xref: /linux/drivers/base/regmap/regmap.c (revision c6ed444fd6fffaaf2e3857d926ed18bf3df81e8e)
1 /*
2  * Register map access API
3  *
4  * Copyright 2011 Wolfson Microelectronics plc
5  *
6  * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/mutex.h>
17 #include <linux/err.h>
18 #include <linux/of.h>
19 #include <linux/rbtree.h>
20 #include <linux/sched.h>
21 #include <linux/delay.h>
22 #include <linux/log2.h>
23 #include <linux/hwspinlock.h>
24 
25 #define CREATE_TRACE_POINTS
26 #include "trace.h"
27 
28 #include "internal.h"
29 
30 /*
31  * Sometimes for failures during very early init the trace
32  * infrastructure isn't available early enough to be used.  For this
33  * sort of problem defining LOG_DEVICE will add printks for basic
34  * register I/O on a specific device.
35  */
36 #undef LOG_DEVICE
37 
38 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
39 			       unsigned int mask, unsigned int val,
40 			       bool *change, bool force_write);
41 
42 static int _regmap_bus_reg_read(void *context, unsigned int reg,
43 				unsigned int *val);
44 static int _regmap_bus_read(void *context, unsigned int reg,
45 			    unsigned int *val);
46 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
47 				       unsigned int val);
48 static int _regmap_bus_reg_write(void *context, unsigned int reg,
49 				 unsigned int val);
50 static int _regmap_bus_raw_write(void *context, unsigned int reg,
51 				 unsigned int val);
52 
53 bool regmap_reg_in_ranges(unsigned int reg,
54 			  const struct regmap_range *ranges,
55 			  unsigned int nranges)
56 {
57 	const struct regmap_range *r;
58 	int i;
59 
60 	for (i = 0, r = ranges; i < nranges; i++, r++)
61 		if (regmap_reg_in_range(reg, r))
62 			return true;
63 	return false;
64 }
65 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
66 
67 bool regmap_check_range_table(struct regmap *map, unsigned int reg,
68 			      const struct regmap_access_table *table)
69 {
70 	/* Check "no ranges" first */
71 	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
72 		return false;
73 
74 	/* In case zero "yes ranges" are supplied, any reg is OK */
75 	if (!table->n_yes_ranges)
76 		return true;
77 
78 	return regmap_reg_in_ranges(reg, table->yes_ranges,
79 				    table->n_yes_ranges);
80 }
81 EXPORT_SYMBOL_GPL(regmap_check_range_table);
82 
83 bool regmap_writeable(struct regmap *map, unsigned int reg)
84 {
85 	if (map->max_register && reg > map->max_register)
86 		return false;
87 
88 	if (map->writeable_reg)
89 		return map->writeable_reg(map->dev, reg);
90 
91 	if (map->wr_table)
92 		return regmap_check_range_table(map, reg, map->wr_table);
93 
94 	return true;
95 }
96 
97 bool regmap_cached(struct regmap *map, unsigned int reg)
98 {
99 	int ret;
100 	unsigned int val;
101 
102 	if (map->cache_type == REGCACHE_NONE)
103 		return false;
104 
105 	if (!map->cache_ops)
106 		return false;
107 
108 	if (map->max_register && reg > map->max_register)
109 		return false;
110 
111 	map->lock(map->lock_arg);
112 	ret = regcache_read(map, reg, &val);
113 	map->unlock(map->lock_arg);
114 	if (ret)
115 		return false;
116 
117 	return true;
118 }
119 
120 bool regmap_readable(struct regmap *map, unsigned int reg)
121 {
122 	if (!map->reg_read)
123 		return false;
124 
125 	if (map->max_register && reg > map->max_register)
126 		return false;
127 
128 	if (map->format.format_write)
129 		return false;
130 
131 	if (map->readable_reg)
132 		return map->readable_reg(map->dev, reg);
133 
134 	if (map->rd_table)
135 		return regmap_check_range_table(map, reg, map->rd_table);
136 
137 	return true;
138 }
139 
140 bool regmap_volatile(struct regmap *map, unsigned int reg)
141 {
142 	if (!map->format.format_write && !regmap_readable(map, reg))
143 		return false;
144 
145 	if (map->volatile_reg)
146 		return map->volatile_reg(map->dev, reg);
147 
148 	if (map->volatile_table)
149 		return regmap_check_range_table(map, reg, map->volatile_table);
150 
151 	if (map->cache_ops)
152 		return false;
153 	else
154 		return true;
155 }
156 
157 bool regmap_precious(struct regmap *map, unsigned int reg)
158 {
159 	if (!regmap_readable(map, reg))
160 		return false;
161 
162 	if (map->precious_reg)
163 		return map->precious_reg(map->dev, reg);
164 
165 	if (map->precious_table)
166 		return regmap_check_range_table(map, reg, map->precious_table);
167 
168 	return false;
169 }
170 
171 bool regmap_readable_noinc(struct regmap *map, unsigned int reg)
172 {
173 	if (map->readable_noinc_reg)
174 		return map->readable_noinc_reg(map->dev, reg);
175 
176 	if (map->rd_noinc_table)
177 		return regmap_check_range_table(map, reg, map->rd_noinc_table);
178 
179 	return true;
180 }
181 
182 static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
183 	size_t num)
184 {
185 	unsigned int i;
186 
187 	for (i = 0; i < num; i++)
188 		if (!regmap_volatile(map, reg + regmap_get_offset(map, i)))
189 			return false;
190 
191 	return true;
192 }
193 
194 static void regmap_format_2_6_write(struct regmap *map,
195 				     unsigned int reg, unsigned int val)
196 {
197 	u8 *out = map->work_buf;
198 
199 	*out = (reg << 6) | val;
200 }
201 
202 static void regmap_format_4_12_write(struct regmap *map,
203 				     unsigned int reg, unsigned int val)
204 {
205 	__be16 *out = map->work_buf;
206 	*out = cpu_to_be16((reg << 12) | val);
207 }
208 
209 static void regmap_format_7_9_write(struct regmap *map,
210 				    unsigned int reg, unsigned int val)
211 {
212 	__be16 *out = map->work_buf;
213 	*out = cpu_to_be16((reg << 9) | val);
214 }
215 
216 static void regmap_format_10_14_write(struct regmap *map,
217 				    unsigned int reg, unsigned int val)
218 {
219 	u8 *out = map->work_buf;
220 
221 	out[2] = val;
222 	out[1] = (val >> 8) | (reg << 6);
223 	out[0] = reg >> 2;
224 }
225 
226 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
227 {
228 	u8 *b = buf;
229 
230 	b[0] = val << shift;
231 }
232 
233 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
234 {
235 	__be16 *b = buf;
236 
237 	b[0] = cpu_to_be16(val << shift);
238 }
239 
240 static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
241 {
242 	__le16 *b = buf;
243 
244 	b[0] = cpu_to_le16(val << shift);
245 }
246 
247 static void regmap_format_16_native(void *buf, unsigned int val,
248 				    unsigned int shift)
249 {
250 	*(u16 *)buf = val << shift;
251 }
252 
253 static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
254 {
255 	u8 *b = buf;
256 
257 	val <<= shift;
258 
259 	b[0] = val >> 16;
260 	b[1] = val >> 8;
261 	b[2] = val;
262 }
263 
264 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
265 {
266 	__be32 *b = buf;
267 
268 	b[0] = cpu_to_be32(val << shift);
269 }
270 
271 static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
272 {
273 	__le32 *b = buf;
274 
275 	b[0] = cpu_to_le32(val << shift);
276 }
277 
278 static void regmap_format_32_native(void *buf, unsigned int val,
279 				    unsigned int shift)
280 {
281 	*(u32 *)buf = val << shift;
282 }
283 
284 #ifdef CONFIG_64BIT
285 static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
286 {
287 	__be64 *b = buf;
288 
289 	b[0] = cpu_to_be64((u64)val << shift);
290 }
291 
292 static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
293 {
294 	__le64 *b = buf;
295 
296 	b[0] = cpu_to_le64((u64)val << shift);
297 }
298 
299 static void regmap_format_64_native(void *buf, unsigned int val,
300 				    unsigned int shift)
301 {
302 	*(u64 *)buf = (u64)val << shift;
303 }
304 #endif
305 
306 static void regmap_parse_inplace_noop(void *buf)
307 {
308 }
309 
310 static unsigned int regmap_parse_8(const void *buf)
311 {
312 	const u8 *b = buf;
313 
314 	return b[0];
315 }
316 
317 static unsigned int regmap_parse_16_be(const void *buf)
318 {
319 	const __be16 *b = buf;
320 
321 	return be16_to_cpu(b[0]);
322 }
323 
324 static unsigned int regmap_parse_16_le(const void *buf)
325 {
326 	const __le16 *b = buf;
327 
328 	return le16_to_cpu(b[0]);
329 }
330 
331 static void regmap_parse_16_be_inplace(void *buf)
332 {
333 	__be16 *b = buf;
334 
335 	b[0] = be16_to_cpu(b[0]);
336 }
337 
338 static void regmap_parse_16_le_inplace(void *buf)
339 {
340 	__le16 *b = buf;
341 
342 	b[0] = le16_to_cpu(b[0]);
343 }
344 
345 static unsigned int regmap_parse_16_native(const void *buf)
346 {
347 	return *(u16 *)buf;
348 }
349 
350 static unsigned int regmap_parse_24(const void *buf)
351 {
352 	const u8 *b = buf;
353 	unsigned int ret = b[2];
354 	ret |= ((unsigned int)b[1]) << 8;
355 	ret |= ((unsigned int)b[0]) << 16;
356 
357 	return ret;
358 }
359 
360 static unsigned int regmap_parse_32_be(const void *buf)
361 {
362 	const __be32 *b = buf;
363 
364 	return be32_to_cpu(b[0]);
365 }
366 
367 static unsigned int regmap_parse_32_le(const void *buf)
368 {
369 	const __le32 *b = buf;
370 
371 	return le32_to_cpu(b[0]);
372 }
373 
374 static void regmap_parse_32_be_inplace(void *buf)
375 {
376 	__be32 *b = buf;
377 
378 	b[0] = be32_to_cpu(b[0]);
379 }
380 
381 static void regmap_parse_32_le_inplace(void *buf)
382 {
383 	__le32 *b = buf;
384 
385 	b[0] = le32_to_cpu(b[0]);
386 }
387 
388 static unsigned int regmap_parse_32_native(const void *buf)
389 {
390 	return *(u32 *)buf;
391 }
392 
393 #ifdef CONFIG_64BIT
394 static unsigned int regmap_parse_64_be(const void *buf)
395 {
396 	const __be64 *b = buf;
397 
398 	return be64_to_cpu(b[0]);
399 }
400 
401 static unsigned int regmap_parse_64_le(const void *buf)
402 {
403 	const __le64 *b = buf;
404 
405 	return le64_to_cpu(b[0]);
406 }
407 
408 static void regmap_parse_64_be_inplace(void *buf)
409 {
410 	__be64 *b = buf;
411 
412 	b[0] = be64_to_cpu(b[0]);
413 }
414 
415 static void regmap_parse_64_le_inplace(void *buf)
416 {
417 	__le64 *b = buf;
418 
419 	b[0] = le64_to_cpu(b[0]);
420 }
421 
422 static unsigned int regmap_parse_64_native(const void *buf)
423 {
424 	return *(u64 *)buf;
425 }
426 #endif
427 
428 static void regmap_lock_hwlock(void *__map)
429 {
430 	struct regmap *map = __map;
431 
432 	hwspin_lock_timeout(map->hwlock, UINT_MAX);
433 }
434 
435 static void regmap_lock_hwlock_irq(void *__map)
436 {
437 	struct regmap *map = __map;
438 
439 	hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
440 }
441 
442 static void regmap_lock_hwlock_irqsave(void *__map)
443 {
444 	struct regmap *map = __map;
445 
446 	hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
447 				    &map->spinlock_flags);
448 }
449 
450 static void regmap_unlock_hwlock(void *__map)
451 {
452 	struct regmap *map = __map;
453 
454 	hwspin_unlock(map->hwlock);
455 }
456 
457 static void regmap_unlock_hwlock_irq(void *__map)
458 {
459 	struct regmap *map = __map;
460 
461 	hwspin_unlock_irq(map->hwlock);
462 }
463 
464 static void regmap_unlock_hwlock_irqrestore(void *__map)
465 {
466 	struct regmap *map = __map;
467 
468 	hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
469 }
470 
471 static void regmap_lock_unlock_none(void *__map)
472 {
473 
474 }
475 
476 static void regmap_lock_mutex(void *__map)
477 {
478 	struct regmap *map = __map;
479 	mutex_lock(&map->mutex);
480 }
481 
482 static void regmap_unlock_mutex(void *__map)
483 {
484 	struct regmap *map = __map;
485 	mutex_unlock(&map->mutex);
486 }
487 
488 static void regmap_lock_spinlock(void *__map)
489 __acquires(&map->spinlock)
490 {
491 	struct regmap *map = __map;
492 	unsigned long flags;
493 
494 	spin_lock_irqsave(&map->spinlock, flags);
495 	map->spinlock_flags = flags;
496 }
497 
498 static void regmap_unlock_spinlock(void *__map)
499 __releases(&map->spinlock)
500 {
501 	struct regmap *map = __map;
502 	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
503 }
504 
505 static void dev_get_regmap_release(struct device *dev, void *res)
506 {
507 	/*
508 	 * We don't actually have anything to do here; the goal here
509 	 * is not to manage the regmap but to provide a simple way to
510 	 * get the regmap back given a struct device.
