xref: /linux/drivers/base/regmap/regmap.c (revision 96ba9dd65788a0bd2a7d1e57ec78b7642f0ccc25)
1 /*
2  * Register map access API
3  *
4  * Copyright 2011 Wolfson Microelectronics plc
5  *
6  * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/mutex.h>
17 #include <linux/err.h>
18 #include <linux/rbtree.h>
19 #include <linux/sched.h>
20 
21 #define CREATE_TRACE_POINTS
22 #include <trace/events/regmap.h>
23 
24 #include "internal.h"
25 
26 /*
27  * Sometimes for failures during very early init the trace
28  * infrastructure isn't available early enough to be used.  For this
29  * sort of problem defining LOG_DEVICE will add printks for basic
30  * register I/O on a specific device.
31  */
32 #undef LOG_DEVICE
33 
34 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
35 			       unsigned int mask, unsigned int val,
36 			       bool *change);
37 
38 static int _regmap_bus_read(void *context, unsigned int reg,
39 			    unsigned int *val);
40 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
41 				       unsigned int val);
42 static int _regmap_bus_raw_write(void *context, unsigned int reg,
43 				 unsigned int val);
44 
45 bool regmap_reg_in_ranges(unsigned int reg,
46 			  const struct regmap_range *ranges,
47 			  unsigned int nranges)
48 {
49 	const struct regmap_range *r;
50 	int i;
51 
52 	for (i = 0, r = ranges; i < nranges; i++, r++)
53 		if (regmap_reg_in_range(reg, r))
54 			return true;
55 	return false;
56 }
57 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
58 
59 bool regmap_check_range_table(struct regmap *map, unsigned int reg,
60 			      const struct regmap_access_table *table)
61 {
62 	/* Check "no ranges" first */
63 	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
64 		return false;
65 
66 	/* In case zero "yes ranges" are supplied, any reg is OK */
67 	if (!table->n_yes_ranges)
68 		return true;
69 
70 	return regmap_reg_in_ranges(reg, table->yes_ranges,
71 				    table->n_yes_ranges);
72 }
73 EXPORT_SYMBOL_GPL(regmap_check_range_table);
74 
75 bool regmap_writeable(struct regmap *map, unsigned int reg)
76 {
77 	if (map->max_register && reg > map->max_register)
78 		return false;
79 
80 	if (map->writeable_reg)
81 		return map->writeable_reg(map->dev, reg);
82 
83 	if (map->wr_table)
84 		return regmap_check_range_table(map, reg, map->wr_table);
85 
86 	return true;
87 }
88 
89 bool regmap_readable(struct regmap *map, unsigned int reg)
90 {
91 	if (map->max_register && reg > map->max_register)
92 		return false;
93 
94 	if (map->format.format_write)
95 		return false;
96 
97 	if (map->readable_reg)
98 		return map->readable_reg(map->dev, reg);
99 
100 	if (map->rd_table)
101 		return regmap_check_range_table(map, reg, map->rd_table);
102 
103 	return true;
104 }
105 
106 bool regmap_volatile(struct regmap *map, unsigned int reg)
107 {
108 	if (!regmap_readable(map, reg))
109 		return false;
110 
111 	if (map->volatile_reg)
112 		return map->volatile_reg(map->dev, reg);
113 
114 	if (map->volatile_table)
115 		return regmap_check_range_table(map, reg, map->volatile_table);
116 
117 	if (map->cache_ops)
118 		return false;
119 	else
120 		return true;
121 }
122 
123 bool regmap_precious(struct regmap *map, unsigned int reg)
124 {
125 	if (!regmap_readable(map, reg))
126 		return false;
127 
128 	if (map->precious_reg)
129 		return map->precious_reg(map->dev, reg);
130 
131 	if (map->precious_table)
132 		return regmap_check_range_table(map, reg, map->precious_table);
133 
134 	return false;
135 }
136 
137 static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
138 	size_t num)
139 {
140 	unsigned int i;
141 
142 	for (i = 0; i < num; i++)
143 		if (!regmap_volatile(map, reg + i))
144 			return false;
145 
146 	return true;
147 }
148 
149 static void regmap_format_2_6_write(struct regmap *map,
