xref: /linux/drivers/base/regmap/regmap.c (revision c0e297dc61f8d4453e07afbea1fa8d0e67cd4a34)
1 /*
2  * Register map access API
3  *
4  * Copyright 2011 Wolfson Microelectronics plc
5  *
6  * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/mutex.h>
17 #include <linux/err.h>
18 #include <linux/of.h>
19 #include <linux/rbtree.h>
20 #include <linux/sched.h>
21 
22 #define CREATE_TRACE_POINTS
23 #include "trace.h"
24 
25 #include "internal.h"
26 
27 /*
28  * Sometimes for failures during very early init the trace
29  * infrastructure isn't available early enough to be used.  For this
30  * sort of problem defining LOG_DEVICE will add printks for basic
31  * register I/O on a specific device.
32  */
33 #undef LOG_DEVICE
34 
35 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
36 			       unsigned int mask, unsigned int val,
37 			       bool *change);
38 
39 static int _regmap_bus_reg_read(void *context, unsigned int reg,
40 				unsigned int *val);
41 static int _regmap_bus_read(void *context, unsigned int reg,
42 			    unsigned int *val);
43 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
44 				       unsigned int val);
45 static int _regmap_bus_reg_write(void *context, unsigned int reg,
46 				 unsigned int val);
47 static int _regmap_bus_raw_write(void *context, unsigned int reg,
48 				 unsigned int val);
49 
50 bool regmap_reg_in_ranges(unsigned int reg,
51 			  const struct regmap_range *ranges,
52 			  unsigned int nranges)
53 {
54 	const struct regmap_range *r;
55 	int i;
56 
57 	for (i = 0, r = ranges; i < nranges; i++, r++)
58 		if (regmap_reg_in_range(reg, r))
59 			return true;
60 	return false;
61 }
62 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
63 
64 bool regmap_check_range_table(struct regmap *map, unsigned int reg,
65 			      const struct regmap_access_table *table)
66 {
67 	/* Check "no ranges" first */
68 	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
69 		return false;
70 
71 	/* In case zero "yes ranges" are supplied, any reg is OK */
72 	if (!table->n_yes_ranges)
73 		return true;
74 
75 	return regmap_reg_in_ranges(reg, table->yes_ranges,
76 				    table->n_yes_ranges);
77 }
78 EXPORT_SYMBOL_GPL(regmap_check_range_table);
79 
80 bool regmap_writeable(struct regmap *map, unsigned int reg)
81 {
82 	if (map->max_register && reg > map->max_register)
83 		return false;
84 
85 	if (map->writeable_reg)
86 		return map->writeable_reg(map->dev, reg);
87 
88 	if (map->wr_table)
89 		return regmap_check_range_table(map, reg, map->wr_table);
90 
91 	return true;
92 }
93 
94 bool regmap_readable(struct regmap *map, unsigned int reg)
95 {
96 	if (map->max_register && reg > map->max_register)
97 		return false;
98 
99 	if (map->format.format_write)
100 		return false;
101 
102 	if (map->readable_reg)
103 		return map->readable_reg(map->dev, reg);
104 
105 	if (map->rd_table)
106 		return regmap_check_range_table(map, reg, map->rd_table);
107 
108 	return true;
109 }
110 
111 bool regmap_volatile(struct regmap *map, unsigned int reg)
112 {
113 	if (!map->format.format_write && !regmap_readable(map, reg))
114 		return false;
115 
116 	if (map->volatile_reg)
117 		return map->volatile_reg(map->dev, reg);
118 
119 	if (map->volatile_table)
120 		return regmap_check_range_table(map, reg, map->volatile_table);
121 
122 	if (map->cache_ops)
123 		return false;
124 	else
125 		return true;
126 }
127 
128 bool regmap_precious(struct regmap *map, unsigned int reg)
129 {
130 	if (!regmap_readable(map, reg))
131 		return false;
132 
133 	if (map->precious_reg)
134 		return map->precious_reg(map->dev, reg);
135 
136 	if (map->precious_table)
137 		return regmap_check_range_table(map, reg, map->precious_table);
138 
139 	return false;
140 }
141 
142 static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
143 	size_t num)
144 {
145 	unsigned int i;
146 
147 	for (i = 0; i < num; i++)
148 		if (!regmap_volatile(map, reg + i))
149 			return false;
150 
151 	return true;
152 }
153 
154 static void regmap_format_2_6_write(struct regmap *map,
155 				     unsigned int reg, unsigned int val)
156 {
157 	u8 *out = map->work_buf;
158 
159 	*out = (reg << 6) | val;
160 }
161 
162 static void regmap_format_4_12_write(struct regmap *map,
163 				     unsigned int reg, unsigned int val)
164 {
165 	__be16 *out = map->work_buf;
166 	*out = cpu_to_be16((reg << 12) | val);
167 }
168 
169 static void regmap_format_7_9_write(struct regmap *map,
170 				    unsigned int reg, unsigned int val)
171 {
172 	__be16 *out = map->work_buf;
173 	*out = cpu_to_be16((reg << 9) | val);
174 }
175 
176 static void regmap_format_10_14_write(struct regmap *map,
177 				    unsigned int reg, unsigned int val)
178 {
179 	u8 *out = map->work_buf;
180 
181 	out[2] = val;
182 	out[1] = (val >> 8) | (reg << 6);
183 	out[0] = reg >> 2;
184 }
185 
186 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
187 {
188 	u8 *b = buf;
189 
190 	b[0] = val << shift;
191 }
192 
193 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
194 {
195 	__be16 *b = buf;
196 
197 	b[0] = cpu_to_be16(val << shift);
198 }
199 
200 static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
201 {
202 	__le16 *b = buf;
203 
204 	b[0] = cpu_to_le16(val << shift);
205 }
206 
207 static void regmap_format_16_native(void *buf, unsigned int val,
208 				    unsigned int shift)
209 {
210 	*(u16 *)buf = val << shift;
211 }
212 
213 static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
214 {
215 	u8 *b = buf;
216 
217 	val <<= shift;
218 
219 	b[0] = val >> 16;
220 	b[1] = val >> 8;
221 	b[2] = val;
222 }
223 
224 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
225 {
226 	__be32 *b = buf;
227 
228 	b[0] = cpu_to_be32(val << shift);
229 }
230 
231 static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
232 {
233 	__le32 *b = buf;
234 
235 	b[0] = cpu_to_le32(val << shift);
236 }
237 
238 static void regmap_format_32_native(void *buf, unsigned int val,
239 				    unsigned int shift)
240 {
241 	*(u32 *)buf = val << shift;
242 }
243 
244 static void regmap_parse_inplace_noop(void *buf)
245 {
246 }
247 
248 static unsigned int regmap_parse_8(const void *buf)
249 {
250 	const u8 *b = buf;
251 
252 	return b[0];
253 }
254 
255 static unsigned int regmap_parse_16_be(const void *buf)
256 {
257 	const __be16 *b = buf;
258 
259 	return be16_to_cpu(b[0]);
260 }
261 
262 static unsigned int regmap_parse_16_le(const void *buf)
263 {
264 	const __le16 *b = buf;
265 
266 	return le16_to_cpu(b[0]);
267 }
268 
269 static void regmap_parse_16_be_inplace(void *buf)
270 {
271 	__be16 *b = buf;
272 
273 	b[0] = be16_to_cpu(b[0]);
274 }
275 
276 static void regmap_parse_16_le_inplace(void *buf)
277 {
278 	__le16 *b = buf;
279 
280 	b[0] = le16_to_cpu(b[0]);
281 }
282 
283 static unsigned int regmap_parse_16_native(const void *buf)
284 {
285 	return *(u16 *)buf;
286 }
287 
288 static unsigned int regmap_parse_24(const void *buf)
289 {
290 	const u8 *b = buf;
291 	unsigned int ret = b[2];
292 	ret |= ((unsigned int)b[1]) << 8;
293 	ret |= ((unsigned int)b[0]) << 16;
294 
295 	return ret;
296 }
297 
298 static unsigned int regmap_parse_32_be(const void *buf)
299 {
300 	const __be32 *b = buf;
301 
302 	return be32_to_cpu(b[0]);
303 }
304 
305 static unsigned int regmap_parse_32_le(const void *buf)
306 {
307 	const __le32 *b = buf;
308 
309 	return le32_to_cpu(b[0]);
310 }
311 
312 static void regmap_parse_32_be_inplace(void *buf)
313 {
314 	__be32 *b = buf;
315 
316 	b[0] = be32_to_cpu(b[0]);
317 }
318 
319 static void regmap_parse_32_le_inplace(void *buf)
320 {
321 	__le32 *b = buf;
322 
323 	b[0] = le32_to_cpu(b[0]);
324 }
325 
326 static unsigned int regmap_parse_32_native(const void *buf)
327 {
328 	return *(u32 *)buf;
329 }
330 
331 static void regmap_lock_mutex(void *__map)
332 {
333 	struct regmap *map = __map;
334 	mutex_lock(&map->mutex);
335 }
336 
337 static void regmap_unlock_mutex(void *__map)
338 {
339 	struct regmap *map = __map;
340 	mutex_unlock(&map->mutex);
341 }
342 
343 static void regmap_lock_spinlock(void *__map)
344 __acquires(&map->spinlock)
345 {
346 	struct regmap *map = __map;
347 	unsigned long flags;
348 
349 	spin_lock_irqsave(&map->spinlock, flags);
350 	map->spinlock_flags = flags;
351 }
352 
353 static void regmap_unlock_spinlock(void *__map)
354 __releases(&map->spinlock)
355 {
356 	struct regmap *map = __map;
357 	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
358 }
359 
360 static void dev_get_regmap_release(struct device *dev, void *res)
361 {
362 	/*
363 	 * We don't actually have anything to do here; the goal here
364 	 * is not to manage the regmap but to provide a simple way to
365 	 * get the regmap back given a struct device.
