1 /* 2 * Register map access API 3 * 4 * Copyright 2011 Wolfson Microelectronics plc 5 * 6 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License version 2 as 10 * published by the Free Software Foundation. 11 */ 12 13 #include <linux/device.h> 14 #include <linux/slab.h> 15 #include <linux/export.h> 16 #include <linux/mutex.h> 17 #include <linux/err.h> 18 #include <linux/rbtree.h> 19 20 #define CREATE_TRACE_POINTS 21 #include <trace/events/regmap.h> 22 23 #include "internal.h" 24 25 /* 26 * Sometimes for failures during very early init the trace 27 * infrastructure isn't available early enough to be used. For this 28 * sort of problem defining LOG_DEVICE will add printks for basic 29 * register I/O on a specific device. 30 */ 31 #undef LOG_DEVICE 32 33 static int _regmap_update_bits(struct regmap *map, unsigned int reg, 34 unsigned int mask, unsigned int val, 35 bool *change); 36 37 bool regmap_reg_in_ranges(unsigned int reg, 38 const struct regmap_range *ranges, 39 unsigned int nranges) 40 { 41 const struct regmap_range *r; 42 int i; 43 44 for (i = 0, r = ranges; i < nranges; i++, r++) 45 if (regmap_reg_in_range(reg, r)) 46 return true; 47 return false; 48 } 49 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges); 50 51 static bool _regmap_check_range_table(struct regmap *map, 52 unsigned int reg, 53 const struct regmap_access_table *table) 54 { 55 /* Check "no ranges" first */ 56 if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges)) 57 return false; 58 59 /* In case zero "yes ranges" are supplied, any reg is OK */ 60 if (!table->n_yes_ranges) 61 return true; 62 63 return regmap_reg_in_ranges(reg, table->yes_ranges, 64 table->n_yes_ranges); 65 } 66 67 bool regmap_writeable(struct regmap *map, unsigned int reg) 68 { 69 if (map->max_register && reg > map->max_register) 70 return false; 71 72 if (map->writeable_reg) 73 return map->writeable_reg(map->dev, reg); 74 75 if (map->wr_table) 76 return _regmap_check_range_table(map, reg, map->wr_table); 77 78 return true; 79 } 80 81 bool regmap_readable(struct regmap *map, unsigned int reg) 82 { 83 if (map->max_register && reg > map->max_register) 84 return false; 85 86 if (map->format.format_write) 87 return false; 88 89 if (map->readable_reg) 90 return map->readable_reg(map->dev, reg); 91 92 if (map->rd_table) 93 return _regmap_check_range_table(map, reg, map->rd_table); 94 95 return true; 96 } 97 98 bool regmap_volatile(struct regmap *map, unsigned int reg) 99 { 100 if (!regmap_readable(map, reg)) 101 return false; 102 103 if (map->volatile_reg) 104 return map->volatile_reg(map->dev, reg); 105 106 if (map->volatile_table) 107 return _regmap_check_range_table(map, reg, map->volatile_table); 108 109 return true; 110 } 111 112 bool regmap_precious(struct regmap *map, unsigned int reg) 113 { 114 if (!regmap_readable(map, reg)) 115 return false; 116 117 if (map->precious_reg) 118 return map->precious_reg(map->dev, reg); 119 120 if (map->precious_table) 121 return _regmap_check_range_table(map, reg, map->precious_table); 122 123 return false; 124 } 125 126 static bool regmap_volatile_range(struct regmap *map, unsigned int reg, 127 size_t num) 128 { 129 unsigned int i; 130 131 for (i = 0; i < num; i++) 132 if (!regmap_volatile(map, reg + i)) 133 return false; 134 135 return true; 136 } 137 138 static void regmap_format_2_6_write(struct regmap *map, 139 unsigned int reg, unsigned int val) 140 { 141 u8 *out = map->work_buf; 142 143 *out = (reg << 6) | val; 144 } 145 146 static void regmap_format_4_12_write(struct regmap *map, 147 unsigned int reg, unsigned int val) 148 { 149 __be16 *out = map->work_buf; 150 *out = cpu_to_be16((reg << 12) | val); 151 } 152 153 static void regmap_format_7_9_write(struct regmap *map, 154 unsigned int reg, unsigned int val) 155 { 156 __be16 *out = map->work_buf; 157 *out = cpu_to_be16((reg << 9) | val); 158 } 159 160 static void regmap_format_10_14_write(struct regmap *map, 161 unsigned int reg, unsigned int val) 162 { 163 u8 *out = map->work_buf; 164 165 out[2] = val; 166 out[1] = (val >> 8) | (reg << 6); 167 out[0] = reg >> 2; 168 } 169 170 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift) 171 { 172 u8 *b = buf; 173 174 b[0] = val << shift; 175 } 176 177 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift) 178 { 179 __be16 *b = buf; 180 181 b[0] = cpu_to_be16(val << shift); 182 } 183 184 static void regmap_format_16_native(void *buf, unsigned int val, 185 unsigned int shift) 186 { 187 *(u16 *)buf = val << shift; 188 } 189 190 static void regmap_format_24(void *buf, unsigned int val, unsigned int shift) 191 { 192 u8 *b = buf; 193 194 val <<= shift; 195 196 b[0] = val >> 16; 197 b[1] = val >> 8; 198 b[2] = val; 199 } 200 201 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift) 202 { 203 __be32 *b = buf; 204 205 b[0] = cpu_to_be32(val << shift); 206 } 207 208 static void regmap_format_32_native(void *buf, unsigned int val, 209 unsigned int shift) 210 { 211 *(u32 *)buf = val << shift; 212 } 213 214 static unsigned int regmap_parse_8(void *buf) 215 { 216 u8 *b = buf; 217 218 return b[0]; 219 } 220 221 