511 	 */
512 }
513 
514 static bool _regmap_range_add(struct regmap *map,
515 			      struct regmap_range_node *data)
516 {
517 	struct rb_root *root = &map->range_tree;
518 	struct rb_node **new = &(root->rb_node), *parent = NULL;
519 
520 	while (*new) {
521 		struct regmap_range_node *this =
522 			rb_entry(*new, struct regmap_range_node, node);
523 
524 		parent = *new;
525 		if (data->range_max < this->range_min)
526 			new = &((*new)->rb_left);
527 		else if (data->range_min > this->range_max)
528 			new = &((*new)->rb_right);
529 		else
530 			return false;
531 	}
532 
533 	rb_link_node(&data->node, parent, new);
534 	rb_insert_color(&data->node, root);
535 
536 	return true;
537 }
538 
539 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
540 						      unsigned int reg)
541 {
542 	struct rb_node *node = map->range_tree.rb_node;
543 
544 	while (node) {
545 		struct regmap_range_node *this =
546 			rb_entry(node, struct regmap_range_node, node);
547 
548 		if (reg < this->range_min)
549 			node = node->rb_left;
550 		else if (reg > this->range_max)
551 			node = node->rb_right;
552 		else
553 			return this;
554 	}
555 
556 	return NULL;
557 }
558 
559 static void regmap_range_exit(struct regmap *map)
560 {
561 	struct rb_node *next;
562 	struct regmap_range_node *range_node;
563 
564 	next = rb_first(&map->range_tree);
565 	while (next) {
566 		range_node = rb_entry(next, struct regmap_range_node, node);
567 		next = rb_next(&range_node->node);
568 		rb_erase(&range_node->node, &map->range_tree);
569 		kfree(range_node);
570 	}
571 
572 	kfree(map->selector_work_buf);
573 }
574 
575 int regmap_attach_dev(struct device *dev, struct regmap *map,
576 		      const struct regmap_config *config)
577 {
578 	struct regmap **m;
579 
580 	map->dev = dev;
581 
582 	regmap_debugfs_init(map, config->name);
583 
584 	/* Add a devres resource for dev_get_regmap() */
585 	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
586 	if (!m) {
587 		regmap_debugfs_exit(map);
588 		return -ENOMEM;
589 	}
590 	*m = map;
591 	devres_add(dev, m);
592 
593 	return 0;
594 }
595 EXPORT_SYMBOL_GPL(regmap_attach_dev);
596 
597 static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
598 					const struct regmap_config *config)
599 {
600 	enum regmap_endian endian;
601 
602 	/* Retrieve the endianness specification from the regmap config */
603 	endian = config->reg_format_endian;
604 
605 	/* If the regmap config specified a non-default value, use that */
606 	if (endian != REGMAP_ENDIAN_DEFAULT)
607 		return endian;
608 
609 	/* Retrieve the endianness specification from the bus config */
610 	if (bus && bus->reg_format_endian_default)
611 		endian = bus->reg_format_endian_default;
612 
613 	/* If the bus specified a non-default value, use that */
614 	if (endian != REGMAP_ENDIAN_DEFAULT)
615 		return endian;
616 
617 	/* Use this if no other value was found */
618 	return REGMAP_ENDIAN_BIG;
619 }
620 
621 enum regmap_endian regmap_get_val_endian(struct device *dev,
622 					 const struct regmap_bus *bus,
623 					 const struct regmap_config *config)
624 {
625 	struct device_node *np;
626 	enum regmap_endian endian;
627 
628 	/* Retrieve the endianness specification from the regmap config */
629 	endian = config->val_format_endian;
630 
631 	/* If the regmap config specified a non-default value, use that */
632 	if (endian != REGMAP_ENDIAN_DEFAULT)
633 		return endian;
634 
635 	/* If the dev and dev->of_node exist try to get endianness from DT */
636 	if (dev && dev->of_node) {
637 		np = dev->of_node;
638 
639 		/* Parse the device's DT node for an endianness specification */
640 		if (of_property_read_bool(np, "big-endian"))
641 			endian = REGMAP_ENDIAN_BIG;
642 		else if (of_property_read_bool(np, "little-endian"))
643 			endian = REGMAP_ENDIAN_LITTLE;
644 		else if (of_property_read_bool(np, "native-endian"))
645 			endian = REGMAP_ENDIAN_NATIVE;
646 
647 		/* If the endianness was specified in DT, use that */
648 		if (endian != REGMAP_ENDIAN_DEFAULT)
649 			return endian;
650 	}
651 
652 	/* Retrieve the endianness specification from the bus config */
653 	if (bus && bus->val_format_endian_default)
654 		endian = bus->val_format_endian_default;
655 
656 	/* If the bus specified a non-default value, use that */
657 	if (endian != REGMAP_ENDIAN_DEFAULT)
658 		return endian;
659 
660 	/* Use this if no other value was found */
661 	return REGMAP_ENDIAN_BIG;
662 }
663 EXPORT_SYMBOL_GPL(regmap_get_val_endian);
664 
665 struct regmap *__regmap_init(struct device *dev,
666 			     const struct regmap_bus *bus,
667 			     void *bus_context,
668 			     const struct regmap_config *config,
669 			     struct lock_class_key *lock_key,
670 			     const char *lock_name)
671 {
672 	struct regmap *map;
673 	int ret = -EINVAL;
674 	enum regmap_endian reg_endian, val_endian;
675 	int i, j;
676 
677 	if (!config)
678 		goto err;
679 
680 	map = kzalloc(sizeof(*map), GFP_KERNEL);
681 	if (map == NULL) {
682 		ret = -ENOMEM;
683 		goto err;
684 	}
685 
686 	if (config->name) {
687 		map->name = kstrdup_const(config->name, GFP_KERNEL);
688 		if (!map->name) {
689 			ret = -ENOMEM;
690 			goto err_map;
691 		}
692 	}
693 
694 	if (config->disable_locking) {
695 		map->lock = map->unlock = regmap_lock_unlock_none;
696 		regmap_debugfs_disable(map);
697 	} else if (config->lock && config->unlock) {
698 		map->lock = config->lock;
699 		map->unlock = config->unlock;
700 		map->lock_arg = config->lock_arg;
701 	} else if (config->use_hwlock) {
702 		map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
703 		if (!map->hwlock) {
704 			ret = -ENXIO;
705 			goto err_name;
706 		}
707 
708 		switch (config->hwlock_mode) {
709 		case HWLOCK_IRQSTATE:
710 			map->lock = regmap_lock_hwlock_irqsave;
711 			map->unlock = regmap_unlock_hwlock_irqrestore;
712 			break;
713 		case HWLOCK_IRQ:
714 			map->lock = regmap_lock_hwlock_irq;
715 			map->unlock = regmap_unlock_hwlock_irq;
716 			break;
717 		default:
718 			map->lock = regmap_lock_hwlock;
719 			map->unlock = regmap_unlock_hwlock;
720 			break;
721 		}
722 
723 		map->lock_arg = map;
724 	} else {
725 		if ((bus && bus->fast_io) ||
726 		    config->fast_io) {
727 			spin_lock_init(&map->spinlock);
728 			map->lock = regmap_lock_spinlock;
729 			map->unlock = regmap_unlock_spinlock;
730 			lockdep_set_class_and_name(&map->spinlock,
731 						   lock_key, lock_name);
732 		} else {
733 			mutex_init(&map->mutex);
734 			map->lock = regmap_lock_mutex;
735 			map->unlock = regmap_unlock_mutex;
736 			lockdep_set_class_and_name(&map->mutex,
737 						   lock_key, lock_name);
738 		}
739 		map->lock_arg = map;
740 	}
741 
742 	/*
743 	 * When we write in fast-paths with regmap_bulk_write() don't allocate
744 	 * scratch buffers with sleeping allocations.