150 				     unsigned int reg, unsigned int val)
151 {
152 	u8 *out = map->work_buf;
153 
154 	*out = (reg << 6) | val;
155 }
156 
157 static void regmap_format_4_12_write(struct regmap *map,
158 				     unsigned int reg, unsigned int val)
159 {
160 	__be16 *out = map->work_buf;
161 	*out = cpu_to_be16((reg << 12) | val);
162 }
163 
164 static void regmap_format_7_9_write(struct regmap *map,
165 				    unsigned int reg, unsigned int val)
166 {
167 	__be16 *out = map->work_buf;
168 	*out = cpu_to_be16((reg << 9) | val);
169 }
170 
171 static void regmap_format_10_14_write(struct regmap *map,
172 				    unsigned int reg, unsigned int val)
173 {
174 	u8 *out = map->work_buf;
175 
176 	out[2] = val;
177 	out[1] = (val >> 8) | (reg << 6);
178 	out[0] = reg >> 2;
179 }
180 
181 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
182 {
183 	u8 *b = buf;
184 
185 	b[0] = val << shift;
186 }
187 
188 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
189 {
190 	__be16 *b = buf;
191 
192 	b[0] = cpu_to_be16(val << shift);
193 }
194 
195 static void regmap_format_16_native(void *buf, unsigned int val,
196 				    unsigned int shift)
197 {
198 	*(u16 *)buf = val << shift;
199 }
200 
201 static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
202 {
203 	u8 *b = buf;
204 
205 	val <<= shift;
206 
207 	b[0] = val >> 16;
208 	b[1] = val >> 8;
209 	b[2] = val;
210 }
211 
212 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
213 {
214 	__be32 *b = buf;
215 
216 	b[0] = cpu_to_be32(val << shift);
217 }
218 
219 static void regmap_format_32_native(void *buf, unsigned int val,
220 				    unsigned int shift)
221 {
222 	*(u32 *)buf = val << shift;
223 }
224 
225 static void regmap_parse_inplace_noop(void *buf)
226 {
227 }
228 
229 static unsigned int regmap_parse_8(const void *buf)
230 {
231 	const u8 *b = buf;
232 
233 	return b[0];
234 }
235 
236 static unsigned int regmap_parse_16_be(const void *buf)
237 {
238 	const __be16 *b = buf;
239 
240 	return be16_to_cpu(b[0]);
241 }
242 
243 static void regmap_parse_16_be_inplace(void *buf)
244 {
245 	__be16 *b = buf;
246 
247 	b[0] = be16_to_cpu(b[0]);
248 }
249 
250 static unsigned int regmap_parse_16_native(const void *buf)
251 {
252 	return *(u16 *)buf;
253 }
254 
255 static unsigned int regmap_parse_24(const void *buf)
256 {
257 	const u8 *b = buf;
258 	unsigned int ret = b[2];
259 	ret |= ((unsigned int)b[1]) << 8;
260 	ret |= ((unsigned int)b[0]) << 16;
261 
262 	return ret;
263 }
264 
265 static unsigned int regmap_parse_32_be(const void *buf)
266 {
267 	const __be32 *b = buf;
268 
269 	return be32_to_cpu(b[0]);
270 }
271 
272 static void regmap_parse_32_be_inplace(void *buf)
273 {
274 	__be32 *b = buf;
275 
276 	b[0] = be32_to_cpu(b[0]);
277 }
278 
279 static unsigned int regmap_parse_32_native(const void *buf)
280 {
281 	return *(u32 *)buf;
282 }
283 
284 static void regmap_lock_mutex(void *__map)
285 {
286 	struct regmap *map = __map;
287 	mutex_lock(&map->mutex);
288 }
289 
290 static void regmap_unlock_mutex(void *__map)
291 {
292 	struct regmap *map = __map;
293 	mutex_unlock(&map->mutex);
294 }
295 
296 static void regmap_lock_spinlock(void *__map)
297 __acquires(&map->spinlock)
298 {
299 	struct regmap *map = __map;
300 	unsigned long flags;
301 
302 	spin_lock_irqsave(&map->spinlock, flags);
303 	map->spinlock_flags = flags;
304 }
305 
306 static void regmap_unlock_spinlock(void *__map)
307 __releases(&map->spinlock)
308 {
309 	struct regmap *map = __map;
310 	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
311 }
312 
313 static void dev_get_regmap_release(struct device *dev, void *res)
314 {
315 	/*
316 	 * We don't actually have anything to do here; the goal here
317 	 * is not to manage the regmap but to provide a simple way to
318 	 * get the regmap back given a struct device.
