xref: /linux/drivers/base/regmap/regmap.c (revision a8fe58cec351c25e09c393bf46117c0c47b5a17c)
1 /*
2  * Register map access API
3  *
4  * Copyright 2011 Wolfson Microelectronics plc
5  *
6  * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/mutex.h>
17 #include <linux/err.h>
18 #include <linux/of.h>
19 #include <linux/rbtree.h>
20 #include <linux/sched.h>
21 #include <linux/delay.h>
22 
23 #define CREATE_TRACE_POINTS
24 #include "trace.h"
25 
26 #include "internal.h"
27 
28 /*
29  * Sometimes for failures during very early init the trace
30  * infrastructure isn't available early enough to be used.  For this
31  * sort of problem defining LOG_DEVICE will add printks for basic
32  * register I/O on a specific device.
33  */
34 #undef LOG_DEVICE
35 
36 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
37 			       unsigned int mask, unsigned int val,
38 			       bool *change, bool force_write);
39 
40 static int _regmap_bus_reg_read(void *context, unsigned int reg,
41 				unsigned int *val);
42 static int _regmap_bus_read(void *context, unsigned int reg,
43 			    unsigned int *val);
44 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
45 				       unsigned int val);
46 static int _regmap_bus_reg_write(void *context, unsigned int reg,
47 				 unsigned int val);
48 static int _regmap_bus_raw_write(void *context, unsigned int reg,
49 				 unsigned int val);
50 
51 bool regmap_reg_in_ranges(unsigned int reg,
52 			  const struct regmap_range *ranges,
53 			  unsigned int nranges)
54 {
55 	const struct regmap_range *r;
56 	int i;
57 
58 	for (i = 0, r = ranges; i < nranges; i++, r++)
59 		if (regmap_reg_in_range(reg, r))
60 			return true;
61 	return false;
62 }
63 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
64 
65 bool regmap_check_range_table(struct regmap *map, unsigned int reg,
66 			      const struct regmap_access_table *table)
67 {
68 	/* Check "no ranges" first */
69 	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
70 		return false;
71 
72 	/* In case zero "yes ranges" are supplied, any reg is OK */
73 	if (!table->n_yes_ranges)
74 		return true;
75 
76 	return regmap_reg_in_ranges(reg, table->yes_ranges,
77 				    table->n_yes_ranges);
78 }
79 EXPORT_SYMBOL_GPL(regmap_check_range_table);
80 
81 bool regmap_writeable(struct regmap *map, unsigned int reg)
82 {
83 	if (map->max_register && reg > map->max_register)
84 		return false;
85 
86 	if (map->writeable_reg)
87 		return map->writeable_reg(map->dev, reg);
88 
89 	if (map->wr_table)
90 		return regmap_check_range_table(map, reg, map->wr_table);
91 
92 	return true;
93 }
94 
95 bool regmap_readable(struct regmap *map, unsigned int reg)
96 {
97 	if (!map->reg_read)
98 		return false;
99 
100 	if (map->max_register && reg > map->max_register)
101 		return false;
102 
103 	if (map->format.format_write)
104 		return false;
105 
106 	if (map->readable_reg)
107 		return map->readable_reg(map->dev, reg);
108 
109 	if (map->rd_table)
110 		return regmap_check_range_table(map, reg, map->rd_table);
111 
112 	return true;
113 }
114 
115 bool regmap_volatile(struct regmap *map, unsigned int reg)
116 {
117 	if (!map->format.format_write && !regmap_readable(map, reg))
118 		return false;
119 
120 	if (map->volatile_reg)
121 		return map->volatile_reg(map->dev, reg);
122 
123 	if (map->volatile_table)
124 		return regmap_check_range_table(map, reg, map->volatile_table);
125 
126 	if (map->cache_ops)
127 		return false;
128 	else
129 		return true;
130 }
131 
132 bool regmap_precious(struct regmap *map, unsigned int reg)
133 {
134 	if (!regmap_readable(map, reg))
135 		return false;
136 
137 	if (map->precious_reg)
138 		return map->precious_reg(map->dev, reg);
139 
140 	if (map->precious_table)
141 		return regmap_check_range_table(map, reg, map->precious_table);
142 
143 	return false;
144 }
145 
146 static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
147 	size_t num)
148 {
149 	unsigned int i;
150 
151 	for (i = 0; i < num; i++)
152 		if (!regmap_volatile(map, reg + i))
153 			return false;
154 
155 	return true;
156 }
157 
158 static void regmap_format_2_6_write(struct regmap *map,
159 				     unsigned int reg, unsigned int val)
160 {
161 	u8 *out = map->work_buf;
162 
163 	*out = (reg << 6) | val;
164 }
165 
166 static void regmap_format_4_12_write(struct regmap *map,
167 				     unsigned int reg, unsigned int val)
168 {
169 	__be16 *out = map->work_buf;
170 	*out = cpu_to_be16((reg << 12) | val);
171 }
172 
173 static void regmap_format_7_9_write(struct regmap *map,
174 				    unsigned int reg, unsigned int val)
175 {
176 	__be16 *out = map->work_buf;
177 	*out = cpu_to_be16((reg << 9) | val);
178 }
179 
180 static void regmap_format_10_14_write(struct regmap *map,
181 				    unsigned int reg, unsigned int val)
182 {
183 	u8 *out = map->work_buf;
184 
185 	out[2] = val;
186 	out[1] = (val >> 8) | (reg << 6);
187 	out[0] = reg >> 2;
188 }
189 
190 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
191 {
192 	u8 *b = buf;
193 
194 	b[0] = val << shift;
195 }
196 
197 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
198 {
199 	__be16 *b = buf;
200 
201 	b[0] = cpu_to_be16(val << shift);
202 }
203 
204 static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
205 {
206 	__le16 *b = buf;
207 
208 	b[0] = cpu_to_le16(val << shift);
209 }
210 
211 static void regmap_format_16_native(void *buf, unsigned int val,
212 				    unsigned int shift)
213 {
214 	*(u16 *)buf = val << shift;
215 }
216 
217 static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
218 {
219 	u8 *b = buf;
220 
221 	val <<= shift;
222 
223 	b[0] = val >> 16;
224 	b[1] = val >> 8;
225 	b[2] = val;
226 }
227 
228 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
229 {
230 	__be32 *b = buf;
231 
232 	b[0] = cpu_to_be32(val << shift);
233 }
234 
235 static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
236 {
237 	__le32 *b = buf;
238 
239 	b[0] = cpu_to_le32(val << shift);
240 }
241 
242 static void regmap_format_32_native(void *buf, unsigned int val,
243 				    unsigned int shift)
244 {
245 	*(u32 *)buf = val << shift;
246 }
247 
248 #ifdef CONFIG_64BIT
249 static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
250 {
251 	__be64 *b = buf;
252 
253 	b[0] = cpu_to_be64((u64)val << shift);
254 }
255 
256 static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
257 {
258 	__le64 *b = buf;
259 
260 	b[0] = cpu_to_le64((u64)val << shift);
261 }
262 
263 static void regmap_format_64_native(void *buf, unsigned int val,
264 				    unsigned int shift)
265 {
266 	*(u64 *)buf = (u64)val << shift;
267 }
268 #endif
269 
270 static void regmap_parse_inplace_noop(void *buf)
271 {
272 }
273 
274 static unsigned int regmap_parse_8(const void *buf)
275 {
276 	const u8 *b = buf;
277 
278 	return b[0];
279 }
280 
281 static unsigned int regmap_parse_16_be(const void *buf)
282 {
283 	const __be16 *b = buf;
284 
285 	return be16_to_cpu(b[0]);
286 }
287 
288 static unsigned int regmap_parse_16_le(const void *buf)
289 {
290 	const __le16 *b = buf;
291 
292 	return le16_to_cpu(b[0]);
293 }
294 
295 static void regmap_parse_16_be_inplace(void *buf)
296 {
297 	__be16 *b = buf;
298 
299 	b[0] = be16_to_cpu(b[0]);
300 }
301 
302 static void regmap_parse_16_le_inplace(void *buf)
303 {
304 	__le16 *b = buf;
305 
306 	b[0] = le16_to_cpu(b[0]);
307 }
308 
309 static unsigned int regmap_parse_16_native(const void *buf)
310 {
311 	return *(u16 *)buf;
312 }
313 
314 static unsigned int regmap_parse_24(const void *buf)
315 {
316 	const u8 *b = buf;
317 	unsigned int ret = b[2];
318 	ret |= ((unsigned int)b[1]) << 8;
319 	ret |= ((unsigned int)b[0]) << 16;
320 
321 	return ret;
322 }
323 
324 static unsigned int regmap_parse_32_be(const void *buf)
325 {
326 	const __be32 *b = buf;
327 
328 	return be32_to_cpu(b[0]);
329 }
330 
331 static unsigned int regmap_parse_32_le(const void *buf)
332 {
333 	const __le32 *b = buf;
334 
335 	return le32_to_cpu(b[0]);
336 }
337 
338 static void regmap_parse_32_be_inplace(void *buf)
339 {
340 	__be32 *b = buf;
341 
342 	b[0] = be32_to_cpu(b[0]);
343 }
344 
345 static void regmap_parse_32_le_inplace(void *buf)
346 {
347 	__le32 *b = buf;
348 
349 	b[0] = le32_to_cpu(b[0]);
350 }
351 
352 static unsigned int regmap_parse_32_native(const void *buf)
353 {
354 	return *(u32 *)buf;
355 }
356 
357 #ifdef CONFIG_64BIT
358 static unsigned int regmap_parse_64_be(const void *buf)
359 {
360 	const __be64 *b = buf;
361 
362 	return be64_to_cpu(b[0]);
363 }
364 
365 static unsigned int regmap_parse_64_le(const void *buf)
366 {
367 	const __le64 *b = buf;
368 
369 	return le64_to_cpu(b[0]);
370 }
371 
372 static void regmap_parse_64_be_inplace(void *buf)
373 {
374 	__be64 *b = buf;
375 
376 	b[0] = be64_to_cpu(b[0]);
377 }
378 
379 static void regmap_parse_64_le_inplace(void *buf)
380 {
381 	__le64 *b = buf;
382 
383 	b[0] = le64_to_cpu(b[0]);
384 }
385 
386 static unsigned int regmap_parse_64_native(const void *buf)
387 {
388 	return *(u64 *)buf;
389 }
390 #endif
391 
392 static void regmap_lock_mutex(void *__map)
393 {
394 	struct regmap *map = __map;
395 	mutex_lock(&map->mutex);
396 }
397 
398 static void regmap_unlock_mutex(void *__map)
399 {
400 	struct regmap *map = __map;
401 	mutex_unlock(&map->mutex);
402 }
403 
404 static void regmap_lock_spinlock(void *__map)
405 __acquires(&map->spinlock)
406 {
407 	struct regmap *map = __map;
408 	unsigned long flags;
409 
410 	spin_lock_irqsave(&map->spinlock, flags);
411 	map->spinlock_flags = flags;
412 }
413 
414 static void regmap_unlock_spinlock(void *__map)
415 __releases(&map->spinlock)
416 {
417 	struct regmap *map = __map;
418 	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
419 }
420 
421 static void dev_get_regmap_release(struct device *dev, void *res)
422 {
423 	/*
424 	 * We don't actually have anything to do here; the goal here
425 	 * is not to manage the regmap but to provide a simple way to
426 	 * get the regmap back given a struct device.