static unsigned int regmap_parse_16_be(void *buf) 222 { 223 __be16 *b = buf; 224 225 b[0] = be16_to_cpu(b[0]); 226 227 return b[0]; 228 } 229 230 static unsigned int regmap_parse_16_native(void *buf) 231 { 232 return *(u16 *)buf; 233 } 234 235 static unsigned int regmap_parse_24(void *buf) 236 { 237 u8 *b = buf; 238 unsigned int ret = b[2]; 239 ret |= ((unsigned int)b[1]) << 8; 240 ret |= ((unsigned int)b[0]) << 16; 241 242 return ret; 243 } 244 245 static unsigned int regmap_parse_32_be(void *buf) 246 { 247 __be32 *b = buf; 248 249 b[0] = be32_to_cpu(b[0]); 250 251 return b[0]; 252 } 253 254 static unsigned int regmap_parse_32_native(void *buf) 255 { 256 return *(u32 *)buf; 257 } 258 259 static void regmap_lock_mutex(void *__map) 260 { 261 struct regmap *map = __map; 262 mutex_lock(&map->mutex); 263 } 264 265 static void regmap_unlock_mutex(void *__map) 266 { 267 struct regmap *map = __map; 268 mutex_unlock(&map->mutex); 269 } 270 271 static void regmap_lock_spinlock(void *__map) 272 { 273 struct regmap *map = __map; 274 spin_lock(&map->spinlock); 275 } 276 277 static void regmap_unlock_spinlock(void *__map) 278 { 279 struct regmap *map = __map; 280 spin_unlock(&map->spinlock); 281 } 282 283 static void dev_get_regmap_release(struct device *dev, void *res) 284 { 285 /* 286 * We don't actually have anything to do here; the goal here 287 * is not to manage the regmap but to provide a simple way to 288 * get the regmap back given a struct device. 289 */ 290 } 291 292 static bool _regmap_range_add(struct regmap *map, 293 struct regmap_range_node *data) 294 { 295 struct rb_root *root = &map->range_tree; 296 struct rb_node **new = &(root->rb_node), *parent = NULL; 297 298 while (*new) { 299 struct regmap_range_node *this = 300 container_of(*new, struct regmap_range_node, node); 301 302 parent = *new; 303 if (data->range_max < this->range_min) 304 new = &((*new)->rb_left); 305 else if (data->range_min > this->range_max) 306 new = &((*new)->rb_right); 307 else 308 return false; 309 } 310 311 rb_link_node(&data->node, parent, new); 312 rb_insert_color(&data->node, root); 313 314 return true; 315 } 316 317 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map, 318 unsigned int reg) 319 { 320 struct rb_node *node = map->range_tree.rb_node; 321 322 while (node) { 323 struct regmap_range_node *this = 324 container_of(node, struct regmap_range_node, node); 325 326 if (reg < this->range_min) 327 node = node->rb_left; 328 else if (reg > this->range_max) 329 node = node->rb_right; 330 else 331 return this; 332 } 333 334 return NULL; 335 } 336 337 static void regmap_range_exit(struct regmap *map) 338 { 339 struct rb_node *next; 340 struct regmap_range_node *range_node; 341 342 next = rb_first(&map->range_tree); 343 while (next) { 344 range_node = rb_entry(next, struct regmap_range_node, node); 345 next = rb_next(&range_node->node); 346 rb_erase(&range_node->node, &map->range_tree); 347 kfree(range_node); 348 } 349 350 kfree(map->selector_work_buf); 351 } 352 353 /** 354 * regmap_init(): Initialise register map 355 * 356 * @dev: Device that will be interacted with 357 * @bus: Bus-specific callbacks to use with device 358 * @bus_context: Data passed to bus-specific callbacks 359 * @config: Configuration for register map 360 * 361 * The return value will be an ERR_PTR() on error or a valid pointer to 362 * a struct regmap. This function should generally not be called 363 * directly, it should be called by bus-specific init functions. 364 */ 365 struct regmap *regmap_init(struct device *dev, 366 const struct regmap_bus *bus, 367 void *bus_context, 368 const struct regmap_config *config) 369 { 370 struct regmap *map, **m; 371 int ret = -EINVAL; 372 enum regmap_endian reg_endian, val_endian; 373 int i, j; 374 375 if (!bus || !config) 376 goto err; 377 378 map = kzalloc(sizeof(*map), GFP_KERNEL); 379 if (map == NULL) { 380 ret = -ENOMEM; 381 goto err; 382 } 383 384 if (config->lock && config->unlock) { 385 map->lock = config->lock; 386 map->unlock = config->unlock; 387 map->lock_arg = config->lock_arg; 388 } else { 389 if (bus->fast_io) { 390 spin_lock_init(&map->spinlock); 391 map->lock = regmap_lock_spinlock; 392 map->unlock = regmap_unlock_spinlock; 393 } else { 394 mutex_init(&map->mutex); 395 map->lock = regmap_lock_mutex; 396 map->unlock = regmap_unlock_mutex; 397 } 398 map->lock_arg = map; 399 } 400 map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8); 401 map->format.pad_bytes = config->pad_bits / 8; 402 map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8); 403 map->format.buf_size = DIV_ROUND_UP(config->reg_bits + 404 config->val_bits + config->pad_bits, 8); 405 map->reg_shift = config->pad_bits % 8; 406 if (config->reg_stride) 407 map->reg_stride = config->reg_stride; 408 else 409 map->reg_stride = 1; 410 map->use_single_rw = config->use_single_rw; 411 map->dev = dev; 412 map->bus = bus; 413 map->bus_context = bus_context; 414 map->max_register = config->max_register; 415 map->wr_table = config->wr_table; 416 map->rd_table = config->rd_table; 417 map->volatile_table = config->volatile_table; 418 