745 	 */
746 	if ((bus && bus->fast_io) || config->fast_io)
747 		map->alloc_flags = GFP_ATOMIC;
748 	else
749 		map->alloc_flags = GFP_KERNEL;
750 
751 	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
752 	map->format.pad_bytes = config->pad_bits / 8;
753 	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
754 	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
755 			config->val_bits + config->pad_bits, 8);
756 	map->reg_shift = config->pad_bits % 8;
757 	if (config->reg_stride)
758 		map->reg_stride = config->reg_stride;
759 	else
760 		map->reg_stride = 1;
761 	if (is_power_of_2(map->reg_stride))
762 		map->reg_stride_order = ilog2(map->reg_stride);
763 	else
764 		map->reg_stride_order = -1;
765 	map->use_single_read = config->use_single_rw || !bus || !bus->read;
766 	map->use_single_write = config->use_single_rw || !bus || !bus->write;
767 	map->can_multi_write = config->can_multi_write && bus && bus->write;
768 	if (bus) {
769 		map->max_raw_read = bus->max_raw_read;
770 		map->max_raw_write = bus->max_raw_write;
771 	}
772 	map->dev = dev;
773 	map->bus = bus;
774 	map->bus_context = bus_context;
775 	map->max_register = config->max_register;
776 	map->wr_table = config->wr_table;
777 	map->rd_table = config->rd_table;
778 	map->volatile_table = config->volatile_table;
779 	map->precious_table = config->precious_table;
780 	map->rd_noinc_table = config->rd_noinc_table;
781 	map->writeable_reg = config->writeable_reg;
782 	map->readable_reg = config->readable_reg;
783 	map->volatile_reg = config->volatile_reg;
784 	map->precious_reg = config->precious_reg;
785 	map->readable_noinc_reg = config->readable_noinc_reg;
786 	map->cache_type = config->cache_type;
787 
788 	spin_lock_init(&map->async_lock);
789 	INIT_LIST_HEAD(&map->async_list);
790 	INIT_LIST_HEAD(&map->async_free);
791 	init_waitqueue_head(&map->async_waitq);
792 
793 	if (config->read_flag_mask ||
794 	    config->write_flag_mask ||
795 	    config->zero_flag_mask) {
796 		map->read_flag_mask = config->read_flag_mask;
797 		map->write_flag_mask = config->write_flag_mask;
798 	} else if (bus) {
799 		map->read_flag_mask = bus->read_flag_mask;
800 	}
801 
802 	if (!bus) {
803 		map->reg_read  = config->reg_read;
804 		map->reg_write = config->reg_write;
805 
806 		map->defer_caching = false;
807 		goto skip_format_initialization;
808 	} else if (!bus->read || !bus->write) {
809 		map->reg_read = _regmap_bus_reg_read;
810 		map->reg_write = _regmap_bus_reg_write;
811 
812 		map->defer_caching = false;
813 		goto skip_format_initialization;
814 	} else {
815 		map->reg_read  = _regmap_bus_read;
816 		map->reg_update_bits = bus->reg_update_bits;
817 	}
818 
819 	reg_endian = regmap_get_reg_endian(bus, config);
820 	val_endian = regmap_get_val_endian(dev, bus, config);
821 
822 	switch (config->reg_bits + map->reg_shift) {
823 	case 2:
824 		switch (config->val_bits) {
825 		case 6:
826 			map->format.format_write = regmap_format_2_6_write;
827 			break;
828 		default:
829 			goto err_hwlock;
830 		}
831 		break;
832 
833 	case 4:
834 		switch (config->val_bits) {
835 		case 12:
836 			map->format.format_write = regmap_format_4_12_write;
837 			break;
838 		default:
839 			goto err_hwlock;
840 		}
841 		break;
842 
843 	case 7:
844 		switch (config->val_bits) {
845 		case 9:
846 			map->format.format_write = regmap_format_7_9_write;
847 			break;
848 		default:
849 			goto err_hwlock;
850 		}
851 		break;
852 
853 	case 10:
854 		switch (config->val_bits) {
855 		case 14:
856 			map->format.format_write = regmap_format_10_14_write;
857 			break;
858 		default:
859 			goto err_hwlock;
860 		}
861 		break;
862 
863 	case 8:
864 		map->format.format_reg = regmap_format_8;
865 		break;
866 
867 	case 16:
868 		switch (reg_endian) {
869 		case REGMAP_ENDIAN_BIG:
870 			map->format.format_reg = regmap_format_16_be;
871 			break;
872 		case REGMAP_ENDIAN_LITTLE:
873 			map->format.format_reg = regmap_format_16_le;
874 			break;
875 		case REGMAP_ENDIAN_NATIVE:
876 			map->format.format_reg = regmap_format_16_native;
877 			break;
878 		default:
879 			goto err_hwlock;
880 		}
881 		break;
882 
883 	case 24:
884 		if (reg_endian != REGMAP_ENDIAN_BIG)
885 			goto err_hwlock;
886 		map->format.format_reg = regmap_format_24;
887 		break;
888 
889 	case 32:
890 		switch (reg_endian) {
891 		case REGMAP_ENDIAN_BIG:
892 			map->format.format_reg = regmap_format_32_be;
893 			break;
894 		case REGMAP_ENDIAN_LITTLE:
895 			map->format.format_reg = regmap_format_32_le;
896 			break;
897 		case REGMAP_ENDIAN_NATIVE:
898 			map->format.format_reg = regmap_format_32_native;
899 			break;
900 		default:
901 			goto err_hwlock;
902 		}
903 		break;
904 
905 #ifdef CONFIG_64BIT
906 	case 64:
907 		switch (reg_endian) {
908 		case REGMAP_ENDIAN_BIG:
909 			map->format.format_reg = regmap_format_64_be;
910 			break;
911 		case REGMAP_ENDIAN_LITTLE:
912 			map->format.format_reg = regmap_format_64_le;
913 			break;
914 		case REGMAP_ENDIAN_NATIVE:
915 			map->format.format_reg = regmap_format_64_native;
916 			break;
917 		default:
918 			goto err_hwlock;
919 		}
920 		break;
921 #endif
922 
923 	default:
924 		goto err_hwlock;
925 	}
926 
927 	if (val_endian == REGMAP_ENDIAN_NATIVE)
928 		map->format.parse_inplace = regmap_parse_inplace_noop;
929 
930 	switch (config->val_bits) {
931 	case 8:
932 		map->format.format_val = regmap_format_8;
933 		map->format.parse_val = regmap_parse_8;
934 		map->format.parse_inplace = regmap_parse_inplace_noop;
935 		break;
936 	case 16:
937 		switch (val_endian) {
938 		case REGMAP_ENDIAN_BIG:
939 			map->format.format_val = regmap_format_16_be;
940 			map->format.parse_val = regmap_parse_16_be;
941 			map->format.parse_inplace = regmap_parse_16_be_inplace;
942 			break;
943 		case REGMAP_ENDIAN_LITTLE:
944 			map->format.format_val = regmap_format_16_le;
945 			map->format.parse_val = regmap_parse_16_le;
946 			map->format.parse_inplace = regmap_parse_16_le_inplace;
947 			break;
948 		case REGMAP_ENDIAN_NATIVE:
949 			map->format.format_val = regmap_format_16_native;
950 			map->format.parse_val = regmap_parse_16_native;
951 			break;
952 		default:
953 			goto err_hwlock;
954 		}
955 		break;
956 	case 24:
957 		if (val_endian != REGMAP_ENDIAN_BIG)
958 			goto err_hwlock;
959 		map->format.format_val = regmap_format_24;
960 		map->format.parse_val = regmap_parse_24;
961 		break;
962 	case 32:
963 		switch (val_endian) {
964 		case REGMAP_ENDIAN_BIG:
965 			map->format.format_val = regmap_format_32_be;
966 			map->format.parse_val = regmap_parse_32_be;
967 			map->format.parse_inplace = regmap_parse_32_be_inplace;
968 			break;
969 		case REGMAP_ENDIAN_LITTLE:
970 			map->format.format_val = regmap_format_32_le;
971 			map->format.parse_val = regmap_parse_32_le;
972 			map->format.parse_inplace = regmap_parse_32_le_inplace;
973 			break;
974 		case REGMAP_ENDIAN_NATIVE:
975 			map->format.format_val = regmap_format_32_native;
976 			map->format.parse_val = regmap_parse_32_native;
977 			break;
978 		default:
979 			goto err_hwlock;
980 		}
981 		break;
982 #ifdef CONFIG_64BIT
983 	case 64:
984 		switch (val_endian) {
985 		case REGMAP_ENDIAN_BIG:
986 			map->format.format_val = regmap_format_64_be;
987 			map->format.parse_val = regmap_parse_64_be;
988 			map->format.parse_inplace = regmap_parse_64_be_inplace;
989 			break;
990 		case REGMAP_ENDIAN_LITTLE:
991 			map->format.format_val = regmap_format_64_le;
992 			map->format.parse_val = regmap_parse_64_le;
993 			map->format.parse_inplace = regmap_parse_64_le_inplace;
994 			break;
995 		case REGMAP_ENDIAN_NATIVE:
996 			map->format.format_val = regmap_format_64_native;
997 			map->format.parse_val = regmap_parse_64_native;
998 			break;
999 		default:
1000 			goto err_hwlock;
1001 		}
1002 		break;
1003 #endif
1004 	}
1005 
1006 	if (map->format.format_write) {
1007 		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
1008 		    (val_endian != REGMAP_ENDIAN_BIG))
1009 			goto err_hwlock;
1010 		map->use_single_write = true;
1011 	}
1012 
1013 	if (!map->format.format_write &&
1014 	    !(map->format.format_reg && map->format.format_val))
1015 		goto err_hwlock;
1016 
1017 	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1018 	if (map->work_buf == NULL) {
1019 		ret = -ENOMEM;
1020 		goto err_hwlock;
1021 	}
1022 
1023 	if (map->format.format_write) {
1024 		map->defer_caching = false;
1025 		map->reg_write = _regmap_bus_formatted_write;
1026 	} else if (map->format.format_val) {
1027 		map->defer_caching = true;
1028 		map->reg_write = _regmap_bus_raw_write;
1029 	}
1030 
1031 skip_format_initialization:
1032 
1033 	map->range_tree = RB_ROOT;
1034 	for (i = 0; i < config->num_ranges; i++) {
1035 		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
1036 		struct regmap_range_node *new;
1037 
1038 		/* Sanity check */
1039 		if (range_cfg->range_max < range_cfg->range_min) {
1040 			dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
1041 				range_cfg->range_max, range_cfg->range_min);
1042 			goto err_range;
1043 		}
1044 
1045 		if (range_cfg->range_max > map->max_register) {
1046 			dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
1047 				range_cfg->range_max, map->max_register);
1048 			goto err_range;
1049 		}
1050 
1051 		if (range_cfg->selector_reg > map->max_register) {
1052 			dev_err(map->dev,
1053 				"Invalid range %d: selector out of map\n", i);
1054 			goto err_range;
1055 		}
1056 
1057 		if (range_cfg->window_len == 0) {
1058 			dev_err(map->dev, "Invalid range %d: window_len 0\n",
1059 				i);
1060 			goto err_range;
1061 		}
1062 
1063 		/* Make sure, that this register range has no selector
1064 		   or data window within its boundary */
1065 		for (j = 0; j < config->num_ranges; j++) {
1066 			unsigned sel_reg = config->ranges[j].selector_reg;
1067 			unsigned win_min = config->ranges[j].window_start;
1068 			unsigned win_max = win_min +
1069 					   config->ranges[j].window_len - 1;
1070 
1071 			/* Allow data window inside its own virtual range */
1072 			if (j == i)
1073 				continue;
1074 
1075 			if (range_cfg->range_min <= sel_reg &&
1076 			    sel_reg <= range_cfg->range_max) {
1077 				dev_err(map->dev,
1078 					"Range %d: selector for %d in window\n",
1079 					i, j);
1080 				goto err_range;
1081 			}
1082 
1083 			if (!(win_max < range_cfg->range_min ||
1084 			      win_min > range_cfg->range_max)) {
1085 				dev_err(map->dev,
1086 					"Range %d: window for %d in window\n",
1087 					i, j);
1088 				goto err_range;
1089 			}
1090 		}
1091 
1092 		new = kzalloc(sizeof(*new), GFP_KERNEL);
1093 		if (new == NULL) {
1094 			ret = -ENOMEM;
1095 			goto err_range;
1096 		}
1097 
1098 		new->map = map;
1099 		new->name = range_cfg->name;
1100 		new->range_min = range_cfg->range_min;
1101 		new->range_max = range_cfg->range_max;
1102 		new->selector_reg = range_cfg->selector_reg;
1103 		new->selector_mask = range_cfg->selector_mask;
1104 		new->selector_shift = range_cfg->selector_shift;
1105 		new->window_start = range_cfg->window_start;
1106 		new->window_len = range_cfg->window_len;
1107 
1108 		if (!_regmap_range_add(map, new)) {
1109 			dev_err(map->dev, "Failed to add range %d\n", i);
1110 			kfree(new);
1111 			goto err_range;
1112 		}
1113 
1114 		if (map->selector_work_buf == NULL) {
1115 			map->selector_work_buf =
1116 				kzalloc(map->format.buf_size, GFP_KERNEL);
1117 			if (map->selector_work_buf == NULL) {
1118 				ret = -ENOMEM;
1119 				goto err_range;
1120 			}
1121 		}
1122 	}
1123 
1124 	ret = regcache_init(map, config);
1125 	if (ret != 0)
1126 		goto err_range;
1127 
1128 	if (dev) {
1129 		ret = regmap_attach_dev(dev, map, config);
1130 		if (ret != 0)
1131 			goto err_regcache;
1132 	} else {
1133 		regmap_debugfs_init(map, config->name);
1134 	}
1135 
1136 	return map;
1137 
1138 err_regcache:
1139 	regcache_exit(map);
1140 err_range:
1141 	regmap_range_exit(map);
1142 	kfree(map->work_buf);
1143 err_hwlock:
1144 	if (map->hwlock)
1145 		hwspin_lock_free(map->hwlock);
1146 err_name:
1147 	kfree_const(map->name);
1148 err_map:
1149 	kfree(map);
1150 err:
1151 	return ERR_PTR(ret);
1152 }
1153 EXPORT_SYMBOL_GPL(__regmap_init);
1154 
1155 static void devm_regmap_release(struct device *dev, void *res)
1156 {
1157 	regmap_exit(*(struct regmap **)res);
1158 }
1159 
1160 struct regmap *__devm_regmap_init(struct device *dev,
1161 				  const struct regmap_bus *bus,
1162 				  void *bus_context,
1163 				  const struct regmap_config *config,
1164 				  struct lock_class_key *lock_key,
1165 				  const char *lock_name)
1166 {
1167 	struct regmap **ptr, *regmap;
1168 
1169 	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1170 	if (!ptr)
1171 		return ERR_PTR(-ENOMEM);
1172 
1173 	regmap = __regmap_init(dev, bus, bus_context, config,
1174 			       lock_key, lock_name);
1175 	if (!IS_ERR(regmap)) {
1176 		*ptr = regmap;
1177 		devres_add(dev, ptr);
1178 	} else {
1179 		devres_free(ptr);
1180 	}
1181 
1182 	return regmap;
1183 }
1184 EXPORT_SYMBOL_GPL(__devm_regmap_init);
1185 
1186 static void regmap_field_init(struct regmap_field *rm_field,
1187 	struct regmap *regmap, struct reg_field reg_field)
1188 {
1189 	rm_field->regmap = regmap;
1190 	rm_field->reg = reg_field.reg;
1191 	rm_field->shift = reg_field.lsb;
1192 	rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1193 	rm_field->id_size = reg_field.id_size;
1194 	rm_field->id_offset = reg_field.id_offset;
1195 }
1196 
1197 /**
1198  * devm_regmap_field_alloc() - Allocate and initialise a register field.
