xref: /linux/drivers/base/regmap/regmap.c (revision c411ed854584a71b0e86ac3019b60e4789d88086)
1 /*
2  * Register map access API
3  *
4  * Copyright 2011 Wolfson Microelectronics plc
5  *
6  * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/mutex.h>
17 #include <linux/err.h>
18 #include <linux/of.h>
19 #include <linux/rbtree.h>
20 #include <linux/sched.h>
21 #include <linux/delay.h>
22 #include <linux/log2.h>
23 
24 #define CREATE_TRACE_POINTS
25 #include "trace.h"
26 
27 #include "internal.h"
28 
29 /*
30  * Sometimes for failures during very early init the trace
31  * infrastructure isn't available early enough to be used.  For this
32  * sort of problem defining LOG_DEVICE will add printks for basic
33  * register I/O on a specific device.
34  */
35 #undef LOG_DEVICE
36 
37 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
38 			       unsigned int mask, unsigned int val,
39 			       bool *change, bool force_write);
40 
41 static int _regmap_bus_reg_read(void *context, unsigned int reg,
42 				unsigned int *val);
43 static int _regmap_bus_read(void *context, unsigned int reg,
44 			    unsigned int *val);
45 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
46 				       unsigned int val);
47 static int _regmap_bus_reg_write(void *context, unsigned int reg,
48 				 unsigned int val);
49 static int _regmap_bus_raw_write(void *context, unsigned int reg,
50 				 unsigned int val);
51 
52 bool regmap_reg_in_ranges(unsigned int reg,
53 			  const struct regmap_range *ranges,
54 			  unsigned int nranges)
55 {
56 	const struct regmap_range *r;
57 	int i;
58 
59 	for (i = 0, r = ranges; i < nranges; i++, r++)
60 		if (regmap_reg_in_range(reg, r))
61 			return true;
62 	return false;
63 }
64 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
65 
66 bool regmap_check_range_table(struct regmap *map, unsigned int reg,
67 			      const struct regmap_access_table *table)
68 {
69 	/* Check "no ranges" first */
70 	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
71 		return false;
72 
73 	/* In case zero "yes ranges" are supplied, any reg is OK */
74 	if (!table->n_yes_ranges)
75 		return true;
76 
77 	return regmap_reg_in_ranges(reg, table->yes_ranges,
78 				    table->n_yes_ranges);
79 }
80 EXPORT_SYMBOL_GPL(regmap_check_range_table);
81 
82 bool regmap_writeable(struct regmap *map, unsigned int reg)
83 {
84 	if (map->max_register && reg > map->max_register)
85 		return false;
86 
87 	if (map->writeable_reg)
88 		return map->writeable_reg(map->dev, reg);
89 
90 	if (map->wr_table)
91 		return regmap_check_range_table(map, reg, map->wr_table);
92 
93 	return true;
94 }
95 
96 bool regmap_cached(struct regmap *map, unsigned int reg)
97 {
98 	int ret;
99 	unsigned int val;
100 
101 	if (map->cache == REGCACHE_NONE)
102 		return false;
103 
104 	if (!map->cache_ops)
105 		return false;
106 
107 	if (map->max_register && reg > map->max_register)
108 		return false;
109 
110 	map->lock(map->lock_arg);
111 	ret = regcache_read(map, reg, &val);
112 	map->unlock(map->lock_arg);
113 	if (ret)
114 		return false;
115 
116 	return true;
117 }
118 
119 bool regmap_readable(struct regmap *map, unsigned int reg)
120 {
121 	if (!map->reg_read)
122 		return false;
123 
124 	if (map->max_register && reg > map->max_register)
125 		return false;
126 
127 	if (map->format.format_write)
128 		return false;
129 
130 	if (map->readable_reg)
131 		return map->readable_reg(map->dev, reg);
132 
133 	if (map->rd_table)
134 		return regmap_check_range_table(map, reg, map->rd_table);
135 
136 	return true;
137 }
138 
139 bool regmap_volatile(struct regmap *map, unsigned int reg)
140 {
141 	if (!map->format.format_write && !regmap_readable(map, reg))
142 		return false;
143 
144 	if (map->volatile_reg)
145 		return map->volatile_reg(map->dev, reg);
146 
147 	if (map->volatile_table)
148 		return regmap_check_range_table(map, reg, map->volatile_table);
149 
150 	if (map->cache_ops)
151 		return false;
152 	else
153 		return true;
154 }
155 
156 bool regmap_precious(struct regmap *map, unsigned int reg)
157 {
158 	if (!regmap_readable(map, reg))
159 		return false;
160 
161 	if (map->precious_reg)
162 		return map->precious_reg(map->dev, reg);
163 
164 	if (map->precious_table)
165 		return regmap_check_range_table(map, reg, map->precious_table);
166 
167 	return false;
168 }
169 
170 static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
171 	size_t num)
172 {
173 	unsigned int i;
174 
175 	for (i = 0; i < num; i++)
176 		if (!regmap_volatile(map, reg + i))
177 			return false;
178 
179 	return true;
180 }
181 
182 static void regmap_format_2_6_write(struct regmap *map,
183 				     unsigned int reg, unsigned int val)
184 {
185 	u8 *out = map->work_buf;
186 
187 	*out = (reg << 6) | val;
188 }
189 
190 static void regmap_format_4_12_write(struct regmap *map,
191 				     unsigned int reg, unsigned int val)
192 {
193 	__be16 *out = map->work_buf;
194 	*out = cpu_to_be16((reg << 12) | val);
195 }
196 
197 static void regmap_format_7_9_write(struct regmap *map,
198 				    unsigned int reg, unsigned int val)
199 {
200 	__be16 *out = map->work_buf;
201 	*out = cpu_to_be16((reg << 9) | val);
202 }
203 
204 static void regmap_format_10_14_write(struct regmap *map,
205 				    unsigned int reg, unsigned int val)
206 {
207 	u8 *out = map->work_buf;
208 
209 	out[2] = val;
210 	out[1] = (val >> 8) | (reg << 6);
211 	out[0] = reg >> 2;
212 }
213 
214 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
215 {
216 	u8 *b = buf;
217 
218 	b[0] = val << shift;
219 }
220 
221 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
222 {
223 	__be16 *b = buf;
224 
225 	b[0] = cpu_to_be16(val << shift);
226 }
227 
228 static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
229 {
230 	__le16 *b = buf;
231 
232 	b[0] = cpu_to_le16(val << shift);
233 }
234 
235 static void regmap_format_16_native(void *buf, unsigned int val,
236 				    unsigned int shift)
237 {
238 	*(u16 *)buf = val << shift;
239 }
240 
241 static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
242 {
243 	u8 *b = buf;
244 
245 	val <<= shift;
246 
247 	b[0] = val >> 16;
248 	b[1] = val >> 8;
249 	b[2] = val;
250 }
251 
252 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
253 {
254 	__be32 *b = buf;
255 
256 	b[0] = cpu_to_be32(val << shift);
257 }
258 
259 static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
260 {
261 	__le32 *b = buf;
262 
263 	b[0] = cpu_to_le32(val << shift);
264 }
265 
266 static void regmap_format_32_native(void *buf, unsigned int val,
267 				    unsigned int shift)
268 {
269 	*(u32 *)buf = val << shift;
270 }
271 
272 #ifdef CONFIG_64BIT
273 static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
274 {
275 	__be64 *b = buf;
276 
277 	b[0] = cpu_to_be64((u64)val << shift);
278 }
279 
280 static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
281 {
282 	__le64 *b = buf;
283 
284 	b[0] = cpu_to_le64((u64)val << shift);
285 }
286 
287 static void regmap_format_64_native(void *buf, unsigned int val,
288 				    unsigned int shift)
289 {
290 	*(u64 *)buf = (u64)val << shift;
291 }
292 #endif
293 
294 static void regmap_parse_inplace_noop(void *buf)
295 {
296 }
297 
298 static unsigned int regmap_parse_8(const void *buf)
299 {
300 	const u8 *b = buf;
301 
302 	return b[0];
303 }
304 
305 static unsigned int regmap_parse_16_be(const void *buf)
306 {
307 	const __be16 *b = buf;
308 
309 	return be16_to_cpu(b[0]);
310 }
311 
312 static unsigned int regmap_parse_16_le(const void *buf)
313 {
314 	const __le16 *b = buf;
315 
316 	return le16_to_cpu(b[0]);
317 }
318 
319 static void regmap_parse_16_be_inplace(void *buf)
320 {
321 	__be16 *b = buf;
322 
323 	b[0] = be16_to_cpu(b[0]);
324 }
325 
326 static void regmap_parse_16_le_inplace(void *buf)
327 {
328 	__le16 *b = buf;
329 
330 	b[0] = le16_to_cpu(b[0]);
331 }
332 
333 static unsigned int regmap_parse_16_native(const void *buf)
334 {
335 	return *(u16 *)buf;
336 }
337 
338 static unsigned int regmap_parse_24(const void *buf)
339 {
340 	const u8 *b = buf;
341 	unsigned int ret = b[2];
342 	ret |= ((unsigned int)b[1]) << 8;
343 	ret |= ((unsigned int)b[0]) << 16;
344 
345 	return ret;
346 }
347 
348 static unsigned int regmap_parse_32_be(const void *buf)
349 {
350 	const __be32 *b = buf;
351 
352 	return be32_to_cpu(b[0]);
353 }
354 
355 static unsigned int regmap_parse_32_le(const void *buf)
356 {
357 	const __le32 *b = buf;
358 
359 	return le32_to_cpu(b[0]);
360 }
361 
362 static void regmap_parse_32_be_inplace(void *buf)
363 {
364 	__be32 *b = buf;
365 
366 	b[0] = be32_to_cpu(b[0]);
367 }
368 
369 static void regmap_parse_32_le_inplace(void *buf)
370 {
371 	__le32 *b = buf;
372 
373 	b[0] = le32_to_cpu(b[0]);
374 }
375 
376 static unsigned int regmap_parse_32_native(const void *buf)
377 {
378 	return *(u32 *)buf;
379 }
380 
381 #ifdef CONFIG_64BIT
382 static unsigned int regmap_parse_64_be(const void *buf)
383 {
384 	const __be64 *b = buf;
385 
386 	return be64_to_cpu(b[0]);
387 }
388 
389 static unsigned int regmap_parse_64_le(const void *buf)
390 {
391 	const __le64 *b = buf;
392 
393 	return le64_to_cpu(b[0]);
394 }
395 
396 static void regmap_parse_64_be_inplace(void *buf)
397 {
398 	__be64 *b = buf;
399 
400 	b[0] = be64_to_cpu(b[0]);
401 }
402 
403 static void regmap_parse_64_le_inplace(void *buf)
404 {
405 	__le64 *b = buf;
406 
407 	b[0] = le64_to_cpu(b[0]);
408 }
409 
410 static unsigned int regmap_parse_64_native(const void *buf)
411 {
412 	return *(u64 *)buf;
413 }
414 #endif
415 
416 static void regmap_lock_mutex(void *__map)
417 {
418 	struct regmap *map = __map;
419 	mutex_lock(&map->mutex);
420 }
421 
422 static void regmap_unlock_mutex(void *__map)
423 {
424 	struct regmap *map = __map;
425 	mutex_unlock(&map->mutex);
426 }
427 
428 static void regmap_lock_spinlock(void *__map)
429 __acquires(&map->spinlock)
430 {
431 	struct regmap *map = __map;
432 	unsigned long flags;
433 
434 	spin_lock_irqsave(&map->spinlock, flags);
435 	map->spinlock_flags = flags;
436 }
437 
438 static void regmap_unlock_spinlock(void *__map)
439 __releases(&map->spinlock)
440 {
441 	struct regmap *map = __map;
442 	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
443 }
444 
445 static void dev_get_regmap_release(struct device *dev, void *res)
446 {
447 	/*
448 	 * We don't actually have anything to do here; the goal here
449 	 * is not to manage the regmap but to provide a simple way to
450 	 * get the regmap back given a struct device.