map->precious_table = config->precious_table; 419 map->writeable_reg = config->writeable_reg; 420 map->readable_reg = config->readable_reg; 421 map->volatile_reg = config->volatile_reg; 422 map->precious_reg = config->precious_reg; 423 map->cache_type = config->cache_type; 424 map->name = config->name; 425 426 if (config->read_flag_mask || config->write_flag_mask) { 427 map->read_flag_mask = config->read_flag_mask; 428 map->write_flag_mask = config->write_flag_mask; 429 } else { 430 map->read_flag_mask = bus->read_flag_mask; 431 } 432 433 reg_endian = config->reg_format_endian; 434 if (reg_endian == REGMAP_ENDIAN_DEFAULT) 435 reg_endian = bus->reg_format_endian_default; 436 if (reg_endian == REGMAP_ENDIAN_DEFAULT) 437 reg_endian = REGMAP_ENDIAN_BIG; 438 439 val_endian = config->val_format_endian; 440 if (val_endian == REGMAP_ENDIAN_DEFAULT) 441 val_endian = bus->val_format_endian_default; 442 if (val_endian == REGMAP_ENDIAN_DEFAULT) 443 val_endian = REGMAP_ENDIAN_BIG; 444 445 switch (config->reg_bits + map->reg_shift) { 446 case 2: 447 switch (config->val_bits) { 448 case 6: 449 map->format.format_write = regmap_format_2_6_write; 450 break; 451 default: 452 goto err_map; 453 } 454 break; 455 456 case 4: 457 switch (config->val_bits) { 458 case 12: 459 map->format.format_write = regmap_format_4_12_write; 460 break; 461 default: 462 goto err_map; 463 } 464 break; 465 466 case 7: 467 switch (config->val_bits) { 468 case 9: 469 map->format.format_write = regmap_format_7_9_write; 470 break; 471 default: 472 goto err_map; 473 } 474 break; 475 476 case 10: 477 switch (config->val_bits) { 478 case 14: 479 map->format.format_write = regmap_format_10_14_write; 480 break; 481 default: 482 goto err_map; 483 } 484 break; 485 486 case 8: 487 map->format.format_reg = regmap_format_8; 488 break; 489 490 case 16: 491 switch (reg_endian) { 492 case REGMAP_ENDIAN_BIG: 493 map->format.format_reg = regmap_format_16_be; 494 break; 495 case REGMAP_ENDIAN_NATIVE: 496 map->format.format_reg = regmap_format_16_native; 497 break; 498 default: 499 goto err_map; 500 } 501 break; 502 503 case 32: 504 switch (reg_endian) { 505 case REGMAP_ENDIAN_BIG: 506 map->format.format_reg = regmap_format_32_be; 507 break; 508 case REGMAP_ENDIAN_NATIVE: 509 map->format.format_reg = regmap_format_32_native; 510 break; 511 default: 512 goto err_map; 513 } 514 break; 515 516 default: 517 goto err_map; 518 } 519 520 switch (config->val_bits) { 521 case 8: 522 map->format.format_val = regmap_format_8; 523 map->format.parse_val = regmap_parse_8; 524 break; 525 case 16: 526 switch (val_endian) { 527 case REGMAP_ENDIAN_BIG: 528 map->format.format_val = regmap_format_16_be; 529 map->format.parse_val = regmap_parse_16_be; 530 break; 531 case REGMAP_ENDIAN_NATIVE: 532 map->format.format_val = regmap_format_16_native; 533 map->format.parse_val = regmap_parse_16_native; 534 break; 535 default: 536 goto err_map; 537 } 538 break; 539 case 24: 540 if (val_endian != REGMAP_ENDIAN_BIG) 541 goto err_map; 542 map->format.format_val = regmap_format_24; 543 map->format.parse_val = regmap_parse_24; 544 break; 545 case 32: 546 switch (val_endian) { 547 case REGMAP_ENDIAN_BIG: 548 map->format.format_val = regmap_format_32_be; 549 map->format.parse_val = regmap_parse_32_be; 550 break; 551 case REGMAP_ENDIAN_NATIVE: 552 map->format.format_val = regmap_format_32_native; 553 map->format.parse_val = regmap_parse_32_native; 554 break; 555 default: 556 goto err_map; 557 } 558 break; 559 } 560 561 if (map->format.format_write) { 562 if ((reg_endian != REGMAP_ENDIAN_BIG) || 563 (val_endian != REGMAP_ENDIAN_BIG)) 564 goto err_map; 565 map->use_single_rw = true; 566 } 567 568 if (!map->format.format_write && 569 !(map->format.format_reg && map->format.format_val)) 570 goto err_map; 571 572 map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL); 573 if (map->work_buf == NULL) { 574 ret = -ENOMEM; 575 goto err_map; 576 } 577 578 map->range_tree = RB_ROOT; 579 for (i = 0; i < config->num_ranges; i++) { 580 const struct regmap_range_cfg *range_cfg = &config->ranges[i]; 581 struct regmap_range_node *new; 582 583 /* Sanity check */ 584 if (range_cfg->range_max < range_cfg->range_min) { 585 dev_err(map->dev, "Invalid range %d: %d < %d\n", i, 586 range_cfg->range_max, range_cfg->range_min); 587 goto err_range; 588 } 589 590 if (range_cfg->range_max > map->max_register) { 591 dev_err(map->dev, "Invalid range %d: %d > %d\n", i, 592 range_cfg->range_max, map->max_register); 593 goto err_range; 594 } 595 596 if (range_cfg->selector_reg > map->max_register) { 597 dev_err(map->dev, 598 "Invalid range %d: selector out of map\n", i); 599 goto err_range; 600 } 601 602 if (range_cfg->window_len == 0) { 603 dev_err(map->dev, "Invalid range %d: window_len 0\n", 604 i); 605 goto err_range; 606 } 607 608 /* Make sure, that this register range has no selector 609 or data window within its boundary */ 610 for (j = 0; j < config->num_ranges; j++) { 611 unsigned sel_reg = config->ranges[j].selector_reg; 612 unsigned win_min = config->ranges[j].window_start; 613 unsigned win_max = win_min + 614 config->ranges[j].window_len - 1; 615 616 if (range_cfg->range_min <= sel_reg && 617 sel_reg <= range_cfg->range_max) { 618 dev_err(map->dev, 619 "Range %d: selector for %d in window\n", 620 i, j); 621 goto err_range; 622 } 623 624 if (!