1199  *
1200  * @dev: Device that will be interacted with
1201  * @regmap: regmap bank in which this register field is located.
1202  * @reg_field: Register field with in the bank.
1203  *
1204  * The return value will be an ERR_PTR() on error or a valid pointer
1205  * to a struct regmap_field. The regmap_field will be automatically freed
1206  * by the device management code.
1207  */
1208 struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1209 		struct regmap *regmap, struct reg_field reg_field)
1210 {
1211 	struct regmap_field *rm_field = devm_kzalloc(dev,
1212 					sizeof(*rm_field), GFP_KERNEL);
1213 	if (!rm_field)
1214 		return ERR_PTR(-ENOMEM);
1215 
1216 	regmap_field_init(rm_field, regmap, reg_field);
1217 
1218 	return rm_field;
1219 
1220 }
1221 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1222 
1223 /**
1224  * devm_regmap_field_free() - Free a register field allocated using
1225  *                            devm_regmap_field_alloc.
1226  *
1227  * @dev: Device that will be interacted with
1228  * @field: regmap field which should be freed.
1229  *
1230  * Free register field allocated using devm_regmap_field_alloc(). Usually
1231  * drivers need not call this function, as the memory allocated via devm
1232  * will be freed as per device-driver life-cyle.
1233  */
1234 void devm_regmap_field_free(struct device *dev,
1235 	struct regmap_field *field)
1236 {
1237 	devm_kfree(dev, field);
1238 }
1239 EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1240 
1241 /**
1242  * regmap_field_alloc() - Allocate and initialise a register field.
1243  *
1244  * @regmap: regmap bank in which this register field is located.
1245  * @reg_field: Register field with in the bank.
1246  *
1247  * The return value will be an ERR_PTR() on error or a valid pointer
1248  * to a struct regmap_field. The regmap_field should be freed by the
1249  * user once its finished working with it using regmap_field_free().
1250  */
1251 struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1252 		struct reg_field reg_field)
1253 {
1254 	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1255 
1256 	if (!rm_field)
1257 		return ERR_PTR(-ENOMEM);
1258 
1259 	regmap_field_init(rm_field, regmap, reg_field);
1260 
1261 	return rm_field;
1262 }
1263 EXPORT_SYMBOL_GPL(regmap_field_alloc);
1264 
1265 /**
1266  * regmap_field_free() - Free register field allocated using
1267  *                       regmap_field_alloc.
1268  *
1269  * @field: regmap field which should be freed.
1270  */
1271 void regmap_field_free(struct regmap_field *field)
1272 {
1273 	kfree(field);
1274 }
1275 EXPORT_SYMBOL_GPL(regmap_field_free);
1276 
1277 /**
1278  * regmap_reinit_cache() - Reinitialise the current register cache
1279  *
1280  * @map: Register map to operate on.
1281  * @config: New configuration.  Only the cache data will be used.
1282  *
1283  * Discard any existing register cache for the map and initialize a
1284  * new cache.  This can be used to restore the cache to defaults or to
1285  * update the cache configuration to reflect runtime discovery of the
1286  * hardware.
1287  *
1288  * No explicit locking is done here, the user needs to ensure that
1289  * this function will not race with other calls to regmap.
1290  */
1291 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1292 {
1293 	regcache_exit(map);
1294 	regmap_debugfs_exit(map);
1295 
1296 	map->max_register = config->max_register;
1297 	map->writeable_reg = config->writeable_reg;
1298 	map->readable_reg = config->readable_reg;
1299 	map->volatile_reg = config->volatile_reg;
1300 	map->precious_reg = config->precious_reg;
1301 	map->readable_noinc_reg = config->readable_noinc_reg;
1302 	map->cache_type = config->cache_type;
1303 
1304 	regmap_debugfs_init(map, config->name);
1305 
1306 	map->cache_bypass = false;
1307 	map->cache_only = false;
1308 
1309 	return regcache_init(map, config);
1310 }
1311 EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1312 
1313 /**
1314  * regmap_exit() - Free a previously allocated register map
1315  *
1316  * @map: Register map to operate on.
1317  */
1318 void regmap_exit(struct regmap *map)
1319 {
1320 	struct regmap_async *async;
1321 
1322 	regcache_exit(map);
1323 	regmap_debugfs_exit(map);
1324 	regmap_range_exit(map);
1325 	if (map->bus && map->bus->free_context)
1326 		map->bus->free_context(map->bus_context);
1327 	kfree(map->work_buf);
1328 	while (!list_empty(&map->async_free)) {
1329 		async = list_first_entry_or_null(&map->async_free,
1330 						 struct regmap_async,
1331 						 list);
1332 		list_del(&async->list);
1333 		kfree(async->work_buf);
1334 		kfree(async);
1335 	}
1336 	if (map->hwlock)
1337 		hwspin_lock_free(map->hwlock);
1338 	kfree_const(map->name);
1339 	kfree(map);
1340 }
1341 EXPORT_SYMBOL_GPL(regmap_exit);
1342 
1343 static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1344 {
1345 	struct regmap **r = res;
1346 	if (!r || !*r) {
1347 		WARN_ON(!r || !*r);
1348 		return 0;
1349 	}
1350 
1351 	/* If the user didn't specify a name match any */
1352 	if (data)
1353 		return (*r)->name == data;
1354 	else
1355 		return 1;
1356 }
1357 
1358 /**
1359  * dev_get_regmap() - Obtain the regmap (if any) for a device
1360  *
1361  * @dev: Device to retrieve the map for
1362  * @name: Optional name for the register map, usually NULL.
1363  *
1364  * Returns the regmap for the device if one is present, or NULL.  If
1365  * name is specified then it must match the name specified when
1366  * registering the device, if it is NULL then the first regmap found
1367  * will be used.  Devices with multiple register maps are very rare,
1368  * generic code should normally not need to specify a name.
1369  */
1370 struct regmap *dev_get_regmap(struct device *dev, const char *name)
1371 {
1372 	struct regmap **r = devres_find(dev, dev_get_regmap_release,
1373 					dev_get_regmap_match, (void *)name);
1374 
1375 	if (!r)
1376 		return NULL;
1377 	return *r;
1378 }
1379 EXPORT_SYMBOL_GPL(dev_get_regmap);
1380 
1381 /**
1382  * regmap_get_device() - Obtain the device from a regmap
1383  *
1384  * @map: Register map to operate on.
1385  *
1386  * Returns the underlying device that the regmap has been created for.
1387  */
1388 struct device *regmap_get_device(struct regmap *map)
1389 {
1390 	return map->dev;
1391 }
1392 EXPORT_SYMBOL_GPL(regmap_get_device);
1393 
1394 static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1395 			       struct regmap_range_node *range,
1396 			       unsigned int val_num)
1397 {
1398 	void *orig_work_buf;
1399 	unsigned int win_offset;
1400 	unsigned int win_page;
1401 	bool page_chg;
1402 	int ret;
1403 
1404 	win_offset = (*reg - range->range_min) % range->window_len;
1405 	win_page = (*reg - range->range_min) / range->window_len;
1406 
1407 	if (val_num > 1) {
1408 		/* Bulk write shouldn't cross range boundary */
1409 		if (*reg + val_num - 1 > range->range_max)
1410 			return -EINVAL;
1411 
1412 		/* ... or single page boundary */
1413 		if (val_num > range->window_len - win_offset)
1414 			return -EINVAL;
1415 	}
1416 
1417 	/* It is possible to have selector register inside data window.
1418 	   In that case, selector register is located on every page and
1419 	   it needs no page switching, when accessed alone. */
1420 	if (val_num > 1 ||
1421 	    range->window_start + win_offset != range->selector_reg) {
1422 		/* Use separate work_buf during page switching */
1423 		orig_work_buf = map->work_buf;
1424 		map->work_buf = map->selector_work_buf;
1425 
1426 		ret = _regmap_update_bits(map, range->selector_reg,
1427 					  range->selector_mask,
1428 					  win_page << range->selector_shift,
1429 					  &page_chg, false);
1430 
1431 		map->work_buf = orig_work_buf;
1432 
1433 		if (ret != 0)
1434 			return ret;
1435 	}
1436 
1437 	*reg = range->window_start + win_offset;
1438 
1439 	return 0;
1440 }
1441 
1442 static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1443 					  unsigned long mask)
1444 {
1445 	u8 *buf;
1446 	int i;
1447 
1448 	if (!mask || !map->work_buf)
1449 		return;
1450 
1451 	buf = map->work_buf;
1452 
1453 	for (i = 0; i < max_bytes; i++)
1454 		buf[i] |= (mask >> (8 * i)) & 0xff;
1455 }
1456 
1457 static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg,
1458 				  const void *val, size_t val_len)
1459 {
1460 	struct regmap_range_node *range;
1461 	unsigned long flags;
1462 	void *work_val = map->work_buf + map->format.reg_bytes +
1463 		map->format.pad_bytes;
1464 	void *buf;
1465 	int ret = -ENOTSUPP;
1466 	size_t len;
1467 	int i;
1468 
1469 	WARN_ON(!map->bus);
1470 
1471 	/* Check for unwritable registers before we start */
1472 	if (map->writeable_reg)
1473 		for (i = 0; i < val_len / map->format.val_bytes; i++)
1474 			if (!map->writeable_reg(map->dev,
1475 					       reg + regmap_get_offset(map, i)))
1476 				return -EINVAL;
1477 
1478 	if (!map->cache_bypass && map->format.parse_val) {
1479 		unsigned int ival;
1480 		int val_bytes = map->format.val_bytes;
1481 		for (i = 0; i < val_len / val_bytes; i++) {
1482 			ival = map->format.parse_val(val + (i * val_bytes));
1483 			ret = regcache_write(map,
1484 					     reg + regmap_get_offset(map, i),
1485 					     ival);
1486 			if (ret) {
1487 				dev_err(map->dev,
1488 					"Error in caching of register: %x ret: %d\n",
1489 					reg + i, ret);
1490 				return ret;
1491 			}
1492 		}
1493 		if (map->cache_only) {
1494 			map->cache_dirty = true;
1495 			return 0;
1496 		}
1497 	}
1498 
1499 	range = _regmap_range_lookup(map, reg);
1500 	if (range) {
1501 		int val_num = val_len / map->format.val_bytes;
1502 		int win_offset = (reg - range->range_min) % range->window_len;
1503 		int win_residue = range->window_len - win_offset;
1504 
1505 		/* If the write goes beyond the end of the window split it */
1506 		while (val_num > win_residue) {
1507 			dev_dbg(map->dev, "Writing window %d/%zu\n",
1508 				win_residue, val_len / map->format.val_bytes);
1509 			ret = _regmap_raw_write_impl(map, reg, val,
1510 						     win_residue *
1511 						     map->format.val_bytes);
1512 			if (ret != 0)
1513 				return ret;
1514 
1515 			reg += win_residue;
1516 			val_num -= win_residue;
1517 			val += win_residue * map->format.val_bytes;
1518 			val_len -= win_residue * map->format.val_bytes;
1519 
1520 			win_offset = (reg - range->range_min) %
1521 				range->window_len;
1522 			win_residue = range->window_len - win_offset;
1523 		}
1524 
1525 		ret = _regmap_select_page(map, &reg, range, val_num);
1526 		if (ret != 0)
1527 			return ret;
1528 	}
1529 
1530 	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1531 	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1532 				      map->write_flag_mask);
1533 
1534 	/*
1535 	 * Essentially all I/O mechanisms will be faster with a single
1536 	 * buffer to write.  Since register syncs often generate raw
1537 	 * writes of single registers optimise that case.