427 	 */
428 }
429 
430 static bool _regmap_range_add(struct regmap *map,
431 			      struct regmap_range_node *data)
432 {
433 	struct rb_root *root = &map->range_tree;
434 	struct rb_node **new = &(root->rb_node), *parent = NULL;
435 
436 	while (*new) {
437 		struct regmap_range_node *this =
438 			container_of(*new, struct regmap_range_node, node);
439 
440 		parent = *new;
441 		if (data->range_max < this->range_min)
442 			new = &((*new)->rb_left);
443 		else if (data->range_min > this->range_max)
444 			new = &((*new)->rb_right);
445 		else
446 			return false;
447 	}
448 
449 	rb_link_node(&data->node, parent, new);
450 	rb_insert_color(&data->node, root);
451 
452 	return true;
453 }
454 
455 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
456 						      unsigned int reg)
457 {
458 	struct rb_node *node = map->range_tree.rb_node;
459 
460 	while (node) {
461 		struct regmap_range_node *this =
462 			container_of(node, struct regmap_range_node, node);
463 
464 		if (reg < this->range_min)
465 			node = node->rb_left;
466 		else if (reg > this->range_max)
467 			node = node->rb_right;
468 		else
469 			return this;
470 	}
471 
472 	return NULL;
473 }
474 
475 static void regmap_range_exit(struct regmap *map)
476 {
477 	struct rb_node *next;
478 	struct regmap_range_node *range_node;
479 
480 	next = rb_first(&map->range_tree);
481 	while (next) {
482 		range_node = rb_entry(next, struct regmap_range_node, node);
483 		next = rb_next(&range_node->node);
484 		rb_erase(&range_node->node, &map->range_tree);
485 		kfree(range_node);
486 	}
487 
488 	kfree(map->selector_work_buf);
489 }
490 
491 int regmap_attach_dev(struct device *dev, struct regmap *map,
492 		      const struct regmap_config *config)
493 {
494 	struct regmap **m;
495 
496 	map->dev = dev;
497 
498 	regmap_debugfs_init(map, config->name);
499 
500 	/* Add a devres resource for dev_get_regmap() */
501 	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
502 	if (!m) {
503 		regmap_debugfs_exit(map);
504 		return -ENOMEM;
505 	}
506 	*m = map;
507 	devres_add(dev, m);
508 
509 	return 0;
510 }
511 EXPORT_SYMBOL_GPL(regmap_attach_dev);
512 
513 static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
514 					const struct regmap_config *config)
515 {
516 	enum regmap_endian endian;
517 
518 	/* Retrieve the endianness specification from the regmap config */
519 	endian = config->reg_format_endian;
520 
521 	/* If the regmap config specified a non-default value, use that */
522 	if (endian != REGMAP_ENDIAN_DEFAULT)
523 		return endian;
524 
525 	/* Retrieve the endianness specification from the bus config */
526 	if (bus && bus->reg_format_endian_default)
527 		endian = bus->reg_format_endian_default;
528 
529 	/* If the bus specified a non-default value, use that */
530 	if (endian != REGMAP_ENDIAN_DEFAULT)
531 		return endian;
532 
533 	/* Use this if no other value was found */
534 	return REGMAP_ENDIAN_BIG;
535 }
536 
537 enum regmap_endian regmap_get_val_endian(struct device *dev,
538 					 const struct regmap_bus *bus,
539 					 const struct regmap_config *config)
540 {
541 	struct device_node *np;
542 	enum regmap_endian endian;
543 
544 	/* Retrieve the endianness specification from the regmap config */
545 	endian = config->val_format_endian;
546 
547 	/* If the regmap config specified a non-default value, use that */
548 	if (endian != REGMAP_ENDIAN_DEFAULT)
549 		return endian;
550 
551 	/* If the dev and dev->of_node exist try to get endianness from DT */
552 	if (dev && dev->of_node) {
553 		np = dev->of_node;
554 
555 		/* Parse the device's DT node for an endianness specification */
556 		if (of_property_read_bool(np, "big-endian"))
557 			endian = REGMAP_ENDIAN_BIG;
558 		else if (of_property_read_bool(np, "little-endian"))
559 			endian = REGMAP_ENDIAN_LITTLE;
560 
561 		/* If the endianness was specified in DT, use that */
562 		if (endian != REGMAP_ENDIAN_DEFAULT)
563 			return endian;
564 	}
565 
566 	/* Retrieve the endianness specification from the bus config */
567 	if (bus && bus->val_format_endian_default)
568 		endian = bus->val_format_endian_default;
569 
570 	/* If the bus specified a non-default value, use that */
571 	if (endian != REGMAP_ENDIAN_DEFAULT)
572 		return endian;
573 
574 	/* Use this if no other value was found */
575 	return REGMAP_ENDIAN_BIG;
576 }
577 EXPORT_SYMBOL_GPL(regmap_get_val_endian);
578 
579 struct regmap *__regmap_init(struct device *dev,
580 			     const struct regmap_bus *bus,
581 			     void *bus_context,
582 			     const struct regmap_config *config,
583 			     struct lock_class_key *lock_key,
584 			     const char *lock_name)
585 {
586 	struct regmap *map;
587 	int ret = -EINVAL;
588 	enum regmap_endian reg_endian, val_endian;
589 	int i, j;
590 
591 	if (!config)
592 		goto err;
593 
594 	map = kzalloc(sizeof(*map), GFP_KERNEL);
595 	if (map == NULL) {
596 		ret = -ENOMEM;
597 		goto err;
598 	}
599 
600 	if (config->lock && config->unlock) {
601 		map->lock = config->lock;
602 		map->unlock = config->unlock;
603 		map->lock_arg = config->lock_arg;
604 	} else {
605 		if ((bus && bus->fast_io) ||
606 		    config->fast_io) {
607 			spin_lock_init(&map->spinlock);
608 			map->lock = regmap_lock_spinlock;
609 			map->unlock = regmap_unlock_spinlock;
610 			lockdep_set_class_and_name(&map->spinlock,
611 						   lock_key, lock_name);
612 		} else {
613 			mutex_init(&map->mutex);
614 			map->lock = regmap_lock_mutex;
615 			map->unlock = regmap_unlock_mutex;
616 			lockdep_set_class_and_name(&map->mutex,
617 						   lock_key, lock_name);
618 		}
619 		map->lock_arg = map;
620 	}
621 
622 	/*
623 	 * When we write in fast-paths with regmap_bulk_write() don't allocate
624 	 * scratch buffers with sleeping allocations.
625 	 */
626 	if ((bus && bus->fast_io) || config->fast_io)
627 		map->alloc_flags = GFP_ATOMIC;
628 	else
629 		map->alloc_flags = GFP_KERNEL;
630 
631 	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
632 	map->format.pad_bytes = config->pad_bits / 8;
633 	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
634 	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
635 			config->val_bits + config->pad_bits, 8);
636 	map->reg_shift = config->pad_bits % 8;
637 	if (config->reg_stride)
638 		map->reg_stride = config->reg_stride;
639 	else
640 		map->reg_stride = 1;
641 	map->use_single_read = config->use_single_rw || !bus || !bus->read;
642 	map->use_single_write = config->use_single_rw || !bus || !bus->write;
643 	map->can_multi_write = config->can_multi_write && bus && bus->write;
644 	if (bus) {
645 		map->max_raw_read = bus->max_raw_read;
646 		map->max_raw_write = bus->max_raw_write;
647 	}
648 	map->dev = dev;
649 	map->bus = bus;
650 	map->bus_context = bus_context;
651 	map->max_register = config->max_register;
652 	map->wr_table = config->wr_table;
653 	map->rd_table = config->rd_table;
654 	map->volatile_table = config->volatile_table;
655 	map->precious_table = config->precious_table;
656 	map->writeable_reg = config->writeable_reg;
657 	map->readable_reg = config->readable_reg;
658 	map->volatile_reg = config->volatile_reg;
659 	map->precious_reg = config->precious_reg;
660 	map->cache_type = config->cache_type;
661 	map->name = config->name;
662 
663 	spin_lock_init(&map->async_lock);
664 	INIT_LIST_HEAD(&map->async_list);
665 	INIT_LIST_HEAD(&map->async_free);
666 	init_waitqueue_head(&map->async_waitq);
667 
668 	if (config->read_flag_mask || config->write_flag_mask) {
669 		map->read_flag_mask = config->read_flag_mask;
670 		map->write_flag_mask = config->write_flag_mask;
671 	} else if (bus) {
672 		map->read_flag_mask = bus->read_flag_mask;
673 	}
674 
675 	if (!bus) {
676 		map->reg_read  = config->reg_read;
677 		map->reg_write = config->reg_write;
678 
679 		map->defer_caching = false;
680 		goto skip_format_initialization;
681 	} else if (!bus->read || !bus->write) {
682 		map->reg_read = _regmap_bus_reg_read;
683 		map->reg_write = _regmap_bus_reg_write;
684 
685 		map->defer_caching = false;
686 		goto skip_format_initialization;
687 	} else {
688 		map->reg_read  = _regmap_bus_read;
689 		map->reg_update_bits = bus->reg_update_bits;
690 	}
691 
692 	reg_endian = regmap_get_reg_endian(bus, config);
693 	val_endian = regmap_get_val_endian(dev, bus, config);
694 
695 	switch (config->reg_bits + map->reg_shift) {
696 	case 2:
697 		switch (config->val_bits) {
698 		case 6:
699 			map->format.format_write = regmap_format_2_6_write;
700 			break;
701 		default:
702 			goto err_map;
703 		}
704 		break;
705 
706 	case 4:
707 		switch (config->val_bits) {
708 		case 12:
709 			map->format.format_write = regmap_format_4_12_write;
710 			break;
711 		default:
712 			goto err_map;
713 		}
714 		break;
715 
716 	case 7:
717 		switch (config->val_bits) {
718 		case 9:
719 			map->format.format_write = regmap_format_7_9_write;
720 			break;
721 		default:
722 			goto err_map;
723 		}
724 		break;
725 
726 	case 10:
727 		switch (config->val_bits) {
728 		case 14:
729 			map->format.format_write = regmap_format_10_14_write;
730 			break;
731 		default:
732 			goto err_map;
733 		}
734 		break;
735 
736 	case 8:
737 		map->format.format_reg = regmap_format_8;
738 		break;
739 
740 	case 16:
741 		switch (reg_endian) {
742 		case REGMAP_ENDIAN_BIG:
743 			map->format.format_reg = regmap_format_16_be;
744 			break;
745 		case REGMAP_ENDIAN_NATIVE:
746 			map->format.format_reg = regmap_format_16_native;
747 			break;
748 		default:
749 			goto err_map;
750 		}
751 		break;
752 
753 	case 24:
754 		if (reg_endian != REGMAP_ENDIAN_BIG)
755 			goto err_map;
756 		map->format.format_reg = regmap_format_24;
757 		break;
758 
759 	case 32:
760 		switch (reg_endian) {
761 		case REGMAP_ENDIAN_BIG:
762 			map->format.format_reg = regmap_format_32_be;
763 			break;
764 		case REGMAP_ENDIAN_NATIVE:
765 			map->format.format_reg = regmap_format_32_native;
766 			break;
767 		default:
768 			goto err_map;
769 		}
770 		break;
771 
772 #ifdef CONFIG_64BIT
773 	case 64:
774 		switch (reg_endian) {
775 		case REGMAP_ENDIAN_BIG:
776 			map->format.format_reg = regmap_format_64_be;
777 			break;
778 		case REGMAP_ENDIAN_NATIVE:
779 			map->format.format_reg = regmap_format_64_native;
780 			break;
781 		default:
782 			goto err_map;
783 		}
784 		break;
785 #endif
786 
787 	default:
788 		goto err_map;
789 	}
790 
791 	if (val_endian == REGMAP_ENDIAN_NATIVE)
792 		map->format.parse_inplace = regmap_parse_inplace_noop;
793 
794 	switch (config->val_bits) {
795 	case 8:
796 		map->format.format_val = regmap_format_8;
797 		map->format.parse_val = regmap_parse_8;
798 		map->format.parse_inplace = regmap_parse_inplace_noop;
799 		break;
800 	case 16:
801 		switch (val_endian) {
802 		case REGMAP_ENDIAN_BIG:
803 			map->format.format_val = regmap_format_16_be;
804 			map->format.parse_val = regmap_parse_16_be;
805 			map->format.parse_inplace = regmap_parse_16_be_inplace;
806 			break;
807 		case REGMAP_ENDIAN_LITTLE:
808 			map->format.format_val = regmap_format_16_le;
809 			map->format.parse_val = regmap_parse_16_le;
810 			map->format.parse_inplace = regmap_parse_16_le_inplace;
811 			break;
812 		case REGMAP_ENDIAN_NATIVE:
813 			map->format.format_val = regmap_format_16_native;
814 			map->format.parse_val = regmap_parse_16_native;
815 			break;
816 		default:
817 			goto err_map;
818 		}
819 		break;
820 	case 24:
821 		if (val_endian != REGMAP_ENDIAN_BIG)
822 			goto err_map;
823 		map->format.format_val = regmap_format_24;
824 		map->format.parse_val = regmap_parse_24;
825 		break;
826 	case 32:
827 		switch (val_endian) {
828 		case REGMAP_ENDIAN_BIG:
829 			map->format.format_val = regmap_format_32_be;
830 			map->format.parse_val = regmap_parse_32_be;
831 			map->format.parse_inplace = regmap_parse_32_be_inplace;
832 			break;
833 		case REGMAP_ENDIAN_LITTLE:
834 			map->format.format_val = regmap_format_32_le;
835 			map->format.parse_val = regmap_parse_32_le;
836 			map->format.parse_inplace = regmap_parse_32_le_inplace;
837 			break;
838 		case REGMAP_ENDIAN_NATIVE:
839 			map->format.format_val = regmap_format_32_native;
840 			map->format.parse_val = regmap_parse_32_native;
841 			break;
842 		default:
843 			goto err_map;
844 		}
845 		break;
846 #ifdef CONFIG_64BIT
847 	case 64:
848 		switch (val_endian) {
849 		case REGMAP_ENDIAN_BIG:
850 			map->format.format_val = regmap_format_64_be;
851 			map->format.parse_val = regmap_parse_64_be;
852 			map->format.parse_inplace = regmap_parse_64_be_inplace;
853 			break;
854 		case REGMAP_ENDIAN_LITTLE:
855 			map->format.format_val = regmap_format_64_le;
856 			map->format.parse_val = regmap_parse_64_le;
857 			map->format.parse_inplace = regmap_parse_64_le_inplace;
858 			break;
859 		case REGMAP_ENDIAN_NATIVE:
860 			map->format.format_val = regmap_format_64_native;
861 			map->format.parse_val = regmap_parse_64_native;
862 			break;
863 		default:
864 			goto err_map;
865 		}
866 		break;
867 #endif
868 	}
869 
870 	if (map->format.format_write) {
871 		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
872 		    (val_endian != REGMAP_ENDIAN_BIG))
873 			goto err_map;
874 		map->use_single_write = true;
875 	}
876 
877 	if (!map->format.format_write &&
878 	    !(map->format.format_reg && map->format.format_val))
879 		goto err_map;
880 
881 	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
882 	if (map->work_buf == NULL) {
883 		ret = -ENOMEM;
884 		goto err_map;
885 	}
886 
887 	if (map->format.format_write) {
888 		map->defer_caching = false;
889 		map->reg_write = _regmap_bus_formatted_write;
890 	} else if (map->format.format_val) {
891 		map->defer_caching = true;
892 		map->reg_write = _regmap_bus_raw_write;
893 	}
894 
895 skip_format_initialization:
896 
897 	map->range_tree = RB_ROOT;
898 	for (i = 0; i < config->num_ranges; i++) {
899 		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
900 		struct regmap_range_node *new;
901 
902 		/* Sanity check */
903 		if (range_cfg->range_max < range_cfg->range_min) {
904 			dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
905 				range_cfg->range_max, range_cfg->range_min);
906 			goto err_range;
907 		}
908 
909 		if (range_cfg->range_max > map->max_register) {
910 			dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
911 				range_cfg->range_max, map->max_register);
912 			goto err_range;
913 		}
914 
915 		if (range_cfg->selector_reg > map->max_register) {
916 			dev_err(map->dev,
917 				"Invalid range %d: selector out of map\n", i);
918 			goto err_range;
919 		}
920 
921 		if (range_cfg->window_len == 0) {
922 			dev_err(map->dev, "Invalid range %d: window_len 0\n",
923 				i);
924 			goto err_range;
925 		}
926 
927 		/* Make sure, that this register range has no selector
928 		   or data window within its boundary */
929 		for (j = 0; j < config->num_ranges; j++) {
930 			unsigned sel_reg = config->ranges[j].selector_reg;
931 			unsigned win_min = config->ranges[j].window_start;
932 			unsigned win_max = win_min +
933 					   config->ranges[j].window_len - 1;
934 
935 			/* Allow data window inside its own virtual range */
936 			if (j == i)
937 				continue;
938 
939 			if (range_cfg->range_min <= sel_reg &&
940 			    sel_reg <= range_cfg->range_max) {
941 				dev_err(map->dev,
942 					"Range %d: selector for %d in window\n",
943 					i, j);
944 				goto err_range;
945 			}
946 
947 			if (!(win_max < range_cfg->range_min ||
948 			      win_min > range_cfg->range_max)) {
949 				dev_err(map->dev,
950 					"Range %d: window for %d in window\n",
951 					i, j);
952 				goto err_range;
953 			}
954 		}
955 
956 		new = kzalloc(sizeof(*new), GFP_KERNEL);
957 		if (new == NULL) {
958 			ret = -ENOMEM;
959 			goto err_range;
960 		}
961 
962 		new->map = map;
963 		new->name = range_cfg->name;
964 		new->range_min = range_cfg->range_min;
965 		new->range_max = range_cfg->range_max;
966 		new->selector_reg = range_cfg->selector_reg;
967 		new->selector_mask = range_cfg->selector_mask;
968 		new->selector_shift = range_cfg->selector_shift;
969 		new->window_start = range_cfg->window_start;
970 		new->window_len = range_cfg->window_len;
971 
972 		if (!_regmap_range_add(map, new)) {
973 			dev_err(map->dev, "Failed to add range %d\n", i);
974 			kfree(new);
975 			goto err_range;
976 		}
977 
978 		if (map->selector_work_buf == NULL) {
979 			map->selector_work_buf =
980 				kzalloc(map->format.buf_size, GFP_KERNEL);
981 			if (map->selector_work_buf == NULL) {
982 				ret = -ENOMEM;
983 				goto err_range;
984 			}
985 		}
986 	}
987 
988 	ret = regcache_init(map, config);
989 	if (ret != 0)
990 		goto err_range;
991 
992 	if (dev) {
993 		ret = regmap_attach_dev(dev, map, config);
994 		if (ret != 0)
995 			goto err_regcache;
996 	}
997 
998 	return map;
999 
1000 err_regcache:
1001 	regcache_exit(map);
1002 err_range:
1003 	regmap_range_exit(map);
1004 	kfree(map->work_buf);
1005 err_map:
1006 	kfree(map);
1007 err:
1008 	return ERR_PTR(ret);
1009 }
1010 EXPORT_SYMBOL_GPL(__regmap_init);
1011 
1012 static void devm_regmap_release(struct device *dev, void *res)
1013 {
1014 	regmap_exit(*(struct regmap **)res);
1015 }
1016 
1017 struct regmap *__devm_regmap_init(struct device *dev,
1018 				  const struct regmap_bus *bus,
1019 				  void *bus_context,
1020 				  const struct regmap_config *config,
1021 				  struct lock_class_key *lock_key,
1022 				  const char *lock_name)
1023 {
1024 	struct regmap **ptr, *regmap;
1025 
1026 	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1027 	if (!ptr)
1028 		return ERR_PTR(-ENOMEM);
1029 
1030 	regmap = __regmap_init(dev, bus, bus_context, config,
1031 			       lock_key, lock_name);
1032 	if (!IS_ERR(regmap)) {
1033 		*ptr = regmap;
1034 		devres_add(dev, ptr);
1035 	} else {
1036 		devres_free(ptr);
1037 	}
1038 
1039 	return regmap;
1040 }
1041 EXPORT_SYMBOL_GPL(__devm_regmap_init);
1042 
1043 static void regmap_field_init(struct regmap_field *rm_field,
1044 	struct regmap *regmap, struct reg_field reg_field)
1045 {
1046 	rm_field->regmap = regmap;
1047 	rm_field->reg = reg_field.reg;
1048 	rm_field->shift = reg_field.lsb;
1049 	rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1050 	rm_field->id_size = reg_field.id_size;
1051 	rm_field->id_offset = reg_field.id_offset;
1052 }
1053 
1054 /**
1055  * devm_regmap_field_alloc(): Allocate and initialise a register field
1056  * in a register map.
1057  *
1058  * @dev: Device that will be interacted with
1059  * @regmap: regmap bank in which this register field is located.
1060  * @reg_field: Register field with in the bank.
1061  *
1062  * The return value will be an ERR_PTR() on error or a valid pointer
1063  * to a struct regmap_field. The regmap_field will be automatically freed
1064  * by the device management code.
1065  */
1066 struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1067 		struct regmap *regmap, struct reg_field reg_field)
1068 {
1069 	struct regmap_field *rm_field = devm_kzalloc(dev,
1070 					sizeof(*rm_field), GFP_KERNEL);
1071 	if (!rm_field)
1072 		return ERR_PTR(-ENOMEM);
1073 
1074 	regmap_field_init(rm_field, regmap, reg_field);
1075 
1076 	return rm_field;
1077 
1078 }
1079 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1080 
1081 /**
1082  * devm_regmap_field_free(): Free register field allocated using
1083  * devm_regmap_field_alloc. Usally drivers need not call this function,
1084  * as the memory allocated via devm will be freed as per device-driver
1085  * life-cyle.
1086  *
1087  * @dev: Device that will be interacted with
1088  * @field: regmap field which should be freed.
1089  */
1090 void devm_regmap_field_free(struct device *dev,
1091 	struct regmap_field *field)
1092 {
1093 	devm_kfree(dev, field);
1094 }
1095 EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1096 
1097 /**
1098  * regmap_field_alloc(): Allocate and initialise a register field
1099  * in a register map.
1100  *
1101  * @regmap: regmap bank in which this register field is located.
1102  * @reg_field: Register field with in the bank.
1103  *
1104  * The return value will be an ERR_PTR() on error or a valid pointer
1105  * to a struct regmap_field. The regmap_field should be freed by the
1106  * user once its finished working with it using regmap_field_free().
1107  */
1108 struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1109 		struct reg_field reg_field)
1110 {
1111 	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1112 
1113 	if (!rm_field)
1114 		return ERR_PTR(-ENOMEM);
1115 
1116 	regmap_field_init(rm_field, regmap, reg_field);
1117 
1118 	return rm_field;
1119 }
1120 EXPORT_SYMBOL_GPL(regmap_field_alloc);
1121 
1122 /**
1123  * regmap_field_free(): Free register field allocated using regmap_field_alloc
1124  *
1125  * @field: regmap field which should be freed.
1126  */
1127 void regmap_field_free(struct regmap_field *field)
1128 {
1129 	kfree(field);
1130 }
1131 EXPORT_SYMBOL_GPL(regmap_field_free);
1132 
1133 /**
1134  * regmap_reinit_cache(): Reinitialise the current register cache
1135  *
1136  * @map: Register map to operate on.
1137  * @config: New configuration.  Only the cache data will be used.
1138  *
1139  * Discard any existing register cache for the map and initialize a
1140  * new cache.  This can be used to restore the cache to defaults or to
1141  * update the cache configuration to reflect runtime discovery of the
1142  * hardware.
1143  *
1144  * No explicit locking is done here, the user needs to ensure that
1145  * this function will not race with other calls to regmap.
