Physical block read if there's no cache involved */
1481 		ret = _regmap_raw_read(map, reg, val, val_len);
1482 
1483 	} else {
1484 		/* Otherwise go word by word for the cache; should be low
1485 		 * cost as we expect to hit the cache.
1486 		 */
1487 		for (i = 0; i < val_count; i++) {
1488 			ret = _regmap_read(map, reg + (i * map->reg_stride),
1489 					   &v);
1490 			if (ret != 0)
1491 				goto out;
1492 
1493 			map->format.format_val(val + (i * val_bytes), v, 0);
1494 		}
1495 	}
1496 
1497  out:
1498 	map->unlock(map->lock_arg);
1499 
1500 	return ret;
1501 }
1502 EXPORT_SYMBOL_GPL(regmap_raw_read);
1503 
1504 /**
1505  * regmap_bulk_read(): Read multiple registers from the device
1506  *
1507  * @map: Register map to write to
1508  * @reg: First register to be read from
1509  * @val: Pointer to store read value, in native register size for device
1510  * @val_count: Number of registers to read
1511  *
1512  * A value of zero will be returned on success, a negative errno will
1513  * be returned in error cases.
1514  */
1515 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
1516 		     size_t val_count)
1517 {
1518 	int ret, i;
1519 	size_t val_bytes = map->format.val_bytes;
1520 	bool vol = regmap_volatile_range(map, reg, val_count);
1521 
1522 	if (!map->bus)
1523 		return -EINVAL;
1524 	if (!map->format.parse_val)
1525 		return -EINVAL;
1526 	if (reg % map->reg_stride)
1527 		return -EINVAL;
1528 
1529 	if (vol || map->cache_type == REGCACHE_NONE) {
1530 		/*
1531 		 * Some devices does not support bulk read, for
1532 		 * them we have a series of single read operations.
1533 		 */
1534 		if (map->use_single_rw) {
1535 			for (i = 0; i < val_count; i++) {
1536 				ret = regmap_raw_read(map,
1537 						reg + (i * map->reg_stride),
1538 						val + (i * val_bytes),
1539 						val_bytes);
1540 				if (ret != 0)
1541 					return ret;
1542 			}
1543 		} else {
1544 			ret = regmap_raw_read(map, reg, val,
1545 					      val_bytes * val_count);
1546 			if (ret != 0)
1547 				return ret;
1548 		}
1549 
1550 		for (i = 0; i < val_count * val_bytes; i += val_bytes)
1551 			map->format.parse_val(val + i);
1552 	} else {
1553 		for (i = 0; i < val_count; i++) {
1554 			unsigned int ival;
1555 			ret = regmap_read(map, reg + (i * map->reg_stride),
1556 					  &ival);
1557 			if (ret != 0)
1558 				return ret;
1559 			memcpy(val + (i * val_bytes), &ival, val_bytes);
1560 		}
1561 	}
1562 
1563 	return 0;
1564 }
1565 EXPORT_SYMBOL_GPL(regmap_bulk_read);
1566 
1567 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
1568 			       unsigned int mask, unsigned int val,
1569 			       bool *change)
1570 {
1571 	int ret;
1572 	unsigned int tmp, orig;
1573 
1574 	ret = _regmap_read(map, reg, &orig);
1575 	if (ret != 0)
1576 		return ret;
1577 
1578 	tmp = orig & ~mask;
1579 	tmp |= val & mask;
1580 
1581 	if (tmp != orig) {
1582 		ret = _regmap_write(map, reg, tmp);
1583 		*change = true;
1584 	} else {
1585 		*change = false;
1586 	}
1587 
1588 	return ret;
1589 }
1590 
1591 /**
1592  * regmap_update_bits: Perform a read/modify/write cycle on the register map
1593  *
1594  * @map: Register map to update
1595  * @reg: Register to update
1596  * @mask: Bitmask to change
1597  * @val: New value for bitmask
1598  *
1599  * Returns zero for success, a negative number on error.
1600  */
1601 int regmap_update_bits(struct regmap *map, unsigned int reg,
1602 		       unsigned int mask, unsigned int val)
1603 {
1604 	bool change;
1605 	int ret;
1606 
1607 	map->lock(map->lock_arg);
1608 	ret = _regmap_update_bits(map, reg, mask, val, &change);
1609 	map->unlock(map->lock_arg);
1610 
1611 	return ret;
1612 }
1613 EXPORT_SYMBOL_GPL(regmap_update_bits);
1614 
1615 /**
1616  * regmap_update_bits_check: Perform a read/modify/write cycle on the
1617  *                           register map and report if updated
1618  *
1619  * @map: Register map to update
1620  * @reg: Register to update
1621  * @mask: Bitmask to change
1622  * @val: New value for bitmask
1623  * @change: Boolean indicating if a write was done
1624  *
1625  * Returns zero for success, a negative number on error.