451 	 */
452 }
453 
454 static bool _regmap_range_add(struct regmap *map,
455 			      struct regmap_range_node *data)
456 {
457 	struct rb_root *root = &map->range_tree;
458 	struct rb_node **new = &(root->rb_node), *parent = NULL;
459 
460 	while (*new) {
461 		struct regmap_range_node *this =
462 			rb_entry(*new, struct regmap_range_node, node);
463 
464 		parent = *new;
465 		if (data->range_max < this->range_min)
466 			new = &((*new)->rb_left);
467 		else if (data->range_min > this->range_max)
468 			new = &((*new)->rb_right);
469 		else
470 			return false;
471 	}
472 
473 	rb_link_node(&data->node, parent, new);
474 	rb_insert_color(&data->node, root);
475 
476 	return true;
477 }
478 
479 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
480 						      unsigned int reg)
481 {
482 	struct rb_node *node = map->range_tree.rb_node;
483 
484 	while (node) {
485 		struct regmap_range_node *this =
486 			rb_entry(node, struct regmap_range_node, node);
487 
488 		if (reg < this->range_min)
489 			node = node->rb_left;
490 		else if (reg > this->range_max)
491 			node = node->rb_right;
492 		else
493 			return this;
494 	}
495 
496 	return NULL;
497 }
498 
499 static void regmap_range_exit(struct regmap *map)
500 {
501 	struct rb_node *next;
502 	struct regmap_range_node *range_node;
503 
504 	next = rb_first(&map->range_tree);
505 	while (next) {
506 		range_node = rb_entry(next, struct regmap_range_node, node);
507 		next = rb_next(&range_node->node);
508 		rb_erase(&range_node->node, &map->range_tree);
509 		kfree(range_node);
510 	}
511 
512 	kfree(map->selector_work_buf);
513 }
514 
515 int regmap_attach_dev(struct device *dev, struct regmap *map,
516 		      const struct regmap_config *config)
517 {
518 	struct regmap **m;
519 
520 	map->dev = dev;
521 
522 	regmap_debugfs_init(map, config->name);
523 
524 	/* Add a devres resource for dev_get_regmap() */
525 	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
526 	if (!m) {
527 		regmap_debugfs_exit(map);
528 		return -ENOMEM;
529 	}
530 	*m = map;
531 	devres_add(dev, m);
532 
533 	return 0;
534 }
535 EXPORT_SYMBOL_GPL(regmap_attach_dev);
536 
537 static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
538 					const struct regmap_config *config)
539 {
540 	enum regmap_endian endian;
541 
542 	/* Retrieve the endianness specification from the regmap config */
543 	endian = config->reg_format_endian;
544 
545 	/* If the regmap config specified a non-default value, use that */
546 	if (endian != REGMAP_ENDIAN_DEFAULT)
547 		return endian;
548 
549 	/* Retrieve the endianness specification from the bus config */
550 	if (bus && bus->reg_format_endian_default)
551 		endian = bus->reg_format_endian_default;
552 
553 	/* If the bus specified a non-default value, use that */
554 	if (endian != REGMAP_ENDIAN_DEFAULT)
555 		return endian;
556 
557 	/* Use this if no other value was found */
558 	return REGMAP_ENDIAN_BIG;
559 }
560 
561 enum regmap_endian regmap_get_val_endian(struct device *dev,
562 					 const struct regmap_bus *bus,
563 					 const struct regmap_config *config)
564 {
565 	struct device_node *np;
566 	enum regmap_endian endian;
567 
568 	/* Retrieve the endianness specification from the regmap config */
569 	endian = config->val_format_endian;
570 
571 	/* If the regmap config specified a non-default value, use that */
572 	if (endian != REGMAP_ENDIAN_DEFAULT)
573 		return endian;
574 
575 	/* If the dev and dev->of_node exist try to get endianness from DT */
576 	if (dev && dev->of_node) {
577 		np = dev->of_node;
578 
579 		/* Parse the device's DT node for an endianness specification */
580 		if (of_property_read_bool(np, "big-endian"))
581 			endian = REGMAP_ENDIAN_BIG;
582 		else if (of_property_read_bool(np, "little-endian"))
583 			endian = REGMAP_ENDIAN_LITTLE;
584 		else if (of_property_read_bool(np, "native-endian"))
585 			endian = REGMAP_ENDIAN_NATIVE;
586 
587 		/* If the endianness was specified in DT, use that */
588 		if (endian != REGMAP_ENDIAN_DEFAULT)
589 			return endian;
590 	}
591 
592 	/* Retrieve the endianness specification from the bus config */
593 	if (bus && bus->val_format_endian_default)
594 		endian = bus->val_format_endian_default;
595 
596 	/* If the bus specified a non-default value, use that */
597 	if (endian != REGMAP_ENDIAN_DEFAULT)
598 		return endian;
599 
600 	/* Use this if no other value was found */
601 	return REGMAP_ENDIAN_BIG;
602 }
603 EXPORT_SYMBOL_GPL(regmap_get_val_endian);
604 
605 struct regmap *__regmap_init(struct device *dev,
606 			     const struct regmap_bus *bus,
607 			     void *bus_context,
608 			     const struct regmap_config *config,
609 			     struct lock_class_key *lock_key,
610 			     const char *lock_name)
611 {
612 	struct regmap *map;
613 	int ret = -EINVAL;
614 	enum regmap_endian reg_endian, val_endian;
615 	int i, j;
616 
617 	if (!config)
618 		goto err;
619 
620 	map = kzalloc(sizeof(*map), GFP_KERNEL);
621 	if (map == NULL) {
622 		ret = -ENOMEM;
623 		goto err;
624 	}
625 
626 	if (config->lock && config->unlock) {
627 		map->lock = config->lock;
628 		map->unlock = config->unlock;
629 		map->lock_arg = config->lock_arg;
630 	} else {
631 		if ((bus && bus->fast_io) ||
632 		    config->fast_io) {
633 			spin_lock_init(&map->spinlock);
634 			map->lock = regmap_lock_spinlock;
635 			map->unlock = regmap_unlock_spinlock;
636 			lockdep_set_class_and_name(&map->spinlock,
637 						   lock_key, lock_name);
638 		} else {
639 			mutex_init(&map->mutex);
640 			map->lock = regmap_lock_mutex;
641 			map->unlock = regmap_unlock_mutex;
642 			lockdep_set_class_and_name(&map->mutex,
643 						   lock_key, lock_name);
644 		}
645 		map->lock_arg = map;
646 	}
647 
648 	/*
649 	 * When we write in fast-paths with regmap_bulk_write() don't allocate
650 	 * scratch buffers with sleeping allocations.
651 	 */
652 	if ((bus && bus->fast_io) || config->fast_io)
653 		map->alloc_flags = GFP_ATOMIC;
654 	else
655 		map->alloc_flags = GFP_KERNEL;
656 
657 	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
658 	map->format.pad_bytes = config->pad_bits / 8;
659 	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
660 	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
661 			config->val_bits + config->pad_bits, 8);
662 	map->reg_shift = config->pad_bits % 8;
663 	if (config->reg_stride)
664 		map->reg_stride = config->reg_stride;
665 	else
666 		map->reg_stride = 1;
667 	if (is_power_of_2(map->reg_stride))
668 		map->reg_stride_order = ilog2(map->reg_stride);
669 	else
670 		map->reg_stride_order = -1;
671 	map->use_single_read = config->use_single_rw || !bus || !bus->read;
672 	map->use_single_write = config->use_single_rw || !bus || !bus->write;
673 	map->can_multi_write = config->can_multi_write && bus && bus->write;
674 	if (bus) {
675 		map->max_raw_read = bus->max_raw_read;
676 		map->max_raw_write = bus->max_raw_write;
677 	}
678 	map->dev = dev;
679 	map->bus = bus;
680 	map->bus_context = bus_context;
681 	map->max_register = config->max_register;
682 	map->wr_table = config->wr_table;
683 	map->rd_table = config->rd_table;
684 	map->volatile_table = config->volatile_table;
685 	map->precious_table = config->precious_table;
686 	map->writeable_reg = config->writeable_reg;
687 	map->readable_reg = config->readable_reg;
688 	map->volatile_reg = config->volatile_reg;
689 	map->precious_reg = config->precious_reg;
690 	map->cache_type = config->cache_type;
691 	map->name = config->name;
692 
693 	spin_lock_init(&map->async_lock);
694 	INIT_LIST_HEAD(&map->async_list);
695 	INIT_LIST_HEAD(&map->async_free);
696 	init_waitqueue_head(&map->async_waitq);
697 
698 	if (config->read_flag_mask || config->write_flag_mask) {
699 		map->read_flag_mask = config->read_flag_mask;
700 		map->write_flag_mask = config->write_flag_mask;
701 	} else if (bus) {
702 		map->read_flag_mask = bus->read_flag_mask;
703 	}
704 
705 	if (!bus) {
706 		map->reg_read  = config->reg_read;
707 		map->reg_write = config->reg_write;
708 
709 		map->defer_caching = false;
710 		goto skip_format_initialization;
711 	} else if (!bus->read || !bus->write) {
712 		map->reg_read = _regmap_bus_reg_read;
713 		map->reg_write = _regmap_bus_reg_write;
714 
715 		map->defer_caching = false;
716 		goto skip_format_initialization;
717 	} else {
718 		map->reg_read  = _regmap_bus_read;
719 		map->reg_update_bits = bus->reg_update_bits;
720 	}
721 
722 	reg_endian = regmap_get_reg_endian(bus, config);
723 	val_endian = regmap_get_val_endian(dev, bus, config);
724 
725 	switch (config->reg_bits + map->reg_shift) {
726 	case 2:
727 		switch (config->val_bits) {
728 		case 6:
729 			map->format.format_write = regmap_format_2_6_write;
730 			break;
731 		default:
732 			goto err_map;
733 		}
734 		break;
735 
736 	case 4:
737 		switch (config->val_bits) {
738 		case 12:
739 			map->format.format_write = regmap_format_4_12_write;
740 			break;
741 		default:
742 			goto err_map;
743 		}
744 		break;
745 
746 	case 7:
747 		switch (config->val_bits) {
748 		case 9:
749 			map->format.format_write = regmap_format_7_9_write;
750 			break;
751 		default:
752 			goto err_map;
753 		}
754 		break;
755 
756 	case 10:
757 		switch (config->val_bits) {
758 		case 14:
759 			map->format.format_write = regmap_format_10_14_write;
760 			break;
761 		default:
762 			goto err_map;
763 		}
764 		break;
765 
766 	case 8:
767 		map->format.format_reg = regmap_format_8;
768 		break;
769 
770 	case 16:
771 		switch (reg_endian) {
772 		case REGMAP_ENDIAN_BIG:
773 			map->format.format_reg = regmap_format_16_be;
774 			break;
775 		case REGMAP_ENDIAN_LITTLE:
776 			map->format.format_reg = regmap_format_16_le;
777 			break;
778 		case REGMAP_ENDIAN_NATIVE:
779 			map->format.format_reg = regmap_format_16_native;
780 			break;
781 		default:
782 			goto err_map;
783 		}
784 		break;
785 
786 	case 24:
787 		if (reg_endian != REGMAP_ENDIAN_BIG)
788 			goto err_map;
789 		map->format.format_reg = regmap_format_24;
790 		break;
791 
792 	case 32:
793 		switch (reg_endian) {
794 		case REGMAP_ENDIAN_BIG:
795 			map->format.format_reg = regmap_format_32_be;