1146  */
1147 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1148 {
1149 	regcache_exit(map);
1150 	regmap_debugfs_exit(map);
1151 
1152 	map->max_register = config->max_register;
1153 	map->writeable_reg = config->writeable_reg;
1154 	map->readable_reg = config->readable_reg;
1155 	map->volatile_reg = config->volatile_reg;
1156 	map->precious_reg = config->precious_reg;
1157 	map->cache_type = config->cache_type;
1158 
1159 	regmap_debugfs_init(map, config->name);
1160 
1161 	map->cache_bypass = false;
1162 	map->cache_only = false;
1163 
1164 	return regcache_init(map, config);
1165 }
1166 EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1167 
1168 /**
1169  * regmap_exit(): Free a previously allocated register map
1170  */
1171 void regmap_exit(struct regmap *map)
1172 {
1173 	struct regmap_async *async;
1174 
1175 	regcache_exit(map);
1176 	regmap_debugfs_exit(map);
1177 	regmap_range_exit(map);
1178 	if (map->bus && map->bus->free_context)
1179 		map->bus->free_context(map->bus_context);
1180 	kfree(map->work_buf);
1181 	while (!list_empty(&map->async_free)) {
1182 		async = list_first_entry_or_null(&map->async_free,
1183 						 struct regmap_async,
1184 						 list);
1185 		list_del(&async->list);
1186 		kfree(async->work_buf);
1187 		kfree(async);
1188 	}
1189 	kfree(map);
1190 }
1191 EXPORT_SYMBOL_GPL(regmap_exit);
1192 
1193 static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1194 {
1195 	struct regmap **r = res;
1196 	if (!r || !*r) {
1197 		WARN_ON(!r || !*r);
1198 		return 0;
1199 	}
1200 
1201 	/* If the user didn't specify a name match any */
1202 	if (data)
1203 		return (*r)->name == data;
1204 	else
1205 		return 1;
1206 }
1207 
1208 /**
1209  * dev_get_regmap(): Obtain the regmap (if any) for a device
1210  *
1211  * @dev: Device to retrieve the map for
1212  * @name: Optional name for the register map, usually NULL.
1213  *
1214  * Returns the regmap for the device if one is present, or NULL.  If
1215  * name is specified then it must match the name specified when
1216  * registering the device, if it is NULL then the first regmap found
1217  * will be used.  Devices with multiple register maps are very rare,
1218  * generic code should normally not need to specify a name.
1219  */
1220 struct regmap *dev_get_regmap(struct device *dev, const char *name)
1221 {
1222 	struct regmap **r = devres_find(dev, dev_get_regmap_release,
1223 					dev_get_regmap_match, (void *)name);
1224 
1225 	if (!r)
1226 		return NULL;
1227 	return *r;
1228 }
1229 EXPORT_SYMBOL_GPL(dev_get_regmap);
1230 
1231 /**
1232  * regmap_get_device(): Obtain the device from a regmap
1233  *
1234  * @map: Register map to operate on.
1235  *
1236  * Returns the underlying device that the regmap has been created for.
1237  */
1238 struct device *regmap_get_device(struct regmap *map)
1239 {
1240 	return map->dev;
1241 }
1242 EXPORT_SYMBOL_GPL(regmap_get_device);
1243 
1244 static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1245 			       struct regmap_range_node *range,
1246 			       unsigned int val_num)
1247 {
1248 	void *orig_work_buf;
1249 	unsigned int win_offset;
1250 	unsigned int win_page;
1251 	bool page_chg;
1252 	int ret;
1253 
1254 	win_offset = (*reg - range->range_min) % range->window_len;
1255 	win_page = (*reg - range->range_min) / range->window_len;
1256 
1257 	if (val_num > 1) {
1258 		/* Bulk write shouldn't cross range boundary */
1259 		if (*reg + val_num - 1 > range->range_max)
1260 			return -EINVAL;
1261 
1262 		/* ... or single page boundary */
1263 		if (val_num > range->window_len - win_offset)
1264 			return -EINVAL;
1265 	}
1266 
1267 	/* It is possible to have selector register inside data window.
1268 	   In that case, selector register is located on every page and
1269 	   it needs no page switching, when accessed alone. */
1270 	if (val_num > 1 ||
1271 	    range->window_start + win_offset != range->selector_reg) {
1272 		/* Use separate work_buf during page switching */
1273 		orig_work_buf = map->work_buf;
1274 		map->work_buf = map->selector_work_buf;
1275 
1276 		ret = _regmap_update_bits(map, range->selector_reg,
1277 					  range->selector_mask,
1278 					  win_page << range->selector_shift,
1279 					  &page_chg, false);
1280 
1281 		map->work_buf = orig_work_buf;
1282 
1283 		if (ret != 0)
1284 			return ret;
1285 	}
1286 
1287 	*reg = range->window_start + win_offset;
1288 
1289 	return 0;
1290 }
1291 
1292 int _regmap_raw_write(struct regmap *map, unsigned int reg,
1293 		      const void *val, size_t val_len)
1294 {
1295 	struct regmap_range_node *range;
1296 	unsigned long flags;
1297 	u8 *u8 = map->work_buf;
1298 	void *work_val = map->work_buf + map->format.reg_bytes +
1299 		map->format.pad_bytes;
1300 	void *buf;
1301 	int ret = -ENOTSUPP;
1302 	size_t len;
1303 	int i;
1304 
1305 	WARN_ON(!map->bus);
1306 
1307 	/* Check for unwritable registers before we start */
1308 	if (map->writeable_reg)
1309 		for (i = 0; i < val_len / map->format.val_bytes; i++)
1310 			if (!map->writeable_reg(map->dev,
1311 						reg + (i * map->reg_stride)))
1312 				return -EINVAL;
1313 
1314 	if (!map->cache_bypass && map->format.parse_val) {
1315 		unsigned int ival;
1316 		int val_bytes = map->format.val_bytes;
1317 		for (i = 0; i < val_len / val_bytes; i++) {
1318 			ival = map->format.parse_val(val + (i * val_bytes));
1319 			ret = regcache_write(map, reg + (i * map->reg_stride),
1320 					     ival);
1321 			if (ret) {
1322 				dev_err(map->dev,
1323 					"Error in caching of register: %x ret: %d\n",
1324 					reg + i, ret);
1325 				return ret;
1326 			}
1327 		}
1328 		if (map->cache_only) {
1329 			map->cache_dirty = true;
1330 			return 0;
1331 		}
1332 	}
1333 
1334 	range = _regmap_range_lookup(map, reg);
1335 	if (range) {
1336 		int val_num = val_len / map->format.val_bytes;
1337 		int win_offset = (reg - range->range_min) % range->window_len;
1338 		int win_residue = range->window_len - win_offset;
1339 
1340 		/* If the write goes beyond the end of the window split it */
1341 		while (val_num > win_residue) {
1342 			dev_dbg(map->dev, "Writing window %d/%zu\n",
1343 				win_residue, val_len / map->format.val_bytes);
1344 			ret = _regmap_raw_write(map, reg, val, win_residue *
1345 						map->format.val_bytes);
1346 			if (ret != 0)
1347 				return ret;
1348 
1349 			reg += win_residue;
1350 			val_num -= win_residue;
1351 			val += win_residue * map->format.val_bytes;
1352 			val_len -= win_residue * map->format.val_bytes;
1353 
1354 			win_offset = (reg - range->range_min) %
1355 				range->window_len;
1356 			win_residue = range->window_len - win_offset;
1357 		}
1358 
1359 		ret = _regmap_select_page(map, &reg, range, val_num);
1360 		if (ret != 0)
1361 			return ret;
1362 	}
1363 
1364 	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1365 
1366 	u8[0] |= map->write_flag_mask;
1367 
1368 	/*
1369 	 * Essentially all I/O mechanisms will be faster with a single
1370 	 * buffer to write.  Since register syncs often generate raw
1371 	 * writes of single registers optimise that case.
1372 	 */
1373 	if (val != work_val && val_len == map->format.val_bytes) {
1374 		memcpy(work_val, val, map->format.val_bytes);
1375 		val = work_val;
1376 	}
1377 
1378 	if (map->async && map->bus->async_write) {
1379 		struct regmap_async *async;
1380 
1381 		trace_regmap_async_write_start(map, reg, val_len);
1382 
1383 		spin_lock_irqsave(&map->async_lock, flags);
1384 		async = list_first_entry_or_null(&map->async_free,
1385 						 struct regmap_async,
1386 						 list);
1387 		if (async)
1388 			list_del(&async->list);
1389 		spin_unlock_irqrestore(&map->async_lock, flags);
1390 
1391 		if (!async) {
1392 			async = map->bus->async_alloc();
1393 			if (!async)
1394 				return -ENOMEM;
1395 
1396 			async->work_buf = kzalloc(map->format.buf_size,
1397 						  GFP_KERNEL | GFP_DMA);
1398 			if (!async->work_buf) {
1399 				kfree(async);
1400 				return -ENOMEM;
1401 			}
1402 		}
1403 
1404 		async->map = map;
1405 
1406 		/* If the caller supplied the value we can use it safely. */
1407 		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1408 		       map->format.reg_bytes + map->format.val_bytes);
1409 
1410 		spin_lock_irqsave(&map->async_lock, flags);
1411 		list_add_tail(&async->list, &map->async_list);
1412 		spin_unlock_irqrestore(&map->async_lock, flags);
1413 
1414 		if (val != work_val)
1415 			ret = map->bus->async_write(map->bus_context,
1416 						    async->work_buf,
1417 						    map->format.reg_bytes +
1418 						    map->format.pad_bytes,
1419 						    val, val_len, async);
1420 		else
1421 			ret = map->bus->async_write(map->bus_context,
1422 						    async->work_buf,
1423 						    map->format.reg_bytes +
1424 						    map->format.pad_bytes +
1425 						    val_len, NULL, 0, async);
1426 
1427 		if (ret != 0) {
1428 			dev_err(map->dev, "Failed to schedule write: %d\n",
1429 				ret);
1430 
1431 			spin_lock_irqsave(&map->async_lock, flags);
1432 			list_move(&async->list, &map->async_free);
1433 			spin_unlock_irqrestore(&map->async_lock, flags);
1434 		}
1435 
1436 		return ret;
1437 	}
1438 
1439 	trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1440 
1441 	/* If we're doing a single register write we can probably just
1442 	 * send the work_buf directly, otherwise try to do a gather
1443 	 * write.
1444 	 */
1445 	if (val == work_val)
1446 		ret = map->bus->write(map->bus_context, map->work_buf,
1447 				      map->format.reg_bytes +
1448 				      map->format.pad_bytes +
1449 				      val_len);
1450 	else if (map->bus->gather_write)
1451 		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1452 					     map->format.reg_bytes +
1453 					     map->format.pad_bytes,
1454 					     val, val_len);
1455 
1456 	/* If that didn't work fall back on linearising by hand. */
1457 	if (ret == -ENOTSUPP) {
1458 		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1459 		buf = kzalloc(len, GFP_KERNEL);
1460 		if (!buf)
1461 			return -ENOMEM;
1462 
1463 		memcpy(buf, map->work_buf, map->format.reg_bytes);
1464 		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1465 		       val, val_len);
1466 		ret = map->bus->write(map->bus_context, buf, len);
1467 
1468 		kfree(buf);
1469 	}
1470 
1471 	trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1472 
1473 	return ret;
1474 }
1475 
1476 /**
1477  * regmap_can_raw_write - Test if regmap_raw_write() is supported
1478  *
1479  * @map: Map to check.
1480  */
1481 bool regmap_can_raw_write(struct regmap *map)
1482 {
1483 	return map->bus && map->bus->write && map->format.format_val &&
1484 		map->format.format_reg;
1485 }
1486 EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1487 
1488 /**
1489  * regmap_get_raw_read_max - Get the maximum size we can read
1490  *
1491  * @map: Map to check.
1492  */
1493 size_t regmap_get_raw_read_max(struct regmap *map)
1494 {
1495 	return map->max_raw_read;
1496 }
1497 EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1498 
1499 /**
1500  * regmap_get_raw_write_max - Get the maximum size we can read
1501  *
1502  * @map: Map to check.