(win_max < range_cfg->range_min || 625 win_min > range_cfg->range_max)) { 626 dev_err(map->dev, 627 "Range %d: window for %d in window\n", 628 i, j); 629 goto err_range; 630 } 631 } 632 633 new = kzalloc(sizeof(*new), GFP_KERNEL); 634 if (new == NULL) { 635 ret = -ENOMEM; 636 goto err_range; 637 } 638 639 new->map = map; 640 new->name = range_cfg->name; 641 new->range_min = range_cfg->range_min; 642 new->range_max = range_cfg->range_max; 643 new->selector_reg = range_cfg->selector_reg; 644 new->selector_mask = range_cfg->selector_mask; 645 new->selector_shift = range_cfg->selector_shift; 646 new->window_start = range_cfg->window_start; 647 new->window_len = range_cfg->window_len; 648 649 if (_regmap_range_add(map, new) == false) { 650 dev_err(map->dev, "Failed to add range %d\n", i); 651 kfree(new); 652 goto err_range; 653 } 654 655 if (map->selector_work_buf == NULL) { 656 map->selector_work_buf = 657 kzalloc(map->format.buf_size, GFP_KERNEL); 658 if (map->selector_work_buf == NULL) { 659 ret = -ENOMEM; 660 goto err_range; 661 } 662 } 663 } 664 665 ret = regcache_init(map, config); 666 if (ret != 0) 667 goto err_range; 668 669 regmap_debugfs_init(map, config->name); 670 671 /* Add a devres resource for dev_get_regmap() */ 672 m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL); 673 if (!m) { 674 ret = -ENOMEM; 675 goto err_debugfs; 676 } 677 *m = map; 678 devres_add(dev, m); 679 680 return map; 681 682 err_debugfs: 683 regmap_debugfs_exit(map); 684 regcache_exit(map); 685 err_range: 686 regmap_range_exit(map); 687 kfree(map->work_buf); 688 err_map: 689 kfree(map); 690 err: 691 return ERR_PTR(ret); 692 } 693 EXPORT_SYMBOL_GPL(regmap_init); 694 695 static void devm_regmap_release(struct device *dev, void *res) 696 { 697 regmap_exit(*(struct regmap **)res); 698 } 699 700 /** 701 * devm_regmap_init(): Initialise managed register map 702 * 703 * @dev: Device that will be interacted with 704 * @bus: Bus-specific callbacks to use with device 705 * @bus_context: Data passed to bus-specific callbacks 706 * @config: Configuration for register map 707 * 708 * The return value will be an ERR_PTR() on error or a valid pointer 709 * to a struct regmap. This function should generally not be called 710 * directly, it should be called by bus-specific init functions. The 711 * map will be automatically freed by the device management code. 712 */ 713 struct regmap *devm_regmap_init(struct device *dev, 714 const struct regmap_bus *bus, 715 void *bus_context, 716 const struct regmap_config *config) 717 { 718 struct regmap **ptr, *regmap; 719 720 ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL); 721 if (!ptr) 722 return ERR_PTR(-ENOMEM); 723 724 regmap = regmap_init(dev, bus, bus_context, config); 725 if (!IS_ERR(regmap)) { 726 *ptr = regmap; 727 devres_add(dev, ptr); 728 } else { 729 devres_free(ptr); 730 } 731 732 return regmap; 733 } 734 EXPORT_SYMBOL_GPL(devm_regmap_init); 735 736 /** 737 * regmap_reinit_cache(): Reinitialise the current register cache 738 * 739 * @map: Register map to operate on. 740 * @config: New configuration. Only the cache data will be used. 741 * 742 * Discard any existing register cache for the map and initialize a 743 * new cache. This can be used to restore the cache to defaults or to 744 * update the cache configuration to reflect runtime discovery of the 745 * hardware. 746 * 747 * No explicit locking is done here, the user needs to ensure that 748 * this function will not race with other calls to regmap. 749 */ 750 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config) 751 { 752 regcache_exit(map); 753 regmap_debugfs_exit(map); 754 755 map->max_register = config->max_register; 756 map->writeable_reg = config->writeable_reg; 757 map->readable_reg = config->readable_reg; 758 map->volatile_reg = config->volatile_reg; 759 map->precious_reg = config->precious_reg; 760 map->cache_type = config->cache_type; 761 762 regmap_debugfs_init(map, config->name); 763 764 map->cache_bypass = false; 765 map->cache_only = false; 766 767 return regcache_init(map, config); 768 } 769 EXPORT_SYMBOL_GPL(regmap_reinit_cache); 770 771 /** 772 * regmap_exit(): Free a previously allocated register map 773 */ 774 void regmap_exit(struct regmap *map) 775 { 776 regcache_exit(map); 777 regmap_debugfs_exit(map); 778 regmap_range_exit(map); 779 if (map->bus->free_context) 780 map->bus->free_context(map->bus_context); 781 kfree(map->work_buf); 782 kfree(map); 783 } 784 EXPORT_SYMBOL_GPL(regmap_exit); 785 786 static int dev_get_regmap_match(struct device *dev, void *res, void *data) 787 { 788 struct regmap **r = res; 789 if (!r || !*r) { 790 WARN_ON(!r || !