1626  */
1627 int regmap_update_bits_check(struct regmap *map, unsigned int reg,
1628 			     unsigned int mask, unsigned int val,
1629 			     bool *change)
1630 {
1631 	int ret;
1632 
1633 	map->lock(map->lock_arg);
1634 	ret = _regmap_update_bits(map, reg, mask, val, change);
1635 	map->unlock(map->lock_arg);
1636 	return ret;
1637 }
1638 EXPORT_SYMBOL_GPL(regmap_update_bits_check);
1639 
1640 void regmap_async_complete_cb(struct regmap_async *async, int ret)
1641 {
1642 	struct regmap *map = async->map;
1643 	bool wake;
1644 
1645 	spin_lock(&map->async_lock);
1646 
1647 	list_del(&async->list);
1648 	wake = list_empty(&map->async_list);
1649 
1650 	if (ret != 0)
1651 		map->async_ret = ret;
1652 
1653 	spin_unlock(&map->async_lock);
1654 
1655 	schedule_work(&async->cleanup);
1656 
1657 	if (wake)
1658 		wake_up(&map->async_waitq);
1659 }
1660 EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
1661 
1662 static int regmap_async_is_done(struct regmap *map)
1663 {
1664 	unsigned long flags;
1665 	int ret;
1666 
1667 	spin_lock_irqsave(&map->async_lock, flags);
1668 	ret = list_empty(&map->async_list);
1669 	spin_unlock_irqrestore(&map->async_lock, flags);
1670 
1671 	return ret;
1672 }
1673 
1674 /**
1675  * regmap_async_complete: Ensure all asynchronous I/O has completed.
1676  *
1677  * @map: Map to operate on.
1678  *
1679  * Blocks until any pending asynchronous I/O has completed.  Returns
1680  * an error code for any failed I/O operations.
1681  */
1682 int regmap_async_complete(struct regmap *map)
1683 {
1684 	unsigned long flags;
1685 	int ret;
1686 
1687 	/* Nothing to do with no async support */
1688 	if (!map->bus->async_write)
1689 		return 0;
1690 
1691 	wait_event(map->async_waitq, regmap_async_is_done(map));
1692 
1693 	spin_lock_irqsave(&map->async_lock, flags);
1694 	ret = map->async_ret;
1695 	map->async_ret = 0;
1696 	spin_unlock_irqrestore(&map->async_lock, flags);
1697 
1698 	return ret;
1699 }
1700 EXPORT_SYMBOL_GPL(regmap_async_complete);
1701 
1702 /**
1703  * regmap_register_patch: Register and apply register updates to be applied
1704  *                        on device initialistion
1705  *
1706  * @map: Register map to apply updates to.
1707  * @regs: Values to update.
1708  * @num_regs: Number of entries in regs.
1709  *
1710  * Register a set of register updates to be applied to the device
1711  * whenever the device registers are synchronised with the cache and
1712  * apply them immediately.  Typically this is used to apply
1713  * corrections to be applied to the device defaults on startup, such
1714  * as the updates some vendors provide to undocumented registers.
1715  */
1716 int regmap_register_patch(struct regmap *map, const struct reg_default *regs,
1717 			  int num_regs)
1718 {
1719 	int i, ret;
1720 	bool bypass;
1721 
1722 	/* If needed the implementation can be extended to support this */
1723 	if (map->patch)
1724 		return -EBUSY;
1725 
1726 	map->lock(map->lock_arg);
1727 
1728 	bypass = map->cache_bypass;
1729 
1730 	map->cache_bypass = true;
1731 
1732 	/* Write out first; it's useful to apply even if we fail later. */
1733 	for (i = 0; i < num_regs; i++) {
1734 		ret = _regmap_write(map, regs[i].reg, regs[i].def);
1735 		if (ret != 0) {
1736 			dev_err(map->dev, "Failed to write %x = %x: %d\n",
1737 				regs[i].reg, regs[i].def, ret);
1738 			goto out;
1739 		}
1740 	}
1741 
1742 	map->patch = kcalloc(num_regs, sizeof(struct reg_default), GFP_KERNEL);
1743 	if (map->patch != NULL) {
1744 		memcpy(map->patch, regs,
1745 		       num_regs * sizeof(struct reg_default));
1746 		map->patch_regs = num_regs;
1747 	} else {
1748 		ret = -ENOMEM;
1749 	}
1750 
1751 out:
1752 	map->cache_bypass = bypass;
1753 
1754 	map->unlock(map->lock_arg);
1755 
1756 	return ret;
1757 }
1758 EXPORT_SYMBOL_GPL(regmap_register_patch);
1759 
1760 /*
1761  * regmap_get_val_bytes(): Report the size of a register value
1762  *
1763  * Report the size of a register value, mainly intended to for use by
1764  * generic infrastructure built on top of regmap.
1765  */
1766 int regmap_get_val_bytes(struct regmap *map)
1767 {
1768 	if (map->format.format_write)
1769 		return -EINVAL;
1770 
1771 	return map->format.val_bytes;
1772 }
1773 EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
1774 
1775 static int __init regmap_initcall(void)
1776 {
1777 	regmap_debugfs_initcall();
1778 
1779 	return 0;
1780 }
1781 postcore_initcall(regmap_initcall);
1782