1503  */
1504 size_t regmap_get_raw_write_max(struct regmap *map)
1505 {
1506 	return map->max_raw_write;
1507 }
1508 EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1509 
1510 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1511 				       unsigned int val)
1512 {
1513 	int ret;
1514 	struct regmap_range_node *range;
1515 	struct regmap *map = context;
1516 
1517 	WARN_ON(!map->bus || !map->format.format_write);
1518 
1519 	range = _regmap_range_lookup(map, reg);
1520 	if (range) {
1521 		ret = _regmap_select_page(map, &reg, range, 1);
1522 		if (ret != 0)
1523 			return ret;
1524 	}
1525 
1526 	map->format.format_write(map, reg, val);
1527 
1528 	trace_regmap_hw_write_start(map, reg, 1);
1529 
1530 	ret = map->bus->write(map->bus_context, map->work_buf,
1531 			      map->format.buf_size);
1532 
1533 	trace_regmap_hw_write_done(map, reg, 1);
1534 
1535 	return ret;
1536 }
1537 
1538 static int _regmap_bus_reg_write(void *context, unsigned int reg,
1539 				 unsigned int val)
1540 {
1541 	struct regmap *map = context;
1542 
1543 	return map->bus->reg_write(map->bus_context, reg, val);
1544 }
1545 
1546 static int _regmap_bus_raw_write(void *context, unsigned int reg,
1547 				 unsigned int val)
1548 {
1549 	struct regmap *map = context;
1550 
1551 	WARN_ON(!map->bus || !map->format.format_val);
1552 
1553 	map->format.format_val(map->work_buf + map->format.reg_bytes
1554 			       + map->format.pad_bytes, val, 0);
1555 	return _regmap_raw_write(map, reg,
1556 				 map->work_buf +
1557 				 map->format.reg_bytes +
1558 				 map->format.pad_bytes,
1559 				 map->format.val_bytes);
1560 }
1561 
1562 static inline void *_regmap_map_get_context(struct regmap *map)
1563 {
1564 	return (map->bus) ? map : map->bus_context;
1565 }
1566 
1567 int _regmap_write(struct regmap *map, unsigned int reg,
1568 		  unsigned int val)
1569 {
1570 	int ret;
1571 	void *context = _regmap_map_get_context(map);
1572 
1573 	if (!regmap_writeable(map, reg))
1574 		return -EIO;
1575 
1576 	if (!map->cache_bypass && !map->defer_caching) {
1577 		ret = regcache_write(map, reg, val);
1578 		if (ret != 0)
1579 			return ret;
1580 		if (map->cache_only) {
1581 			map->cache_dirty = true;
1582 			return 0;
1583 		}
1584 	}
1585 
1586 #ifdef LOG_DEVICE
1587 	if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1588 		dev_info(map->dev, "%x <= %x\n", reg, val);
1589 #endif
1590 
1591 	trace_regmap_reg_write(map, reg, val);
1592 
1593 	return map->reg_write(context, reg, val);
1594 }
1595 
1596 /**
1597  * regmap_write(): Write a value to a single register
1598  *
1599  * @map: Register map to write to
1600  * @reg: Register to write to
1601  * @val: Value to be written
1602  *
1603  * A value of zero will be returned on success, a negative errno will
1604  * be returned in error cases.
1605  */
1606 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1607 {
1608 	int ret;
1609 
1610 	if (!IS_ALIGNED(reg, map->reg_stride))
1611 		return -EINVAL;
1612 
1613 	map->lock(map->lock_arg);
1614 
1615 	ret = _regmap_write(map, reg, val);
1616 
1617 	map->unlock(map->lock_arg);
1618 
1619 	return ret;
1620 }
1621 EXPORT_SYMBOL_GPL(regmap_write);
1622 
1623 /**
1624  * regmap_write_async(): Write a value to a single register asynchronously
1625  *
1626  * @map: Register map to write to
1627  * @reg: Register to write to
1628  * @val: Value to be written
1629  *
1630  * A value of zero will be returned on success, a negative errno will
1631  * be returned in error cases.
1632  */
1633 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1634 {
1635 	int ret;
1636 
1637 	if (!IS_ALIGNED(reg, map->reg_stride))
1638 		return -EINVAL;
1639 
1640 	map->lock(map->lock_arg);
1641 
1642 	map->async = true;
1643 
1644 	ret = _regmap_write(map, reg, val);
1645 
1646 	map->async = false;
1647 
1648 	map->unlock(map->lock_arg);
1649 
1650 	return ret;
1651 }
1652 EXPORT_SYMBOL_GPL(regmap_write_async);
1653 
1654 /**
1655  * regmap_raw_write(): Write raw values to one or more registers
1656  *
1657  * @map: Register map to write to
1658  * @reg: Initial register to write to
1659  * @val: Block of data to be written, laid out for direct transmission to the
1660  *       device
1661  * @val_len: Length of data pointed to by val.
1662  *
1663  * This function is intended to be used for things like firmware
1664  * download where a large block of data needs to be transferred to the
1665  * device.  No formatting will be done on the data provided.
1666  *
1667  * A value of zero will be returned on success, a negative errno will
1668  * be returned in error cases.
1669  */
1670 int regmap_raw_write(struct regmap *map, unsigned int reg,
1671 		     const void *val, size_t val_len)
1672 {
1673 	int ret;
1674 
1675 	if (!regmap_can_raw_write(map))
1676 		return -EINVAL;
1677 	if (val_len % map->format.val_bytes)
1678 		return -EINVAL;
1679 	if (map->max_raw_write && map->max_raw_write > val_len)
1680 		return -E2BIG;
1681 
1682 	map->lock(map->lock_arg);
1683 
1684 	ret = _regmap_raw_write(map, reg, val, val_len);
1685 
1686 	map->unlock(map->lock_arg);
1687 
1688 	return ret;
1689 }
1690 EXPORT_SYMBOL_GPL(regmap_raw_write);
1691 
1692 /**
1693  * regmap_field_write(): Write a value to a single register field
1694  *
1695  * @field: Register field to write to
1696  * @val: Value to be written
1697  *
1698  * A value of zero will be returned on success, a negative errno will
1699  * be returned in error cases.
1700  */
1701 int regmap_field_write(struct regmap_field *field, unsigned int val)
1702 {
1703 	return regmap_update_bits(field->regmap, field->reg,
1704 				field->mask, val << field->shift);
1705 }
1706 EXPORT_SYMBOL_GPL(regmap_field_write);
1707 
1708 /**
1709  * regmap_field_update_bits():	Perform a read/modify/write cycle
1710  *                              on the register field
1711  *
1712  * @field: Register field to write to
1713  * @mask: Bitmask to change
1714  * @val: Value to be written
1715  *
1716  * A value of zero will be returned on success, a negative errno will
1717  * be returned in error cases.
1718  */
1719 int regmap_field_update_bits(struct regmap_field *field, unsigned int mask, unsigned int val)
1720 {
1721 	mask = (mask << field->shift) & field->mask;
1722 
1723 	return regmap_update_bits(field->regmap, field->reg,
1724 				  mask, val << field->shift);
1725 }
1726 EXPORT_SYMBOL_GPL(regmap_field_update_bits);
1727 
1728 /**
1729  * regmap_fields_write(): Write a value to a single register field with port ID
1730  *
1731  * @field: Register field to write to
1732  * @id: port ID
1733  * @val: Value to be written
1734  *
1735  * A value of zero will be returned on success, a negative errno will
1736  * be returned in error cases.
1737  */
1738 int regmap_fields_write(struct regmap_field *field, unsigned int id,
1739 			unsigned int val)
1740 {
1741 	if (id >= field->id_size)
1742 		return -EINVAL;
1743 
1744 	return regmap_update_bits(field->regmap,
1745 				  field->reg + (field->id_offset * id),
1746 				  field->mask, val << field->shift);
1747 }
1748 EXPORT_SYMBOL_GPL(regmap_fields_write);
1749 
1750 int regmap_fields_force_write(struct regmap_field *field, unsigned int id,
1751 			unsigned int val)
1752 {
1753 	if (id >= field->id_size)
1754 		return -EINVAL;
1755 
1756 	return regmap_write_bits(field->regmap,
1757 				  field->reg + (field->id_offset * id),
1758 				  field->mask, val << field->shift);
1759 }
1760 EXPORT_SYMBOL_GPL(regmap_fields_force_write);
1761 
1762 /**
1763  * regmap_fields_update_bits():	Perform a read/modify/write cycle
1764  *                              on the register field
1765  *
1766  * @field: Register field to write to
1767  * @id: port ID
1768  * @mask: Bitmask to change
1769  * @val: Value to be written
1770  *
1771  * A value of zero will be returned on success, a negative errno will
1772  * be returned in error cases.
1773  */
1774 int regmap_fields_update_bits(struct regmap_field *field,  unsigned int id,
1775 			      unsigned int mask, unsigned int val)
1776 {
1777 	if (id >= field->id_size)
1778 		return -EINVAL;
1779 
1780 	mask = (mask << field->shift) & field->mask;
1781 
1782 	return regmap_update_bits(field->regmap,
1783 				  field->reg + (field->id_offset * id),
1784 				  mask, val << field->shift);
1785 }
1786 EXPORT_SYMBOL_GPL(regmap_fields_update_bits);
1787 
1788 /*
1789  * regmap_bulk_write(): Write multiple registers to the device
1790  *
1791  * @map: Register map to write to
1792  * @reg: First register to be write from
1793  * @val: Block of data to be written, in native register size for device
1794  * @val_count: Number of registers to write
1795  *
1796  * This function is intended to be used for writing a large block of
1797  * data to the device either in single transfer or multiple transfer.
1798  *
1799  * A value of zero will be returned on success, a negative errno will
1800  * be returned in error cases.
1801  */
1802 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
1803 		     size_t val_count)
1804 {
1805 	int ret = 0, i;
1806 	size_t val_bytes = map->format.val_bytes;
1807 	size_t total_size = val_bytes * val_count;
1808 
1809 	if (map->bus && !map->format.parse_inplace)
1810 		return -EINVAL;
1811 	if (!IS_ALIGNED(reg, map->reg_stride))
1812 		return -EINVAL;
1813 
1814 	/*
1815 	 * Some devices don't support bulk write, for
1816 	 * them we have a series of single write operations in the first two if
1817 	 * blocks.
1818 	 *
1819 	 * The first if block is used for memory mapped io. It does not allow
1820 	 * val_bytes of 3 for example.
1821 	 * The second one is used for busses which do not have this limitation
1822 	 * and can write arbitrary value lengths.