366 	 */
367 }
368 
369 static bool _regmap_range_add(struct regmap *map,
370 			      struct regmap_range_node *data)
371 {
372 	struct rb_root *root = &map->range_tree;
373 	struct rb_node **new = &(root->rb_node), *parent = NULL;
374 
375 	while (*new) {
376 		struct regmap_range_node *this =
377 			container_of(*new, struct regmap_range_node, node);
378 
379 		parent = *new;
380 		if (data->range_max < this->range_min)
381 			new = &((*new)->rb_left);
382 		else if (data->range_min > this->range_max)
383 			new = &((*new)->rb_right);
384 		else
385 			return false;
386 	}
387 
388 	rb_link_node(&data->node, parent, new);
389 	rb_insert_color(&data->node, root);
390 
391 	return true;
392 }
393 
394 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
395 						      unsigned int reg)
396 {
397 	struct rb_node *node = map->range_tree.rb_node;
398 
399 	while (node) {
400 		struct regmap_range_node *this =
401 			container_of(node, struct regmap_range_node, node);
402 
403 		if (reg < this->range_min)
404 			node = node->rb_left;
405 		else if (reg > this->range_max)
406 			node = node->rb_right;
407 		else
408 			return this;
409 	}
410 
411 	return NULL;
412 }
413 
414 static void regmap_range_exit(struct regmap *map)
415 {
416 	struct rb_node *next;
417 	struct regmap_range_node *range_node;
418 
419 	next = rb_first(&map->range_tree);
420 	while (next) {
421 		range_node = rb_entry(next, struct regmap_range_node, node);
422 		next = rb_next(&range_node->node);
423 		rb_erase(&range_node->node, &map->range_tree);
424 		kfree(range_node);
425 	}
426 
427 	kfree(map->selector_work_buf);
428 }
429 
430 int regmap_attach_dev(struct device *dev, struct regmap *map,
431 		      const struct regmap_config *config)
432 {
433 	struct regmap **m;
434 
435 	map->dev = dev;
436 
437 	regmap_debugfs_init(map, config->name);
438 
439 	/* Add a devres resource for dev_get_regmap() */
440 	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
441 	if (!m) {
442 		regmap_debugfs_exit(map);
443 		return -ENOMEM;
444 	}
445 	*m = map;
446 	devres_add(dev, m);
447 
448 	return 0;
449 }
450 EXPORT_SYMBOL_GPL(regmap_attach_dev);
451 
452 static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
453 					const struct regmap_config *config)
454 {
455 	enum regmap_endian endian;
456 
457 	/* Retrieve the endianness specification from the regmap config */
458 	endian = config->reg_format_endian;
459 
460 	/* If the regmap config specified a non-default value, use that */
461 	if (endian != REGMAP_ENDIAN_DEFAULT)
462 		return endian;
463 
464 	/* Retrieve the endianness specification from the bus config */
465 	if (bus && bus->reg_format_endian_default)
466 		endian = bus->reg_format_endian_default;
467 
468 	/* If the bus specified a non-default value, use that */
469 	if (endian != REGMAP_ENDIAN_DEFAULT)
470 		return endian;
471 
472 	/* Use this if no other value was found */
473 	return REGMAP_ENDIAN_BIG;
474 }
475 
476 enum regmap_endian regmap_get_val_endian(struct device *dev,
477 					 const struct regmap_bus *bus,
478 					 const struct regmap_config *config)
479 {
480 	struct device_node *np;
481 	enum regmap_endian endian;
482 
483 	/* Retrieve the endianness specification from the regmap config */
484 	endian = config->val_format_endian;
485 
486 	/* If the regmap config specified a non-default value, use that */
487 	if (endian != REGMAP_ENDIAN_DEFAULT)
488 		return endian;
489 
490 	/* If the dev and dev->of_node exist try to get endianness from DT */
491 	if (dev && dev->of_node) {
492 		np = dev->of_node;
493 
494 		/* Parse the device's DT node for an endianness specification */
495 		if (of_property_read_bool(np, "big-endian"))
496 			endian = REGMAP_ENDIAN_BIG;
497 		else if (of_property_read_bool(np, "little-endian"))
498 			endian = REGMAP_ENDIAN_LITTLE;
499 
500 		/* If the endianness was specified in DT, use that */
501 		if (endian != REGMAP_ENDIAN_DEFAULT)
502 			return endian;
503 	}
504 
505 	/* Retrieve the endianness specification from the bus config */
506 	if (bus && bus->val_format_endian_default)
507 		endian = bus->val_format_endian_default;
508 
509 	/* If the bus specified a non-default value, use that */
510 	if (endian != REGMAP_ENDIAN_DEFAULT)
511 		return endian;
512 
513 	/* Use this if no other value was found */
514 	return REGMAP_ENDIAN_BIG;
515 }
516 EXPORT_SYMBOL_GPL(regmap_get_val_endian);
517 
518 /**
519  * regmap_init(): Initialise register map
520  *
521  * @dev: Device that will be interacted with
522  * @bus: Bus-specific callbacks to use with device
523  * @bus_context: Data passed to bus-specific callbacks
524  * @config: Configuration for register map
525  *
526  * The return value will be an ERR_PTR() on error or a valid pointer to
527  * a struct regmap.  This function should generally not be called
528  * directly, it should be called by bus-specific init functions.
529  */
530 struct regmap *regmap_init(struct device *dev,
531 			   const struct regmap_bus *bus,
532 			   void *bus_context,
533 			   const struct regmap_config *config)
534 {
535 	struct regmap *map;
536 	int ret = -EINVAL;
537 	enum regmap_endian reg_endian, val_endian;
538 	int i, j;
539 
540 	if (!config)
541 		goto err;
542 
543 	map = kzalloc(sizeof(*map), GFP_KERNEL);
544 	if (map == NULL) {
545 		ret = -ENOMEM;
546 		goto err;
547 	}
548 
549 	if (config->lock && config->unlock) {
550 		map->lock = config->lock;
551 		map->unlock = config->unlock;
552 		map->lock_arg = config->lock_arg;
553 	} else {
554 		if ((bus && bus->fast_io) ||
555 		    config->fast_io) {
556 			spin_lock_init(&map->spinlock);
557 			map->lock = regmap_lock_spinlock;
558 			map->unlock = regmap_unlock_spinlock;
559 		} else {
560 			mutex_init(&map->mutex);
561 			map->lock = regmap_lock_mutex;
562 			map->unlock = regmap_unlock_mutex;
563 		}
564 		map->lock_arg = map;
565 	}
566 	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
567 	map->format.pad_bytes = config->pad_bits / 8;
568 	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
569 	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
570 			config->val_bits + config->pad_bits, 8);
571 	map->reg_shift = config->pad_bits % 8;
572 	if (config->reg_stride)
573 		map->reg_stride = config->reg_stride;
574 	else
575 		map->reg_stride = 1;
576 	map->use_single_rw = config->use_single_rw;
577 	map->can_multi_write = config->can_multi_write;
578 	map->dev = dev;
579 	map->bus = bus;
580 	map->bus_context = bus_context;
581 	map->max_register = config->max_register;
582 	map->wr_table = config->wr_table;
583 	map->rd_table = config->rd_table;
584 	map->volatile_table = config->volatile_table;
585 	map->precious_table = config->precious_table;
586 	map->writeable_reg = config->writeable_reg;
587 	map->readable_reg = config->readable_reg;
588 	map->volatile_reg = config->volatile_reg;
589 	map->precious_reg = config->precious_reg;
590 	map->cache_type = config->cache_type;
591 	map->name = config->name;
592 
593 	spin_lock_init(&map->async_lock);
594 	INIT_LIST_HEAD(&map->async_list);
595 	INIT_LIST_HEAD(&map->async_free);
596 	init_waitqueue_head(&map->async_waitq);
597 
598 	if (config->read_flag_mask || config->write_flag_mask) {
599 		map->read_flag_mask = config->read_flag_mask;
600 		map->write_flag_mask = config->write_flag_mask;
601 	} else if (bus) {
602 		map->read_flag_mask = bus->read_flag_mask;
603 	}
604 
605 	if (!bus) {
606 		map->reg_read  = config->reg_read;
607 		map->reg_write = config->reg_write;
608 
609 		map->defer_caching = false;
610 		goto skip_format_initialization;
611 	} else if (!bus->read || !bus->write) {
612 		map->reg_read = _regmap_bus_reg_read;
613 		map->reg_write = _regmap_bus_reg_write;
614 
615 		map->defer_caching = false;
616 		goto skip_format_initialization;
617 	} else {
618 		map->reg_read  = _regmap_bus_read;
619 	}
620 
621 	reg_endian = regmap_get_reg_endian(bus, config);
622 	val_endian = regmap_get_val_endian(dev, bus, config);
623 
624 	switch (config->reg_bits + map->reg_shift) {
625 	case 2:
626 		switch (config->val_bits) {
627 		case 6:
628 			map->format.format_write = regmap_format_2_6_write;
629 			break;
630 		default:
631 			goto err_map;
632 		}
633 		break;
634 
635 	case 4:
636 		switch (config->val_bits) {
637 		case 12:
638 			map->format.format_write = regmap_format_4_12_write;
639 			break;
640 		default:
641 			goto err_map;
642 		}
643 		break;
644 
645 	case 7:
646 		switch (config->val_bits) {
647 		case 9:
648 			map->format.format_write = regmap_format_7_9_write;
649 			break;
650 		default:
651 			goto err_map;
652 		}
653 		break;
654 
655 	case 10:
656 		switch (config->val_bits) {
657 		case 14:
658 			map->format.format_write = regmap_format_10_14_write;
659 			break;
660 		default:
661 			goto err_map;
662 		}
663 		break;
664 
665 	case 8:
666 		map->format.format_reg = regmap_format_8;
667 		break;
668 
669 	case 16:
670 		switch (reg_endian) {
671 		case REGMAP_ENDIAN_BIG:
672 			map->format.format_reg = regmap_format_16_be;
673 			break;
674 		case REGMAP_ENDIAN_NATIVE:
675 			map->format.format_reg = regmap_format_16_native;
676 			break;
677 		default:
678 			goto err_map;
679 		}
680 		break;
681 
682 	case 24:
683 		if (reg_endian != REGMAP_ENDIAN_BIG)
684 			goto err_map;
685 		map->format.format_reg = regmap_format_24;
686 		break;
687 
688 	case 32:
689 		switch (reg_endian) {
690 		case REGMAP_ENDIAN_BIG:
691 			map->format.format_reg = regmap_format_32_be;
692 			break;
693 		case REGMAP_ENDIAN_NATIVE:
694 			map->format.format_reg = regmap_format_32_native;
695 			break;
696 		default:
697 			goto err_map;
698 		}
699 		break;
700 
701 	default:
702 		goto err_map;
703 	}
704 
705 	if (val_endian == REGMAP_ENDIAN_NATIVE)
706 		map->format.parse_inplace = regmap_parse_inplace_noop;
707 
708 	switch (config->val_bits) {
709 	case 8:
710 		map->format.format_val = regmap_format_8;
711 		map->format.parse_val = regmap_parse_8;
712 		map->format.parse_inplace = regmap_parse_inplace_noop;
713 		break;