796 			break;
797 		case REGMAP_ENDIAN_LITTLE:
798 			map->format.format_reg = regmap_format_32_le;
799 			break;
800 		case REGMAP_ENDIAN_NATIVE:
801 			map->format.format_reg = regmap_format_32_native;
802 			break;
803 		default:
804 			goto err_map;
805 		}
806 		break;
807 
808 #ifdef CONFIG_64BIT
809 	case 64:
810 		switch (reg_endian) {
811 		case REGMAP_ENDIAN_BIG:
812 			map->format.format_reg = regmap_format_64_be;
813 			break;
814 		case REGMAP_ENDIAN_LITTLE:
815 			map->format.format_reg = regmap_format_64_le;
816 			break;
817 		case REGMAP_ENDIAN_NATIVE:
818 			map->format.format_reg = regmap_format_64_native;
819 			break;
820 		default:
821 			goto err_map;
822 		}
823 		break;
824 #endif
825 
826 	default:
827 		goto err_map;
828 	}
829 
830 	if (val_endian == REGMAP_ENDIAN_NATIVE)
831 		map->format.parse_inplace = regmap_parse_inplace_noop;
832 
833 	switch (config->val_bits) {
834 	case 8:
835 		map->format.format_val = regmap_format_8;
836 		map->format.parse_val = regmap_parse_8;
837 		map->format.parse_inplace = regmap_parse_inplace_noop;
838 		break;
839 	case 16:
840 		switch (val_endian) {
841 		case REGMAP_ENDIAN_BIG:
842 			map->format.format_val = regmap_format_16_be;
843 			map->format.parse_val = regmap_parse_16_be;
844 			map->format.parse_inplace = regmap_parse_16_be_inplace;
845 			break;
846 		case REGMAP_ENDIAN_LITTLE:
847 			map->format.format_val = regmap_format_16_le;
848 			map->format.parse_val = regmap_parse_16_le;
849 			map->format.parse_inplace = regmap_parse_16_le_inplace;
850 			break;
851 		case REGMAP_ENDIAN_NATIVE:
852 			map->format.format_val = regmap_format_16_native;
853 			map->format.parse_val = regmap_parse_16_native;
854 			break;
855 		default:
856 			goto err_map;
857 		}
858 		break;
859 	case 24:
860 		if (val_endian != REGMAP_ENDIAN_BIG)
861 			goto err_map;
862 		map->format.format_val = regmap_format_24;
863 		map->format.parse_val = regmap_parse_24;
864 		break;
865 	case 32:
866 		switch (val_endian) {
867 		case REGMAP_ENDIAN_BIG:
868 			map->format.format_val = regmap_format_32_be;
869 			map->format.parse_val = regmap_parse_32_be;
870 			map->format.parse_inplace = regmap_parse_32_be_inplace;
871 			break;
872 		case REGMAP_ENDIAN_LITTLE:
873 			map->format.format_val = regmap_format_32_le;
874 			map->format.parse_val = regmap_parse_32_le;
875 			map->format.parse_inplace = regmap_parse_32_le_inplace;
876 			break;
877 		case REGMAP_ENDIAN_NATIVE:
878 			map->format.format_val = regmap_format_32_native;
879 			map->format.parse_val = regmap_parse_32_native;
880 			break;
881 		default:
882 			goto err_map;
883 		}
884 		break;
885 #ifdef CONFIG_64BIT
886 	case 64:
887 		switch (val_endian) {
888 		case REGMAP_ENDIAN_BIG:
889 			map->format.format_val = regmap_format_64_be;
890 			map->format.parse_val = regmap_parse_64_be;
891 			map->format.parse_inplace = regmap_parse_64_be_inplace;
892 			break;
893 		case REGMAP_ENDIAN_LITTLE:
894 			map->format.format_val = regmap_format_64_le;
895 			map->format.parse_val = regmap_parse_64_le;
896 			map->format.parse_inplace = regmap_parse_64_le_inplace;
897 			break;
898 		case REGMAP_ENDIAN_NATIVE:
899 			map->format.format_val = regmap_format_64_native;
900 			map->format.parse_val = regmap_parse_64_native;
901 			break;
902 		default:
903 			goto err_map;
904 		}
905 		break;
906 #endif
907 	}
908 
909 	if (map->format.format_write) {
910 		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
911 		    (val_endian != REGMAP_ENDIAN_BIG))
912 			goto err_map;
913 		map->use_single_write = true;
914 	}
915 
916 	if (!map->format.format_write &&
917 	    !(map->format.format_reg && map->format.format_val))
918 		goto err_map;
919 
920 	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
921 	if (map->work_buf == NULL) {
922 		ret = -ENOMEM;
923 		goto err_map;
924 	}
925 
926 	if (map->format.format_write) {
927 		map->defer_caching = false;
928 		map->reg_write = _regmap_bus_formatted_write;
929 	} else if (map->format.format_val) {
930 		map->defer_caching = true;
931 		map->reg_write = _regmap_bus_raw_write;
932 	}
933 
934 skip_format_initialization:
935 
936 	map->range_tree = RB_ROOT;
937 	for (i = 0; i < config->num_ranges; i++) {
938 		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
939 		struct regmap_range_node *new;
940 
941 		/* Sanity check */
942 		if (range_cfg->range_max < range_cfg->range_min) {
943 			dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
944 				range_cfg->range_max, range_cfg->range_min);
945 			goto err_range;
946 		}
947 
948 		if (range_cfg->range_max > map->max_register) {
949 			dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
950 				range_cfg->range_max, map->max_register);
951 			goto err_range;
952 		}
953 
954 		if (range_cfg->selector_reg > map->max_register) {
955 			dev_err(map->dev,
956 				"Invalid range %d: selector out of map\n", i);
957 			goto err_range;
958 		}
959 
960 		if (range_cfg->window_len == 0) {
961 			dev_err(map->dev, "Invalid range %d: window_len 0\n",
962 				i);
963 			goto err_range;
964 		}
965 
966 		/* Make sure, that this register range has no selector
967 		   or data window within its boundary */
968 		for (j = 0; j < config->num_ranges; j++) {
969 			unsigned sel_reg = config->ranges[j].selector_reg;
970 			unsigned win_min = config->ranges[j].window_start;
971 			unsigned win_max = win_min +
972 					   config->ranges[j].window_len - 1;
973 
974 			/* Allow data window inside its own virtual range */
975 			if (j == i)
976 				continue;
977 
978 			if (range_cfg->range_min <= sel_reg &&
979 			    sel_reg <= range_cfg->range_max) {
980 				dev_err(map->dev,
981 					"Range %d: selector for %d in window\n",
982 					i, j);
983 				goto err_range;
984 			}
985 
986 			if (!(win_max < range_cfg->range_min ||
987 			      win_min > range_cfg->range_max)) {
988 				dev_err(map->dev,
989 					"Range %d: window for %d in window\n",
990 					i, j);
991 				goto err_range;
992 			}
993 		}
994 
995 		new = kzalloc(sizeof(*new), GFP_KERNEL);
996 		if (new == NULL) {
997 			ret = -ENOMEM;
998 			goto err_range;
999 		}
1000 
1001 		new->map = map;
1002 		new->name = range_cfg->name;
1003 		new->range_min = range_cfg->range_min;
1004 		new->range_max = range_cfg->range_max;
1005 		new->selector_reg = range_cfg->selector_reg;
1006 		new->selector_mask = range_cfg->selector_mask;
1007 		new->selector_shift = range_cfg->selector_shift;
1008 		new->window_start = range_cfg->window_start;
1009 		new->window_len = range_cfg->window_len;
1010 
1011 		if (!_regmap_range_add(map, new)) {
1012 			dev_err(map->dev, "Failed to add range %d\n", i);
1013 			kfree(new);
1014 			goto err_range;
1015 		}
1016 
1017 		if (map->selector_work_buf == NULL) {
1018 			map->selector_work_buf =
1019 				kzalloc(map->format.buf_size, GFP_KERNEL);
1020 			if (map->selector_work_buf == NULL) {
1021 				ret = -ENOMEM;
1022 				goto err_range;
1023 			}
1024 		}
1025 	}
1026 
1027 	ret = regcache_init(map, config);
1028 	if (ret != 0)
1029 		goto err_range;
1030 
1031 	if (dev) {
1032 		ret = regmap_attach_dev(dev, map, config);
1033 		if (ret != 0)
1034 			goto err_regcache;
1035 	}
1036 
1037 	return map;
1038 
1039 err_regcache:
1040 	regcache_exit(map);
1041 err_range:
1042 	regmap_range_exit(map);
1043 	kfree(map->work_buf);
1044 err_map:
1045 	kfree(map);
1046 err:
1047 	return ERR_PTR(ret);
1048 }
1049 EXPORT_SYMBOL_GPL(__regmap_init);
1050 
1051 static void devm_regmap_release(struct device *dev, void *res)
1052 {
1053 	regmap_exit(*(struct regmap **)res);
1054 }
1055 
1056 struct regmap *__devm_regmap_init(struct device *dev,
1057 				  const struct regmap_bus *bus,
1058 				  void *bus_context,
1059 				  const struct regmap_config *config,
1060 				  struct lock_class_key *lock_key,
1061 				  const char *lock_name)
1062 {
1063 	struct regmap **ptr, *regmap;
1064 
1065 	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1066 	if (!ptr)
1067 		return ERR_PTR(-ENOMEM);
1068 
1069 	regmap = __regmap_init(dev, bus, bus_context, config,
1070 			       lock_key, lock_name);
1071 	if (!IS_ERR(regmap)) {
1072 		*ptr = regmap;
1073 		devres_add(dev, ptr);
1074 	} else {
1075 		devres_free(ptr);
1076 	}
1077 
1078 	return regmap;
1079 }
1080 EXPORT_SYMBOL_GPL(__devm_regmap_init);
1081 
1082 static void regmap_field_init(struct regmap_field *rm_field,
1083 	struct regmap *regmap, struct reg_field reg_field)
1084 {
1085 	rm_field->regmap = regmap;
1086 	rm_field->reg = reg_field.reg;
1087 	rm_field->shift = reg_field.lsb;
1088 	rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1089 	rm_field->id_size = reg_field.id_size;
1090 	rm_field->id_offset = reg_field.id_offset;
1091 }
1092 
1093 /**
1094  * devm_regmap_field_alloc() - Allocate and initialise a register field.
1095  *
1096  * @dev: Device that will be interacted with
1097  * @regmap: regmap bank in which this register field is located.
1098  * @reg_field: Register field with in the bank.
1099  *
1100  * The return value will be an ERR_PTR() on error or a valid pointer
1101  * to a struct regmap_field. The regmap_field will be automatically freed
1102  * by the device management code.
1103  */
1104 struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1105 		struct regmap *regmap, struct reg_field reg_field)
1106 {
1107 	struct regmap_field *rm_field = devm_kzalloc(dev,
1108 					sizeof(*rm_field), GFP_KERNEL);
1109 	if (!rm_field)
1110 		return ERR_PTR(-ENOMEM);
1111 
1112 	regmap_field_init(rm_field, regmap, reg_field);
1113 
1114 	return rm_field;
1115 
1116 }
1117 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1118 
1119 /**
1120  * devm_regmap_field_free() - Free a register field allocated using
1121  *                            devm_regmap_field_alloc.
1122  *
1123  * @dev: Device that will be interacted with
1124  * @field: regmap field which should be freed.
1125  *
1126  * Free register field allocated using devm_regmap_field_alloc(). Usually
1127  * drivers need not call this function, as the memory allocated via devm
1128  * will be freed as per device-driver life-cyle.