1823 	 */
1824 	if (!map->bus) {
1825 		map->lock(map->lock_arg);
1826 		for (i = 0; i < val_count; i++) {
1827 			unsigned int ival;
1828 
1829 			switch (val_bytes) {
1830 			case 1:
1831 				ival = *(u8 *)(val + (i * val_bytes));
1832 				break;
1833 			case 2:
1834 				ival = *(u16 *)(val + (i * val_bytes));
1835 				break;
1836 			case 4:
1837 				ival = *(u32 *)(val + (i * val_bytes));
1838 				break;
1839 #ifdef CONFIG_64BIT
1840 			case 8:
1841 				ival = *(u64 *)(val + (i * val_bytes));
1842 				break;
1843 #endif
1844 			default:
1845 				ret = -EINVAL;
1846 				goto out;
1847 			}
1848 
1849 			ret = _regmap_write(map, reg + (i * map->reg_stride),
1850 					ival);
1851 			if (ret != 0)
1852 				goto out;
1853 		}
1854 out:
1855 		map->unlock(map->lock_arg);
1856 	} else if (map->use_single_write ||
1857 		   (map->max_raw_write && map->max_raw_write < total_size)) {
1858 		int chunk_stride = map->reg_stride;
1859 		size_t chunk_size = val_bytes;
1860 		size_t chunk_count = val_count;
1861 
1862 		if (!map->use_single_write) {
1863 			chunk_size = map->max_raw_write;
1864 			if (chunk_size % val_bytes)
1865 				chunk_size -= chunk_size % val_bytes;
1866 			chunk_count = total_size / chunk_size;
1867 			chunk_stride *= chunk_size / val_bytes;
1868 		}
1869 
1870 		map->lock(map->lock_arg);
1871 		/* Write as many bytes as possible with chunk_size */
1872 		for (i = 0; i < chunk_count; i++) {
1873 			ret = _regmap_raw_write(map,
1874 						reg + (i * chunk_stride),
1875 						val + (i * chunk_size),
1876 						chunk_size);
1877 			if (ret)
1878 				break;
1879 		}
1880 
1881 		/* Write remaining bytes */
1882 		if (!ret && chunk_size * i < total_size) {
1883 			ret = _regmap_raw_write(map, reg + (i * chunk_stride),
1884 						val + (i * chunk_size),
1885 						total_size - i * chunk_size);
1886 		}
1887 		map->unlock(map->lock_arg);
1888 	} else {
1889 		void *wval;
1890 
1891 		if (!val_count)
1892 			return -EINVAL;
1893 
1894 		wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
1895 		if (!wval) {
1896 			dev_err(map->dev, "Error in memory allocation\n");
1897 			return -ENOMEM;
1898 		}
1899 		for (i = 0; i < val_count * val_bytes; i += val_bytes)
1900 			map->format.parse_inplace(wval + i);
1901 
1902 		map->lock(map->lock_arg);
1903 		ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count);
1904 		map->unlock(map->lock_arg);
1905 
1906 		kfree(wval);
1907 	}
1908 	return ret;
1909 }
1910 EXPORT_SYMBOL_GPL(regmap_bulk_write);
1911 
1912 /*
1913  * _regmap_raw_multi_reg_write()
1914  *
1915  * the (register,newvalue) pairs in regs have not been formatted, but
1916  * they are all in the same page and have been changed to being page
1917  * relative. The page register has been written if that was necessary.
1918  */
1919 static int _regmap_raw_multi_reg_write(struct regmap *map,
1920 				       const struct reg_sequence *regs,
1921 				       size_t num_regs)
1922 {
1923 	int ret;
1924 	void *buf;
1925 	int i;
1926 	u8 *u8;
1927 	size_t val_bytes = map->format.val_bytes;
1928 	size_t reg_bytes = map->format.reg_bytes;
1929 	size_t pad_bytes = map->format.pad_bytes;
1930 	size_t pair_size = reg_bytes + pad_bytes + val_bytes;
1931 	size_t len = pair_size * num_regs;
1932 
1933 	if (!len)
1934 		return -EINVAL;
1935 
1936 	buf = kzalloc(len, GFP_KERNEL);
1937 	if (!buf)
1938 		return -ENOMEM;
1939 
1940 	/* We have to linearise by hand. */
1941 
1942 	u8 = buf;
1943 
1944 	for (i = 0; i < num_regs; i++) {
1945 		unsigned int reg = regs[i].reg;
1946 		unsigned int val = regs[i].def;
1947 		trace_regmap_hw_write_start(map, reg, 1);
1948 		map->format.format_reg(u8, reg, map->reg_shift);
1949 		u8 += reg_bytes + pad_bytes;
1950 		map->format.format_val(u8, val, 0);
1951 		u8 += val_bytes;
1952 	}
1953 	u8 = buf;
1954 	*u8 |= map->write_flag_mask;
1955 
1956 	ret = map->bus->write(map->bus_context, buf, len);
1957 
1958 	kfree(buf);
1959 
1960 	for (i = 0; i < num_regs; i++) {
1961 		int reg = regs[i].reg;
1962 		trace_regmap_hw_write_done(map, reg, 1);
1963 	}
1964 	return ret;
1965 }
1966 
1967 static unsigned int _regmap_register_page(struct regmap *map,
1968 					  unsigned int reg,
1969 					  struct regmap_range_node *range)
1970 {
1971 	unsigned int win_page = (reg - range->range_min) / range->window_len;
1972 
1973 	return win_page;
1974 }
1975 
1976 static int _regmap_range_multi_paged_reg_write(struct regmap *map,
1977 					       struct reg_sequence *regs,
1978 					       size_t num_regs)
1979 {
1980 	int ret;
1981 	int i, n;
1982 	struct reg_sequence *base;
1983 	unsigned int this_page = 0;
1984 	unsigned int page_change = 0;
1985 	/*
1986 	 * the set of registers are not neccessarily in order, but
1987 	 * since the order of write must be preserved this algorithm
1988 	 * chops the set each time the page changes. This also applies
1989 	 * if there is a delay required at any point in the sequence.
1990 	 */
1991 	base = regs;
1992 	for (i = 0, n = 0; i < num_regs; i++, n++) {
1993 		unsigned int reg = regs[i].reg;
1994 		struct regmap_range_node *range;
1995 
1996 		range = _regmap_range_lookup(map, reg);
1997 		if (range) {
1998 			unsigned int win_page = _regmap_register_page(map, reg,
1999 								      range);
2000 
2001 			if (i == 0)
2002 				this_page = win_page;
2003 			if (win_page != this_page) {
2004 				this_page = win_page;
2005 				page_change = 1;
2006 			}
2007 		}
2008 
2009 		/* If we have both a page change and a delay make sure to
2010 		 * write the regs and apply the delay before we change the
2011 		 * page.
2012 		 */
2013 
2014 		if (page_change || regs[i].delay_us) {
2015 
2016 				/* For situations where the first write requires
2017 				 * a delay we need to make sure we don't call
2018 				 * raw_multi_reg_write with n=0
2019 				 * This can't occur with page breaks as we
2020 				 * never write on the first iteration
2021 				 */
2022 				if (regs[i].delay_us && i == 0)
2023 					n = 1;
2024 
2025 				ret = _regmap_raw_multi_reg_write(map, base, n);
2026 				if (ret != 0)
2027 					return ret;
2028 
2029 				if (regs[i].delay_us)
2030 					udelay(regs[i].delay_us);
2031 
2032 				base += n;
2033 				n = 0;
2034 
2035 				if (page_change) {
2036 					ret = _regmap_select_page(map,
2037 								  &base[n].reg,
2038 								  range, 1);
2039 					if (ret != 0)
2040 						return ret;
2041 
2042 					page_change = 0;
2043 				}
2044 
2045 		}
2046 
2047 	}
2048 	if (n > 0)
2049 		return _regmap_raw_multi_reg_write(map, base, n);
2050 	return 0;
2051 }
2052 
2053 static int _regmap_multi_reg_write(struct regmap *map,
2054 				   const struct reg_sequence *regs,
2055 				   size_t num_regs)
2056 {
2057 	int i;
2058 	int ret;
2059 
2060 	if (!map->can_multi_write) {
2061 		for (i = 0; i < num_regs; i++) {
2062 			ret = _regmap_write(map, regs[i].reg, regs[i].def);
2063 			if (ret != 0)
2064 				return ret;
2065 
2066 			if (regs[i].delay_us)
2067 				udelay(regs[i].delay_us);
2068 		}
2069 		return 0;
2070 	}
2071 
2072 	if (!map->format.parse_inplace)
2073 		return -EINVAL;
2074 
2075 	if (map->writeable_reg)
2076 		for (i = 0; i < num_regs; i++) {
2077 			int reg = regs[i].reg;
2078 			if (!map->writeable_reg(map->dev, reg))
2079 				return -EINVAL;
2080 			if (!IS_ALIGNED(reg, map->reg_stride))
2081 				return -EINVAL;
2082 		}
2083 
2084 	if (!map->cache_bypass) {
2085 		for (i = 0; i < num_regs; i++) {
2086 			unsigned int val = regs[i].def;
2087 			unsigned int reg = regs[i].reg;
2088 			ret = regcache_write(map, reg, val);
2089 			if (ret) {
2090 				dev_err(map->dev,
2091 				"Error in caching of register: %x ret: %d\n",
2092 								reg, ret);
2093 				return ret;
2094 			}
2095 		}
2096 		if (map->cache_only) {
2097 			map->cache_dirty = true;
2098 			return 0;
2099 		}
2100 	}
2101 
2102 	WARN_ON(!map->bus);
2103 
2104 	for (i = 0; i < num_regs; i++) {
2105 		unsigned int reg = regs[i].reg;
2106 		struct regmap_range_node *range;
2107 
2108 		/* Coalesce all the writes between a page break or a delay
2109 		 * in a sequence
2110 		 */
2111 		range = _regmap_range_lookup(map, reg);
2112 		if (range || regs[i].delay_us) {
2113 			size_t len = sizeof(struct reg_sequence)*num_regs;
2114 			struct reg_sequence *base = kmemdup(regs, len,
2115 							   GFP_KERNEL);
2116 			if (!base)
2117 				return -ENOMEM;
2118 			ret = _regmap_range_multi_paged_reg_write(map, base,
2119 								  num_regs);
2120 			kfree(base);
2121 
2122 			return ret;
2123 		}
2124 	}
2125 	return _regmap_raw_multi_reg_write(map, regs, num_regs);
2126 }
2127 
2128 /*
2129  * regmap_multi_reg_write(): Write multiple registers to the device
2130  *
2131  * where the set of register,value pairs are supplied in any order,
2132  * possibly not all in a single range.
2133  *
2134  * @map: Register map to write to
2135  * @regs: Array of structures containing register,value to be written
2136  * @num_regs: Number of registers to write
2137  *
2138  * The 'normal' block write mode will send ultimately send data on the
2139  * target bus as R,V1,V2,V3,..,Vn where successively higer registers are
2140  * addressed. However, this alternative block multi write mode will send
2141  * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2142  * must of course support the mode.
2143  *
2144  * A value of zero will be returned on success, a negative errno will be
2145  * returned in error cases.
2146  */
2147 int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2148 			   int num_regs)
2149 {
2150 	int ret;
2151 
2152 	map->lock(map->lock_arg);
2153 
2154 	ret = _regmap_multi_reg_write(map, regs, num_regs);
2155 
2156 	map->unlock(map->lock_arg);
2157 
2158 	return ret;
2159 }
2160 EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2161 
2162 /*
2163  * regmap_multi_reg_write_bypassed(): Write multiple registers to the
2164  *                                    device but not the cache
2165  *
2166  * where the set of register are supplied in any order
2167  *
2168  * @map: Register map to write to
2169  * @regs: Array of structures containing register,value to be written
2170  * @num_regs: Number of registers to write
2171  *
2172  * This function is intended to be used for writing a large block of data
2173  * atomically to the device in single transfer for those I2C client devices
2174  * that implement this alternative block write mode.
2175  *
2176  * A value of zero will be returned on success, a negative errno will
2177  * be returned in error cases.
2178  */
2179 int regmap_multi_reg_write_bypassed(struct regmap *map,
2180 				    const struct reg_sequence *regs,
2181 				    int num_regs)
2182 {
2183 	int ret;
2184 	bool bypass;
2185 
2186 	map->lock(map->lock_arg);
2187 
2188 	bypass = map->cache_bypass;
2189 	map->cache_bypass = true;
2190 
2191 	ret = _regmap_multi_reg_write(map, regs, num_regs);
2192 
2193 	map->cache_bypass = bypass;
2194 
2195 	map->unlock(map->lock_arg);
2196 
2197 	return ret;
2198 }
2199 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2200 
2201 /**
2202  * regmap_raw_write_async(): Write raw values to one or more registers
2203  *                           asynchronously
2204  *
2205  * @map: Register map to write to
2206  * @reg: Initial register to write to
2207  * @val: Block of data to be written, laid out for direct transmission to the
2208  *       device.  Must be valid until regmap_async_complete() is called.
2209  * @val_len: Length of data pointed to by val.
2210  *
2211  * This function is intended to be used for things like firmware
2212  * download where a large block of data needs to be transferred to the
2213  * device.  No formatting will be done on the data provided.
2214  *
2215  * If supported by the underlying bus the write will be scheduled
2216  * asynchronously, helping maximise I/O speed on higher speed buses
2217  * like SPI.  regmap_async_complete() can be called to ensure that all
2218  * asynchrnous writes have been completed.