1538 	 */
1539 	if (val != work_val && val_len == map->format.val_bytes) {
1540 		memcpy(work_val, val, map->format.val_bytes);
1541 		val = work_val;
1542 	}
1543 
1544 	if (map->async && map->bus->async_write) {
1545 		struct regmap_async *async;
1546 
1547 		trace_regmap_async_write_start(map, reg, val_len);
1548 
1549 		spin_lock_irqsave(&map->async_lock, flags);
1550 		async = list_first_entry_or_null(&map->async_free,
1551 						 struct regmap_async,
1552 						 list);
1553 		if (async)
1554 			list_del(&async->list);
1555 		spin_unlock_irqrestore(&map->async_lock, flags);
1556 
1557 		if (!async) {
1558 			async = map->bus->async_alloc();
1559 			if (!async)
1560 				return -ENOMEM;
1561 
1562 			async->work_buf = kzalloc(map->format.buf_size,
1563 						  GFP_KERNEL | GFP_DMA);
1564 			if (!async->work_buf) {
1565 				kfree(async);
1566 				return -ENOMEM;
1567 			}
1568 		}
1569 
1570 		async->map = map;
1571 
1572 		/* If the caller supplied the value we can use it safely. */
1573 		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1574 		       map->format.reg_bytes + map->format.val_bytes);
1575 
1576 		spin_lock_irqsave(&map->async_lock, flags);
1577 		list_add_tail(&async->list, &map->async_list);
1578 		spin_unlock_irqrestore(&map->async_lock, flags);
1579 
1580 		if (val != work_val)
1581 			ret = map->bus->async_write(map->bus_context,
1582 						    async->work_buf,
1583 						    map->format.reg_bytes +
1584 						    map->format.pad_bytes,
1585 						    val, val_len, async);
1586 		else
1587 			ret = map->bus->async_write(map->bus_context,
1588 						    async->work_buf,
1589 						    map->format.reg_bytes +
1590 						    map->format.pad_bytes +
1591 						    val_len, NULL, 0, async);
1592 
1593 		if (ret != 0) {
1594 			dev_err(map->dev, "Failed to schedule write: %d\n",
1595 				ret);
1596 
1597 			spin_lock_irqsave(&map->async_lock, flags);
1598 			list_move(&async->list, &map->async_free);
1599 			spin_unlock_irqrestore(&map->async_lock, flags);
1600 		}
1601 
1602 		return ret;
1603 	}
1604 
1605 	trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1606 
1607 	/* If we're doing a single register write we can probably just
1608 	 * send the work_buf directly, otherwise try to do a gather
1609 	 * write.
1610 	 */
1611 	if (val == work_val)
1612 		ret = map->bus->write(map->bus_context, map->work_buf,
1613 				      map->format.reg_bytes +
1614 				      map->format.pad_bytes +
1615 				      val_len);
1616 	else if (map->bus->gather_write)
1617 		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1618 					     map->format.reg_bytes +
1619 					     map->format.pad_bytes,
1620 					     val, val_len);
1621 
1622 	/* If that didn't work fall back on linearising by hand. */
1623 	if (ret == -ENOTSUPP) {
1624 		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1625 		buf = kzalloc(len, GFP_KERNEL);
1626 		if (!buf)
1627 			return -ENOMEM;
1628 
1629 		memcpy(buf, map->work_buf, map->format.reg_bytes);
1630 		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1631 		       val, val_len);
1632 		ret = map->bus->write(map->bus_context, buf, len);
1633 
1634 		kfree(buf);
1635 	} else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1636 		/* regcache_drop_region() takes lock that we already have,
1637 		 * thus call map->cache_ops->drop() directly
1638 		 */
1639 		if (map->cache_ops && map->cache_ops->drop)
1640 			map->cache_ops->drop(map, reg, reg + 1);
1641 	}
1642 
1643 	trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1644 
1645 	return ret;
1646 }
1647 
1648 /**
1649  * regmap_can_raw_write - Test if regmap_raw_write() is supported
1650  *
1651  * @map: Map to check.
1652  */
1653 bool regmap_can_raw_write(struct regmap *map)
1654 {
1655 	return map->bus && map->bus->write && map->format.format_val &&
1656 		map->format.format_reg;
1657 }
1658 EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1659 
1660 /**
1661  * regmap_get_raw_read_max - Get the maximum size we can read
1662  *
1663  * @map: Map to check.
1664  */
1665 size_t regmap_get_raw_read_max(struct regmap *map)
1666 {
1667 	return map->max_raw_read;
1668 }
1669 EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1670 
1671 /**
1672  * regmap_get_raw_write_max - Get the maximum size we can read
1673  *
1674  * @map: Map to check.
1675  */
1676 size_t regmap_get_raw_write_max(struct regmap *map)
1677 {
1678 	return map->max_raw_write;
1679 }
1680 EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1681 
1682 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1683 				       unsigned int val)
1684 {
1685 	int ret;
1686 	struct regmap_range_node *range;
1687 	struct regmap *map = context;
1688 
1689 	WARN_ON(!map->bus || !map->format.format_write);
1690 
1691 	range = _regmap_range_lookup(map, reg);
1692 	if (range) {
1693 		ret = _regmap_select_page(map, &reg, range, 1);
1694 		if (ret != 0)
1695 			return ret;
1696 	}
1697 
1698 	map->format.format_write(map, reg, val);
1699 
1700 	trace_regmap_hw_write_start(map, reg, 1);
1701 
1702 	ret = map->bus->write(map->bus_context, map->work_buf,
1703 			      map->format.buf_size);
1704 
1705 	trace_regmap_hw_write_done(map, reg, 1);
1706 
1707 	return ret;
1708 }
1709 
1710 static int _regmap_bus_reg_write(void *context, unsigned int reg,
1711 				 unsigned int val)
1712 {
1713 	struct regmap *map = context;
1714 
1715 	return map->bus->reg_write(map->bus_context, reg, val);
1716 }
1717 
1718 static int _regmap_bus_raw_write(void *context, unsigned int reg,
1719 				 unsigned int val)
1720 {
1721 	struct regmap *map = context;
1722 
1723 	WARN_ON(!map->bus || !map->format.format_val);
1724 
1725 	map->format.format_val(map->work_buf + map->format.reg_bytes
1726 			       + map->format.pad_bytes, val, 0);
1727 	return _regmap_raw_write_impl(map, reg,
1728 				      map->work_buf +
1729 				      map->format.reg_bytes +
1730 				      map->format.pad_bytes,
1731 				      map->format.val_bytes);
1732 }
1733 
1734 static inline void *_regmap_map_get_context(struct regmap *map)
1735 {
1736 	return (map->bus) ? map : map->bus_context;
1737 }
1738 
1739 int _regmap_write(struct regmap *map, unsigned int reg,
1740 		  unsigned int val)
1741 {
1742 	int ret;
1743 	void *context = _regmap_map_get_context(map);
1744 
1745 	if (!regmap_writeable(map, reg))
1746 		return -EIO;
1747 
1748 	if (!map->cache_bypass && !map->defer_caching) {
1749 		ret = regcache_write(map, reg, val);
1750 		if (ret != 0)
1751 			return ret;
1752 		if (map->cache_only) {
1753 			map->cache_dirty = true;
1754 			return 0;
1755 		}
1756 	}
1757 
1758 #ifdef LOG_DEVICE
1759 	if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1760 		dev_info(map->dev, "%x <= %x\n", reg, val);
1761 #endif
1762 
1763 	trace_regmap_reg_write(map, reg, val);
1764 
1765 	return map->reg_write(context, reg, val);
1766 }
1767 
1768 /**
1769  * regmap_write() - Write a value to a single register
1770  *
1771  * @map: Register map to write to
1772  * @reg: Register to write to
1773  * @val: Value to be written
1774  *
1775  * A value of zero will be returned on success, a negative errno will
1776  * be returned in error cases.
1777  */
1778 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1779 {
1780 	int ret;
1781 
1782 	if (!IS_ALIGNED(reg, map->reg_stride))
1783 		return -EINVAL;
1784 
1785 	map->lock(map->lock_arg);
1786 
1787 	ret = _regmap_write(map, reg, val);
1788 
1789 	map->unlock(map->lock_arg);
1790 
1791 	return ret;
1792 }
1793 EXPORT_SYMBOL_GPL(regmap_write);
1794 
1795 /**
1796  * regmap_write_async() - Write a value to a single register asynchronously
1797  *
1798  * @map: Register map to write to
1799  * @reg: Register to write to
1800  * @val: Value to be written
1801  *
1802  * A value of zero will be returned on success, a negative errno will
1803  * be returned in error cases.
1804  */
1805 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1806 {
1807 	int ret;
1808 
1809 	if (!IS_ALIGNED(reg, map->reg_stride))
1810 		return -EINVAL;
1811 
1812 	map->lock(map->lock_arg);
1813 
1814 	map->async = true;
1815 
1816 	ret = _regmap_write(map, reg, val);
1817 
1818 	map->async = false;
1819 
1820 	map->unlock(map->lock_arg);
1821 
1822 	return ret;
1823 }
1824 EXPORT_SYMBOL_GPL(regmap_write_async);
1825 
1826 int _regmap_raw_write(struct regmap *map, unsigned int reg,
1827 		      const void *val, size_t val_len)
1828 {
1829 	size_t val_bytes = map->format.val_bytes;
1830 	size_t val_count = val_len / val_bytes;
1831 	size_t chunk_count, chunk_bytes;
1832 	size_t chunk_regs = val_count;
1833 	int ret, i;
1834 
1835 	if (!val_count)
1836 		return -EINVAL;
1837 
1838 	if (map->use_single_write)
1839 		chunk_regs = 1;
1840 	else if (map->max_raw_write && val_len > map->max_raw_write)
1841 		chunk_regs = map->max_raw_write / val_bytes;
1842 
1843 	chunk_count = val_count / chunk_regs;
1844 	chunk_bytes = chunk_regs * val_bytes;
1845 
1846 	/* Write as many bytes as possible with chunk_size */
1847 	for (i = 0; i < chunk_count; i++) {
1848 		ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes);
1849 		if (ret)
1850 			return ret;
1851 
1852 		reg += regmap_get_offset(map, chunk_regs);
1853 		val += chunk_bytes;
1854 		val_len -= chunk_bytes;
1855 	}
1856 
1857 	/* Write remaining bytes */
1858 	if (val_len)
1859 		ret = _regmap_raw_write_impl(map, reg, val, val_len);
1860 
1861 	return ret;
1862 }
1863 
1864 /**
1865  * regmap_raw_write() - Write raw values to one or more registers
1866  *
1867  * @map: Register map to write to
1868  * @reg: Initial register to write to
1869  * @val: Block of data to be written, laid out for direct transmission to the
1870  *       device
1871  * @val_len: Length of data pointed to by val.
1872  *
1873  * This function is intended to be used for things like firmware
1874  * download where a large block of data needs to be transferred to the
1875  * device.  No formatting will be done on the data provided.
1876  *
1877  * A value of zero will be returned on success, a negative errno will
1878  * be returned in error cases.
1879  */
1880 int regmap_raw_write(struct regmap *map, unsigned int reg,
1881 		     const void *val, size_t val_len)
1882 {
1883 	int ret;
1884 
1885 	if (!regmap_can_raw_write(map))
1886 		return -EINVAL;
1887 	if (val_len % map->format.val_bytes)
1888 		return -EINVAL;
1889 
1890 	map->lock(map->lock_arg);
1891 
1892 	ret = _regmap_raw_write(map, reg, val, val_len);
1893 
1894 	map->unlock(map->lock_arg);
1895 
1896 	return ret;
1897 }
1898 EXPORT_SYMBOL_GPL(regmap_raw_write);
1899 
1900 /**
1901  * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
1902  *                                   register field.