714 	case 16:
715 		switch (val_endian) {
716 		case REGMAP_ENDIAN_BIG:
717 			map->format.format_val = regmap_format_16_be;
718 			map->format.parse_val = regmap_parse_16_be;
719 			map->format.parse_inplace = regmap_parse_16_be_inplace;
720 			break;
721 		case REGMAP_ENDIAN_LITTLE:
722 			map->format.format_val = regmap_format_16_le;
723 			map->format.parse_val = regmap_parse_16_le;
724 			map->format.parse_inplace = regmap_parse_16_le_inplace;
725 			break;
726 		case REGMAP_ENDIAN_NATIVE:
727 			map->format.format_val = regmap_format_16_native;
728 			map->format.parse_val = regmap_parse_16_native;
729 			break;
730 		default:
731 			goto err_map;
732 		}
733 		break;
734 	case 24:
735 		if (val_endian != REGMAP_ENDIAN_BIG)
736 			goto err_map;
737 		map->format.format_val = regmap_format_24;
738 		map->format.parse_val = regmap_parse_24;
739 		break;
740 	case 32:
741 		switch (val_endian) {
742 		case REGMAP_ENDIAN_BIG:
743 			map->format.format_val = regmap_format_32_be;
744 			map->format.parse_val = regmap_parse_32_be;
745 			map->format.parse_inplace = regmap_parse_32_be_inplace;
746 			break;
747 		case REGMAP_ENDIAN_LITTLE:
748 			map->format.format_val = regmap_format_32_le;
749 			map->format.parse_val = regmap_parse_32_le;
750 			map->format.parse_inplace = regmap_parse_32_le_inplace;
751 			break;
752 		case REGMAP_ENDIAN_NATIVE:
753 			map->format.format_val = regmap_format_32_native;
754 			map->format.parse_val = regmap_parse_32_native;
755 			break;
756 		default:
757 			goto err_map;
758 		}
759 		break;
760 	}
761 
762 	if (map->format.format_write) {
763 		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
764 		    (val_endian != REGMAP_ENDIAN_BIG))
765 			goto err_map;
766 		map->use_single_rw = true;
767 	}
768 
769 	if (!map->format.format_write &&
770 	    !(map->format.format_reg && map->format.format_val))
771 		goto err_map;
772 
773 	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
774 	if (map->work_buf == NULL) {
775 		ret = -ENOMEM;
776 		goto err_map;
777 	}
778 
779 	if (map->format.format_write) {
780 		map->defer_caching = false;
781 		map->reg_write = _regmap_bus_formatted_write;
782 	} else if (map->format.format_val) {
783 		map->defer_caching = true;
784 		map->reg_write = _regmap_bus_raw_write;
785 	}
786 
787 skip_format_initialization:
788 
789 	map->range_tree = RB_ROOT;
790 	for (i = 0; i < config->num_ranges; i++) {
791 		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
792 		struct regmap_range_node *new;
793 
794 		/* Sanity check */
795 		if (range_cfg->range_max < range_cfg->range_min) {
796 			dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
797 				range_cfg->range_max, range_cfg->range_min);
798 			goto err_range;
799 		}
800 
801 		if (range_cfg->range_max > map->max_register) {
802 			dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
803 				range_cfg->range_max, map->max_register);
804 			goto err_range;
805 		}
806 
807 		if (range_cfg->selector_reg > map->max_register) {
808 			dev_err(map->dev,
809 				"Invalid range %d: selector out of map\n", i);
810 			goto err_range;
811 		}
812 
813 		if (range_cfg->window_len == 0) {
814 			dev_err(map->dev, "Invalid range %d: window_len 0\n",
815 				i);
816 			goto err_range;
817 		}
818 
819 		/* Make sure, that this register range has no selector
820 		   or data window within its boundary */
821 		for (j = 0; j < config->num_ranges; j++) {
822 			unsigned sel_reg = config->ranges[j].selector_reg;
823 			unsigned win_min = config->ranges[j].window_start;
824 			unsigned win_max = win_min +
825 					   config->ranges[j].window_len - 1;
826 
827 			/* Allow data window inside its own virtual range */
828 			if (j == i)
829 				continue;
830 
831 			if (range_cfg->range_min <= sel_reg &&
832 			    sel_reg <= range_cfg->range_max) {
833 				dev_err(map->dev,
834 					"Range %d: selector for %d in window\n",
835 					i, j);
836 				goto err_range;
837 			}
838 
839 			if (!(win_max < range_cfg->range_min ||
840 			      win_min > range_cfg->range_max)) {
841 				dev_err(map->dev,
842 					"Range %d: window for %d in window\n",
843 					i, j);
844 				goto err_range;
845 			}
846 		}
847 
848 		new = kzalloc(sizeof(*new), GFP_KERNEL);
849 		if (new == NULL) {
850 			ret = -ENOMEM;
851 			goto err_range;
852 		}
853 
854 		new->map = map;
855 		new->name = range_cfg->name;
856 		new->range_min = range_cfg->range_min;
857 		new->range_max = range_cfg->range_max;
858 		new->selector_reg = range_cfg->selector_reg;
859 		new->selector_mask = range_cfg->selector_mask;
860 		new->selector_shift = range_cfg->selector_shift;
861 		new->window_start = range_cfg->window_start;
862 		new->window_len = range_cfg->window_len;
863 
864 		if (!_regmap_range_add(map, new)) {
865 			dev_err(map->dev, "Failed to add range %d\n", i);
866 			kfree(new);
867 			goto err_range;
868 		}
869 
870 		if (map->selector_work_buf == NULL) {
871 			map->selector_work_buf =
872 				kzalloc(map->format.buf_size, GFP_KERNEL);
873 			if (map->selector_work_buf == NULL) {
874 				ret = -ENOMEM;
875 				goto err_range;
876 			}
877 		}
878 	}
879 
880 	ret = regcache_init(map, config);
881 	if (ret != 0)
882 		goto err_range;
883 
884 	if (dev) {
885 		ret = regmap_attach_dev(dev, map, config);
886 		if (ret != 0)
887 			goto err_regcache;
888 	}
889 
890 	return map;
891 
892 err_regcache:
893 	regcache_exit(map);
894 err_range:
895 	regmap_range_exit(map);
896 	kfree(map->work_buf);
897 err_map:
898 	kfree(map);
899 err:
900 	return ERR_PTR(ret);
901 }
902 EXPORT_SYMBOL_GPL(regmap_init);
903 
904 static void devm_regmap_release(struct device *dev, void *res)
905 {
906 	regmap_exit(*(struct regmap **)res);
907 }
908 
909 /**
910  * devm_regmap_init(): Initialise managed register map
911  *
912  * @dev: Device that will be interacted with
913  * @bus: Bus-specific callbacks to use with device
914  * @bus_context: Data passed to bus-specific callbacks
915  * @config: Configuration for register map
916  *
917  * The return value will be an ERR_PTR() on error or a valid pointer
918  * to a struct regmap.  This function should generally not be called
919  * directly, it should be called by bus-specific init functions.  The
920  * map will be automatically freed by the device management code.
921  */
922 struct regmap *devm_regmap_init(struct device *dev,
923 				const struct regmap_bus *bus,
924 				void *bus_context,
925 				const struct regmap_config *config)
926 {
927 	struct regmap **ptr, *regmap;
928 
929 	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
930 	if (!ptr)
931 		return ERR_PTR(-ENOMEM);
932 
933 	regmap = regmap_init(dev, bus, bus_context, config);
934 	if (!IS_ERR(regmap)) {
935 		*ptr = regmap;
936 		devres_add(dev, ptr);
937 	} else {
938 		devres_free(ptr);
939 	}
940 
941 	return regmap;
942 }
943 EXPORT_SYMBOL_GPL(devm_regmap_init);
944 
945 static void regmap_field_init(struct regmap_field *rm_field,
946 	struct regmap *regmap, struct reg_field reg_field)
947 {
948 	rm_field->regmap = regmap;
949 	rm_field->reg = reg_field.reg;
950 	rm_field->shift = reg_field.lsb;
951 	rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
952 	rm_field->id_size = reg_field.id_size;
953 	rm_field->id_offset = reg_field.id_offset;
954 }
955 
956 /**
957  * devm_regmap_field_alloc(): Allocate and initialise a register field
958  * in a register map.
959  *
960  * @dev: Device that will be interacted with
961  * @regmap: regmap bank in which this register field is located.
962  * @reg_field: Register field with in the bank.
963  *
964  * The return value will be an ERR_PTR() on error or a valid pointer
965  * to a struct regmap_field. The regmap_field will be automatically freed
966  * by the device management code.
967  */
968 struct regmap_field *devm_regmap_field_alloc(struct device *dev,
969 		struct regmap *regmap, struct reg_field reg_field)
970 {
971 	struct regmap_field *rm_field = devm_kzalloc(dev,
972 					sizeof(*rm_field), GFP_KERNEL);
973 	if (!rm_field)
974 		return ERR_PTR(-ENOMEM);
975 
976 	regmap_field_init(rm_field, regmap, reg_field);
977 
978 	return rm_field;
979 
980 }
981 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
982 
983 /**
984  * devm_regmap_field_free(): Free register field allocated using
985  * devm_regmap_field_alloc. Usally drivers need not call this function,
986  * as the memory allocated via devm will be freed as per device-driver
987  * life-cyle.
988  *
989  * @dev: Device that will be interacted with
990  * @field: regmap field which should be freed.
991  */
992 void devm_regmap_field_free(struct device *dev,
993 	struct regmap_field *field)
994 {
995 	devm_kfree(dev, field);
996 }
997 EXPORT_SYMBOL_GPL(devm_regmap_field_free);
998 
999 /**
1000  * regmap_field_alloc(): Allocate and initialise a register field
1001  * in a register map.
1002  *
1003  * @regmap: regmap bank in which this register field is located.
1004  * @reg_field: Register field with in the bank.
1005  *
1006  * The return value will be an ERR_PTR() on error or a valid pointer
1007  * to a struct regmap_field. The regmap_field should be freed by the
1008  * user once its finished working with it using regmap_field_free().
1009  */
1010 struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1011 		struct reg_field reg_field)
1012 {
1013 	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1014 
1015 	if (!rm_field)
1016 		return ERR_PTR(-ENOMEM);
1017 
1018 	regmap_field_init(rm_field, regmap, reg_field);
1019 
1020 	return rm_field;
1021 }
1022 EXPORT_SYMBOL_GPL(regmap_field_alloc);
1023 
1024 /**
1025  * regmap_field_free(): Free register field allocated using regmap_field_alloc
1026  *
1027  * @field: regmap field which should be freed.
1028  */
1029 void regmap_field_free(struct regmap_field *field)
1030 {
1031 	kfree(field);
1032 }
1033 EXPORT_SYMBOL_GPL(regmap_field_free);
1034 
1035 /**
1036  * regmap_reinit_cache(): Reinitialise the current register cache
1037  *
1038  * @map: Register map to operate on.