2219  *
2220  * A value of zero will be returned on success, a negative errno will
2221  * be returned in error cases.
2222  */
2223 int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2224 			   const void *val, size_t val_len)
2225 {
2226 	int ret;
2227 
2228 	if (val_len % map->format.val_bytes)
2229 		return -EINVAL;
2230 	if (!IS_ALIGNED(reg, map->reg_stride))
2231 		return -EINVAL;
2232 
2233 	map->lock(map->lock_arg);
2234 
2235 	map->async = true;
2236 
2237 	ret = _regmap_raw_write(map, reg, val, val_len);
2238 
2239 	map->async = false;
2240 
2241 	map->unlock(map->lock_arg);
2242 
2243 	return ret;
2244 }
2245 EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2246 
2247 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2248 			    unsigned int val_len)
2249 {
2250 	struct regmap_range_node *range;
2251 	u8 *u8 = map->work_buf;
2252 	int ret;
2253 
2254 	WARN_ON(!map->bus);
2255 
2256 	range = _regmap_range_lookup(map, reg);
2257 	if (range) {
2258 		ret = _regmap_select_page(map, &reg, range,
2259 					  val_len / map->format.val_bytes);
2260 		if (ret != 0)
2261 			return ret;
2262 	}
2263 
2264 	map->format.format_reg(map->work_buf, reg, map->reg_shift);
2265 
2266 	/*
2267 	 * Some buses or devices flag reads by setting the high bits in the
2268 	 * register address; since it's always the high bits for all
2269 	 * current formats we can do this here rather than in
2270 	 * formatting.  This may break if we get interesting formats.
2271 	 */
2272 	u8[0] |= map->read_flag_mask;
2273 
2274 	trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2275 
2276 	ret = map->bus->read(map->bus_context, map->work_buf,
2277 			     map->format.reg_bytes + map->format.pad_bytes,
2278 			     val, val_len);
2279 
2280 	trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2281 
2282 	return ret;
2283 }
2284 
2285 static int _regmap_bus_reg_read(void *context, unsigned int reg,
2286 				unsigned int *val)
2287 {
2288 	struct regmap *map = context;
2289 
2290 	return map->bus->reg_read(map->bus_context, reg, val);
2291 }
2292 
2293 static int _regmap_bus_read(void *context, unsigned int reg,
2294 			    unsigned int *val)
2295 {
2296 	int ret;
2297 	struct regmap *map = context;
2298 
2299 	if (!map->format.parse_val)
2300 		return -EINVAL;
2301 
2302 	ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes);
2303 	if (ret == 0)
2304 		*val = map->format.parse_val(map->work_buf);
2305 
2306 	return ret;
2307 }
2308 
2309 static int _regmap_read(struct regmap *map, unsigned int reg,
2310 			unsigned int *val)
2311 {
2312 	int ret;
2313 	void *context = _regmap_map_get_context(map);
2314 
2315 	if (!map->cache_bypass) {
2316 		ret = regcache_read(map, reg, val);
2317 		if (ret == 0)
2318 			return 0;
2319 	}
2320 
2321 	if (map->cache_only)
2322 		return -EBUSY;
2323 
2324 	if (!regmap_readable(map, reg))
2325 		return -EIO;
2326 
2327 	ret = map->reg_read(context, reg, val);
2328 	if (ret == 0) {
2329 #ifdef LOG_DEVICE
2330 		if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
2331 			dev_info(map->dev, "%x => %x\n", reg, *val);
2332 #endif
2333 
2334 		trace_regmap_reg_read(map, reg, *val);
2335 
2336 		if (!map->cache_bypass)
2337 			regcache_write(map, reg, *val);
2338 	}
2339 
2340 	return ret;
2341 }
2342 
2343 /**
2344  * regmap_read(): Read a value from a single register
2345  *
2346  * @map: Register map to read from
2347  * @reg: Register to be read from
2348  * @val: Pointer to store read value
2349  *
2350  * A value of zero will be returned on success, a negative errno will
2351  * be returned in error cases.
2352  */
2353 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2354 {
2355 	int ret;
2356 
2357 	if (!IS_ALIGNED(reg, map->reg_stride))
2358 		return -EINVAL;
2359 
2360 	map->lock(map->lock_arg);
2361 
2362 	ret = _regmap_read(map, reg, val);
2363 
2364 	map->unlock(map->lock_arg);
2365 
2366 	return ret;
2367 }
2368 EXPORT_SYMBOL_GPL(regmap_read);
2369 
2370 /**
2371  * regmap_raw_read(): Read raw data from the device
2372  *
2373  * @map: Register map to read from
2374  * @reg: First register to be read from
2375  * @val: Pointer to store read value
2376  * @val_len: Size of data to read
2377  *
2378  * A value of zero will be returned on success, a negative errno will
2379  * be returned in error cases.
2380  */
2381 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2382 		    size_t val_len)
2383 {
2384 	size_t val_bytes = map->format.val_bytes;
2385 	size_t val_count = val_len / val_bytes;
2386 	unsigned int v;
2387 	int ret, i;
2388 
2389 	if (!map->bus)
2390 		return -EINVAL;
2391 	if (val_len % map->format.val_bytes)
2392 		return -EINVAL;
2393 	if (!IS_ALIGNED(reg, map->reg_stride))
2394 		return -EINVAL;
2395 	if (val_count == 0)
2396 		return -EINVAL;
2397 
2398 	map->lock(map->lock_arg);
2399 
2400 	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2401 	    map->cache_type == REGCACHE_NONE) {
2402 		if (!map->bus->read) {
2403 			ret = -ENOTSUPP;
2404 			goto out;
2405 		}
2406 		if (map->max_raw_read && map->max_raw_read < val_len) {
2407 			ret = -E2BIG;
2408 			goto out;
2409 		}
2410 
2411 		/* Physical block read if there's no cache involved */
2412 		ret = _regmap_raw_read(map, reg, val, val_len);
2413 
2414 	} else {
2415 		/* Otherwise go word by word for the cache; should be low
2416 		 * cost as we expect to hit the cache.
2417 		 */
2418 		for (i = 0; i < val_count; i++) {
2419 			ret = _regmap_read(map, reg + (i * map->reg_stride),
2420 					   &v);
2421 			if (ret != 0)
2422 				goto out;
2423 
2424 			map->format.format_val(val + (i * val_bytes), v, 0);
2425 		}
2426 	}
2427 
2428  out:
2429 	map->unlock(map->lock_arg);
2430 
2431 	return ret;
2432 }
2433 EXPORT_SYMBOL_GPL(regmap_raw_read);
2434 
2435 /**
2436  * regmap_field_read(): Read a value to a single register field
2437  *
2438  * @field: Register field to read from
2439  * @val: Pointer to store read value
2440  *
2441  * A value of zero will be returned on success, a negative errno will
2442  * be returned in error cases.
2443  */
2444 int regmap_field_read(struct regmap_field *field, unsigned int *val)
2445 {
2446 	int ret;
2447 	unsigned int reg_val;
2448 	ret = regmap_read(field->regmap, field->reg, &reg_val);
2449 	if (ret != 0)
2450 		return ret;
2451 
2452 	reg_val &= field->mask;
2453 	reg_val >>= field->shift;
2454 	*val = reg_val;
2455 
2456 	return ret;
2457 }
2458 EXPORT_SYMBOL_GPL(regmap_field_read);
2459 
2460 /**
2461  * regmap_fields_read(): Read a value to a single register field with port ID
2462  *
2463  * @field: Register field to read from
2464  * @id: port ID
2465  * @val: Pointer to store read value
2466  *
2467  * A value of zero will be returned on success, a negative errno will
2468  * be returned in error cases.
2469  */
2470 int regmap_fields_read(struct regmap_field *field, unsigned int id,
2471 		       unsigned int *val)
2472 {
2473 	int ret;
2474 	unsigned int reg_val;
2475 
2476 	if (id >= field->id_size)
2477 		return -EINVAL;
2478 
2479 	ret = regmap_read(field->regmap,
2480 			  field->reg + (field->id_offset * id),
2481 			  &reg_val);
2482 	if (ret != 0)
2483 		return ret;
2484 
2485 	reg_val &= field->mask;
2486 	reg_val >>= field->shift;
2487 	*val = reg_val;
2488 
2489 	return ret;
2490 }
2491 EXPORT_SYMBOL_GPL(regmap_fields_read);
2492 
2493 /**
2494  * regmap_bulk_read(): Read multiple registers from the device
2495  *
2496  * @map: Register map to read from
2497  * @reg: First register to be read from
2498  * @val: Pointer to store read value, in native register size for device
2499  * @val_count: Number of registers to read
2500  *
2501  * A value of zero will be returned on success, a negative errno will
2502  * be returned in error cases.
2503  */
2504 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2505 		     size_t val_count)
2506 {
2507 	int ret, i;
2508 	size_t val_bytes = map->format.val_bytes;
2509 	bool vol = regmap_volatile_range(map, reg, val_count);
2510 
2511 	if (!IS_ALIGNED(reg, map->reg_stride))
2512 		return -EINVAL;
2513 
2514 	if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2515 		/*
2516 		 * Some devices does not support bulk read, for
2517 		 * them we have a series of single read operations.
2518 		 */
2519 		size_t total_size = val_bytes * val_count;
2520 
2521 		if (!map->use_single_read &&
2522 		    (!map->max_raw_read || map->max_raw_read > total_size)) {
2523 			ret = regmap_raw_read(map, reg, val,
2524 					      val_bytes * val_count);
2525 			if (ret != 0)
2526 				return ret;
2527 		} else {
2528 			/*
2529 			 * Some devices do not support bulk read or do not
2530 			 * support large bulk reads, for them we have a series
2531 			 * of read operations.
2532 			 */
2533 			int chunk_stride = map->reg_stride;
2534 			size_t chunk_size = val_bytes;
2535 			size_t chunk_count = val_count;
2536 
2537 			if (!map->use_single_read) {
2538 				chunk_size = map->max_raw_read;
2539 				if (chunk_size % val_bytes)
2540 					chunk_size -= chunk_size % val_bytes;
2541 				chunk_count = total_size / chunk_size;
2542 				chunk_stride *= chunk_size / val_bytes;
2543 			}
2544 
2545 			/* Read bytes that fit into a multiple of chunk_size */
2546 			for (i = 0; i < chunk_count; i++) {
2547 				ret = regmap_raw_read(map,
2548 						      reg + (i * chunk_stride),
2549 						      val + (i * chunk_size),
2550 						      chunk_size);
2551 				if (ret != 0)
2552 					return ret;
2553 			}
2554 
2555 			/* Read remaining bytes */
2556 			if (chunk_size * i < total_size) {
2557 				ret = regmap_raw_read(map,
2558 						      reg + (i * chunk_stride),
2559 						      val + (i * chunk_size),
2560 						      total_size - i * chunk_size);
2561 				if (ret != 0)
2562 					return ret;
2563 			}
2564 		}
2565 
2566 		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2567 			map->format.parse_inplace(val + i);
2568 	} else {
2569 		for (i = 0; i < val_count; i++) {
2570 			unsigned int ival;
2571 			ret = regmap_read(map, reg + (i * map->reg_stride),
2572 					  &ival);
2573 			if (ret != 0)
2574 				return ret;
2575 
2576 			if (map->format.format_val) {
2577 				map->format.format_val(val + (i * val_bytes), ival, 0);
2578 			} else {
2579 				/* Devices providing read and write
2580 				 * operations can use the bulk I/O
2581 				 * functions if they define a val_bytes,
2582 				 * we assume that the values are native
2583 				 * endian.