1903  *
1904  * @field: Register field to write to
1905  * @mask: Bitmask to change
1906  * @val: Value to be written
1907  * @change: Boolean indicating if a write was done
1908  * @async: Boolean indicating asynchronously
1909  * @force: Boolean indicating use force update
1910  *
1911  * Perform a read/modify/write cycle on the register field with change,
1912  * async, force option.
1913  *
1914  * A value of zero will be returned on success, a negative errno will
1915  * be returned in error cases.
1916  */
1917 int regmap_field_update_bits_base(struct regmap_field *field,
1918 				  unsigned int mask, unsigned int val,
1919 				  bool *change, bool async, bool force)
1920 {
1921 	mask = (mask << field->shift) & field->mask;
1922 
1923 	return regmap_update_bits_base(field->regmap, field->reg,
1924 				       mask, val << field->shift,
1925 				       change, async, force);
1926 }
1927 EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
1928 
1929 /**
1930  * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
1931  *                                    register field with port ID
1932  *
1933  * @field: Register field to write to
1934  * @id: port ID
1935  * @mask: Bitmask to change
1936  * @val: Value to be written
1937  * @change: Boolean indicating if a write was done
1938  * @async: Boolean indicating asynchronously
1939  * @force: Boolean indicating use force update
1940  *
1941  * A value of zero will be returned on success, a negative errno will
1942  * be returned in error cases.
1943  */
1944 int regmap_fields_update_bits_base(struct regmap_field *field,  unsigned int id,
1945 				   unsigned int mask, unsigned int val,
1946 				   bool *change, bool async, bool force)
1947 {
1948 	if (id >= field->id_size)
1949 		return -EINVAL;
1950 
1951 	mask = (mask << field->shift) & field->mask;
1952 
1953 	return regmap_update_bits_base(field->regmap,
1954 				       field->reg + (field->id_offset * id),
1955 				       mask, val << field->shift,
1956 				       change, async, force);
1957 }
1958 EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
1959 
1960 /**
1961  * regmap_bulk_write() - Write multiple registers to the device
1962  *
1963  * @map: Register map to write to
1964  * @reg: First register to be write from
1965  * @val: Block of data to be written, in native register size for device
1966  * @val_count: Number of registers to write
1967  *
1968  * This function is intended to be used for writing a large block of
1969  * data to the device either in single transfer or multiple transfer.
1970  *
1971  * A value of zero will be returned on success, a negative errno will
1972  * be returned in error cases.
1973  */
1974 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
1975 		     size_t val_count)
1976 {
1977 	int ret = 0, i;
1978 	size_t val_bytes = map->format.val_bytes;
1979 
1980 	if (!IS_ALIGNED(reg, map->reg_stride))
1981 		return -EINVAL;
1982 
1983 	/*
1984 	 * Some devices don't support bulk write, for them we have a series of
1985 	 * single write operations.
1986 	 */
1987 	if (!map->bus || !map->format.parse_inplace) {
1988 		map->lock(map->lock_arg);
1989 		for (i = 0; i < val_count; i++) {
1990 			unsigned int ival;
1991 
1992 			switch (val_bytes) {
1993 			case 1:
1994 				ival = *(u8 *)(val + (i * val_bytes));
1995 				break;
1996 			case 2:
1997 				ival = *(u16 *)(val + (i * val_bytes));
1998 				break;
1999 			case 4:
2000 				ival = *(u32 *)(val + (i * val_bytes));
2001 				break;
2002 #ifdef CONFIG_64BIT
2003 			case 8:
2004 				ival = *(u64 *)(val + (i * val_bytes));
2005 				break;
2006 #endif
2007 			default:
2008 				ret = -EINVAL;
2009 				goto out;
2010 			}
2011 
2012 			ret = _regmap_write(map,
2013 					    reg + regmap_get_offset(map, i),
2014 					    ival);
2015 			if (ret != 0)
2016 				goto out;
2017 		}
2018 out:
2019 		map->unlock(map->lock_arg);
2020 	} else {
2021 		void *wval;
2022 
2023 		wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
2024 		if (!wval)
2025 			return -ENOMEM;
2026 
2027 		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2028 			map->format.parse_inplace(wval + i);
2029 
2030 		ret = regmap_raw_write(map, reg, wval, val_bytes * val_count);
2031 
2032 		kfree(wval);
2033 	}
2034 	return ret;
2035 }
2036 EXPORT_SYMBOL_GPL(regmap_bulk_write);
2037 
2038 /*
2039  * _regmap_raw_multi_reg_write()
2040  *
2041  * the (register,newvalue) pairs in regs have not been formatted, but
2042  * they are all in the same page and have been changed to being page
2043  * relative. The page register has been written if that was necessary.
2044  */
2045 static int _regmap_raw_multi_reg_write(struct regmap *map,
2046 				       const struct reg_sequence *regs,
2047 				       size_t num_regs)
2048 {
2049 	int ret;
2050 	void *buf;
2051 	int i;
2052 	u8 *u8;
2053 	size_t val_bytes = map->format.val_bytes;
2054 	size_t reg_bytes = map->format.reg_bytes;
2055 	size_t pad_bytes = map->format.pad_bytes;
2056 	size_t pair_size = reg_bytes + pad_bytes + val_bytes;
2057 	size_t len = pair_size * num_regs;
2058 
2059 	if (!len)
2060 		return -EINVAL;
2061 
2062 	buf = kzalloc(len, GFP_KERNEL);
2063 	if (!buf)
2064 		return -ENOMEM;
2065 
2066 	/* We have to linearise by hand. */
2067 
2068 	u8 = buf;
2069 
2070 	for (i = 0; i < num_regs; i++) {
2071 		unsigned int reg = regs[i].reg;
2072 		unsigned int val = regs[i].def;
2073 		trace_regmap_hw_write_start(map, reg, 1);
2074 		map->format.format_reg(u8, reg, map->reg_shift);
2075 		u8 += reg_bytes + pad_bytes;
2076 		map->format.format_val(u8, val, 0);
2077 		u8 += val_bytes;
2078 	}
2079 	u8 = buf;
2080 	*u8 |= map->write_flag_mask;
2081 
2082 	ret = map->bus->write(map->bus_context, buf, len);
2083 
2084 	kfree(buf);
2085 
2086 	for (i = 0; i < num_regs; i++) {
2087 		int reg = regs[i].reg;
2088 		trace_regmap_hw_write_done(map, reg, 1);
2089 	}
2090 	return ret;
2091 }
2092 
2093 static unsigned int _regmap_register_page(struct regmap *map,
2094 					  unsigned int reg,
2095 					  struct regmap_range_node *range)
2096 {
2097 	unsigned int win_page = (reg - range->range_min) / range->window_len;
2098 
2099 	return win_page;
2100 }
2101 
2102 static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2103 					       struct reg_sequence *regs,
2104 					       size_t num_regs)
2105 {
2106 	int ret;
2107 	int i, n;
2108 	struct reg_sequence *base;
2109 	unsigned int this_page = 0;
2110 	unsigned int page_change = 0;
2111 	/*
2112 	 * the set of registers are not neccessarily in order, but
2113 	 * since the order of write must be preserved this algorithm
2114 	 * chops the set each time the page changes. This also applies
2115 	 * if there is a delay required at any point in the sequence.
2116 	 */
2117 	base = regs;
2118 	for (i = 0, n = 0; i < num_regs; i++, n++) {
2119 		unsigned int reg = regs[i].reg;
2120 		struct regmap_range_node *range;
2121 
2122 		range = _regmap_range_lookup(map, reg);
2123 		if (range) {
2124 			unsigned int win_page = _regmap_register_page(map, reg,
2125 								      range);
2126 
2127 			if (i == 0)
2128 				this_page = win_page;
2129 			if (win_page != this_page) {
2130 				this_page = win_page;
2131 				page_change = 1;
2132 			}
2133 		}
2134 
2135 		/* If we have both a page change and a delay make sure to
2136 		 * write the regs and apply the delay before we change the
2137 		 * page.
2138 		 */
2139 
2140 		if (page_change || regs[i].delay_us) {
2141 
2142 				/* For situations where the first write requires
2143 				 * a delay we need to make sure we don't call
2144 				 * raw_multi_reg_write with n=0
2145 				 * This can't occur with page breaks as we
2146 				 * never write on the first iteration
2147 				 */
2148 				if (regs[i].delay_us && i == 0)
2149 					n = 1;
2150 
2151 				ret = _regmap_raw_multi_reg_write(map, base, n);
2152 				if (ret != 0)
2153 					return ret;
2154 
2155 				if (regs[i].delay_us)
2156 					udelay(regs[i].delay_us);
2157 
2158 				base += n;
2159 				n = 0;
2160 
2161 				if (page_change) {
2162 					ret = _regmap_select_page(map,
2163 								  &base[n].reg,
2164 								  range, 1);
2165 					if (ret != 0)
2166 						return ret;
2167 
2168 					page_change = 0;
2169 				}
2170 
2171 		}
2172 
2173 	}
2174 	if (n > 0)
2175 		return _regmap_raw_multi_reg_write(map, base, n);
2176 	return 0;
2177 }
2178 
2179 static int _regmap_multi_reg_write(struct regmap *map,
2180 				   const struct reg_sequence *regs,
2181 				   size_t num_regs)
2182 {
2183 	int i;
2184 	int ret;
2185 
2186 	if (!map->can_multi_write) {
2187 		for (i = 0; i < num_regs; i++) {
2188 			ret = _regmap_write(map, regs[i].reg, regs[i].def);
2189 			if (ret != 0)
2190 				return ret;
2191 
2192 			if (regs[i].delay_us)
2193 				udelay(regs[i].delay_us);
2194 		}
2195 		return 0;
2196 	}
2197 
2198 	if (!map->format.parse_inplace)
2199 		return -EINVAL;
2200 
2201 	if (map->writeable_reg)
2202 		for (i = 0; i < num_regs; i++) {
2203 			int reg = regs[i].reg;
2204 			if (!map->writeable_reg(map->dev, reg))
2205 				return -EINVAL;
2206 			if (!IS_ALIGNED(reg, map->reg_stride))
2207 				return -EINVAL;
2208 		}
2209 
2210 	if (!map->cache_bypass) {
2211 		for (i = 0; i < num_regs; i++) {
2212 			unsigned int val = regs[i].def;
2213 			unsigned int reg = regs[i].reg;
2214 			ret = regcache_write(map, reg, val);
2215 			if (ret) {
2216 				dev_err(map->dev,
2217 				"Error in caching of register: %x ret: %d\n",
2218 								reg, ret);
2219 				return ret;
2220 			}
2221 		}
2222 		if (map->cache_only) {
2223 			map->cache_dirty = true;
2224 			return 0;
2225 		}
2226 	}
2227 
2228 	WARN_ON(!map->bus);
2229 
2230 	for (i = 0; i < num_regs; i++) {
2231 		unsigned int reg = regs[i].reg;
2232 		struct regmap_range_node *range;
2233 
2234 		/* Coalesce all the writes between a page break or a delay
2235 		 * in a sequence
2236 		 */
2237 		range = _regmap_range_lookup(map, reg);
2238 		if (range || regs[i].delay_us) {
2239 			size_t len = sizeof(struct reg_sequence)*num_regs;
2240 			struct reg_sequence *base = kmemdup(regs, len,
2241 							   GFP_KERNEL);
2242 			if (!base)
2243 				return -ENOMEM;
2244 			ret = _regmap_range_multi_paged_reg_write(map, base,
2245 								  num_regs);
2246 			kfree(base);
2247 
2248 			return ret;
2249 		}
2250 	}
2251 	return _regmap_raw_multi_reg_write(map, regs, num_regs);
2252 }
2253 
2254 /**
2255  * regmap_multi_reg_write() - Write multiple registers to the device
2256  *
2257  * @map: Register map to write to
2258  * @regs: Array of structures containing register,value to be written
2259  * @num_regs: Number of registers to write
2260  *
2261  * Write multiple registers to the device where the set of register, value
2262  * pairs are supplied in any order, possibly not all in a single range.