*r); 791 return 0; 792 } 793 794 /* If the user didn't specify a name match any */ 795 if (data) 796 return (*r)->name == data; 797 else 798 return 1; 799 } 800 801 /** 802 * dev_get_regmap(): Obtain the regmap (if any) for a device 803 * 804 * @dev: Device to retrieve the map for 805 * @name: Optional name for the register map, usually NULL. 806 * 807 * Returns the regmap for the device if one is present, or NULL. If 808 * name is specified then it must match the name specified when 809 * registering the device, if it is NULL then the first regmap found 810 * will be used. Devices with multiple register maps are very rare, 811 * generic code should normally not need to specify a name. 812 */ 813 struct regmap *dev_get_regmap(struct device *dev, const char *name) 814 { 815 struct regmap **r = devres_find(dev, dev_get_regmap_release, 816 dev_get_regmap_match, (void *)name); 817 818 if (!r) 819 return NULL; 820 return *r; 821 } 822 EXPORT_SYMBOL_GPL(dev_get_regmap); 823 824 static int _regmap_select_page(struct regmap *map, unsigned int *reg, 825 struct regmap_range_node *range, 826 unsigned int val_num) 827 { 828 void *orig_work_buf; 829 unsigned int win_offset; 830 unsigned int win_page; 831 bool page_chg; 832 int ret; 833 834 win_offset = (*reg - range->range_min) % range->window_len; 835 win_page = (*reg - range->range_min) / range->window_len; 836 837 if (val_num > 1) { 838 /* Bulk write shouldn't cross range boundary */ 839 if (*reg + val_num - 1 > range->range_max) 840 return -EINVAL; 841 842 /* ... or single page boundary */ 843 if (val_num > range->window_len - win_offset) 844 return -EINVAL; 845 } 846 847 /* It is possible to have selector register inside data window. 848 In that case, selector register is located on every page and 849 it needs no page switching, when accessed alone. */ 850 if (val_num > 1 || 851 range->window_start + win_offset != range->selector_reg) { 852 /* Use separate work_buf during page switching */ 853 orig_work_buf = map->work_buf; 854 map->work_buf = map->selector_work_buf; 855 856 ret = _regmap_update_bits(map, range->selector_reg, 857 range->selector_mask, 858 win_page << range->selector_shift, 859 &page_chg); 860 861 map->work_buf = orig_work_buf; 862 863 if (ret != 0) 864 return ret; 865 } 866 867 *reg = range->window_start + win_offset; 868 869 return 0; 870 } 871 872 static int _regmap_raw_write(struct regmap *map, unsigned int reg, 873 const void *val, size_t val_len) 874 { 875 struct regmap_range_node *range; 876 u8 *u8 = map->work_buf; 877 void *buf; 878 int ret = -ENOTSUPP; 879 size_t len; 880 int i; 881 882 /* Check for unwritable registers before we start */ 883 if (map->writeable_reg) 884 for (i = 0; i < val_len / map->format.val_bytes; i++) 885 if (!map->writeable_reg(map->dev, 886 reg + (i * map->reg_stride))) 887 return -EINVAL; 888 889 if (!map->cache_bypass && map->format.parse_val) { 890 unsigned int ival; 891 int val_bytes = map->format.val_bytes; 892 for (i = 0; i < val_len / val_bytes; i++) { 893 memcpy(map->work_buf, val + (i * val_bytes), val_bytes); 894 ival = map->format.parse_val(map->work_buf); 895 ret = regcache_write(map, reg + (i * map->reg_stride), 896 ival); 897 if (ret) { 898 dev_err(map->dev, 899 "Error in caching of register: %x ret: %d\n", 900 reg + i, ret); 901 return ret; 902 } 903 } 904 if (map->cache_only) { 905 map->cache_dirty = true; 906 return 0; 907 } 908 } 909 910 range = _regmap_range_lookup(map, reg); 911 if (range) { 912 int val_num = val_len / map->format.val_bytes; 913 int win_offset = (reg - range->range_min) % range->window_len; 914 int win_residue = range->window_len - win_offset; 915 916 /* If the write goes beyond the end of the window split it */ 917 while (val_num > win_residue) { 918 dev_dbg(map->dev, "Writing window %d/%zu\n", 919 win_residue, val_len / map->format.val_bytes); 920 ret = _regmap_raw_write(map, reg, val, win_residue * 921 map->format.val_bytes); 922 if (ret != 0) 923 return ret; 924 925 reg += win_residue; 926 val_num -= win_residue; 927 val += win_residue * map->format.val_bytes; 928 val_len -= win_residue * map->format.val_bytes; 929 930 win_offset = (reg - range->range_min) % 931 range->window_len; 932 win_residue = range->window_len - win_offset; 933 } 934 935 ret = _regmap_select_page(map, ®, range, val_num); 936 if (ret != 0) 937 return ret; 938 } 939 940 map->format.format_reg(map->work_buf, reg, map->reg_shift); 941 942 u8[0] |= map->write_flag_mask; 943 944 trace_regmap_hw_write_start(map->dev, reg, 945 val_len / map->format.val_bytes); 946 947 /* If we're doing a single register write we can probably just 948 * send the work_buf directly, otherwise try to do a gather 949 * write. 