1039  * @config: New configuration.  Only the cache data will be used.
1040  *
1041  * Discard any existing register cache for the map and initialize a
1042  * new cache.  This can be used to restore the cache to defaults or to
1043  * update the cache configuration to reflect runtime discovery of the
1044  * hardware.
1045  *
1046  * No explicit locking is done here, the user needs to ensure that
1047  * this function will not race with other calls to regmap.
1048  */
1049 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1050 {
1051 	regcache_exit(map);
1052 	regmap_debugfs_exit(map);
1053 
1054 	map->max_register = config->max_register;
1055 	map->writeable_reg = config->writeable_reg;
1056 	map->readable_reg = config->readable_reg;
1057 	map->volatile_reg = config->volatile_reg;
1058 	map->precious_reg = config->precious_reg;
1059 	map->cache_type = config->cache_type;
1060 
1061 	regmap_debugfs_init(map, config->name);
1062 
1063 	map->cache_bypass = false;
1064 	map->cache_only = false;
1065 
1066 	return regcache_init(map, config);
1067 }
1068 EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1069 
1070 /**
1071  * regmap_exit(): Free a previously allocated register map
1072  */
1073 void regmap_exit(struct regmap *map)
1074 {
1075 	struct regmap_async *async;
1076 
1077 	regcache_exit(map);
1078 	regmap_debugfs_exit(map);
1079 	regmap_range_exit(map);
1080 	if (map->bus && map->bus->free_context)
1081 		map->bus->free_context(map->bus_context);
1082 	kfree(map->work_buf);
1083 	while (!list_empty(&map->async_free)) {
1084 		async = list_first_entry_or_null(&map->async_free,
1085 						 struct regmap_async,
1086 						 list);
1087 		list_del(&async->list);
1088 		kfree(async->work_buf);
1089 		kfree(async);
1090 	}
1091 	kfree(map);
1092 }
1093 EXPORT_SYMBOL_GPL(regmap_exit);
1094 
1095 static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1096 {
1097 	struct regmap **r = res;
1098 	if (!r || !*r) {
1099 		WARN_ON(!r || !*r);
1100 		return 0;
1101 	}
1102 
1103 	/* If the user didn't specify a name match any */
1104 	if (data)
1105 		return (*r)->name == data;
1106 	else
1107 		return 1;
1108 }
1109 
1110 /**
1111  * dev_get_regmap(): Obtain the regmap (if any) for a device
1112  *
1113  * @dev: Device to retrieve the map for
1114  * @name: Optional name for the register map, usually NULL.
1115  *
1116  * Returns the regmap for the device if one is present, or NULL.  If
1117  * name is specified then it must match the name specified when
1118  * registering the device, if it is NULL then the first regmap found
1119  * will be used.  Devices with multiple register maps are very rare,
1120  * generic code should normally not need to specify a name.
1121  */
1122 struct regmap *dev_get_regmap(struct device *dev, const char *name)
1123 {
1124 	struct regmap **r = devres_find(dev, dev_get_regmap_release,
1125 					dev_get_regmap_match, (void *)name);
1126 
1127 	if (!r)
1128 		return NULL;
1129 	return *r;
1130 }
1131 EXPORT_SYMBOL_GPL(dev_get_regmap);
1132 
1133 /**
1134  * regmap_get_device(): Obtain the device from a regmap
1135  *
1136  * @map: Register map to operate on.
1137  *
1138  * Returns the underlying device that the regmap has been created for.
1139  */
1140 struct device *regmap_get_device(struct regmap *map)
1141 {
1142 	return map->dev;
1143 }
1144 EXPORT_SYMBOL_GPL(regmap_get_device);
1145 
1146 static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1147 			       struct regmap_range_node *range,
1148 			       unsigned int val_num)
1149 {
1150 	void *orig_work_buf;
1151 	unsigned int win_offset;
1152 	unsigned int win_page;
1153 	bool page_chg;
1154 	int ret;
1155 
1156 	win_offset = (*reg - range->range_min) % range->window_len;
1157 	win_page = (*reg - range->range_min) / range->window_len;
1158 
1159 	if (val_num > 1) {
1160 		/* Bulk write shouldn't cross range boundary */
1161 		if (*reg + val_num - 1 > range->range_max)
1162 			return -EINVAL;
1163 
1164 		/* ... or single page boundary */
1165 		if (val_num > range->window_len - win_offset)
1166 			return -EINVAL;
1167 	}
1168 
1169 	/* It is possible to have selector register inside data window.
1170 	   In that case, selector register is located on every page and
1171 	   it needs no page switching, when accessed alone. */
1172 	if (val_num > 1 ||
1173 	    range->window_start + win_offset != range->selector_reg) {
1174 		/* Use separate work_buf during page switching */
1175 		orig_work_buf = map->work_buf;
1176 		map->work_buf = map->selector_work_buf;
1177 
1178 		ret = _regmap_update_bits(map, range->selector_reg,
1179 					  range->selector_mask,
1180 					  win_page << range->selector_shift,
1181 					  &page_chg);
1182 
1183 		map->work_buf = orig_work_buf;
1184 
1185 		if (ret != 0)
1186 			return ret;
1187 	}
1188 
1189 	*reg = range->window_start + win_offset;
1190 
1191 	return 0;
1192 }
1193 
1194 int _regmap_raw_write(struct regmap *map, unsigned int reg,
1195 		      const void *val, size_t val_len)
1196 {
1197 	struct regmap_range_node *range;
1198 	unsigned long flags;
1199 	u8 *u8 = map->work_buf;
1200 	void *work_val = map->work_buf + map->format.reg_bytes +
1201 		map->format.pad_bytes;
1202 	void *buf;
1203 	int ret = -ENOTSUPP;
1204 	size_t len;
1205 	int i;
1206 
1207 	WARN_ON(!map->bus);
1208 
1209 	/* Check for unwritable registers before we start */
1210 	if (map->writeable_reg)
1211 		for (i = 0; i < val_len / map->format.val_bytes; i++)
1212 			if (!map->writeable_reg(map->dev,
1213 						reg + (i * map->reg_stride)))
1214 				return -EINVAL;
1215 
1216 	if (!map->cache_bypass && map->format.parse_val) {
1217 		unsigned int ival;
1218 		int val_bytes = map->format.val_bytes;
1219 		for (i = 0; i < val_len / val_bytes; i++) {
1220 			ival = map->format.parse_val(val + (i * val_bytes));
1221 			ret = regcache_write(map, reg + (i * map->reg_stride),
1222 					     ival);
1223 			if (ret) {
1224 				dev_err(map->dev,
1225 					"Error in caching of register: %x ret: %d\n",
1226 					reg + i, ret);
1227 				return ret;
1228 			}
1229 		}
1230 		if (map->cache_only) {
1231 			map->cache_dirty = true;
1232 			return 0;
1233 		}
1234 	}
1235 
1236 	range = _regmap_range_lookup(map, reg);
1237 	if (range) {
1238 		int val_num = val_len / map->format.val_bytes;
1239 		int win_offset = (reg - range->range_min) % range->window_len;
1240 		int win_residue = range->window_len - win_offset;
1241 
1242 		/* If the write goes beyond the end of the window split it */
1243 		while (val_num > win_residue) {
1244 			dev_dbg(map->dev, "Writing window %d/%zu\n",
1245 				win_residue, val_len / map->format.val_bytes);
1246 			ret = _regmap_raw_write(map, reg, val, win_residue *
1247 						map->format.val_bytes);
1248 			if (ret != 0)
1249 				return ret;
1250 
1251 			reg += win_residue;
1252 			val_num -= win_residue;
1253 			val += win_residue * map->format.val_bytes;
1254 			val_len -= win_residue * map->format.val_bytes;
1255 
1256 			win_offset = (reg - range->range_min) %
1257 				range->window_len;
1258 			win_residue = range->window_len - win_offset;
1259 		}
1260 
1261 		ret = _regmap_select_page(map, &reg, range, val_num);
1262 		if (ret != 0)
1263 			return ret;
1264 	}
1265 
1266 	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1267 
1268 	u8[0] |= map->write_flag_mask;
1269 
1270 	/*
1271 	 * Essentially all I/O mechanisms will be faster with a single
1272 	 * buffer to write.  Since register syncs often generate raw
1273 	 * writes of single registers optimise that case.
1274 	 */
1275 	if (val != work_val && val_len == map->format.val_bytes) {
1276 		memcpy(work_val, val, map->format.val_bytes);
1277 		val = work_val;
1278 	}
1279 
1280 	if (map->async && map->bus->async_write) {
1281 		struct regmap_async *async;
1282 
1283 		trace_regmap_async_write_start(map, reg, val_len);
1284 
1285 		spin_lock_irqsave(&map->async_lock, flags);
1286 		async = list_first_entry_or_null(&map->async_free,
1287 						 struct regmap_async,
1288 						 list);
1289 		if (async)
1290 			list_del(&async->list);
1291 		spin_unlock_irqrestore(&map->async_lock, flags);
1292 
1293 		if (!async) {
1294 			async = map->bus->async_alloc();
1295 			if (!async)
1296 				return -ENOMEM;
1297 
1298 			async->work_buf = kzalloc(map->format.buf_size,
1299 						  GFP_KERNEL | GFP_DMA);
1300 			if (!async->work_buf) {
1301 				kfree(async);
1302 				return -ENOMEM;
1303 			}
1304 		}
1305 
1306 		async->map = map;
1307 
1308 		/* If the caller supplied the value we can use it safely. */
1309 		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1310 		       map->format.reg_bytes + map->format.val_bytes);
1311 
1312 		spin_lock_irqsave(&map->async_lock, flags);
1313 		list_add_tail(&async->list, &map->async_list);
1314 		spin_unlock_irqrestore(&map->async_lock, flags);
1315 
1316 		if (val != work_val)
1317 			ret = map->bus->async_write(map->bus_context,
1318 						    async->work_buf,
1319 						    map->format.reg_bytes +
1320 						    map->format.pad_bytes,
1321 						    val, val_len, async);
1322 		else
1323 			ret = map->bus->async_write(map->bus_context,
1324 						    async->work_buf,
1325 						    map->format.reg_bytes +
1326 						    map->format.pad_bytes +
1327 						    val_len, NULL, 0, async);
1328 
1329 		if (ret != 0) {
1330 			dev_err(map->dev, "Failed to schedule write: %d\n",
1331 				ret);
1332 
1333 			spin_lock_irqsave(&map->async_lock, flags);
1334 			list_move(&async->list, &map->async_free);
1335 			spin_unlock_irqrestore(&map->async_lock, flags);
1336 		}
1337 
1338 		return ret;
1339 	}
1340 
1341 	trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1342 
1343 	/* If we're doing a single register write we can probably just
1344 	 * send the work_buf directly, otherwise try to do a gather
1345 	 * write.