2263  *
2264  * The 'normal' block write mode will send ultimately send data on the
2265  * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2266  * addressed. However, this alternative block multi write mode will send
2267  * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2268  * must of course support the mode.
2269  *
2270  * A value of zero will be returned on success, a negative errno will be
2271  * returned in error cases.
2272  */
2273 int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2274 			   int num_regs)
2275 {
2276 	int ret;
2277 
2278 	map->lock(map->lock_arg);
2279 
2280 	ret = _regmap_multi_reg_write(map, regs, num_regs);
2281 
2282 	map->unlock(map->lock_arg);
2283 
2284 	return ret;
2285 }
2286 EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2287 
2288 /**
2289  * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2290  *                                     device but not the cache
2291  *
2292  * @map: Register map to write to
2293  * @regs: Array of structures containing register,value to be written
2294  * @num_regs: Number of registers to write
2295  *
2296  * Write multiple registers to the device but not the cache where the set
2297  * of register are supplied in any order.
2298  *
2299  * This function is intended to be used for writing a large block of data
2300  * atomically to the device in single transfer for those I2C client devices
2301  * that implement this alternative block write mode.
2302  *
2303  * A value of zero will be returned on success, a negative errno will
2304  * be returned in error cases.
2305  */
2306 int regmap_multi_reg_write_bypassed(struct regmap *map,
2307 				    const struct reg_sequence *regs,
2308 				    int num_regs)
2309 {
2310 	int ret;
2311 	bool bypass;
2312 
2313 	map->lock(map->lock_arg);
2314 
2315 	bypass = map->cache_bypass;
2316 	map->cache_bypass = true;
2317 
2318 	ret = _regmap_multi_reg_write(map, regs, num_regs);
2319 
2320 	map->cache_bypass = bypass;
2321 
2322 	map->unlock(map->lock_arg);
2323 
2324 	return ret;
2325 }
2326 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2327 
2328 /**
2329  * regmap_raw_write_async() - Write raw values to one or more registers
2330  *                            asynchronously
2331  *
2332  * @map: Register map to write to
2333  * @reg: Initial register to write to
2334  * @val: Block of data to be written, laid out for direct transmission to the
2335  *       device.  Must be valid until regmap_async_complete() is called.
2336  * @val_len: Length of data pointed to by val.
2337  *
2338  * This function is intended to be used for things like firmware
2339  * download where a large block of data needs to be transferred to the
2340  * device.  No formatting will be done on the data provided.
2341  *
2342  * If supported by the underlying bus the write will be scheduled
2343  * asynchronously, helping maximise I/O speed on higher speed buses
2344  * like SPI.  regmap_async_complete() can be called to ensure that all
2345  * asynchrnous writes have been completed.
2346  *
2347  * A value of zero will be returned on success, a negative errno will
2348  * be returned in error cases.
2349  */
2350 int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2351 			   const void *val, size_t val_len)
2352 {
2353 	int ret;
2354 
2355 	if (val_len % map->format.val_bytes)
2356 		return -EINVAL;
2357 	if (!IS_ALIGNED(reg, map->reg_stride))
2358 		return -EINVAL;
2359 
2360 	map->lock(map->lock_arg);
2361 
2362 	map->async = true;
2363 
2364 	ret = _regmap_raw_write(map, reg, val, val_len);
2365 
2366 	map->async = false;
2367 
2368 	map->unlock(map->lock_arg);
2369 
2370 	return ret;
2371 }
2372 EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2373 
2374 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2375 			    unsigned int val_len)
2376 {
2377 	struct regmap_range_node *range;
2378 	int ret;
2379 
2380 	WARN_ON(!map->bus);
2381 
2382 	if (!map->bus || !map->bus->read)
2383 		return -EINVAL;
2384 
2385 	range = _regmap_range_lookup(map, reg);
2386 	if (range) {
2387 		ret = _regmap_select_page(map, &reg, range,
2388 					  val_len / map->format.val_bytes);
2389 		if (ret != 0)
2390 			return ret;
2391 	}
2392 
2393 	map->format.format_reg(map->work_buf, reg, map->reg_shift);
2394 	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2395 				      map->read_flag_mask);
2396 	trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2397 
2398 	ret = map->bus->read(map->bus_context, map->work_buf,
2399 			     map->format.reg_bytes + map->format.pad_bytes,
2400 			     val, val_len);
2401 
2402 	trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2403 
2404 	return ret;
2405 }
2406 
2407 static int _regmap_bus_reg_read(void *context, unsigned int reg,
2408 				unsigned int *val)
2409 {
2410 	struct regmap *map = context;
2411 
2412 	return map->bus->reg_read(map->bus_context, reg, val);
2413 }
2414 
2415 static int _regmap_bus_read(void *context, unsigned int reg,
2416 			    unsigned int *val)
2417 {
2418 	int ret;
2419 	struct regmap *map = context;
2420 	void *work_val = map->work_buf + map->format.reg_bytes +
2421 		map->format.pad_bytes;
2422 
2423 	if (!map->format.parse_val)
2424 		return -EINVAL;
2425 
2426 	ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes);
2427 	if (ret == 0)
2428 		*val = map->format.parse_val(work_val);
2429 
2430 	return ret;
2431 }
2432 
2433 static int _regmap_read(struct regmap *map, unsigned int reg,
2434 			unsigned int *val)
2435 {
2436 	int ret;
2437 	void *context = _regmap_map_get_context(map);
2438 
2439 	if (!map->cache_bypass) {
2440 		ret = regcache_read(map, reg, val);
2441 		if (ret == 0)
2442 			return 0;
2443 	}
2444 
2445 	if (map->cache_only)
2446 		return -EBUSY;
2447 
2448 	if (!regmap_readable(map, reg))
2449 		return -EIO;
2450 
2451 	ret = map->reg_read(context, reg, val);
2452 	if (ret == 0) {
2453 #ifdef LOG_DEVICE
2454 		if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
2455 			dev_info(map->dev, "%x => %x\n", reg, *val);
2456 #endif
2457 
2458 		trace_regmap_reg_read(map, reg, *val);
2459 
2460 		if (!map->cache_bypass)
2461 			regcache_write(map, reg, *val);
2462 	}
2463 
2464 	return ret;
2465 }
2466 
2467 /**
2468  * regmap_read() - Read a value from a single register
2469  *
2470  * @map: Register map to read from
2471  * @reg: Register to be read from
2472  * @val: Pointer to store read value
2473  *
2474  * A value of zero will be returned on success, a negative errno will
2475  * be returned in error cases.
2476  */
2477 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2478 {
2479 	int ret;
2480 
2481 	if (!IS_ALIGNED(reg, map->reg_stride))
2482 		return -EINVAL;
2483 
2484 	map->lock(map->lock_arg);
2485 
2486 	ret = _regmap_read(map, reg, val);
2487 
2488 	map->unlock(map->lock_arg);
2489 
2490 	return ret;
2491 }
2492 EXPORT_SYMBOL_GPL(regmap_read);
2493 
2494 /**
2495  * regmap_raw_read() - Read raw data from the device
2496  *
2497  * @map: Register map to read from
2498  * @reg: First register to be read from
2499  * @val: Pointer to store read value
2500  * @val_len: Size of data to read
2501  *
2502  * A value of zero will be returned on success, a negative errno will
2503  * be returned in error cases.
2504  */
2505 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2506 		    size_t val_len)
2507 {
2508 	size_t val_bytes = map->format.val_bytes;
2509 	size_t val_count = val_len / val_bytes;
2510 	unsigned int v;
2511 	int ret, i;
2512 
2513 	if (!map->bus)
2514 		return -EINVAL;
2515 	if (val_len % map->format.val_bytes)
2516 		return -EINVAL;
2517 	if (!IS_ALIGNED(reg, map->reg_stride))
2518 		return -EINVAL;
2519 	if (val_count == 0)
2520 		return -EINVAL;
2521 
2522 	map->lock(map->lock_arg);
2523 
2524 	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2525 	    map->cache_type == REGCACHE_NONE) {
2526 		size_t chunk_count, chunk_bytes;
2527 		size_t chunk_regs = val_count;
2528 
2529 		if (!map->bus->read) {
2530 			ret = -ENOTSUPP;
2531 			goto out;
2532 		}
2533 
2534 		if (map->use_single_read)
2535 			chunk_regs = 1;
2536 		else if (map->max_raw_read && val_len > map->max_raw_read)
2537 			chunk_regs = map->max_raw_read / val_bytes;
2538 
2539 		chunk_count = val_count / chunk_regs;
2540 		chunk_bytes = chunk_regs * val_bytes;
2541 
2542 		/* Read bytes that fit into whole chunks */
2543 		for (i = 0; i < chunk_count; i++) {
2544 			ret = _regmap_raw_read(map, reg, val, chunk_bytes);
2545 			if (ret != 0)
2546 				goto out;
2547 
2548 			reg += regmap_get_offset(map, chunk_regs);
2549 			val += chunk_bytes;
2550 			val_len -= chunk_bytes;
2551 		}
2552 
2553 		/* Read remaining bytes */
2554 		if (val_len) {
2555 			ret = _regmap_raw_read(map, reg, val, val_len);
2556 			if (ret != 0)
2557 				goto out;
2558 		}
2559 	} else {
2560 		/* Otherwise go word by word for the cache; should be low
2561 		 * cost as we expect to hit the cache.
2562 		 */
2563 		for (i = 0; i < val_count; i++) {
2564 			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2565 					   &v);
2566 			if (ret != 0)
2567 				goto out;
2568 
2569 			map->format.format_val(val + (i * val_bytes), v, 0);
2570 		}
2571 	}
2572 
2573  out:
2574 	map->unlock(map->lock_arg);
2575 
2576 	return ret;
2577 }
2578 EXPORT_SYMBOL_GPL(regmap_raw_read);
2579 
2580 /**
2581  * regmap_noinc_read(): Read data from a register without incrementing the
2582  *			register number
2583  *
2584  * @map: Register map to read from
2585  * @reg: Register to read from
2586  * @val: Pointer to data buffer
2587  * @val_len: Length of output buffer in bytes.
2588  *
2589  * The regmap API usually assumes that bulk bus read operations will read a
2590  * range of registers. Some devices have certain registers for which a read
2591  * operation read will read from an internal FIFO.
2592  *
2593  * The target register must be volatile but registers after it can be
2594  * completely unrelated cacheable registers.
2595  *
2596  * This will attempt multiple reads as required to read val_len bytes.
2597  *
2598  * A value of zero will be returned on success, a negative errno will be
2599  * returned in error cases.
2600  */
2601 int regmap_noinc_read(struct regmap *map, unsigned int reg,
2602 		      void *val, size_t val_len)
2603 {
2604 	size_t read_len;
2605 	int ret;
2606 
2607 	if (!map->bus)
2608 		return -EINVAL;
2609 	if (!map->bus->read)
2610 		return -ENOTSUPP;
2611 	if (val_len % map->format.val_bytes)
2612 		return -EINVAL;
2613 	if (!IS_ALIGNED(reg, map->reg_stride))
2614 		return -EINVAL;
2615 	if (val_len == 0)
2616 		return -EINVAL;
2617 
2618 	map->lock(map->lock_arg);
2619 
2620 	if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) {
2621 		ret = -EINVAL;
2622 		goto out_unlock;
2623 	}
2624 
2625 	while (val_len) {
2626 		if (map->max_raw_read && map->max_raw_read < val_len)
2627 			read_len = map->max_raw_read;
2628 		else
2629 			read_len = val_len;
2630 		ret = _regmap_raw_read(map, reg, val, read_len);
2631 		if (ret)
2632 			goto out_unlock;
2633 		val = ((u8 *)val) + read_len;
2634 		val_len -= read_len;
2635 	}
2636 
2637 out_unlock:
2638 	map->unlock(map->lock_arg);
2639 	return ret;
2640 }
2641 EXPORT_SYMBOL_GPL(regmap_noinc_read);
2642 
2643 /**
2644  * regmap_field_read(): Read a value to a single register field
2645  *
2646  * @field: Register field to read from
2647  * @val: Pointer to store read value
2648  *
2649  * A value of zero will be returned on success, a negative errno will
2650  * be returned in error cases.