1129  */
1130 void devm_regmap_field_free(struct device *dev,
1131 	struct regmap_field *field)
1132 {
1133 	devm_kfree(dev, field);
1134 }
1135 EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1136 
1137 /**
1138  * regmap_field_alloc() - Allocate and initialise a register field.
1139  *
1140  * @regmap: regmap bank in which this register field is located.
1141  * @reg_field: Register field with in the bank.
1142  *
1143  * The return value will be an ERR_PTR() on error or a valid pointer
1144  * to a struct regmap_field. The regmap_field should be freed by the
1145  * user once its finished working with it using regmap_field_free().
1146  */
1147 struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1148 		struct reg_field reg_field)
1149 {
1150 	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1151 
1152 	if (!rm_field)
1153 		return ERR_PTR(-ENOMEM);
1154 
1155 	regmap_field_init(rm_field, regmap, reg_field);
1156 
1157 	return rm_field;
1158 }
1159 EXPORT_SYMBOL_GPL(regmap_field_alloc);
1160 
1161 /**
1162  * regmap_field_free() - Free register field allocated using
1163  *                       regmap_field_alloc.
1164  *
1165  * @field: regmap field which should be freed.
1166  */
1167 void regmap_field_free(struct regmap_field *field)
1168 {
1169 	kfree(field);
1170 }
1171 EXPORT_SYMBOL_GPL(regmap_field_free);
1172 
1173 /**
1174  * regmap_reinit_cache() - Reinitialise the current register cache
1175  *
1176  * @map: Register map to operate on.
1177  * @config: New configuration.  Only the cache data will be used.
1178  *
1179  * Discard any existing register cache for the map and initialize a
1180  * new cache.  This can be used to restore the cache to defaults or to
1181  * update the cache configuration to reflect runtime discovery of the
1182  * hardware.
1183  *
1184  * No explicit locking is done here, the user needs to ensure that
1185  * this function will not race with other calls to regmap.
1186  */
1187 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1188 {
1189 	regcache_exit(map);
1190 	regmap_debugfs_exit(map);
1191 
1192 	map->max_register = config->max_register;
1193 	map->writeable_reg = config->writeable_reg;
1194 	map->readable_reg = config->readable_reg;
1195 	map->volatile_reg = config->volatile_reg;
1196 	map->precious_reg = config->precious_reg;
1197 	map->cache_type = config->cache_type;
1198 
1199 	regmap_debugfs_init(map, config->name);
1200 
1201 	map->cache_bypass = false;
1202 	map->cache_only = false;
1203 
1204 	return regcache_init(map, config);
1205 }
1206 EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1207 
1208 /**
1209  * regmap_exit() - Free a previously allocated register map
1210  *
1211  * @map: Register map to operate on.
1212  */
1213 void regmap_exit(struct regmap *map)
1214 {
1215 	struct regmap_async *async;
1216 
1217 	regcache_exit(map);
1218 	regmap_debugfs_exit(map);
1219 	regmap_range_exit(map);
1220 	if (map->bus && map->bus->free_context)
1221 		map->bus->free_context(map->bus_context);
1222 	kfree(map->work_buf);
1223 	while (!list_empty(&map->async_free)) {
1224 		async = list_first_entry_or_null(&map->async_free,
1225 						 struct regmap_async,
1226 						 list);
1227 		list_del(&async->list);
1228 		kfree(async->work_buf);
1229 		kfree(async);
1230 	}
1231 	kfree(map);
1232 }
1233 EXPORT_SYMBOL_GPL(regmap_exit);
1234 
1235 static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1236 {
1237 	struct regmap **r = res;
1238 	if (!r || !*r) {
1239 		WARN_ON(!r || !*r);
1240 		return 0;
1241 	}
1242 
1243 	/* If the user didn't specify a name match any */
1244 	if (data)
1245 		return (*r)->name == data;
1246 	else
1247 		return 1;
1248 }
1249 
1250 /**
1251  * dev_get_regmap() - Obtain the regmap (if any) for a device
1252  *
1253  * @dev: Device to retrieve the map for
1254  * @name: Optional name for the register map, usually NULL.
1255  *
1256  * Returns the regmap for the device if one is present, or NULL.  If
1257  * name is specified then it must match the name specified when
1258  * registering the device, if it is NULL then the first regmap found
1259  * will be used.  Devices with multiple register maps are very rare,
1260  * generic code should normally not need to specify a name.
1261  */
1262 struct regmap *dev_get_regmap(struct device *dev, const char *name)
1263 {
1264 	struct regmap **r = devres_find(dev, dev_get_regmap_release,
1265 					dev_get_regmap_match, (void *)name);
1266 
1267 	if (!r)
1268 		return NULL;
1269 	return *r;
1270 }
1271 EXPORT_SYMBOL_GPL(dev_get_regmap);
1272 
1273 /**
1274  * regmap_get_device() - Obtain the device from a regmap
1275  *
1276  * @map: Register map to operate on.
1277  *
1278  * Returns the underlying device that the regmap has been created for.
1279  */
1280 struct device *regmap_get_device(struct regmap *map)
1281 {
1282 	return map->dev;
1283 }
1284 EXPORT_SYMBOL_GPL(regmap_get_device);
1285 
1286 static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1287 			       struct regmap_range_node *range,
1288 			       unsigned int val_num)
1289 {
1290 	void *orig_work_buf;
1291 	unsigned int win_offset;
1292 	unsigned int win_page;
1293 	bool page_chg;
1294 	int ret;
1295 
1296 	win_offset = (*reg - range->range_min) % range->window_len;
1297 	win_page = (*reg - range->range_min) / range->window_len;
1298 
1299 	if (val_num > 1) {
1300 		/* Bulk write shouldn't cross range boundary */
1301 		if (*reg + val_num - 1 > range->range_max)
1302 			return -EINVAL;
1303 
1304 		/* ... or single page boundary */
1305 		if (val_num > range->window_len - win_offset)
1306 			return -EINVAL;
1307 	}
1308 
1309 	/* It is possible to have selector register inside data window.
1310 	   In that case, selector register is located on every page and
1311 	   it needs no page switching, when accessed alone. */
1312 	if (val_num > 1 ||
1313 	    range->window_start + win_offset != range->selector_reg) {
1314 		/* Use separate work_buf during page switching */
1315 		orig_work_buf = map->work_buf;
1316 		map->work_buf = map->selector_work_buf;
1317 
1318 		ret = _regmap_update_bits(map, range->selector_reg,
1319 					  range->selector_mask,
1320 					  win_page << range->selector_shift,
1321 					  &page_chg, false);
1322 
1323 		map->work_buf = orig_work_buf;
1324 
1325 		if (ret != 0)
1326 			return ret;
1327 	}
1328 
1329 	*reg = range->window_start + win_offset;
1330 
1331 	return 0;
1332 }
1333 
1334 static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1335 					  unsigned long mask)
1336 {
1337 	u8 *buf;
1338 	int i;
1339 
1340 	if (!mask || !map->work_buf)
1341 		return;
1342 
1343 	buf = map->work_buf;
1344 
1345 	for (i = 0; i < max_bytes; i++)
1346 		buf[i] |= (mask >> (8 * i)) & 0xff;
1347 }
1348 
1349 int _regmap_raw_write(struct regmap *map, unsigned int reg,
1350 		      const void *val, size_t val_len)
1351 {
1352 	struct regmap_range_node *range;
1353 	unsigned long flags;
1354 	void *work_val = map->work_buf + map->format.reg_bytes +
1355 		map->format.pad_bytes;
1356 	void *buf;
1357 	int ret = -ENOTSUPP;
1358 	size_t len;
1359 	int i;
1360 
1361 	WARN_ON(!map->bus);
1362 
1363 	/* Check for unwritable registers before we start */
1364 	if (map->writeable_reg)
1365 		for (i = 0; i < val_len / map->format.val_bytes; i++)
1366 			if (!map->writeable_reg(map->dev,
1367 					       reg + regmap_get_offset(map, i)))
1368 				return -EINVAL;
1369 
1370 	if (!map->cache_bypass && map->format.parse_val) {
1371 		unsigned int ival;
1372 		int val_bytes = map->format.val_bytes;
1373 		for (i = 0; i < val_len / val_bytes; i++) {
1374 			ival = map->format.parse_val(val + (i * val_bytes));
1375 			ret = regcache_write(map,
1376 					     reg + regmap_get_offset(map, i),
1377 					     ival);
1378 			if (ret) {
1379 				dev_err(map->dev,
1380 					"Error in caching of register: %x ret: %d\n",
1381 					reg + i, ret);
1382 				return ret;
1383 			}
1384 		}
1385 		if (map->cache_only) {
1386 			map->cache_dirty = true;
1387 			return 0;
1388 		}
1389 	}
1390 
1391 	range = _regmap_range_lookup(map, reg);
1392 	if (range) {
1393 		int val_num = val_len / map->format.val_bytes;
1394 		int win_offset = (reg - range->range_min) % range->window_len;
1395 		int win_residue = range->window_len - win_offset;
1396 
1397 		/* If the write goes beyond the end of the window split it */
1398 		while (val_num > win_residue) {
1399 			dev_dbg(map->dev, "Writing window %d/%zu\n",
1400 				win_residue, val_len / map->format.val_bytes);
1401 			ret = _regmap_raw_write(map, reg, val, win_residue *
1402 						map->format.val_bytes);
1403 			if (ret != 0)
1404 				return ret;
1405 
1406 			reg += win_residue;
1407 			val_num -= win_residue;
1408 			val += win_residue * map->format.val_bytes;
1409 			val_len -= win_residue * map->format.val_bytes;
1410 
1411 			win_offset = (reg - range->range_min) %
1412 				range->window_len;
1413 			win_residue = range->window_len - win_offset;
1414 		}
1415 
1416 		ret = _regmap_select_page(map, &reg, range, val_num);
1417 		if (ret != 0)
1418 			return ret;
1419 	}
1420 
1421 	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1422 	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1423 				      map->write_flag_mask);
1424 
1425 	/*
1426 	 * Essentially all I/O mechanisms will be faster with a single
1427 	 * buffer to write.  Since register syncs often generate raw
1428 	 * writes of single registers optimise that case.
1429 	 */
1430 	if (val != work_val && val_len == map->format.val_bytes) {
1431 		memcpy(work_val, val, map->format.val_bytes);
1432 		val = work_val;
1433 	}
1434 
1435 	if (map->async && map->bus->async_write) {
1436 		struct regmap_async *async;
1437 
1438 		trace_regmap_async_write_start(map, reg, val_len);
1439 
1440 		spin_lock_irqsave(&map->async_lock, flags);
1441 		async = list_first_entry_or_null(&map->async_free,
1442 						 struct regmap_async,
1443 						 list);
1444 		if (async)
1445 			list_del(&async->list);
1446 		spin_unlock_irqrestore(&map->async_lock, flags);
1447 
1448 		if (!async) {
1449 			async = map->bus->async_alloc();
1450 			if (!async)
1451 				return -ENOMEM;
1452 
1453 			async->work_buf = kzalloc(map->format.buf_size,
1454 						  GFP_KERNEL | GFP_DMA);
1455 			if (!async->work_buf) {
1456 				kfree(async);
1457 				return -ENOMEM;
1458 			}
1459 		}
1460 
1461 		async->map = map;
1462 
1463 		/* If the caller supplied the value we can use it safely. */
1464 		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1465 		       map->format.reg_bytes + map->format.val_bytes);
1466 
1467 		spin_lock_irqsave(&map->async_lock, flags);
1468 		list_add_tail(&async->list, &map->async_list);
1469 		spin_unlock_irqrestore(&map->async_lock, flags);
1470 
1471 		if (val != work_val)
1472 			ret = map->bus->async_write(map->bus_context,
1473 						    async->work_buf,
1474 						    map->format.reg_bytes +
1475 						    map->format.pad_bytes,
1476 						    val, val_len, async);
1477 		else
1478 			ret = map->bus->async_write(map->bus_context,
1479 						    async->work_buf,
1480 						    map->format.reg_bytes +
1481 						    map->format.pad_bytes +
1482 						    val_len, NULL, 0, async);
1483 
1484 		if (ret != 0) {
1485 			dev_err(map->dev, "Failed to schedule write: %d\n",
1486 				ret);
1487 
1488 			spin_lock_irqsave(&map->async_lock, flags);
1489 			list_move(&async->list, &map->async_free);
1490 			spin_unlock_irqrestore(&map->async_lock, flags);
1491 		}
1492 
1493 		return ret;
1494 	}
1495 
1496 	trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1497 
1498 	/* If we're doing a single register write we can probably just
1499 	 * send the work_buf directly, otherwise try to do a gather
1500 	 * write.