1346 	 */
1347 	if (val == work_val)
1348 		ret = map->bus->write(map->bus_context, map->work_buf,
1349 				      map->format.reg_bytes +
1350 				      map->format.pad_bytes +
1351 				      val_len);
1352 	else if (map->bus->gather_write)
1353 		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1354 					     map->format.reg_bytes +
1355 					     map->format.pad_bytes,
1356 					     val, val_len);
1357 
1358 	/* If that didn't work fall back on linearising by hand. */
1359 	if (ret == -ENOTSUPP) {
1360 		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1361 		buf = kzalloc(len, GFP_KERNEL);
1362 		if (!buf)
1363 			return -ENOMEM;
1364 
1365 		memcpy(buf, map->work_buf, map->format.reg_bytes);
1366 		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1367 		       val, val_len);
1368 		ret = map->bus->write(map->bus_context, buf, len);
1369 
1370 		kfree(buf);
1371 	}
1372 
1373 	trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1374 
1375 	return ret;
1376 }
1377 
1378 /**
1379  * regmap_can_raw_write - Test if regmap_raw_write() is supported
1380  *
1381  * @map: Map to check.
1382  */
1383 bool regmap_can_raw_write(struct regmap *map)
1384 {
1385 	return map->bus && map->format.format_val && map->format.format_reg;
1386 }
1387 EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1388 
1389 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1390 				       unsigned int val)
1391 {
1392 	int ret;
1393 	struct regmap_range_node *range;
1394 	struct regmap *map = context;
1395 
1396 	WARN_ON(!map->bus || !map->format.format_write);
1397 
1398 	range = _regmap_range_lookup(map, reg);
1399 	if (range) {
1400 		ret = _regmap_select_page(map, &reg, range, 1);
1401 		if (ret != 0)
1402 			return ret;
1403 	}
1404 
1405 	map->format.format_write(map, reg, val);
1406 
1407 	trace_regmap_hw_write_start(map, reg, 1);
1408 
1409 	ret = map->bus->write(map->bus_context, map->work_buf,
1410 			      map->format.buf_size);
1411 
1412 	trace_regmap_hw_write_done(map, reg, 1);
1413 
1414 	return ret;
1415 }
1416 
1417 static int _regmap_bus_reg_write(void *context, unsigned int reg,
1418 				 unsigned int val)
1419 {
1420 	struct regmap *map = context;
1421 
1422 	return map->bus->reg_write(map->bus_context, reg, val);
1423 }
1424 
1425 static int _regmap_bus_raw_write(void *context, unsigned int reg,
1426 				 unsigned int val)
1427 {
1428 	struct regmap *map = context;
1429 
1430 	WARN_ON(!map->bus || !map->format.format_val);
1431 
1432 	map->format.format_val(map->work_buf + map->format.reg_bytes
1433 			       + map->format.pad_bytes, val, 0);
1434 	return _regmap_raw_write(map, reg,
1435 				 map->work_buf +
1436 				 map->format.reg_bytes +
1437 				 map->format.pad_bytes,
1438 				 map->format.val_bytes);
1439 }
1440 
1441 static inline void *_regmap_map_get_context(struct regmap *map)
1442 {
1443 	return (map->bus) ? map : map->bus_context;
1444 }
1445 
1446 int _regmap_write(struct regmap *map, unsigned int reg,
1447 		  unsigned int val)
1448 {
1449 	int ret;
1450 	void *context = _regmap_map_get_context(map);
1451 
1452 	if (!regmap_writeable(map, reg))
1453 		return -EIO;
1454 
1455 	if (!map->cache_bypass && !map->defer_caching) {
1456 		ret = regcache_write(map, reg, val);
1457 		if (ret != 0)
1458 			return ret;
1459 		if (map->cache_only) {
1460 			map->cache_dirty = true;
1461 			return 0;
1462 		}
1463 	}
1464 
1465 #ifdef LOG_DEVICE
1466 	if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1467 		dev_info(map->dev, "%x <= %x\n", reg, val);
1468 #endif
1469 
1470 	trace_regmap_reg_write(map, reg, val);
1471 
1472 	return map->reg_write(context, reg, val);
1473 }
1474 
1475 /**
1476  * regmap_write(): Write a value to a single register
1477  *
1478  * @map: Register map to write to
1479  * @reg: Register to write to
1480  * @val: Value to be written
1481  *
1482  * A value of zero will be returned on success, a negative errno will
1483  * be returned in error cases.
1484  */
1485 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1486 {
1487 	int ret;
1488 
1489 	if (reg % map->reg_stride)
1490 		return -EINVAL;
1491 
1492 	map->lock(map->lock_arg);
1493 
1494 	ret = _regmap_write(map, reg, val);
1495 
1496 	map->unlock(map->lock_arg);
1497 
1498 	return ret;
1499 }
1500 EXPORT_SYMBOL_GPL(regmap_write);
1501 
1502 /**
1503  * regmap_write_async(): Write a value to a single register asynchronously
1504  *
1505  * @map: Register map to write to
1506  * @reg: Register to write to
1507  * @val: Value to be written
1508  *
1509  * A value of zero will be returned on success, a negative errno will
1510  * be returned in error cases.
1511  */
1512 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1513 {
1514 	int ret;
1515 
1516 	if (reg % map->reg_stride)
1517 		return -EINVAL;
1518 
1519 	map->lock(map->lock_arg);
1520 
1521 	map->async = true;
1522 
1523 	ret = _regmap_write(map, reg, val);
1524 
1525 	map->async = false;
1526 
1527 	map->unlock(map->lock_arg);
1528 
1529 	return ret;
1530 }
1531 EXPORT_SYMBOL_GPL(regmap_write_async);
1532 
1533 /**
1534  * regmap_raw_write(): Write raw values to one or more registers
1535  *
1536  * @map: Register map to write to
1537  * @reg: Initial register to write to
1538  * @val: Block of data to be written, laid out for direct transmission to the
1539  *       device
1540  * @val_len: Length of data pointed to by val.
1541  *
1542  * This function is intended to be used for things like firmware
1543  * download where a large block of data needs to be transferred to the
1544  * device.  No formatting will be done on the data provided.
1545  *
1546  * A value of zero will be returned on success, a negative errno will
1547  * be returned in error cases.
1548  */
1549 int regmap_raw_write(struct regmap *map, unsigned int reg,
1550 		     const void *val, size_t val_len)
1551 {
1552 	int ret;
1553 
1554 	if (!regmap_can_raw_write(map))
1555 		return -EINVAL;
1556 	if (val_len % map->format.val_bytes)
1557 		return -EINVAL;
1558 
1559 	map->lock(map->lock_arg);
1560 
1561 	ret = _regmap_raw_write(map, reg, val, val_len);
1562 
1563 	map->unlock(map->lock_arg);
1564 
1565 	return ret;
1566 }
1567 EXPORT_SYMBOL_GPL(regmap_raw_write);
1568 
1569 /**
1570  * regmap_field_write(): Write a value to a single register field
1571  *
1572  * @field: Register field to write to
1573  * @val: Value to be written
1574  *
1575  * A value of zero will be returned on success, a negative errno will
1576  * be returned in error cases.
1577  */
1578 int regmap_field_write(struct regmap_field *field, unsigned int val)
1579 {
1580 	return regmap_update_bits(field->regmap, field->reg,
1581 				field->mask, val << field->shift);
1582 }
1583 EXPORT_SYMBOL_GPL(regmap_field_write);
1584 
1585 /**
1586  * regmap_field_update_bits():	Perform a read/modify/write cycle
1587  *                              on the register field
1588  *
1589  * @field: Register field to write to
1590  * @mask: Bitmask to change
1591  * @val: Value to be written
1592  *
1593  * A value of zero will be returned on success, a negative errno will
1594  * be returned in error cases.
1595  */
1596 int regmap_field_update_bits(struct regmap_field *field, unsigned int mask, unsigned int val)
1597 {
1598 	mask = (mask << field->shift) & field->mask;
1599 
1600 	return regmap_update_bits(field->regmap, field->reg,
1601 				  mask, val << field->shift);
1602 }
1603 EXPORT_SYMBOL_GPL(regmap_field_update_bits);
1604 
1605 /**
1606  * regmap_fields_write(): Write a value to a single register field with port ID
1607  *
1608  * @field: Register field to write to
1609  * @id: port ID
1610  * @val: Value to be written
1611  *
1612  * A value of zero will be returned on success, a negative errno will
1613  * be returned in error cases.
1614  */
1615 int regmap_fields_write(struct regmap_field *field, unsigned int id,
1616 			unsigned int val)
1617 {
1618 	if (id >= field->id_size)
1619 		return -EINVAL;
1620 
1621 	return regmap_update_bits(field->regmap,
1622 				  field->reg + (field->id_offset * id),
1623 				  field->mask, val << field->shift);
1624 }
1625 EXPORT_SYMBOL_GPL(regmap_fields_write);
1626 
1627 /**
1628  * regmap_fields_update_bits():	Perform a read/modify/write cycle
1629  *                              on the register field
1630  *
1631  * @field: Register field to write to
1632  * @id: port ID
1633  * @mask: Bitmask to change
1634  * @val: Value to be written
1635  *
1636  * A value of zero will be returned on success, a negative errno will
1637  * be returned in error cases.
1638  */
1639 int regmap_fields_update_bits(struct regmap_field *field,  unsigned int id,
1640 			      unsigned int mask, unsigned int val)
1641 {
1642 	if (id >= field->id_size)
1643 		return -EINVAL;
1644 
1645 	mask = (mask << field->shift) & field->mask;
1646 
1647 	return regmap_update_bits(field->regmap,
1648 				  field->reg + (field->id_offset * id),
1649 				  mask, val << field->shift);
1650 }
1651 EXPORT_SYMBOL_GPL(regmap_fields_update_bits);
1652 
1653 /*
1654  * regmap_bulk_write(): Write multiple registers to the device
1655  *
1656  * @map: Register map to write to
1657  * @reg: First register to be write from
1658  * @val: Block of data to be written, in native register size for device
1659  * @val_count: Number of registers to write
1660  *
1661  * This function is intended to be used for writing a large block of
1662  * data to the device either in single transfer or multiple transfer.
1663  *
1664  * A value of zero will be returned on success, a negative errno will
1665  * be returned in error cases.