2584 				 */
2585 #ifdef CONFIG_64BIT
2586 				u64 *u64 = val;
2587 #endif
2588 				u32 *u32 = val;
2589 				u16 *u16 = val;
2590 				u8 *u8 = val;
2591 
2592 				switch (map->format.val_bytes) {
2593 #ifdef CONFIG_64BIT
2594 				case 8:
2595 					u64[i] = ival;
2596 					break;
2597 #endif
2598 				case 4:
2599 					u32[i] = ival;
2600 					break;
2601 				case 2:
2602 					u16[i] = ival;
2603 					break;
2604 				case 1:
2605 					u8[i] = ival;
2606 					break;
2607 				default:
2608 					return -EINVAL;
2609 				}
2610 			}
2611 		}
2612 	}
2613 
2614 	return 0;
2615 }
2616 EXPORT_SYMBOL_GPL(regmap_bulk_read);
2617 
2618 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
2619 			       unsigned int mask, unsigned int val,
2620 			       bool *change, bool force_write)
2621 {
2622 	int ret;
2623 	unsigned int tmp, orig;
2624 
2625 	if (change)
2626 		*change = false;
2627 
2628 	if (regmap_volatile(map, reg) && map->reg_update_bits) {
2629 		ret = map->reg_update_bits(map->bus_context, reg, mask, val);
2630 		if (ret == 0 && change)
2631 			*change = true;
2632 	} else {
2633 		ret = _regmap_read(map, reg, &orig);
2634 		if (ret != 0)
2635 			return ret;
2636 
2637 		tmp = orig & ~mask;
2638 		tmp |= val & mask;
2639 
2640 		if (force_write || (tmp != orig)) {
2641 			ret = _regmap_write(map, reg, tmp);
2642 			if (ret == 0 && change)
2643 				*change = true;
2644 		}
2645 	}
2646 
2647 	return ret;
2648 }
2649 
2650 /**
2651  * regmap_update_bits: Perform a read/modify/write cycle on the register map
2652  *
2653  * @map: Register map to update
2654  * @reg: Register to update
2655  * @mask: Bitmask to change
2656  * @val: New value for bitmask
2657  *
2658  * Returns zero for success, a negative number on error.
2659  */
2660 int regmap_update_bits(struct regmap *map, unsigned int reg,
2661 		       unsigned int mask, unsigned int val)
2662 {
2663 	int ret;
2664 
2665 	map->lock(map->lock_arg);
2666 	ret = _regmap_update_bits(map, reg, mask, val, NULL, false);
2667 	map->unlock(map->lock_arg);
2668 
2669 	return ret;
2670 }
2671 EXPORT_SYMBOL_GPL(regmap_update_bits);
2672 
2673 /**
2674  * regmap_write_bits: Perform a read/modify/write cycle on the register map
2675  *
2676  * @map: Register map to update
2677  * @reg: Register to update
2678  * @mask: Bitmask to change
2679  * @val: New value for bitmask
2680  *
2681  * Returns zero for success, a negative number on error.
2682  */
2683 int regmap_write_bits(struct regmap *map, unsigned int reg,
2684 		      unsigned int mask, unsigned int val)
2685 {
2686 	int ret;
2687 
2688 	map->lock(map->lock_arg);
2689 	ret = _regmap_update_bits(map, reg, mask, val, NULL, true);
2690 	map->unlock(map->lock_arg);
2691 
2692 	return ret;
2693 }
2694 EXPORT_SYMBOL_GPL(regmap_write_bits);
2695 
2696 /**
2697  * regmap_update_bits_async: Perform a read/modify/write cycle on the register
2698  *                           map asynchronously
2699  *
2700  * @map: Register map to update
2701  * @reg: Register to update
2702  * @mask: Bitmask to change
2703  * @val: New value for bitmask
2704  *
2705  * With most buses the read must be done synchronously so this is most
2706  * useful for devices with a cache which do not need to interact with
2707  * the hardware to determine the current register value.
2708  *
2709  * Returns zero for success, a negative number on error.
2710  */
2711 int regmap_update_bits_async(struct regmap *map, unsigned int reg,
2712 			     unsigned int mask, unsigned int val)
2713 {
2714 	int ret;
2715 
2716 	map->lock(map->lock_arg);
2717 
2718 	map->async = true;
2719 
2720 	ret = _regmap_update_bits(map, reg, mask, val, NULL, false);
2721 
2722 	map->async = false;
2723 
2724 	map->unlock(map->lock_arg);
2725 
2726 	return ret;
2727 }
2728 EXPORT_SYMBOL_GPL(regmap_update_bits_async);
2729 
2730 /**
2731  * regmap_update_bits_check: Perform a read/modify/write cycle on the
2732  *                           register map and report if updated
2733  *
2734  * @map: Register map to update
2735  * @reg: Register to update
2736  * @mask: Bitmask to change
2737  * @val: New value for bitmask
2738  * @change: Boolean indicating if a write was done
2739  *
2740  * Returns zero for success, a negative number on error.
2741  */
2742 int regmap_update_bits_check(struct regmap *map, unsigned int reg,
2743 			     unsigned int mask, unsigned int val,
2744 			     bool *change)
2745 {
2746 	int ret;
2747 
2748 	map->lock(map->lock_arg);
2749 	ret = _regmap_update_bits(map, reg, mask, val, change, false);
2750 	map->unlock(map->lock_arg);
2751 	return ret;
2752 }
2753 EXPORT_SYMBOL_GPL(regmap_update_bits_check);
2754 
2755 /**
2756  * regmap_update_bits_check_async: Perform a read/modify/write cycle on the
2757  *                                 register map asynchronously and report if
2758  *                                 updated
2759  *
2760  * @map: Register map to update
2761  * @reg: Register to update
2762  * @mask: Bitmask to change
2763  * @val: New value for bitmask
2764  * @change: Boolean indicating if a write was done
2765  *
2766  * With most buses the read must be done synchronously so this is most
2767  * useful for devices with a cache which do not need to interact with
2768  * the hardware to determine the current register value.
2769  *
2770  * Returns zero for success, a negative number on error.
2771  */
2772 int regmap_update_bits_check_async(struct regmap *map, unsigned int reg,
2773 				   unsigned int mask, unsigned int val,
2774 				   bool *change)
2775 {
2776 	int ret;
2777 
2778 	map->lock(map->lock_arg);
2779 
2780 	map->async = true;
2781 
2782 	ret = _regmap_update_bits(map, reg, mask, val, change, false);
2783 
2784 	map->async = false;
2785 
2786 	map->unlock(map->lock_arg);
2787 
2788 	return ret;
2789 }
2790 EXPORT_SYMBOL_GPL(regmap_update_bits_check_async);
2791 
2792 void regmap_async_complete_cb(struct regmap_async *async, int ret)
2793 {
2794 	struct regmap *map = async->map;
2795 	bool wake;
2796 
2797 	trace_regmap_async_io_complete(map);
2798 
2799 	spin_lock(&map->async_lock);
2800 	list_move(&async->list, &map->async_free);
2801 	wake = list_empty(&map->async_list);
2802 
2803 	if (ret != 0)
2804 		map->async_ret = ret;
2805 
2806 	spin_unlock(&map->async_lock);
2807 
2808 	if (wake)
2809 		wake_up(&map->async_waitq);
2810 }
2811 EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2812 
2813 static int regmap_async_is_done(struct regmap *map)
2814 {
2815 	unsigned long flags;
2816 	int ret;
2817 
2818 	spin_lock_irqsave(&map->async_lock, flags);
2819 	ret = list_empty(&map->async_list);
2820 	spin_unlock_irqrestore(&map->async_lock, flags);
2821 
2822 	return ret;
2823 }
2824 
2825 /**
2826  * regmap_async_complete: Ensure all asynchronous I/O has completed.
2827  *
2828  * @map: Map to operate on.
2829  *
2830  * Blocks until any pending asynchronous I/O has completed.  Returns
2831  * an error code for any failed I/O operations.
2832  */
2833 int regmap_async_complete(struct regmap *map)
2834 {
2835 	unsigned long flags;
2836 	int ret;
2837 
2838 	/* Nothing to do with no async support */
2839 	if (!map->bus || !map->bus->async_write)
2840 		return 0;
2841 
2842 	trace_regmap_async_complete_start(map);
2843 
2844 	wait_event(map->async_waitq, regmap_async_is_done(map));
2845 
2846 	spin_lock_irqsave(&map->async_lock, flags);
2847 	ret = map->async_ret;
2848 	map->async_ret = 0;
2849 	spin_unlock_irqrestore(&map->async_lock, flags);
2850 
2851 	trace_regmap_async_complete_done(map);
2852 
2853 	return ret;
2854 }
2855 EXPORT_SYMBOL_GPL(regmap_async_complete);
2856 
2857 /**
2858  * regmap_register_patch: Register and apply register updates to be applied
2859  *                        on device initialistion
2860  *
2861  * @map: Register map to apply updates to.
2862  * @regs: Values to update.
2863  * @num_regs: Number of entries in regs.
2864  *
2865  * Register a set of register updates to be applied to the device
2866  * whenever the device registers are synchronised with the cache and
2867  * apply them immediately.  Typically this is used to apply
2868  * corrections to be applied to the device defaults on startup, such
2869  * as the updates some vendors provide to undocumented registers.
2870  *
2871  * The caller must ensure that this function cannot be called
2872  * concurrently with either itself or regcache_sync().
2873  */
2874 int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
2875 			  int num_regs)
2876 {
2877 	struct reg_sequence *p;
2878 	int ret;
2879 	bool bypass;
2880 
2881 	if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
2882 	    num_regs))
2883 		return 0;
2884 
2885 	p = krealloc(map->patch,
2886 		     sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
2887 		     GFP_KERNEL);
2888 	if (p) {
2889 		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
2890 		map->patch = p;
2891 		map->patch_regs += num_regs;
2892 	} else {
2893 		return -ENOMEM;
2894 	}
2895 
2896 	map->lock(map->lock_arg);
2897 
2898 	bypass = map->cache_bypass;
2899 
2900 	map->cache_bypass = true;
2901 	map->async = true;
2902 
2903 	ret = _regmap_multi_reg_write(map, regs, num_regs);
2904 
2905 	map->async = false;
2906 	map->cache_bypass = bypass;
2907 
2908 	map->unlock(map->lock_arg);
2909 
2910 	regmap_async_complete(map);
2911 
2912 	return ret;
2913 }
2914 EXPORT_SYMBOL_GPL(regmap_register_patch);
2915 
2916 /*
2917  * regmap_get_val_bytes(): Report the size of a register value
2918  *
2919  * Report the size of a register value, mainly intended to for use by
2920  * generic infrastructure built on top of regmap.
2921  */
2922 int regmap_get_val_bytes(struct regmap *map)
2923 {
2924 	if (map->format.format_write)
2925 		return -EINVAL;
2926 
2927 	return map->format.val_bytes;
2928 }
2929 EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
2930 
2931 /**
2932  * regmap_get_max_register(): Report the max register value
2933  *
2934  * Report the max register value, mainly intended to for use by
2935  * generic infrastructure built on top of regmap.
2936  */
2937 int regmap_get_max_register(struct regmap *map)
2938 {
2939 	return map->max_register ? map->max_register : -EINVAL;
2940 }
2941 EXPORT_SYMBOL_GPL(regmap_get_max_register);
2942 
2943 /**
2944  * regmap_get_reg_stride(): Report the register address stride
2945  *
2946  * Report the register address stride, mainly intended to for use by
2947  * generic infrastructure built on top of regmap.
2948  */
2949 int regmap_get_reg_stride(struct regmap *map)
2950 {
2951 	return map->reg_stride;
2952 }
2953 EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
2954 
2955 int regmap_parse_val(struct regmap *map, const void *buf,
2956 			unsigned int *val)
2957 {
2958 	if (!map->format.parse_val)
2959 		return -EINVAL;
2960 
2961 	*val = map->format.parse_val(buf);
2962 
2963 	return 0;
2964 }
2965 EXPORT_SYMBOL_GPL(regmap_parse_val);
2966 
2967 static int __init regmap_initcall(void)
2968 {
2969 	regmap_debugfs_initcall();
2970 
2971 	return 0;
2972 }
2973 postcore_initcall(regmap_initcall);
2974