1501 	 */
1502 	if (val == work_val)
1503 		ret = map->bus->write(map->bus_context, map->work_buf,
1504 				      map->format.reg_bytes +
1505 				      map->format.pad_bytes +
1506 				      val_len);
1507 	else if (map->bus->gather_write)
1508 		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1509 					     map->format.reg_bytes +
1510 					     map->format.pad_bytes,
1511 					     val, val_len);
1512 
1513 	/* If that didn't work fall back on linearising by hand. */
1514 	if (ret == -ENOTSUPP) {
1515 		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1516 		buf = kzalloc(len, GFP_KERNEL);
1517 		if (!buf)
1518 			return -ENOMEM;
1519 
1520 		memcpy(buf, map->work_buf, map->format.reg_bytes);
1521 		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1522 		       val, val_len);
1523 		ret = map->bus->write(map->bus_context, buf, len);
1524 
1525 		kfree(buf);
1526 	} else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1527 		/* regcache_drop_region() takes lock that we already have,
1528 		 * thus call map->cache_ops->drop() directly
1529 		 */
1530 		if (map->cache_ops && map->cache_ops->drop)
1531 			map->cache_ops->drop(map, reg, reg + 1);
1532 	}
1533 
1534 	trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1535 
1536 	return ret;
1537 }
1538 
1539 /**
1540  * regmap_can_raw_write - Test if regmap_raw_write() is supported
1541  *
1542  * @map: Map to check.
1543  */
1544 bool regmap_can_raw_write(struct regmap *map)
1545 {
1546 	return map->bus && map->bus->write && map->format.format_val &&
1547 		map->format.format_reg;
1548 }
1549 EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1550 
1551 /**
1552  * regmap_get_raw_read_max - Get the maximum size we can read
1553  *
1554  * @map: Map to check.
1555  */
1556 size_t regmap_get_raw_read_max(struct regmap *map)
1557 {
1558 	return map->max_raw_read;
1559 }
1560 EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1561 
1562 /**
1563  * regmap_get_raw_write_max - Get the maximum size we can read
1564  *
1565  * @map: Map to check.
1566  */
1567 size_t regmap_get_raw_write_max(struct regmap *map)
1568 {
1569 	return map->max_raw_write;
1570 }
1571 EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1572 
1573 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1574 				       unsigned int val)
1575 {
1576 	int ret;
1577 	struct regmap_range_node *range;
1578 	struct regmap *map = context;
1579 
1580 	WARN_ON(!map->bus || !map->format.format_write);
1581 
1582 	range = _regmap_range_lookup(map, reg);
1583 	if (range) {
1584 		ret = _regmap_select_page(map, &reg, range, 1);
1585 		if (ret != 0)
1586 			return ret;
1587 	}
1588 
1589 	map->format.format_write(map, reg, val);
1590 
1591 	trace_regmap_hw_write_start(map, reg, 1);
1592 
1593 	ret = map->bus->write(map->bus_context, map->work_buf,
1594 			      map->format.buf_size);
1595 
1596 	trace_regmap_hw_write_done(map, reg, 1);
1597 
1598 	return ret;
1599 }
1600 
1601 static int _regmap_bus_reg_write(void *context, unsigned int reg,
1602 				 unsigned int val)
1603 {
1604 	struct regmap *map = context;
1605 
1606 	return map->bus->reg_write(map->bus_context, reg, val);
1607 }
1608 
1609 static int _regmap_bus_raw_write(void *context, unsigned int reg,
1610 				 unsigned int val)
1611 {
1612 	struct regmap *map = context;
1613 
1614 	WARN_ON(!map->bus || !map->format.format_val);
1615 
1616 	map->format.format_val(map->work_buf + map->format.reg_bytes
1617 			       + map->format.pad_bytes, val, 0);
1618 	return _regmap_raw_write(map, reg,
1619 				 map->work_buf +
1620 				 map->format.reg_bytes +
1621 				 map->format.pad_bytes,
1622 				 map->format.val_bytes);
1623 }
1624 
1625 static inline void *_regmap_map_get_context(struct regmap *map)
1626 {
1627 	return (map->bus) ? map : map->bus_context;
1628 }
1629 
1630 int _regmap_write(struct regmap *map, unsigned int reg,
1631 		  unsigned int val)
1632 {
1633 	int ret;
1634 	void *context = _regmap_map_get_context(map);
1635 
1636 	if (!regmap_writeable(map, reg))
1637 		return -EIO;
1638 
1639 	if (!map->cache_bypass && !map->defer_caching) {
1640 		ret = regcache_write(map, reg, val);
1641 		if (ret != 0)
1642 			return ret;
1643 		if (map->cache_only) {
1644 			map->cache_dirty = true;
1645 			return 0;
1646 		}
1647 	}
1648 
1649 #ifdef LOG_DEVICE
1650 	if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1651 		dev_info(map->dev, "%x <= %x\n", reg, val);
1652 #endif
1653 
1654 	trace_regmap_reg_write(map, reg, val);
1655 
1656 	return map->reg_write(context, reg, val);
1657 }
1658 
1659 /**
1660  * regmap_write() - Write a value to a single register
1661  *
1662  * @map: Register map to write to
1663  * @reg: Register to write to
1664  * @val: Value to be written
1665  *
1666  * A value of zero will be returned on success, a negative errno will
1667  * be returned in error cases.
1668  */
1669 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1670 {
1671 	int ret;
1672 
1673 	if (!IS_ALIGNED(reg, map->reg_stride))
1674 		return -EINVAL;
1675 
1676 	map->lock(map->lock_arg);
1677 
1678 	ret = _regmap_write(map, reg, val);
1679 
1680 	map->unlock(map->lock_arg);
1681 
1682 	return ret;
1683 }
1684 EXPORT_SYMBOL_GPL(regmap_write);
1685 
1686 /**
1687  * regmap_write_async() - Write a value to a single register asynchronously
1688  *
1689  * @map: Register map to write to
1690  * @reg: Register to write to
1691  * @val: Value to be written
1692  *
1693  * A value of zero will be returned on success, a negative errno will
1694  * be returned in error cases.
1695  */
1696 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1697 {
1698 	int ret;
1699 
1700 	if (!IS_ALIGNED(reg, map->reg_stride))
1701 		return -EINVAL;
1702 
1703 	map->lock(map->lock_arg);
1704 
1705 	map->async = true;
1706 
1707 	ret = _regmap_write(map, reg, val);
1708 
1709 	map->async = false;
1710 
1711 	map->unlock(map->lock_arg);
1712 
1713 	return ret;
1714 }
1715 EXPORT_SYMBOL_GPL(regmap_write_async);
1716 
1717 /**
1718  * regmap_raw_write() - Write raw values to one or more registers
1719  *
1720  * @map: Register map to write to
1721  * @reg: Initial register to write to
1722  * @val: Block of data to be written, laid out for direct transmission to the
1723  *       device
1724  * @val_len: Length of data pointed to by val.
1725  *
1726  * This function is intended to be used for things like firmware
1727  * download where a large block of data needs to be transferred to the
1728  * device.  No formatting will be done on the data provided.
1729  *
1730  * A value of zero will be returned on success, a negative errno will
1731  * be returned in error cases.
1732  */
1733 int regmap_raw_write(struct regmap *map, unsigned int reg,
1734 		     const void *val, size_t val_len)
1735 {
1736 	int ret;
1737 
1738 	if (!regmap_can_raw_write(map))
1739 		return -EINVAL;
1740 	if (val_len % map->format.val_bytes)
1741 		return -EINVAL;
1742 	if (map->max_raw_write && map->max_raw_write > val_len)
1743 		return -E2BIG;
1744 
1745 	map->lock(map->lock_arg);
1746 
1747 	ret = _regmap_raw_write(map, reg, val, val_len);
1748 
1749 	map->unlock(map->lock_arg);
1750 
1751 	return ret;
1752 }
1753 EXPORT_SYMBOL_GPL(regmap_raw_write);
1754 
1755 /**
1756  * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
1757  *                                   register field.
1758  *
1759  * @field: Register field to write to
1760  * @mask: Bitmask to change
1761  * @val: Value to be written
1762  * @change: Boolean indicating if a write was done
1763  * @async: Boolean indicating asynchronously
1764  * @force: Boolean indicating use force update
1765  *
1766  * Perform a read/modify/write cycle on the register field with change,
1767  * async, force option.
1768  *
1769  * A value of zero will be returned on success, a negative errno will
1770  * be returned in error cases.
1771  */
1772 int regmap_field_update_bits_base(struct regmap_field *field,
1773 				  unsigned int mask, unsigned int val,
1774 				  bool *change, bool async, bool force)
1775 {
1776 	mask = (mask << field->shift) & field->mask;
1777 
1778 	return regmap_update_bits_base(field->regmap, field->reg,
1779 				       mask, val << field->shift,
1780 				       change, async, force);
1781 }
1782 EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
1783 
1784 /**
1785  * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
1786  *                                    register field with port ID
1787  *
1788  * @field: Register field to write to
1789  * @id: port ID
1790  * @mask: Bitmask to change
1791  * @val: Value to be written
1792  * @change: Boolean indicating if a write was done
1793  * @async: Boolean indicating asynchronously
1794  * @force: Boolean indicating use force update
1795  *
1796  * A value of zero will be returned on success, a negative errno will
1797  * be returned in error cases.
1798  */
1799 int regmap_fields_update_bits_base(struct regmap_field *field,  unsigned int id,
1800 				   unsigned int mask, unsigned int val,
1801 				   bool *change, bool async, bool force)
1802 {
1803 	if (id >= field->id_size)
1804 		return -EINVAL;
1805 
1806 	mask = (mask << field->shift) & field->mask;
1807 
1808 	return regmap_update_bits_base(field->regmap,
1809 				       field->reg + (field->id_offset * id),
1810 				       mask, val << field->shift,
1811 				       change, async, force);
1812 }
1813 EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
1814 
1815 /**
1816  * regmap_bulk_write() - Write multiple registers to the device
1817  *
1818  * @map: Register map to write to
1819  * @reg: First register to be write from
1820  * @val: Block of data to be written, in native register size for device
1821  * @val_count: Number of registers to write
1822  *
1823  * This function is intended to be used for writing a large block of
1824  * data to the device either in single transfer or multiple transfer.
1825  *
1826  * A value of zero will be returned on success, a negative errno will
1827  * be returned in error cases.