1666  */
1667 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
1668 		     size_t val_count)
1669 {
1670 	int ret = 0, i;
1671 	size_t val_bytes = map->format.val_bytes;
1672 
1673 	if (map->bus && !map->format.parse_inplace)
1674 		return -EINVAL;
1675 	if (reg % map->reg_stride)
1676 		return -EINVAL;
1677 
1678 	/*
1679 	 * Some devices don't support bulk write, for
1680 	 * them we have a series of single write operations.
1681 	 */
1682 	if (!map->bus || map->use_single_rw) {
1683 		map->lock(map->lock_arg);
1684 		for (i = 0; i < val_count; i++) {
1685 			unsigned int ival;
1686 
1687 			switch (val_bytes) {
1688 			case 1:
1689 				ival = *(u8 *)(val + (i * val_bytes));
1690 				break;
1691 			case 2:
1692 				ival = *(u16 *)(val + (i * val_bytes));
1693 				break;
1694 			case 4:
1695 				ival = *(u32 *)(val + (i * val_bytes));
1696 				break;
1697 #ifdef CONFIG_64BIT
1698 			case 8:
1699 				ival = *(u64 *)(val + (i * val_bytes));
1700 				break;
1701 #endif
1702 			default:
1703 				ret = -EINVAL;
1704 				goto out;
1705 			}
1706 
1707 			ret = _regmap_write(map, reg + (i * map->reg_stride),
1708 					ival);
1709 			if (ret != 0)
1710 				goto out;
1711 		}
1712 out:
1713 		map->unlock(map->lock_arg);
1714 	} else {
1715 		void *wval;
1716 
1717 		if (!val_count)
1718 			return -EINVAL;
1719 
1720 		wval = kmemdup(val, val_count * val_bytes, GFP_KERNEL);
1721 		if (!wval) {
1722 			dev_err(map->dev, "Error in memory allocation\n");
1723 			return -ENOMEM;
1724 		}
1725 		for (i = 0; i < val_count * val_bytes; i += val_bytes)
1726 			map->format.parse_inplace(wval + i);
1727 
1728 		map->lock(map->lock_arg);
1729 		ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count);
1730 		map->unlock(map->lock_arg);
1731 
1732 		kfree(wval);
1733 	}
1734 	return ret;
1735 }
1736 EXPORT_SYMBOL_GPL(regmap_bulk_write);
1737 
1738 /*
1739  * _regmap_raw_multi_reg_write()
1740  *
1741  * the (register,newvalue) pairs in regs have not been formatted, but
1742  * they are all in the same page and have been changed to being page
1743  * relative. The page register has been written if that was neccessary.
1744  */
1745 static int _regmap_raw_multi_reg_write(struct regmap *map,
1746 				       const struct reg_default *regs,
1747 				       size_t num_regs)
1748 {
1749 	int ret;
1750 	void *buf;
1751 	int i;
1752 	u8 *u8;
1753 	size_t val_bytes = map->format.val_bytes;
1754 	size_t reg_bytes = map->format.reg_bytes;
1755 	size_t pad_bytes = map->format.pad_bytes;
1756 	size_t pair_size = reg_bytes + pad_bytes + val_bytes;
1757 	size_t len = pair_size * num_regs;
1758 
1759 	if (!len)
1760 		return -EINVAL;
1761 
1762 	buf = kzalloc(len, GFP_KERNEL);
1763 	if (!buf)
1764 		return -ENOMEM;
1765 
1766 	/* We have to linearise by hand. */
1767 
1768 	u8 = buf;
1769 
1770 	for (i = 0; i < num_regs; i++) {
1771 		int reg = regs[i].reg;
1772 		int val = regs[i].def;
1773 		trace_regmap_hw_write_start(map, reg, 1);
1774 		map->format.format_reg(u8, reg, map->reg_shift);
1775 		u8 += reg_bytes + pad_bytes;
1776 		map->format.format_val(u8, val, 0);
1777 		u8 += val_bytes;
1778 	}
1779 	u8 = buf;
1780 	*u8 |= map->write_flag_mask;
1781 
1782 	ret = map->bus->write(map->bus_context, buf, len);
1783 
1784 	kfree(buf);
1785 
1786 	for (i = 0; i < num_regs; i++) {
1787 		int reg = regs[i].reg;
1788 		trace_regmap_hw_write_done(map, reg, 1);
1789 	}
1790 	return ret;
1791 }
1792 
1793 static unsigned int _regmap_register_page(struct regmap *map,
1794 					  unsigned int reg,
1795 					  struct regmap_range_node *range)
1796 {
1797 	unsigned int win_page = (reg - range->range_min) / range->window_len;
1798 
1799 	return win_page;
1800 }
1801 
1802 static int _regmap_range_multi_paged_reg_write(struct regmap *map,
1803 					       struct reg_default *regs,
1804 					       size_t num_regs)
1805 {
1806 	int ret;
1807 	int i, n;
1808 	struct reg_default *base;
1809 	unsigned int this_page = 0;
1810 	/*
1811 	 * the set of registers are not neccessarily in order, but
1812 	 * since the order of write must be preserved this algorithm
1813 	 * chops the set each time the page changes
1814 	 */
1815 	base = regs;
1816 	for (i = 0, n = 0; i < num_regs; i++, n++) {
1817 		unsigned int reg = regs[i].reg;
1818 		struct regmap_range_node *range;
1819 
1820 		range = _regmap_range_lookup(map, reg);
1821 		if (range) {
1822 			unsigned int win_page = _regmap_register_page(map, reg,
1823 								      range);
1824 
1825 			if (i == 0)
1826 				this_page = win_page;
1827 			if (win_page != this_page) {
1828 				this_page = win_page;
1829 				ret = _regmap_raw_multi_reg_write(map, base, n);
1830 				if (ret != 0)
1831 					return ret;
1832 				base += n;
1833 				n = 0;
1834 			}
1835 			ret = _regmap_select_page(map, &base[n].reg, range, 1);
1836 			if (ret != 0)
1837 				return ret;
1838 		}
1839 	}
1840 	if (n > 0)
1841 		return _regmap_raw_multi_reg_write(map, base, n);
1842 	return 0;
1843 }
1844 
1845 static int _regmap_multi_reg_write(struct regmap *map,
1846 				   const struct reg_default *regs,
1847 				   size_t num_regs)
1848 {
1849 	int i;
1850 	int ret;
1851 
1852 	if (!map->can_multi_write) {
1853 		for (i = 0; i < num_regs; i++) {
1854 			ret = _regmap_write(map, regs[i].reg, regs[i].def);
1855 			if (ret != 0)
1856 				return ret;
1857 		}
1858 		return 0;
1859 	}
1860 
1861 	if (!map->format.parse_inplace)
1862 		return -EINVAL;
1863 
1864 	if (map->writeable_reg)
1865 		for (i = 0; i < num_regs; i++) {
1866 			int reg = regs[i].reg;
1867 			if (!map->writeable_reg(map->dev, reg))
1868 				return -EINVAL;
1869 			if (reg % map->reg_stride)
1870 				return -EINVAL;
1871 		}
1872 
1873 	if (!map->cache_bypass) {
1874 		for (i = 0; i < num_regs; i++) {
1875 			unsigned int val = regs[i].def;
1876 			unsigned int reg = regs[i].reg;
1877 			ret = regcache_write(map, reg, val);
1878 			if (ret) {
1879 				dev_err(map->dev,
1880 				"Error in caching of register: %x ret: %d\n",
1881 								reg, ret);
1882 				return ret;
1883 			}
1884 		}
1885 		if (map->cache_only) {
1886 			map->cache_dirty = true;
1887 			return 0;
1888 		}
1889 	}
1890 
1891 	WARN_ON(!map->bus);
1892 
1893 	for (i = 0; i < num_regs; i++) {
1894 		unsigned int reg = regs[i].reg;
1895 		struct regmap_range_node *range;
1896 		range = _regmap_range_lookup(map, reg);
1897 		if (range) {
1898 			size_t len = sizeof(struct reg_default)*num_regs;
1899 			struct reg_default *base = kmemdup(regs, len,
1900 							   GFP_KERNEL);
1901 			if (!base)
1902 				return -ENOMEM;
1903 			ret = _regmap_range_multi_paged_reg_write(map, base,
1904 								  num_regs);
1905 			kfree(base);
1906 
1907 			return ret;
1908 		}
1909 	}
1910 	return _regmap_raw_multi_reg_write(map, regs, num_regs);
1911 }
1912 
1913 /*
1914  * regmap_multi_reg_write(): Write multiple registers to the device
1915  *
1916  * where the set of register,value pairs are supplied in any order,
1917  * possibly not all in a single range.
1918  *
1919  * @map: Register map to write to
1920  * @regs: Array of structures containing register,value to be written
1921  * @num_regs: Number of registers to write
1922  *
1923  * The 'normal' block write mode will send ultimately send data on the
1924  * target bus as R,V1,V2,V3,..,Vn where successively higer registers are
1925  * addressed. However, this alternative block multi write mode will send
1926  * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
1927  * must of course support the mode.
1928  *
1929  * A value of zero will be returned on success, a negative errno will be
1930  * returned in error cases.
1931  */
1932 int regmap_multi_reg_write(struct regmap *map, const struct reg_default *regs,
1933 			   int num_regs)
1934 {
1935 	int ret;
1936 
1937 	map->lock(map->lock_arg);
1938 
1939 	ret = _regmap_multi_reg_write(map, regs, num_regs);
1940 
1941 	map->unlock(map->lock_arg);
1942 
1943 	return ret;
1944 }
1945 EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
1946 
1947 /*
1948  * regmap_multi_reg_write_bypassed(): Write multiple registers to the
1949  *                                    device but not the cache
1950  *
1951  * where the set of register are supplied in any order
1952  *
1953  * @map: Register map to write to
1954  * @regs: Array of structures containing register,value to be written
1955  * @num_regs: Number of registers to write
1956  *
1957  * This function is intended to be used for writing a large block of data
1958  * atomically to the device in single transfer for those I2C client devices
1959  * that implement this alternative block write mode.
1960  *
1961  * A value of zero will be returned on success, a negative errno will
1962  * be returned in error cases.
1963  */
1964 int regmap_multi_reg_write_bypassed(struct regmap *map,
1965 				    const struct reg_default *regs,
1966 				    int num_regs)
1967 {
1968 	int ret;
1969 	bool bypass;
1970 
1971 	map->lock(map->lock_arg);
1972 
1973 	bypass = map->cache_bypass;
1974 	map->cache_bypass = true;
1975 
1976 	ret = _regmap_multi_reg_write(map, regs, num_regs);
1977 
1978 	map->cache_bypass = bypass;
1979 
1980 	map->unlock(map->lock_arg);
1981 
1982 	return ret;
1983 }
1984 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
1985 
1986 /**
1987  * regmap_raw_write_async(): Write raw values to one or more registers
1988  *                           asynchronously
1989  *
1990  * @map: Register map to write to
1991  * @reg: Initial register to write to
1992  * @val: Block of data to be written, laid out for direct transmission to the
1993  *       device.  Must be valid until regmap_async_complete() is called.