950 */ 951 if (val == (map->work_buf + map->format.pad_bytes + 952 map->format.reg_bytes)) 953 ret = map->bus->write(map->bus_context, map->work_buf, 954 map->format.reg_bytes + 955 map->format.pad_bytes + 956 val_len); 957 else if (map->bus->gather_write) 958 ret = map->bus->gather_write(map->bus_context, map->work_buf, 959 map->format.reg_bytes + 960 map->format.pad_bytes, 961 val, val_len); 962 963 /* If that didn't work fall back on linearising by hand. */ 964 if (ret == -ENOTSUPP) { 965 len = map->format.reg_bytes + map->format.pad_bytes + val_len; 966 buf = kzalloc(len, GFP_KERNEL); 967 if (!buf) 968 return -ENOMEM; 969 970 memcpy(buf, map->work_buf, map->format.reg_bytes); 971 memcpy(buf + map->format.reg_bytes + map->format.pad_bytes, 972 val, val_len); 973 ret = map->bus->write(map->bus_context, buf, len); 974 975 kfree(buf); 976 } 977 978 trace_regmap_hw_write_done(map->dev, reg, 979 val_len / map->format.val_bytes); 980 981 return ret; 982 } 983 984 int _regmap_write(struct regmap *map, unsigned int reg, 985 unsigned int val) 986 { 987 struct regmap_range_node *range; 988 int ret; 989 BUG_ON(!map->format.format_write && !map->format.format_val); 990 991 if (!map->cache_bypass && map->format.format_write) { 992 ret = regcache_write(map, reg, val); 993 if (ret != 0) 994 return ret; 995 if (map->cache_only) { 996 map->cache_dirty = true; 997 return 0; 998 } 999 } 1000 1001 #ifdef LOG_DEVICE 1002 if (strcmp(dev_name(map->dev), LOG_DEVICE) == 0) 1003 dev_info(map->dev, "%x <= %x\n", reg, val); 1004 #endif 1005 1006 trace_regmap_reg_write(map->dev, reg, val); 1007 1008 if (map->format.format_write) { 1009 range = _regmap_range_lookup(map, reg); 1010 if (range) { 1011 ret = _regmap_select_page(map, ®, range, 1); 1012 if (ret != 0) 1013 return ret; 1014 } 1015 1016 map->format.format_write(map, reg, val); 1017 1018 trace_regmap_hw_write_start(map->dev, reg, 1); 1019 1020 ret = map->bus->write(map->bus_context, map->work_buf, 1021 map->format.buf_size); 1022 1023 trace_regmap_hw_write_done(map->dev, reg, 1); 1024 1025 return ret; 1026 } else { 1027 map->format.format_val(map->work_buf + map->format.reg_bytes 1028 + map->format.pad_bytes, val, 0); 1029 return _regmap_raw_write(map, reg, 1030 map->work_buf + 1031 map->format.reg_bytes + 1032 map->format.pad_bytes, 1033 map->format.val_bytes); 1034 } 1035 } 1036 1037 /** 1038 * regmap_write(): Write a value to a single register 1039 * 1040 * @map: Register map to write to 1041 * @reg: Register to write to 1042 * @val: Value to be written 1043 * 1044 * A value of zero will be returned on success, a negative errno will 1045 * be returned in error cases. 1046 */ 1047 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val) 1048 { 1049 int ret; 1050 1051 if (reg % map->reg_stride) 1052 return -EINVAL; 1053 1054 map->lock(map->lock_arg); 1055 1056 ret = _regmap_write(map, reg, val); 1057 1058 map->unlock(map->lock_arg); 1059 1060 return ret; 1061 } 1062 EXPORT_SYMBOL_GPL(regmap_write); 1063 1064 /** 1065 * regmap_raw_write(): Write raw values to one or more registers 1066 * 1067 * @map: Register map to write to 1068 * @reg: Initial register to write to 1069 * @val: Block of data to be written, laid out for direct transmission to the 1070 * device 1071 * @val_len: Length of data pointed to by val. 1072 * 1073 * This function is intended to be used for things like firmware 1074 * download where a large block of data needs to be transferred to the 1075 * device. No formatting will be done on the data provided. 1076 * 1077 * A value of zero will be returned on success, a negative errno will 1078 * be returned in error cases. 1079 */ 1080 int regmap_raw_write(struct regmap *map, unsigned int reg, 1081 const void *val, size_t val_len) 1082 { 1083 int ret; 1084 1085 if (val_len % map->format.val_bytes) 1086 return -EINVAL; 1087 if (reg % map->reg_stride) 1088 return -EINVAL; 1089 1090 map->lock(map->lock_arg); 1091 1092 ret = _regmap_raw_write(map, reg, val, val_len); 1093 1094 map->unlock(map->lock_arg); 1095 1096 return ret; 1097 } 1098 EXPORT_SYMBOL_GPL(regmap_raw_write); 1099 1100 /* 1101 * regmap_bulk_write(): Write multiple registers to the device 1102 * 1103 * @map: Register map to write to 1104 * @reg: First register to be write from 1105 * @val: Block of data to be written, in native register size for device 1106 * @val_count: Number of registers to write 1107 * 1108 * This function is intended to be used for writing a large block of 1109 * data to be device either in single transfer or multiple transfer. 1110 * 1111 * A value of zero will be returned on success, a negative errno will 1112 * be returned in error cases. 1113 */ 1114 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val, 1115 size_t val_count) 1116 { 1117 int ret = 0, i; 1118 size_t val_bytes = map->format.val_bytes; 1119 void *wval; 1120 1121 if (!map->format.parse_val) 1122 return -EINVAL; 1123 if (reg % map->reg_stride) 1124 return -EINVAL; 1125 1126 map->lock(map->lock_arg); 1127 1128 /* No formatting is require if val_byte is 1 */ 1129 if (val_bytes == 1) { 1130 wval = (void *)val; 1131 } else { 1132 wval = kmemdup(val, val_count * val_bytes, GFP_KERNEL); 1133 if (!wval) { 1134 ret = -ENOMEM; 1135 dev_err(map->dev, "Error in memory allocation\n"); 1136 goto out; 1137 } 1138 for (i = 0; i < val_count * val_bytes; i += val_bytes) 1139 map->format.parse_val(wval + i); 1140 } 1141 /* 1142 * Some devices does not support bulk write, for 1143 * them we have a series of single write operations. 