1828  */
1829 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
1830 		     size_t val_count)
1831 {
1832 	int ret = 0, i;
1833 	size_t val_bytes = map->format.val_bytes;
1834 	size_t total_size = val_bytes * val_count;
1835 
1836 	if (!IS_ALIGNED(reg, map->reg_stride))
1837 		return -EINVAL;
1838 
1839 	/*
1840 	 * Some devices don't support bulk write, for
1841 	 * them we have a series of single write operations in the first two if
1842 	 * blocks.
1843 	 *
1844 	 * The first if block is used for memory mapped io. It does not allow
1845 	 * val_bytes of 3 for example.
1846 	 * The second one is for busses that do not provide raw I/O.
1847 	 * The third one is used for busses which do not have these limitations
1848 	 * and can write arbitrary value lengths.
1849 	 */
1850 	if (!map->bus) {
1851 		map->lock(map->lock_arg);
1852 		for (i = 0; i < val_count; i++) {
1853 			unsigned int ival;
1854 
1855 			switch (val_bytes) {
1856 			case 1:
1857 				ival = *(u8 *)(val + (i * val_bytes));
1858 				break;
1859 			case 2:
1860 				ival = *(u16 *)(val + (i * val_bytes));
1861 				break;
1862 			case 4:
1863 				ival = *(u32 *)(val + (i * val_bytes));
1864 				break;
1865 #ifdef CONFIG_64BIT
1866 			case 8:
1867 				ival = *(u64 *)(val + (i * val_bytes));
1868 				break;
1869 #endif
1870 			default:
1871 				ret = -EINVAL;
1872 				goto out;
1873 			}
1874 
1875 			ret = _regmap_write(map,
1876 					    reg + regmap_get_offset(map, i),
1877 					    ival);
1878 			if (ret != 0)
1879 				goto out;
1880 		}
1881 out:
1882 		map->unlock(map->lock_arg);
1883 	} else if (map->bus && !map->format.parse_inplace) {
1884 		const u8 *u8 = val;
1885 		const u16 *u16 = val;
1886 		const u32 *u32 = val;
1887 		unsigned int ival;
1888 
1889 		for (i = 0; i < val_count; i++) {
1890 			switch (map->format.val_bytes) {
1891 			case 4:
1892 				ival = u32[i];
1893 				break;
1894 			case 2:
1895 				ival = u16[i];
1896 				break;
1897 			case 1:
1898 				ival = u8[i];
1899 				break;
1900 			default:
1901 				return -EINVAL;
1902 			}
1903 
1904 			ret = regmap_write(map, reg + (i * map->reg_stride),
1905 					   ival);
1906 			if (ret)
1907 				return ret;
1908 		}
1909 	} else if (map->use_single_write ||
1910 		   (map->max_raw_write && map->max_raw_write < total_size)) {
1911 		int chunk_stride = map->reg_stride;
1912 		size_t chunk_size = val_bytes;
1913 		size_t chunk_count = val_count;
1914 
1915 		if (!map->use_single_write) {
1916 			chunk_size = map->max_raw_write;
1917 			if (chunk_size % val_bytes)
1918 				chunk_size -= chunk_size % val_bytes;
1919 			chunk_count = total_size / chunk_size;
1920 			chunk_stride *= chunk_size / val_bytes;
1921 		}
1922 
1923 		map->lock(map->lock_arg);
1924 		/* Write as many bytes as possible with chunk_size */
1925 		for (i = 0; i < chunk_count; i++) {
1926 			ret = _regmap_raw_write(map,
1927 						reg + (i * chunk_stride),
1928 						val + (i * chunk_size),
1929 						chunk_size);
1930 			if (ret)
1931 				break;
1932 		}
1933 
1934 		/* Write remaining bytes */
1935 		if (!ret && chunk_size * i < total_size) {
1936 			ret = _regmap_raw_write(map, reg + (i * chunk_stride),
1937 						val + (i * chunk_size),
1938 						total_size - i * chunk_size);
1939 		}
1940 		map->unlock(map->lock_arg);
1941 	} else {
1942 		void *wval;
1943 
1944 		if (!val_count)
1945 			return -EINVAL;
1946 
1947 		wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
1948 		if (!wval) {
1949 			dev_err(map->dev, "Error in memory allocation\n");
1950 			return -ENOMEM;
1951 		}
1952 		for (i = 0; i < val_count * val_bytes; i += val_bytes)
1953 			map->format.parse_inplace(wval + i);
1954 
1955 		map->lock(map->lock_arg);
1956 		ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count);
1957 		map->unlock(map->lock_arg);
1958 
1959 		kfree(wval);
1960 	}
1961 	return ret;
1962 }
1963 EXPORT_SYMBOL_GPL(regmap_bulk_write);
1964 
1965 /*
1966  * _regmap_raw_multi_reg_write()
1967  *
1968  * the (register,newvalue) pairs in regs have not been formatted, but
1969  * they are all in the same page and have been changed to being page
1970  * relative. The page register has been written if that was necessary.
1971  */
1972 static int _regmap_raw_multi_reg_write(struct regmap *map,
1973 				       const struct reg_sequence *regs,
1974 				       size_t num_regs)
1975 {
1976 	int ret;
1977 	void *buf;
1978 	int i;
1979 	u8 *u8;
1980 	size_t val_bytes = map->format.val_bytes;
1981 	size_t reg_bytes = map->format.reg_bytes;
1982 	size_t pad_bytes = map->format.pad_bytes;
1983 	size_t pair_size = reg_bytes + pad_bytes + val_bytes;
1984 	size_t len = pair_size * num_regs;
1985 
1986 	if (!len)
1987 		return -EINVAL;
1988 
1989 	buf = kzalloc(len, GFP_KERNEL);
1990 	if (!buf)
1991 		return -ENOMEM;
1992 
1993 	/* We have to linearise by hand. */
1994 
1995 	u8 = buf;
1996 
1997 	for (i = 0; i < num_regs; i++) {
1998 		unsigned int reg = regs[i].reg;
1999 		unsigned int val = regs[i].def;
2000 		trace_regmap_hw_write_start(map, reg, 1);
2001 		map->format.format_reg(u8, reg, map->reg_shift);
2002 		u8 += reg_bytes + pad_bytes;
2003 		map->format.format_val(u8, val, 0);
2004 		u8 += val_bytes;
2005 	}
2006 	u8 = buf;
2007 	*u8 |= map->write_flag_mask;
2008 
2009 	ret = map->bus->write(map->bus_context, buf, len);
2010 
2011 	kfree(buf);
2012 
2013 	for (i = 0; i < num_regs; i++) {
2014 		int reg = regs[i].reg;
2015 		trace_regmap_hw_write_done(map, reg, 1);
2016 	}
2017 	return ret;
2018 }
2019 
2020 static unsigned int _regmap_register_page(struct regmap *map,
2021 					  unsigned int reg,
2022 					  struct regmap_range_node *range)
2023 {
2024 	unsigned int win_page = (reg - range->range_min) / range->window_len;
2025 
2026 	return win_page;
2027 }
2028 
2029 static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2030 					       struct reg_sequence *regs,
2031 					       size_t num_regs)
2032 {
2033 	int ret;
2034 	int i, n;
2035 	struct reg_sequence *base;
2036 	unsigned int this_page = 0;
2037 	unsigned int page_change = 0;
2038 	/*
2039 	 * the set of registers are not neccessarily in order, but
2040 	 * since the order of write must be preserved this algorithm
2041 	 * chops the set each time the page changes. This also applies
2042 	 * if there is a delay required at any point in the sequence.
2043 	 */
2044 	base = regs;
2045 	for (i = 0, n = 0; i < num_regs; i++, n++) {
2046 		unsigned int reg = regs[i].reg;
2047 		struct regmap_range_node *range;
2048 
2049 		range = _regmap_range_lookup(map, reg);
2050 		if (range) {
2051 			unsigned int win_page = _regmap_register_page(map, reg,
2052 								      range);
2053 
2054 			if (i == 0)
2055 				this_page = win_page;
2056 			if (win_page != this_page) {
2057 				this_page = win_page;
2058 				page_change = 1;
2059 			}
2060 		}
2061 
2062 		/* If we have both a page change and a delay make sure to
2063 		 * write the regs and apply the delay before we change the
2064 		 * page.
2065 		 */
2066 
2067 		if (page_change || regs[i].delay_us) {
2068 
2069 				/* For situations where the first write requires
2070 				 * a delay we need to make sure we don't call
2071 				 * raw_multi_reg_write with n=0
2072 				 * This can't occur with page breaks as we
2073 				 * never write on the first iteration
2074 				 */
2075 				if (regs[i].delay_us && i == 0)
2076 					n = 1;
2077 
2078 				ret = _regmap_raw_multi_reg_write(map, base, n);
2079 				if (ret != 0)
2080 					return ret;
2081 
2082 				if (regs[i].delay_us)
2083 					udelay(regs[i].delay_us);
2084 
2085 				base += n;
2086 				n = 0;
2087 
2088 				if (page_change) {
2089 					ret = _regmap_select_page(map,
2090 								  &base[n].reg,
2091 								  range, 1);
2092 					if (ret != 0)
2093 						return ret;
2094 
2095 					page_change = 0;
2096 				}
2097 
2098 		}
2099 
2100 	}
2101 	if (n > 0)
2102 		return _regmap_raw_multi_reg_write(map, base, n);
2103 	return 0;
2104 }
2105 
2106 static int _regmap_multi_reg_write(struct regmap *map,
2107 				   const struct reg_sequence *regs,
2108 				   size_t num_regs)
2109 {
2110 	int i;
2111 	int ret;
2112 
2113 	if (!map->can_multi_write) {
2114 		for (i = 0; i < num_regs; i++) {
2115 			ret = _regmap_write(map, regs[i].reg, regs[i].def);
2116 			if (ret != 0)
2117 				return ret;
2118 
2119 			if (regs[i].delay_us)
2120 				udelay(regs[i].delay_us);
2121 		}
2122 		return 0;
2123 	}
2124 
2125 	if (!map->format.parse_inplace)
2126 		return -EINVAL;
2127 
2128 	if (map->writeable_reg)
2129 		for (i = 0; i < num_regs; i++) {
2130 			int reg = regs[i].reg;
2131 			if (!map->writeable_reg(map->dev, reg))
2132 				return -EINVAL;
2133 			if (!IS_ALIGNED(reg, map->reg_stride))
2134 				return -EINVAL;
2135 		}
2136 
2137 	if (!map->cache_bypass) {
2138 		for (i = 0; i < num_regs; i++) {
2139 			unsigned int val = regs[i].def;
2140 			unsigned int reg = regs[i].reg;
2141 			ret = regcache_write(map, reg, val);
2142 			if (ret) {
2143 				dev_err(map->dev,
2144 				"Error in caching of register: %x ret: %d\n",
2145 								reg, ret);
2146 				return ret;
2147 			}
2148 		}
2149 		if (map->cache_only) {
2150 			map->cache_dirty = true;
2151 			return 0;
2152 		}
2153 	}
2154 
2155 	WARN_ON(!map->bus);
2156 
2157 	for (i = 0; i < num_regs; i++) {
2158 		unsigned int reg = regs[i].reg;
2159 		struct regmap_range_node *range;
2160 
2161 		/* Coalesce all the writes between a page break or a delay
2162 		 * in a sequence
2163 		 */
2164 		range = _regmap_range_lookup(map, reg);
2165 		if (range || regs[i].delay_us) {
2166 			size_t len = sizeof(struct reg_sequence)*num_regs;
2167 			struct reg_sequence *base = kmemdup(regs, len,
2168 							   GFP_KERNEL);
2169 			if (!base)
2170 				return -ENOMEM;
2171 			ret = _regmap_range_multi_paged_reg_write(map, base,
2172 								  num_regs);
2173 			kfree(base);
2174 
2175 			return ret;
2176 		}
2177 	}
2178 	return _regmap_raw_multi_reg_write(map, regs, num_regs);
2179 }
2180 
2181 /**
2182  * regmap_multi_reg_write() - Write multiple registers to the device
2183  *
2184  * @map: Register map to write to
2185  * @regs: Array of structures containing register,value to be written
2186  * @num_regs: Number of registers to write
2187  *
2188  * Write multiple registers to the device where the set of register, value
2189  * pairs are supplied in any order, possibly not all in a single range.