1994  * @val_len: Length of data pointed to by val.
1995  *
1996  * This function is intended to be used for things like firmware
1997  * download where a large block of data needs to be transferred to the
1998  * device.  No formatting will be done on the data provided.
1999  *
2000  * If supported by the underlying bus the write will be scheduled
2001  * asynchronously, helping maximise I/O speed on higher speed buses
2002  * like SPI.  regmap_async_complete() can be called to ensure that all
2003  * asynchrnous writes have been completed.
2004  *
2005  * A value of zero will be returned on success, a negative errno will
2006  * be returned in error cases.
2007  */
2008 int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2009 			   const void *val, size_t val_len)
2010 {
2011 	int ret;
2012 
2013 	if (val_len % map->format.val_bytes)
2014 		return -EINVAL;
2015 	if (reg % map->reg_stride)
2016 		return -EINVAL;
2017 
2018 	map->lock(map->lock_arg);
2019 
2020 	map->async = true;
2021 
2022 	ret = _regmap_raw_write(map, reg, val, val_len);
2023 
2024 	map->async = false;
2025 
2026 	map->unlock(map->lock_arg);
2027 
2028 	return ret;
2029 }
2030 EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2031 
2032 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2033 			    unsigned int val_len)
2034 {
2035 	struct regmap_range_node *range;
2036 	u8 *u8 = map->work_buf;
2037 	int ret;
2038 
2039 	WARN_ON(!map->bus);
2040 
2041 	range = _regmap_range_lookup(map, reg);
2042 	if (range) {
2043 		ret = _regmap_select_page(map, &reg, range,
2044 					  val_len / map->format.val_bytes);
2045 		if (ret != 0)
2046 			return ret;
2047 	}
2048 
2049 	map->format.format_reg(map->work_buf, reg, map->reg_shift);
2050 
2051 	/*
2052 	 * Some buses or devices flag reads by setting the high bits in the
2053 	 * register addresss; since it's always the high bits for all
2054 	 * current formats we can do this here rather than in
2055 	 * formatting.  This may break if we get interesting formats.
2056 	 */
2057 	u8[0] |= map->read_flag_mask;
2058 
2059 	trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2060 
2061 	ret = map->bus->read(map->bus_context, map->work_buf,
2062 			     map->format.reg_bytes + map->format.pad_bytes,
2063 			     val, val_len);
2064 
2065 	trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2066 
2067 	return ret;
2068 }
2069 
2070 static int _regmap_bus_reg_read(void *context, unsigned int reg,
2071 				unsigned int *val)
2072 {
2073 	struct regmap *map = context;
2074 
2075 	return map->bus->reg_read(map->bus_context, reg, val);
2076 }
2077 
2078 static int _regmap_bus_read(void *context, unsigned int reg,
2079 			    unsigned int *val)
2080 {
2081 	int ret;
2082 	struct regmap *map = context;
2083 
2084 	if (!map->format.parse_val)
2085 		return -EINVAL;
2086 
2087 	ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes);
2088 	if (ret == 0)
2089 		*val = map->format.parse_val(map->work_buf);
2090 
2091 	return ret;
2092 }
2093 
2094 static int _regmap_read(struct regmap *map, unsigned int reg,
2095 			unsigned int *val)
2096 {
2097 	int ret;
2098 	void *context = _regmap_map_get_context(map);
2099 
2100 	WARN_ON(!map->reg_read);
2101 
2102 	if (!map->cache_bypass) {
2103 		ret = regcache_read(map, reg, val);
2104 		if (ret == 0)
2105 			return 0;
2106 	}
2107 
2108 	if (map->cache_only)
2109 		return -EBUSY;
2110 
2111 	if (!regmap_readable(map, reg))
2112 		return -EIO;
2113 
2114 	ret = map->reg_read(context, reg, val);
2115 	if (ret == 0) {
2116 #ifdef LOG_DEVICE
2117 		if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
2118 			dev_info(map->dev, "%x => %x\n", reg, *val);
2119 #endif
2120 
2121 		trace_regmap_reg_read(map, reg, *val);
2122 
2123 		if (!map->cache_bypass)
2124 			regcache_write(map, reg, *val);
2125 	}
2126 
2127 	return ret;
2128 }
2129 
2130 /**
2131  * regmap_read(): Read a value from a single register
2132  *
2133  * @map: Register map to read from
2134  * @reg: Register to be read from
2135  * @val: Pointer to store read value
2136  *
2137  * A value of zero will be returned on success, a negative errno will
2138  * be returned in error cases.
2139  */
2140 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2141 {
2142 	int ret;
2143 
2144 	if (reg % map->reg_stride)
2145 		return -EINVAL;
2146 
2147 	map->lock(map->lock_arg);
2148 
2149 	ret = _regmap_read(map, reg, val);
2150 
2151 	map->unlock(map->lock_arg);
2152 
2153 	return ret;
2154 }
2155 EXPORT_SYMBOL_GPL(regmap_read);
2156 
2157 /**
2158  * regmap_raw_read(): Read raw data from the device
2159  *
2160  * @map: Register map to read from
2161  * @reg: First register to be read from
2162  * @val: Pointer to store read value
2163  * @val_len: Size of data to read
2164  *
2165  * A value of zero will be returned on success, a negative errno will
2166  * be returned in error cases.
2167  */
2168 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2169 		    size_t val_len)
2170 {
2171 	size_t val_bytes = map->format.val_bytes;
2172 	size_t val_count = val_len / val_bytes;
2173 	unsigned int v;
2174 	int ret, i;
2175 
2176 	if (!map->bus)
2177 		return -EINVAL;
2178 	if (val_len % map->format.val_bytes)
2179 		return -EINVAL;
2180 	if (reg % map->reg_stride)
2181 		return -EINVAL;
2182 
2183 	map->lock(map->lock_arg);
2184 
2185 	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2186 	    map->cache_type == REGCACHE_NONE) {
2187 		/* Physical block read if there's no cache involved */
2188 		ret = _regmap_raw_read(map, reg, val, val_len);
2189 
2190 	} else {
2191 		/* Otherwise go word by word for the cache; should be low
2192 		 * cost as we expect to hit the cache.
2193 		 */
2194 		for (i = 0; i < val_count; i++) {
2195 			ret = _regmap_read(map, reg + (i * map->reg_stride),
2196 					   &v);
2197 			if (ret != 0)
2198 				goto out;
2199 
2200 			map->format.format_val(val + (i * val_bytes), v, 0);
2201 		}
2202 	}
2203 
2204  out:
2205 	map->unlock(map->lock_arg);
2206 
2207 	return ret;
2208 }
2209 EXPORT_SYMBOL_GPL(regmap_raw_read);
2210 
2211 /**
2212  * regmap_field_read(): Read a value to a single register field
2213  *
2214  * @field: Register field to read from
2215  * @val: Pointer to store read value
2216  *
2217  * A value of zero will be returned on success, a negative errno will
2218  * be returned in error cases.
2219  */
2220 int regmap_field_read(struct regmap_field *field, unsigned int *val)
2221 {
2222 	int ret;
2223 	unsigned int reg_val;
2224 	ret = regmap_read(field->regmap, field->reg, &reg_val);
2225 	if (ret != 0)
2226 		return ret;
2227 
2228 	reg_val &= field->mask;
2229 	reg_val >>= field->shift;
2230 	*val = reg_val;
2231 
2232 	return ret;
2233 }
2234 EXPORT_SYMBOL_GPL(regmap_field_read);
2235 
2236 /**
2237  * regmap_fields_read(): Read a value to a single register field with port ID
2238  *
2239  * @field: Register field to read from
2240  * @id: port ID
2241  * @val: Pointer to store read value
2242  *
2243  * A value of zero will be returned on success, a negative errno will
2244  * be returned in error cases.
2245  */
2246 int regmap_fields_read(struct regmap_field *field, unsigned int id,
2247 		       unsigned int *val)
2248 {
2249 	int ret;
2250 	unsigned int reg_val;
2251 
2252 	if (id >= field->id_size)
2253 		return -EINVAL;
2254 
2255 	ret = regmap_read(field->regmap,
2256 			  field->reg + (field->id_offset * id),
2257 			  &reg_val);
2258 	if (ret != 0)
2259 		return ret;
2260 
2261 	reg_val &= field->mask;
2262 	reg_val >>= field->shift;
2263 	*val = reg_val;
2264 
2265 	return ret;
2266 }
2267 EXPORT_SYMBOL_GPL(regmap_fields_read);
2268 
2269 /**
2270  * regmap_bulk_read(): Read multiple registers from the device
2271  *
2272  * @map: Register map to read from
2273  * @reg: First register to be read from
2274  * @val: Pointer to store read value, in native register size for device
2275  * @val_count: Number of registers to read
2276  *
2277  * A value of zero will be returned on success, a negative errno will
2278  * be returned in error cases.
2279  */
2280 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2281 		     size_t val_count)
2282 {
2283 	int ret, i;
2284 	size_t val_bytes = map->format.val_bytes;
2285 	bool vol = regmap_volatile_range(map, reg, val_count);
2286 
2287 	if (reg % map->reg_stride)
2288 		return -EINVAL;
2289 
2290 	if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2291 		/*
2292 		 * Some devices does not support bulk read, for
2293 		 * them we have a series of single read operations.