1144 */ 1145 if (map->use_single_rw) { 1146 for (i = 0; i < val_count; i++) { 1147 ret = regmap_raw_write(map, 1148 reg + (i * map->reg_stride), 1149 val + (i * val_bytes), 1150 val_bytes); 1151 if (ret != 0) 1152 return ret; 1153 } 1154 } else { 1155 ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count); 1156 } 1157 1158 if (val_bytes != 1) 1159 kfree(wval); 1160 1161 out: 1162 map->unlock(map->lock_arg); 1163 return ret; 1164 } 1165 EXPORT_SYMBOL_GPL(regmap_bulk_write); 1166 1167 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val, 1168 unsigned int val_len) 1169 { 1170 struct regmap_range_node *range; 1171 u8 *u8 = map->work_buf; 1172 int ret; 1173 1174 range = _regmap_range_lookup(map, reg); 1175 if (range) { 1176 ret = _regmap_select_page(map, ®, range, 1177 val_len / map->format.val_bytes); 1178 if (ret != 0) 1179 return ret; 1180 } 1181 1182 map->format.format_reg(map->work_buf, reg, map->reg_shift); 1183 1184 /* 1185 * Some buses or devices flag reads by setting the high bits in the 1186 * register addresss; since it's always the high bits for all 1187 * current formats we can do this here rather than in 1188 * formatting. This may break if we get interesting formats. 1189 */ 1190 u8[0] |= map->read_flag_mask; 1191 1192 trace_regmap_hw_read_start(map->dev, reg, 1193 val_len / map->format.val_bytes); 1194 1195 ret = map->bus->read(map->bus_context, map->work_buf, 1196 map->format.reg_bytes + map->format.pad_bytes, 1197 val, val_len); 1198 1199 trace_regmap_hw_read_done(map->dev, reg, 1200 val_len / map->format.val_bytes); 1201 1202 return ret; 1203 } 1204 1205 static int _regmap_read(struct regmap *map, unsigned int reg, 1206 unsigned int *val) 1207 { 1208 int ret; 1209 1210 if (!map->cache_bypass) { 1211 ret = regcache_read(map, reg, val); 1212 if (ret == 0) 1213 return 0; 1214 } 1215 1216 if (!map->format.parse_val) 1217 return -EINVAL; 1218 1219 if (map->cache_only) 1220 return -EBUSY; 1221 1222 ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes); 1223 if (ret == 0) { 1224 *val = map->format.parse_val(map->work_buf); 1225 1226 #ifdef LOG_DEVICE 1227 if (strcmp(dev_name(map->dev), LOG_DEVICE) == 0) 1228 dev_info(map->dev, "%x => %x\n", reg, *val); 1229 #endif 1230 1231 trace_regmap_reg_read(map->dev, reg, *val); 1232 } 1233 1234 if (ret == 0 && !map->cache_bypass) 1235 regcache_write(map, reg, *val); 1236 1237 return ret; 1238 } 1239 1240 /** 1241 * regmap_read(): Read a value from a single register 1242 * 1243 * @map: Register map to write to 1244 * @reg: Register to be read from 1245 * @val: Pointer to store read value 1246 * 1247 * A value of zero will be returned on success, a negative errno will 1248 * be returned in error cases. 1249 */ 1250 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val) 1251 { 1252 int ret; 1253 1254 if (reg % map->reg_stride) 1255 return -EINVAL; 1256 1257 map->lock(map->lock_arg); 1258 1259 ret = _regmap_read(map, reg, val); 1260 1261 map->unlock(map->lock_arg); 1262 1263 return ret; 1264 } 1265 EXPORT_SYMBOL_GPL(regmap_read); 1266 1267 /** 1268 * regmap_raw_read(): Read raw data from the device 1269 * 1270 * @map: Register map to write to 1271 * @reg: First register to be read from 1272 * @val: Pointer to store read value 1273 * @val_len: Size of data to read 1274 * 1275 * A value of zero will be returned on success, a negative errno will 1276 * be returned in error cases. 1277 */ 1278 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val, 1279 size_t val_len) 1280 { 1281 size_t val_bytes = map->format.val_bytes; 1282 size_t val_count = val_len / val_bytes; 1283 unsigned int v; 1284 int ret, i; 1285 1286 if (val_len % map->format.val_bytes) 1287 return -EINVAL; 1288 if (reg % map->reg_stride) 1289 return -EINVAL; 1290 1291 map->lock(map->lock_arg); 1292 1293 if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass || 1294 map->cache_type == REGCACHE_NONE) { 1295 /* Physical block read if there's no cache involved */ 1296 ret = _regmap_raw_read(map, reg, val, val_len); 1297 1298 } else { 1299 /* Otherwise go word by word for the cache; should be low 1300 * cost as we expect to hit the cache. 1301 */ 1302 for (i = 0; i < val_count; i++) { 1303 ret = _regmap_read(map, reg + (i * map->reg_stride), 1304 &v); 1305 if (ret != 0) 1306 goto out; 1307 1308 map->format.format_val(val + (i * val_bytes), v, 0); 1309 } 1310 } 1311 1312 out: 1313 map->unlock(map->lock_arg); 1314 1315 return ret; 1316 } 1317 EXPORT_SYMBOL_GPL(regmap_raw_read); 1318 1319 /** 1320 * regmap_bulk_read(): Read multiple registers from the device 1321 * 1322 * @map: Register map to write to 1323 * @reg: First register to be read from 1324 * @val: Pointer to store read value, in native register size for device 1325 * @val_count: Number of registers to read 1326 * 1327 * A value of zero will be returned on success, a negative errno will 1328 * be returned in error cases. 1329 */ 1330 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val, 1331 size_t val_count) 1332 { 1333 int ret, i; 1334 size_t val_bytes = map->format.val_bytes; 1335 bool vol = regmap_volatile_range(map, reg, val_count); 1336 1337 if (!map->format.parse_val) 1338 return -EINVAL; 1339 if (reg % map->reg_stride) 1340 return -EINVAL; 1341 1342 if (vol || map->cache_type == REGCACHE_NONE) { 1343 /* 1344 * Some devices does not support bulk read, for 1345 * them we have a series of single read operations. 