2190  *
2191  * The 'normal' block write mode will send ultimately send data on the
2192  * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2193  * addressed. However, this alternative block multi write mode will send
2194  * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2195  * must of course support the mode.
2196  *
2197  * A value of zero will be returned on success, a negative errno will be
2198  * returned in error cases.
2199  */
2200 int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2201 			   int num_regs)
2202 {
2203 	int ret;
2204 
2205 	map->lock(map->lock_arg);
2206 
2207 	ret = _regmap_multi_reg_write(map, regs, num_regs);
2208 
2209 	map->unlock(map->lock_arg);
2210 
2211 	return ret;
2212 }
2213 EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2214 
2215 /**
2216  * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2217  *                                     device but not the cache
2218  *
2219  * @map: Register map to write to
2220  * @regs: Array of structures containing register,value to be written
2221  * @num_regs: Number of registers to write
2222  *
2223  * Write multiple registers to the device but not the cache where the set
2224  * of register are supplied in any order.
2225  *
2226  * This function is intended to be used for writing a large block of data
2227  * atomically to the device in single transfer for those I2C client devices
2228  * that implement this alternative block write mode.
2229  *
2230  * A value of zero will be returned on success, a negative errno will
2231  * be returned in error cases.
2232  */
2233 int regmap_multi_reg_write_bypassed(struct regmap *map,
2234 				    const struct reg_sequence *regs,
2235 				    int num_regs)
2236 {
2237 	int ret;
2238 	bool bypass;
2239 
2240 	map->lock(map->lock_arg);
2241 
2242 	bypass = map->cache_bypass;
2243 	map->cache_bypass = true;
2244 
2245 	ret = _regmap_multi_reg_write(map, regs, num_regs);
2246 
2247 	map->cache_bypass = bypass;
2248 
2249 	map->unlock(map->lock_arg);
2250 
2251 	return ret;
2252 }
2253 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2254 
2255 /**
2256  * regmap_raw_write_async() - Write raw values to one or more registers
2257  *                            asynchronously
2258  *
2259  * @map: Register map to write to
2260  * @reg: Initial register to write to
2261  * @val: Block of data to be written, laid out for direct transmission to the
2262  *       device.  Must be valid until regmap_async_complete() is called.
2263  * @val_len: Length of data pointed to by val.
2264  *
2265  * This function is intended to be used for things like firmware
2266  * download where a large block of data needs to be transferred to the
2267  * device.  No formatting will be done on the data provided.
2268  *
2269  * If supported by the underlying bus the write will be scheduled
2270  * asynchronously, helping maximise I/O speed on higher speed buses
2271  * like SPI.  regmap_async_complete() can be called to ensure that all
2272  * asynchrnous writes have been completed.
2273  *
2274  * A value of zero will be returned on success, a negative errno will
2275  * be returned in error cases.
2276  */
2277 int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2278 			   const void *val, size_t val_len)
2279 {
2280 	int ret;
2281 
2282 	if (val_len % map->format.val_bytes)
2283 		return -EINVAL;
2284 	if (!IS_ALIGNED(reg, map->reg_stride))
2285 		return -EINVAL;
2286 
2287 	map->lock(map->lock_arg);
2288 
2289 	map->async = true;
2290 
2291 	ret = _regmap_raw_write(map, reg, val, val_len);
2292 
2293 	map->async = false;
2294 
2295 	map->unlock(map->lock_arg);
2296 
2297 	return ret;
2298 }
2299 EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2300 
2301 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2302 			    unsigned int val_len)
2303 {
2304 	struct regmap_range_node *range;
2305 	int ret;
2306 
2307 	WARN_ON(!map->bus);
2308 
2309 	if (!map->bus || !map->bus->read)
2310 		return -EINVAL;
2311 
2312 	range = _regmap_range_lookup(map, reg);
2313 	if (range) {
2314 		ret = _regmap_select_page(map, &reg, range,
2315 					  val_len / map->format.val_bytes);
2316 		if (ret != 0)
2317 			return ret;
2318 	}
2319 
2320 	map->format.format_reg(map->work_buf, reg, map->reg_shift);
2321 	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2322 				      map->read_flag_mask);
2323 	trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2324 
2325 	ret = map->bus->read(map->bus_context, map->work_buf,
2326 			     map->format.reg_bytes + map->format.pad_bytes,
2327 			     val, val_len);
2328 
2329 	trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2330 
2331 	return ret;
2332 }
2333 
2334 static int _regmap_bus_reg_read(void *context, unsigned int reg,
2335 				unsigned int *val)
2336 {
2337 	struct regmap *map = context;
2338 
2339 	return map->bus->reg_read(map->bus_context, reg, val);
2340 }
2341 
2342 static int _regmap_bus_read(void *context, unsigned int reg,
2343 			    unsigned int *val)
2344 {
2345 	int ret;
2346 	struct regmap *map = context;
2347 
2348 	if (!map->format.parse_val)
2349 		return -EINVAL;
2350 
2351 	ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes);
2352 	if (ret == 0)
2353 		*val = map->format.parse_val(map->work_buf);
2354 
2355 	return ret;
2356 }
2357 
2358 static int _regmap_read(struct regmap *map, unsigned int reg,
2359 			unsigned int *val)
2360 {
2361 	int ret;
2362 	void *context = _regmap_map_get_context(map);
2363 
2364 	if (!map->cache_bypass) {
2365 		ret = regcache_read(map, reg, val);
2366 		if (ret == 0)
2367 			return 0;
2368 	}
2369 
2370 	if (map->cache_only)
2371 		return -EBUSY;
2372 
2373 	if (!regmap_readable(map, reg))
2374 		return -EIO;
2375 
2376 	ret = map->reg_read(context, reg, val);
2377 	if (ret == 0) {
2378 #ifdef LOG_DEVICE
2379 		if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
2380 			dev_info(map->dev, "%x => %x\n", reg, *val);
2381 #endif
2382 
2383 		trace_regmap_reg_read(map, reg, *val);
2384 
2385 		if (!map->cache_bypass)
2386 			regcache_write(map, reg, *val);
2387 	}
2388 
2389 	return ret;
2390 }
2391 
2392 /**
2393  * regmap_read() - Read a value from a single register
2394  *
2395  * @map: Register map to read from
2396  * @reg: Register to be read from
2397  * @val: Pointer to store read value
2398  *
2399  * A value of zero will be returned on success, a negative errno will
2400  * be returned in error cases.
2401  */
2402 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2403 {
2404 	int ret;
2405 
2406 	if (!IS_ALIGNED(reg, map->reg_stride))
2407 		return -EINVAL;
2408 
2409 	map->lock(map->lock_arg);
2410 
2411 	ret = _regmap_read(map, reg, val);
2412 
2413 	map->unlock(map->lock_arg);
2414 
2415 	return ret;
2416 }
2417 EXPORT_SYMBOL_GPL(regmap_read);
2418 
2419 /**
2420  * regmap_raw_read() - Read raw data from the device
2421  *
2422  * @map: Register map to read from
2423  * @reg: First register to be read from
2424  * @val: Pointer to store read value
2425  * @val_len: Size of data to read
2426  *
2427  * A value of zero will be returned on success, a negative errno will
2428  * be returned in error cases.
2429  */
2430 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2431 		    size_t val_len)
2432 {
2433 	size_t val_bytes = map->format.val_bytes;
2434 	size_t val_count = val_len / val_bytes;
2435 	unsigned int v;
2436 	int ret, i;
2437 
2438 	if (!map->bus)
2439 		return -EINVAL;
2440 	if (val_len % map->format.val_bytes)
2441 		return -EINVAL;
2442 	if (!IS_ALIGNED(reg, map->reg_stride))
2443 		return -EINVAL;
2444 	if (val_count == 0)
2445 		return -EINVAL;
2446 
2447 	map->lock(map->lock_arg);
2448 
2449 	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2450 	    map->cache_type == REGCACHE_NONE) {
2451 		if (!map->bus->read) {
2452 			ret = -ENOTSUPP;
2453 			goto out;
2454 		}
2455 		if (map->max_raw_read && map->max_raw_read < val_len) {
2456 			ret = -E2BIG;
2457 			goto out;
2458 		}
2459 
2460 		/* Physical block read if there's no cache involved */
2461 		ret = _regmap_raw_read(map, reg, val, val_len);
2462 
2463 	} else {
2464 		/* Otherwise go word by word for the cache; should be low
2465 		 * cost as we expect to hit the cache.
2466 		 */
2467 		for (i = 0; i < val_count; i++) {
2468 			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2469 					   &v);
2470 			if (ret != 0)
2471 				goto out;
2472 
2473 			map->format.format_val(val + (i * val_bytes), v, 0);
2474 		}
2475 	}
2476 
2477  out:
2478 	map->unlock(map->lock_arg);
2479 
2480 	return ret;
2481 }
2482 EXPORT_SYMBOL_GPL(regmap_raw_read);
2483 
2484 /**
2485  * regmap_field_read() - Read a value to a single register field
2486  *
2487  * @field: Register field to read from
2488  * @val: Pointer to store read value
2489  *
2490  * A value of zero will be returned on success, a negative errno will
2491  * be returned in error cases.
2492  */
2493 int regmap_field_read(struct regmap_field *field, unsigned int *val)
2494 {
2495 	int ret;
2496 	unsigned int reg_val;
2497 	ret = regmap_read(field->regmap, field->reg, &reg_val);
2498 	if (ret != 0)
2499 		return ret;
2500 
2501 	reg_val &= field->mask;
2502 	reg_val >>= field->shift;
2503 	*val = reg_val;
2504 
2505 	return ret;
2506 }
2507 EXPORT_SYMBOL_GPL(regmap_field_read);
2508 
2509 /**
2510  * regmap_fields_read() - Read a value to a single register field with port ID
2511  *
2512  * @field: Register field to read from
2513  * @id: port ID
2514  * @val: Pointer to store read value
2515  *
2516  * A value of zero will be returned on success, a negative errno will
2517  * be returned in error cases.
2518  */
2519 int regmap_fields_read(struct regmap_field *field, unsigned int id,
2520 		       unsigned int *val)
2521 {
2522 	int ret;
2523 	unsigned int reg_val;
2524 
2525 	if (id >= field->id_size)
2526 		return -EINVAL;
2527 
2528 	ret = regmap_read(field->regmap,
2529 			  field->reg + (field->id_offset * id),
2530 			  &reg_val);
2531 	if (ret != 0)
2532 		return ret;
2533 
2534 	reg_val &= field->mask;
2535 	reg_val >>= field->shift;
2536 	*val = reg_val;
2537 
2538 	return ret;
2539 }
2540 EXPORT_SYMBOL_GPL(regmap_fields_read);
2541 
2542 /**
2543  * regmap_bulk_read() - Read multiple registers from the device
2544  *
2545  * @map: Register map to read from
2546  * @reg: First register to be read from
2547  * @val: Pointer to store read value, in native register size for device
2548  * @val_count: Number of registers to read
2549  *
2550  * A value of zero will be returned on success, a negative errno will
2551  * be returned in error cases.