2294 		 */
2295 		if (map->use_single_rw) {
2296 			for (i = 0; i < val_count; i++) {
2297 				ret = regmap_raw_read(map,
2298 						reg + (i * map->reg_stride),
2299 						val + (i * val_bytes),
2300 						val_bytes);
2301 				if (ret != 0)
2302 					return ret;
2303 			}
2304 		} else {
2305 			ret = regmap_raw_read(map, reg, val,
2306 					      val_bytes * val_count);
2307 			if (ret != 0)
2308 				return ret;
2309 		}
2310 
2311 		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2312 			map->format.parse_inplace(val + i);
2313 	} else {
2314 		for (i = 0; i < val_count; i++) {
2315 			unsigned int ival;
2316 			ret = regmap_read(map, reg + (i * map->reg_stride),
2317 					  &ival);
2318 			if (ret != 0)
2319 				return ret;
2320 			map->format.format_val(val + (i * val_bytes), ival, 0);
2321 		}
2322 	}
2323 
2324 	return 0;
2325 }
2326 EXPORT_SYMBOL_GPL(regmap_bulk_read);
2327 
2328 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
2329 			       unsigned int mask, unsigned int val,
2330 			       bool *change)
2331 {
2332 	int ret;
2333 	unsigned int tmp, orig;
2334 
2335 	ret = _regmap_read(map, reg, &orig);
2336 	if (ret != 0)
2337 		return ret;
2338 
2339 	tmp = orig & ~mask;
2340 	tmp |= val & mask;
2341 
2342 	if (tmp != orig) {
2343 		ret = _regmap_write(map, reg, tmp);
2344 		if (change)
2345 			*change = true;
2346 	} else {
2347 		if (change)
2348 			*change = false;
2349 	}
2350 
2351 	return ret;
2352 }
2353 
2354 /**
2355  * regmap_update_bits: Perform a read/modify/write cycle on the register map
2356  *
2357  * @map: Register map to update
2358  * @reg: Register to update
2359  * @mask: Bitmask to change
2360  * @val: New value for bitmask
2361  *
2362  * Returns zero for success, a negative number on error.
2363  */
2364 int regmap_update_bits(struct regmap *map, unsigned int reg,
2365 		       unsigned int mask, unsigned int val)
2366 {
2367 	int ret;
2368 
2369 	map->lock(map->lock_arg);
2370 	ret = _regmap_update_bits(map, reg, mask, val, NULL);
2371 	map->unlock(map->lock_arg);
2372 
2373 	return ret;
2374 }
2375 EXPORT_SYMBOL_GPL(regmap_update_bits);
2376 
2377 /**
2378  * regmap_update_bits_async: Perform a read/modify/write cycle on the register
2379  *                           map asynchronously
2380  *
2381  * @map: Register map to update
2382  * @reg: Register to update
2383  * @mask: Bitmask to change
2384  * @val: New value for bitmask
2385  *
2386  * With most buses the read must be done synchronously so this is most
2387  * useful for devices with a cache which do not need to interact with
2388  * the hardware to determine the current register value.
2389  *
2390  * Returns zero for success, a negative number on error.
2391  */
2392 int regmap_update_bits_async(struct regmap *map, unsigned int reg,
2393 			     unsigned int mask, unsigned int val)
2394 {
2395 	int ret;
2396 
2397 	map->lock(map->lock_arg);
2398 
2399 	map->async = true;
2400 
2401 	ret = _regmap_update_bits(map, reg, mask, val, NULL);
2402 
2403 	map->async = false;
2404 
2405 	map->unlock(map->lock_arg);
2406 
2407 	return ret;
2408 }
2409 EXPORT_SYMBOL_GPL(regmap_update_bits_async);
2410 
2411 /**
2412  * regmap_update_bits_check: Perform a read/modify/write cycle on the
2413  *                           register map and report if updated
2414  *
2415  * @map: Register map to update
2416  * @reg: Register to update
2417  * @mask: Bitmask to change
2418  * @val: New value for bitmask
2419  * @change: Boolean indicating if a write was done
2420  *
2421  * Returns zero for success, a negative number on error.
2422  */
2423 int regmap_update_bits_check(struct regmap *map, unsigned int reg,
2424 			     unsigned int mask, unsigned int val,
2425 			     bool *change)
2426 {
2427 	int ret;
2428 
2429 	map->lock(map->lock_arg);
2430 	ret = _regmap_update_bits(map, reg, mask, val, change);
2431 	map->unlock(map->lock_arg);
2432 	return ret;
2433 }
2434 EXPORT_SYMBOL_GPL(regmap_update_bits_check);
2435 
2436 /**
2437  * regmap_update_bits_check_async: Perform a read/modify/write cycle on the
2438  *                                 register map asynchronously and report if
2439  *                                 updated
2440  *
2441  * @map: Register map to update
2442  * @reg: Register to update
2443  * @mask: Bitmask to change
2444  * @val: New value for bitmask
2445  * @change: Boolean indicating if a write was done
2446  *
2447  * With most buses the read must be done synchronously so this is most
2448  * useful for devices with a cache which do not need to interact with
2449  * the hardware to determine the current register value.
2450  *
2451  * Returns zero for success, a negative number on error.
2452  */
2453 int regmap_update_bits_check_async(struct regmap *map, unsigned int reg,
2454 				   unsigned int mask, unsigned int val,
2455 				   bool *change)
2456 {
2457 	int ret;
2458 
2459 	map->lock(map->lock_arg);
2460 
2461 	map->async = true;
2462 
2463 	ret = _regmap_update_bits(map, reg, mask, val, change);
2464 
2465 	map->async = false;
2466 
2467 	map->unlock(map->lock_arg);
2468 
2469 	return ret;
2470 }
2471 EXPORT_SYMBOL_GPL(regmap_update_bits_check_async);
2472 
2473 void regmap_async_complete_cb(struct regmap_async *async, int ret)
2474 {
2475 	struct regmap *map = async->map;
2476 	bool wake;
2477 
2478 	trace_regmap_async_io_complete(map);
2479 
2480 	spin_lock(&map->async_lock);
2481 	list_move(&async->list, &map->async_free);
2482 	wake = list_empty(&map->async_list);
2483 
2484 	if (ret != 0)
2485 		map->async_ret = ret;
2486 
2487 	spin_unlock(&map->async_lock);
2488 
2489 	if (wake)
2490 		wake_up(&map->async_waitq);
2491 }
2492 EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2493 
2494 static int regmap_async_is_done(struct regmap *map)
2495 {
2496 	unsigned long flags;
2497 	int ret;
2498 
2499 	spin_lock_irqsave(&map->async_lock, flags);
2500 	ret = list_empty(&map->async_list);
2501 	spin_unlock_irqrestore(&map->async_lock, flags);
2502 
2503 	return ret;
2504 }
2505 
2506 /**
2507  * regmap_async_complete: Ensure all asynchronous I/O has completed.
2508  *
2509  * @map: Map to operate on.
2510  *
2511  * Blocks until any pending asynchronous I/O has completed.  Returns
2512  * an error code for any failed I/O operations.
2513  */
2514 int regmap_async_complete(struct regmap *map)
2515 {
2516 	unsigned long flags;
2517 	int ret;
2518 
2519 	/* Nothing to do with no async support */
2520 	if (!map->bus || !map->bus->async_write)
2521 		return 0;
2522 
2523 	trace_regmap_async_complete_start(map);
2524 
2525 	wait_event(map->async_waitq, regmap_async_is_done(map));
2526 
2527 	spin_lock_irqsave(&map->async_lock, flags);
2528 	ret = map->async_ret;
2529 	map->async_ret = 0;
2530 	spin_unlock_irqrestore(&map->async_lock, flags);
2531 
2532 	trace_regmap_async_complete_done(map);
2533 
2534 	return ret;
2535 }
2536 EXPORT_SYMBOL_GPL(regmap_async_complete);
2537 
2538 /**
2539  * regmap_register_patch: Register and apply register updates to be applied
2540  *                        on device initialistion
2541  *
2542  * @map: Register map to apply updates to.
2543  * @regs: Values to update.
2544  * @num_regs: Number of entries in regs.
2545  *
2546  * Register a set of register updates to be applied to the device
2547  * whenever the device registers are synchronised with the cache and
2548  * apply them immediately.  Typically this is used to apply
2549  * corrections to be applied to the device defaults on startup, such
2550  * as the updates some vendors provide to undocumented registers.
2551  *
2552  * The caller must ensure that this function cannot be called
2553  * concurrently with either itself or regcache_sync().
2554  */
2555 int regmap_register_patch(struct regmap *map, const struct reg_default *regs,
2556 			  int num_regs)
2557 {
2558 	struct reg_default *p;
2559 	int ret;
2560 	bool bypass;
2561 
2562 	if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
2563 	    num_regs))
2564 		return 0;
2565 
2566 	p = krealloc(map->patch,
2567 		     sizeof(struct reg_default) * (map->patch_regs + num_regs),
2568 		     GFP_KERNEL);
2569 	if (p) {
2570 		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
2571 		map->patch = p;
2572 		map->patch_regs += num_regs;
2573 	} else {
2574 		return -ENOMEM;
2575 	}
2576 
2577 	map->lock(map->lock_arg);
2578 
2579 	bypass = map->cache_bypass;
2580 
2581 	map->cache_bypass = true;
2582 	map->async = true;
2583 
2584 	ret = _regmap_multi_reg_write(map, regs, num_regs);
2585 
2586 	map->async = false;
2587 	map->cache_bypass = bypass;
2588 
2589 	map->unlock(map->lock_arg);
2590 
2591 	regmap_async_complete(map);
2592 
2593 	return ret;
2594 }
2595 EXPORT_SYMBOL_GPL(regmap_register_patch);
2596 
2597 /*
2598  * regmap_get_val_bytes(): Report the size of a register value
2599  *
2600  * Report the size of a register value, mainly intended to for use by
2601  * generic infrastructure built on top of regmap.
2602  */
2603 int regmap_get_val_bytes(struct regmap *map)
2604 {
2605 	if (map->format.format_write)
2606 		return -EINVAL;
2607 
2608 	return map->format.val_bytes;
2609 }
2610 EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
2611 
2612 /**
2613  * regmap_get_max_register(): Report the max register value
2614  *
2615  * Report the max register value, mainly intended to for use by
2616  * generic infrastructure built on top of regmap.
2617  */
2618 int regmap_get_max_register(struct regmap *map)
2619 {
2620 	return map->max_register ? map->max_register : -EINVAL;
2621 }
2622 EXPORT_SYMBOL_GPL(regmap_get_max_register);
2623 
2624 /**
2625  * regmap_get_reg_stride(): Report the register address stride
2626  *
2627  * Report the register address stride, mainly intended to for use by
2628  * generic infrastructure built on top of regmap.
2629  */
2630 int regmap_get_reg_stride(struct regmap *map)
2631 {
2632 	return map->reg_stride;
2633 }
2634 EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
2635 
2636 int regmap_parse_val(struct regmap *map, const void *buf,
2637 			unsigned int *val)
2638 {
2639 	if (!map->format.parse_val)
2640 		return -EINVAL;
2641 
2642 	*val = map->format.parse_val(buf);
2643 
2644 	return 0;
2645 }
2646 EXPORT_SYMBOL_GPL(regmap_parse_val);
2647 
2648 static int __init regmap_initcall(void)
2649 {
2650 	regmap_debugfs_initcall();
2651 
2652 	return 0;
2653 }
2654 postcore_initcall(regmap_initcall);
2655