1346 */ 1347 if (map->use_single_rw) { 1348 for (i = 0; i < val_count; i++) { 1349 ret = regmap_raw_read(map, 1350 reg + (i * map->reg_stride), 1351 val + (i * val_bytes), 1352 val_bytes); 1353 if (ret != 0) 1354 return ret; 1355 } 1356 } else { 1357 ret = regmap_raw_read(map, reg, val, 1358 val_bytes * val_count); 1359 if (ret != 0) 1360 return ret; 1361 } 1362 1363 for (i = 0; i < val_count * val_bytes; i += val_bytes) 1364 map->format.parse_val(val + i); 1365 } else { 1366 for (i = 0; i < val_count; i++) { 1367 unsigned int ival; 1368 ret = regmap_read(map, reg + (i * map->reg_stride), 1369 &ival); 1370 if (ret != 0) 1371 return ret; 1372 memcpy(val + (i * val_bytes), &ival, val_bytes); 1373 } 1374 } 1375 1376 return 0; 1377 } 1378 EXPORT_SYMBOL_GPL(regmap_bulk_read); 1379 1380 static int _regmap_update_bits(struct regmap *map, unsigned int reg, 1381 unsigned int mask, unsigned int val, 1382 bool *change) 1383 { 1384 int ret; 1385 unsigned int tmp, orig; 1386 1387 ret = _regmap_read(map, reg, &orig); 1388 if (ret != 0) 1389 return ret; 1390 1391 tmp = orig & ~mask; 1392 tmp |= val & mask; 1393 1394 if (tmp != orig) { 1395 ret = _regmap_write(map, reg, tmp); 1396 *change = true; 1397 } else { 1398 *change = false; 1399 } 1400 1401 return ret; 1402 } 1403 1404 /** 1405 * regmap_update_bits: Perform a read/modify/write cycle on the register map 1406 * 1407 * @map: Register map to update 1408 * @reg: Register to update 1409 * @mask: Bitmask to change 1410 * @val: New value for bitmask 1411 * 1412 * Returns zero for success, a negative number on error. 1413 */ 1414 int regmap_update_bits(struct regmap *map, unsigned int reg, 1415 unsigned int mask, unsigned int val) 1416 { 1417 bool change; 1418 int ret; 1419 1420 map->lock(map->lock_arg); 1421 ret = _regmap_update_bits(map, reg, mask, val, &change); 1422 map->unlock(map->lock_arg); 1423 1424 return ret; 1425 } 1426 EXPORT_SYMBOL_GPL(regmap_update_bits); 1427 1428 /** 1429 * regmap_update_bits_check: Perform a read/modify/write cycle on the 1430 * register map and report if updated 1431 * 1432 * @map: Register map to update 1433 * @reg: Register to update 1434 * @mask: Bitmask to change 1435 * @val: New value for bitmask 1436 * @change: Boolean indicating if a write was done 1437 * 1438 * Returns zero for success, a negative number on error. 1439 */ 1440 int regmap_update_bits_check(struct regmap *map, unsigned int reg, 1441 unsigned int mask, unsigned int val, 1442 bool *change) 1443 { 1444 int ret; 1445 1446 map->lock(map->lock_arg); 1447 ret = _regmap_update_bits(map, reg, mask, val, change); 1448 map->unlock(map->lock_arg); 1449 return ret; 1450 } 1451 EXPORT_SYMBOL_GPL(regmap_update_bits_check); 1452 1453 /** 1454 * regmap_register_patch: Register and apply register updates to be applied 1455 * on device initialistion 1456 * 1457 * @map: Register map to apply updates to. 1458 * @regs: Values to update. 1459 * @num_regs: Number of entries in regs. 1460 * 1461 * Register a set of register updates to be applied to the device 1462 * whenever the device registers are synchronised with the cache and 1463 * apply them immediately. Typically this is used to apply 1464 * corrections to be applied to the device defaults on startup, such 1465 * as the updates some vendors provide to undocumented registers. 1466 */ 1467 int regmap_register_patch(struct regmap *map, const struct reg_default *regs, 1468 int num_regs) 1469 { 1470 int i, ret; 1471 bool bypass; 1472 1473 /* If needed the implementation can be extended to support this */ 1474 if (map->patch) 1475 return -EBUSY; 1476 1477 map->lock(map->lock_arg); 1478 1479 bypass = map->cache_bypass; 1480 1481 map->cache_bypass = true; 1482 1483 /* Write out first; it's useful to apply even if we fail later. */ 1484 for (i = 0; i < num_regs; i++) { 1485 ret = _regmap_write(map, regs[i].reg, regs[i].def); 1486 if (ret != 0) { 1487 dev_err(map->dev, "Failed to write %x = %x: %d\n", 1488 regs[i].reg, regs[i].def, ret); 1489 goto out; 1490 } 1491 } 1492 1493 map->patch = kcalloc(num_regs, sizeof(struct reg_default), GFP_KERNEL); 1494 if (map->patch != NULL) { 1495 memcpy(map->patch, regs, 1496 num_regs * sizeof(struct reg_default)); 1497 map->patch_regs = num_regs; 1498 } else { 1499 ret = -ENOMEM; 1500 } 1501 1502 out: 1503 map->cache_bypass = bypass; 1504 1505 map->unlock(map->lock_arg); 1506 1507 return ret; 1508 } 1509 EXPORT_SYMBOL_GPL(regmap_register_patch); 1510 1511 /* 1512 * regmap_get_val_bytes(): Report the size of a register value 1513 * 1514 * Report the size of a register value, mainly intended to for use by 1515 * generic infrastructure built on top of regmap. 1516 */ 1517 int regmap_get_val_bytes(struct regmap *map) 1518 { 1519 if (map->format.format_write) 1520 return -EINVAL; 1521 1522 return map->format.val_bytes; 1523 } 1524 EXPORT_SYMBOL_GPL(regmap_get_val_bytes); 1525 1526 static int __init regmap_initcall(void) 1527 { 1528 regmap_debugfs_initcall(); 1529 1530 return 0; 1531 } 1532 postcore_initcall(regmap_initcall); 1533