2552  */
2553 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2554 		     size_t val_count)
2555 {
2556 	int ret, i;
2557 	size_t val_bytes = map->format.val_bytes;
2558 	bool vol = regmap_volatile_range(map, reg, val_count);
2559 
2560 	if (!IS_ALIGNED(reg, map->reg_stride))
2561 		return -EINVAL;
2562 
2563 	if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2564 		/*
2565 		 * Some devices does not support bulk read, for
2566 		 * them we have a series of single read operations.
2567 		 */
2568 		size_t total_size = val_bytes * val_count;
2569 
2570 		if (!map->use_single_read &&
2571 		    (!map->max_raw_read || map->max_raw_read > total_size)) {
2572 			ret = regmap_raw_read(map, reg, val,
2573 					      val_bytes * val_count);
2574 			if (ret != 0)
2575 				return ret;
2576 		} else {
2577 			/*
2578 			 * Some devices do not support bulk read or do not
2579 			 * support large bulk reads, for them we have a series
2580 			 * of read operations.
2581 			 */
2582 			int chunk_stride = map->reg_stride;
2583 			size_t chunk_size = val_bytes;
2584 			size_t chunk_count = val_count;
2585 
2586 			if (!map->use_single_read) {
2587 				chunk_size = map->max_raw_read;
2588 				if (chunk_size % val_bytes)
2589 					chunk_size -= chunk_size % val_bytes;
2590 				chunk_count = total_size / chunk_size;
2591 				chunk_stride *= chunk_size / val_bytes;
2592 			}
2593 
2594 			/* Read bytes that fit into a multiple of chunk_size */
2595 			for (i = 0; i < chunk_count; i++) {
2596 				ret = regmap_raw_read(map,
2597 						      reg + (i * chunk_stride),
2598 						      val + (i * chunk_size),
2599 						      chunk_size);
2600 				if (ret != 0)
2601 					return ret;
2602 			}
2603 
2604 			/* Read remaining bytes */
2605 			if (chunk_size * i < total_size) {
2606 				ret = regmap_raw_read(map,
2607 						      reg + (i * chunk_stride),
2608 						      val + (i * chunk_size),
2609 						      total_size - i * chunk_size);
2610 				if (ret != 0)
2611 					return ret;
2612 			}
2613 		}
2614 
2615 		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2616 			map->format.parse_inplace(val + i);
2617 	} else {
2618 		for (i = 0; i < val_count; i++) {
2619 			unsigned int ival;
2620 			ret = regmap_read(map, reg + regmap_get_offset(map, i),
2621 					  &ival);
2622 			if (ret != 0)
2623 				return ret;
2624 
2625 			if (map->format.format_val) {
2626 				map->format.format_val(val + (i * val_bytes), ival, 0);
2627 			} else {
2628 				/* Devices providing read and write
2629 				 * operations can use the bulk I/O
2630 				 * functions if they define a val_bytes,
2631 				 * we assume that the values are native
2632 				 * endian.
2633 				 */
2634 #ifdef CONFIG_64BIT
2635 				u64 *u64 = val;
2636 #endif
2637 				u32 *u32 = val;
2638 				u16 *u16 = val;
2639 				u8 *u8 = val;
2640 
2641 				switch (map->format.val_bytes) {
2642 #ifdef CONFIG_64BIT
2643 				case 8:
2644 					u64[i] = ival;
2645 					break;
2646 #endif
2647 				case 4:
2648 					u32[i] = ival;
2649 					break;
2650 				case 2:
2651 					u16[i] = ival;
2652 					break;
2653 				case 1:
2654 					u8[i] = ival;
2655 					break;
2656 				default:
2657 					return -EINVAL;
2658 				}
2659 			}
2660 		}
2661 	}
2662 
2663 	return 0;
2664 }
2665 EXPORT_SYMBOL_GPL(regmap_bulk_read);
2666 
2667 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
2668 			       unsigned int mask, unsigned int val,
2669 			       bool *change, bool force_write)
2670 {
2671 	int ret;
2672 	unsigned int tmp, orig;
2673 
2674 	if (change)
2675 		*change = false;
2676 
2677 	if (regmap_volatile(map, reg) && map->reg_update_bits) {
2678 		ret = map->reg_update_bits(map->bus_context, reg, mask, val);
2679 		if (ret == 0 && change)
2680 			*change = true;
2681 	} else {
2682 		ret = _regmap_read(map, reg, &orig);
2683 		if (ret != 0)
2684 			return ret;
2685 
2686 		tmp = orig & ~mask;
2687 		tmp |= val & mask;
2688 
2689 		if (force_write || (tmp != orig)) {
2690 			ret = _regmap_write(map, reg, tmp);
2691 			if (ret == 0 && change)
2692 				*change = true;
2693 		}
2694 	}
2695 
2696 	return ret;
2697 }
2698 
2699 /**
2700  * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
2701  *
2702  * @map: Register map to update
2703  * @reg: Register to update
2704  * @mask: Bitmask to change
2705  * @val: New value for bitmask
2706  * @change: Boolean indicating if a write was done
2707  * @async: Boolean indicating asynchronously
2708  * @force: Boolean indicating use force update
2709  *
2710  * Perform a read/modify/write cycle on a register map with change, async, force
2711  * options.
2712  *
2713  * If async is true:
2714  *
2715  * With most buses the read must be done synchronously so this is most useful
2716  * for devices with a cache which do not need to interact with the hardware to
2717  * determine the current register value.
2718  *
2719  * Returns zero for success, a negative number on error.
2720  */
2721 int regmap_update_bits_base(struct regmap *map, unsigned int reg,
2722 			    unsigned int mask, unsigned int val,
2723 			    bool *change, bool async, bool force)
2724 {
2725 	int ret;
2726 
2727 	map->lock(map->lock_arg);
2728 
2729 	map->async = async;
2730 
2731 	ret = _regmap_update_bits(map, reg, mask, val, change, force);
2732 
2733 	map->async = false;
2734 
2735 	map->unlock(map->lock_arg);
2736 
2737 	return ret;
2738 }
2739 EXPORT_SYMBOL_GPL(regmap_update_bits_base);
2740 
2741 void regmap_async_complete_cb(struct regmap_async *async, int ret)
2742 {
2743 	struct regmap *map = async->map;
2744 	bool wake;
2745 
2746 	trace_regmap_async_io_complete(map);
2747 
2748 	spin_lock(&map->async_lock);
2749 	list_move(&async->list, &map->async_free);
2750 	wake = list_empty(&map->async_list);
2751 
2752 	if (ret != 0)
2753 		map->async_ret = ret;
2754 
2755 	spin_unlock(&map->async_lock);
2756 
2757 	if (wake)
2758 		wake_up(&map->async_waitq);
2759 }
2760 EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2761 
2762 static int regmap_async_is_done(struct regmap *map)
2763 {
2764 	unsigned long flags;
2765 	int ret;
2766 
2767 	spin_lock_irqsave(&map->async_lock, flags);
2768 	ret = list_empty(&map->async_list);
2769 	spin_unlock_irqrestore(&map->async_lock, flags);
2770 
2771 	return ret;
2772 }
2773 
2774 /**
2775  * regmap_async_complete - Ensure all asynchronous I/O has completed.
2776  *
2777  * @map: Map to operate on.
2778  *
2779  * Blocks until any pending asynchronous I/O has completed.  Returns
2780  * an error code for any failed I/O operations.
2781  */
2782 int regmap_async_complete(struct regmap *map)
2783 {
2784 	unsigned long flags;
2785 	int ret;
2786 
2787 	/* Nothing to do with no async support */
2788 	if (!map->bus || !map->bus->async_write)
2789 		return 0;
2790 
2791 	trace_regmap_async_complete_start(map);
2792 
2793 	wait_event(map->async_waitq, regmap_async_is_done(map));
2794 
2795 	spin_lock_irqsave(&map->async_lock, flags);
2796 	ret = map->async_ret;
2797 	map->async_ret = 0;
2798 	spin_unlock_irqrestore(&map->async_lock, flags);
2799 
2800 	trace_regmap_async_complete_done(map);
2801 
2802 	return ret;
2803 }
2804 EXPORT_SYMBOL_GPL(regmap_async_complete);
2805 
2806 /**
2807  * regmap_register_patch - Register and apply register updates to be applied
2808  *                         on device initialistion
2809  *
2810  * @map: Register map to apply updates to.
2811  * @regs: Values to update.
2812  * @num_regs: Number of entries in regs.
2813  *
2814  * Register a set of register updates to be applied to the device
2815  * whenever the device registers are synchronised with the cache and
2816  * apply them immediately.  Typically this is used to apply
2817  * corrections to be applied to the device defaults on startup, such
2818  * as the updates some vendors provide to undocumented registers.
2819  *
2820  * The caller must ensure that this function cannot be called
2821  * concurrently with either itself or regcache_sync().
2822  */
2823 int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
2824 			  int num_regs)
2825 {
2826 	struct reg_sequence *p;
2827 	int ret;
2828 	bool bypass;
2829 
2830 	if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
2831 	    num_regs))
2832 		return 0;
2833 
2834 	p = krealloc(map->patch,
2835 		     sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
2836 		     GFP_KERNEL);
2837 	if (p) {
2838 		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
2839 		map->patch = p;
2840 		map->patch_regs += num_regs;
2841 	} else {
2842 		return -ENOMEM;
2843 	}
2844 
2845 	map->lock(map->lock_arg);
2846 
2847 	bypass = map->cache_bypass;
2848 
2849 	map->cache_bypass = true;
2850 	map->async = true;
2851 
2852 	ret = _regmap_multi_reg_write(map, regs, num_regs);
2853 
2854 	map->async = false;
2855 	map->cache_bypass = bypass;
2856 
2857 	map->unlock(map->lock_arg);
2858 
2859 	regmap_async_complete(map);
2860 
2861 	return ret;
2862 }
2863 EXPORT_SYMBOL_GPL(regmap_register_patch);
2864 
2865 /**
2866  * regmap_get_val_bytes() - Report the size of a register value
2867  *
2868  * @map: Register map to operate on.
2869  *
2870  * Report the size of a register value, mainly intended to for use by
2871  * generic infrastructure built on top of regmap.
2872  */
2873 int regmap_get_val_bytes(struct regmap *map)
2874 {
2875 	if (map->format.format_write)
2876 		return -EINVAL;
2877 
2878 	return map->format.val_bytes;
2879 }
2880 EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
2881 
2882 /**
2883  * regmap_get_max_register() - Report the max register value
2884  *
2885  * @map: Register map to operate on.
2886  *
2887  * Report the max register value, mainly intended to for use by
2888  * generic infrastructure built on top of regmap.
2889  */
2890 int regmap_get_max_register(struct regmap *map)
2891 {
2892 	return map->max_register ? map->max_register : -EINVAL;
2893 }
2894 EXPORT_SYMBOL_GPL(regmap_get_max_register);
2895 
2896 /**
2897  * regmap_get_reg_stride() - Report the register address stride
2898  *
2899  * @map: Register map to operate on.
2900  *
2901  * Report the register address stride, mainly intended to for use by
2902  * generic infrastructure built on top of regmap.
2903  */
2904 int regmap_get_reg_stride(struct regmap *map)
2905 {
2906 	return map->reg_stride;
2907 }
2908 EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
2909 
2910 int regmap_parse_val(struct regmap *map, const void *buf,
2911 			unsigned int *val)
2912 {
2913 	if (!map->format.parse_val)
2914 		return -EINVAL;
2915 
2916 	*val = map->format.parse_val(buf);
2917 
2918 	return 0;
2919 }
2920 EXPORT_SYMBOL_GPL(regmap_parse_val);
2921 
2922 static int __init regmap_initcall(void)
2923 {
2924 	regmap_debugfs_initcall();
2925 
2926 	return 0;
2927 }
2928 postcore_initcall(regmap_initcall);
2929