2651  */
2652 int regmap_field_read(struct regmap_field *field, unsigned int *val)
2653 {
2654 	int ret;
2655 	unsigned int reg_val;
2656 	ret = regmap_read(field->regmap, field->reg, &reg_val);
2657 	if (ret != 0)
2658 		return ret;
2659 
2660 	reg_val &= field->mask;
2661 	reg_val >>= field->shift;
2662 	*val = reg_val;
2663 
2664 	return ret;
2665 }
2666 EXPORT_SYMBOL_GPL(regmap_field_read);
2667 
2668 /**
2669  * regmap_fields_read() - Read a value to a single register field with port ID
2670  *
2671  * @field: Register field to read from
2672  * @id: port ID
2673  * @val: Pointer to store read value
2674  *
2675  * A value of zero will be returned on success, a negative errno will
2676  * be returned in error cases.
2677  */
2678 int regmap_fields_read(struct regmap_field *field, unsigned int id,
2679 		       unsigned int *val)
2680 {
2681 	int ret;
2682 	unsigned int reg_val;
2683 
2684 	if (id >= field->id_size)
2685 		return -EINVAL;
2686 
2687 	ret = regmap_read(field->regmap,
2688 			  field->reg + (field->id_offset * id),
2689 			  &reg_val);
2690 	if (ret != 0)
2691 		return ret;
2692 
2693 	reg_val &= field->mask;
2694 	reg_val >>= field->shift;
2695 	*val = reg_val;
2696 
2697 	return ret;
2698 }
2699 EXPORT_SYMBOL_GPL(regmap_fields_read);
2700 
2701 /**
2702  * regmap_bulk_read() - Read multiple registers from the device
2703  *
2704  * @map: Register map to read from
2705  * @reg: First register to be read from
2706  * @val: Pointer to store read value, in native register size for device
2707  * @val_count: Number of registers to read
2708  *
2709  * A value of zero will be returned on success, a negative errno will
2710  * be returned in error cases.
2711  */
2712 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2713 		     size_t val_count)
2714 {
2715 	int ret, i;
2716 	size_t val_bytes = map->format.val_bytes;
2717 	bool vol = regmap_volatile_range(map, reg, val_count);
2718 
2719 	if (!IS_ALIGNED(reg, map->reg_stride))
2720 		return -EINVAL;
2721 	if (val_count == 0)
2722 		return -EINVAL;
2723 
2724 	if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2725 		ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
2726 		if (ret != 0)
2727 			return ret;
2728 
2729 		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2730 			map->format.parse_inplace(val + i);
2731 	} else {
2732 #ifdef CONFIG_64BIT
2733 		u64 *u64 = val;
2734 #endif
2735 		u32 *u32 = val;
2736 		u16 *u16 = val;
2737 		u8 *u8 = val;
2738 
2739 		map->lock(map->lock_arg);
2740 
2741 		for (i = 0; i < val_count; i++) {
2742 			unsigned int ival;
2743 
2744 			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2745 					   &ival);
2746 			if (ret != 0)
2747 				goto out;
2748 
2749 			switch (map->format.val_bytes) {
2750 #ifdef CONFIG_64BIT
2751 			case 8:
2752 				u64[i] = ival;
2753 				break;
2754 #endif
2755 			case 4:
2756 				u32[i] = ival;
2757 				break;
2758 			case 2:
2759 				u16[i] = ival;
2760 				break;
2761 			case 1:
2762 				u8[i] = ival;
2763 				break;
2764 			default:
2765 				ret = -EINVAL;
2766 				goto out;
2767 			}
2768 		}
2769 
2770 out:
2771 		map->unlock(map->lock_arg);
2772 	}
2773 
2774 	return ret;
2775 }
2776 EXPORT_SYMBOL_GPL(regmap_bulk_read);
2777 
2778 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
2779 			       unsigned int mask, unsigned int val,
2780 			       bool *change, bool force_write)
2781 {
2782 	int ret;
2783 	unsigned int tmp, orig;
2784 
2785 	if (change)
2786 		*change = false;
2787 
2788 	if (regmap_volatile(map, reg) && map->reg_update_bits) {
2789 		ret = map->reg_update_bits(map->bus_context, reg, mask, val);
2790 		if (ret == 0 && change)
2791 			*change = true;
2792 	} else {
2793 		ret = _regmap_read(map, reg, &orig);
2794 		if (ret != 0)
2795 			return ret;
2796 
2797 		tmp = orig & ~mask;
2798 		tmp |= val & mask;
2799 
2800 		if (force_write || (tmp != orig)) {
2801 			ret = _regmap_write(map, reg, tmp);
2802 			if (ret == 0 && change)
2803 				*change = true;
2804 		}
2805 	}
2806 
2807 	return ret;
2808 }
2809 
2810 /**
2811  * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
2812  *
2813  * @map: Register map to update
2814  * @reg: Register to update
2815  * @mask: Bitmask to change
2816  * @val: New value for bitmask
2817  * @change: Boolean indicating if a write was done
2818  * @async: Boolean indicating asynchronously
2819  * @force: Boolean indicating use force update
2820  *
2821  * Perform a read/modify/write cycle on a register map with change, async, force
2822  * options.
2823  *
2824  * If async is true:
2825  *
2826  * With most buses the read must be done synchronously so this is most useful
2827  * for devices with a cache which do not need to interact with the hardware to
2828  * determine the current register value.
2829  *
2830  * Returns zero for success, a negative number on error.
2831  */
2832 int regmap_update_bits_base(struct regmap *map, unsigned int reg,
2833 			    unsigned int mask, unsigned int val,
2834 			    bool *change, bool async, bool force)
2835 {
2836 	int ret;
2837 
2838 	map->lock(map->lock_arg);
2839 
2840 	map->async = async;
2841 
2842 	ret = _regmap_update_bits(map, reg, mask, val, change, force);
2843 
2844 	map->async = false;
2845 
2846 	map->unlock(map->lock_arg);
2847 
2848 	return ret;
2849 }
2850 EXPORT_SYMBOL_GPL(regmap_update_bits_base);
2851 
2852 void regmap_async_complete_cb(struct regmap_async *async, int ret)
2853 {
2854 	struct regmap *map = async->map;
2855 	bool wake;
2856 
2857 	trace_regmap_async_io_complete(map);
2858 
2859 	spin_lock(&map->async_lock);
2860 	list_move(&async->list, &map->async_free);
2861 	wake = list_empty(&map->async_list);
2862 
2863 	if (ret != 0)
2864 		map->async_ret = ret;
2865 
2866 	spin_unlock(&map->async_lock);
2867 
2868 	if (wake)
2869 		wake_up(&map->async_waitq);
2870 }
2871 EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2872 
2873 static int regmap_async_is_done(struct regmap *map)
2874 {
2875 	unsigned long flags;
2876 	int ret;
2877 
2878 	spin_lock_irqsave(&map->async_lock, flags);
2879 	ret = list_empty(&map->async_list);
2880 	spin_unlock_irqrestore(&map->async_lock, flags);
2881 
2882 	return ret;
2883 }
2884 
2885 /**
2886  * regmap_async_complete - Ensure all asynchronous I/O has completed.
2887  *
2888  * @map: Map to operate on.
2889  *
2890  * Blocks until any pending asynchronous I/O has completed.  Returns
2891  * an error code for any failed I/O operations.
2892  */
2893 int regmap_async_complete(struct regmap *map)
2894 {
2895 	unsigned long flags;
2896 	int ret;
2897 
2898 	/* Nothing to do with no async support */
2899 	if (!map->bus || !map->bus->async_write)
2900 		return 0;
2901 
2902 	trace_regmap_async_complete_start(map);
2903 
2904 	wait_event(map->async_waitq, regmap_async_is_done(map));
2905 
2906 	spin_lock_irqsave(&map->async_lock, flags);
2907 	ret = map->async_ret;
2908 	map->async_ret = 0;
2909 	spin_unlock_irqrestore(&map->async_lock, flags);
2910 
2911 	trace_regmap_async_complete_done(map);
2912 
2913 	return ret;
2914 }
2915 EXPORT_SYMBOL_GPL(regmap_async_complete);
2916 
2917 /**
2918  * regmap_register_patch - Register and apply register updates to be applied
2919  *                         on device initialistion
2920  *
2921  * @map: Register map to apply updates to.
2922  * @regs: Values to update.
2923  * @num_regs: Number of entries in regs.
2924  *
2925  * Register a set of register updates to be applied to the device
2926  * whenever the device registers are synchronised with the cache and
2927  * apply them immediately.  Typically this is used to apply
2928  * corrections to be applied to the device defaults on startup, such
2929  * as the updates some vendors provide to undocumented registers.
2930  *
2931  * The caller must ensure that this function cannot be called
2932  * concurrently with either itself or regcache_sync().
2933  */
2934 int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
2935 			  int num_regs)
2936 {
2937 	struct reg_sequence *p;
2938 	int ret;
2939 	bool bypass;
2940 
2941 	if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
2942 	    num_regs))
2943 		return 0;
2944 
2945 	p = krealloc(map->patch,
2946 		     sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
2947 		     GFP_KERNEL);
2948 	if (p) {
2949 		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
2950 		map->patch = p;
2951 		map->patch_regs += num_regs;
2952 	} else {
2953 		return -ENOMEM;
2954 	}
2955 
2956 	map->lock(map->lock_arg);
2957 
2958 	bypass = map->cache_bypass;
2959 
2960 	map->cache_bypass = true;
2961 	map->async = true;
2962 
2963 	ret = _regmap_multi_reg_write(map, regs, num_regs);
2964 
2965 	map->async = false;
2966 	map->cache_bypass = bypass;
2967 
2968 	map->unlock(map->lock_arg);
2969 
2970 	regmap_async_complete(map);
2971 
2972 	return ret;
2973 }
2974 EXPORT_SYMBOL_GPL(regmap_register_patch);
2975 
2976 /**
2977  * regmap_get_val_bytes() - Report the size of a register value
2978  *
2979  * @map: Register map to operate on.
2980  *
2981  * Report the size of a register value, mainly intended to for use by
2982  * generic infrastructure built on top of regmap.
2983  */
2984 int regmap_get_val_bytes(struct regmap *map)
2985 {
2986 	if (map->format.format_write)
2987 		return -EINVAL;
2988 
2989 	return map->format.val_bytes;
2990 }
2991 EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
2992 
2993 /**
2994  * regmap_get_max_register() - Report the max register value
2995  *
2996  * @map: Register map to operate on.
2997  *
2998  * Report the max register value, mainly intended to for use by
2999  * generic infrastructure built on top of regmap.
3000  */
3001 int regmap_get_max_register(struct regmap *map)
3002 {
3003 	return map->max_register ? map->max_register : -EINVAL;
3004 }
3005 EXPORT_SYMBOL_GPL(regmap_get_max_register);
3006 
3007 /**
3008  * regmap_get_reg_stride() - Report the register address stride
3009  *
3010  * @map: Register map to operate on.
3011  *
3012  * Report the register address stride, mainly intended to for use by
3013  * generic infrastructure built on top of regmap.
3014  */
3015 int regmap_get_reg_stride(struct regmap *map)
3016 {
3017 	return map->reg_stride;
3018 }
3019 EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
3020 
3021 int regmap_parse_val(struct regmap *map, const void *buf,
3022 			unsigned int *val)
3023 {
3024 	if (!map->format.parse_val)
3025 		return -EINVAL;
3026 
3027 	*val = map->format.parse_val(buf);
3028 
3029 	return 0;
3030 }
3031 EXPORT_SYMBOL_GPL(regmap_parse_val);
3032 
3033 static int __init regmap_initcall(void)
3034 {
3035 	regmap_debugfs_initcall();
3036 
3037 	return 0;
3038 }
3039 postcore_initcall(regmap_initcall);
3040