319 	 */
320 }
321 
322 static bool _regmap_range_add(struct regmap *map,
323 			      struct regmap_range_node *data)
324 {
325 	struct rb_root *root = &map->range_tree;
326 	struct rb_node **new = &(root->rb_node), *parent = NULL;
327 
328 	while (*new) {
329 		struct regmap_range_node *this =
330 			container_of(*new, struct regmap_range_node, node);
331 
332 		parent = *new;
333 		if (data->range_max < this->range_min)
334 			new = &((*new)->rb_left);
335 		else if (data->range_min > this->range_max)
336 			new = &((*new)->rb_right);
337 		else
338 			return false;
339 	}
340 
341 	rb_link_node(&data->node, parent, new);
342 	rb_insert_color(&data->node, root);
343 
344 	return true;
345 }
346 
347 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
348 						      unsigned int reg)
349 {
350 	struct rb_node *node = map->range_tree.rb_node;
351 
352 	while (node) {
353 		struct regmap_range_node *this =
354 			container_of(node, struct regmap_range_node, node);
355 
356 		if (reg < this->range_min)
357 			node = node->rb_left;
358 		else if (reg > this->range_max)
359 			node = node->rb_right;
360 		else
361 			return this;
362 	}
363 
364 	return NULL;
365 }
366 
367 static void regmap_range_exit(struct regmap *map)
368 {
369 	struct rb_node *next;
370 	struct regmap_range_node *range_node;
371 
372 	next = rb_first(&map->range_tree);
373 	while (next) {
374 		range_node = rb_entry(next, struct regmap_range_node, node);
375 		next = rb_next(&range_node->node);
376 		rb_erase(&range_node->node, &map->range_tree);
377 		kfree(range_node);
378 	}
379 
380 	kfree(map->selector_work_buf);
381 }
382 
383 int regmap_attach_dev(struct device *dev, struct regmap *map,
384 		      const struct regmap_config *config)
385 {
386 	struct regmap **m;
387 
388 	map->dev = dev;
389 
390 	regmap_debugfs_init(map, config->name);
391 
392 	/* Add a devres resource for dev_get_regmap() */
393 	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
394 	if (!m) {
395 		regmap_debugfs_exit(map);
396 		return -ENOMEM;
397 	}
398 	*m = map;
399 	devres_add(dev, m);
400 
401 	return 0;
402 }
403 EXPORT_SYMBOL_GPL(regmap_attach_dev);
404 
405 /**
406  * regmap_init(): Initialise register map
407  *
408  * @dev: Device that will be interacted with
409  * @bus: Bus-specific callbacks to use with device
410  * @bus_context: Data passed to bus-specific callbacks
411  * @config: Configuration for register map
412  *
413  * The return value will be an ERR_PTR() on error or a valid pointer to
414  * a struct regmap.  This function should generally not be called
415  * directly, it should be called by bus-specific init functions.
416  */
417 struct regmap *regmap_init(struct device *dev,
418 			   const struct regmap_bus *bus,
419 			   void *bus_context,
420 			   const struct regmap_config *config)
421 {
422 	struct regmap *map;
423 	int ret = -EINVAL;
424 	enum regmap_endian reg_endian, val_endian;
425 	int i, j;
426 
427 	if (!config)
428 		goto err;
429 
430 	map = kzalloc(sizeof(*map), GFP_KERNEL);
431 	if (map == NULL) {
432 		ret = -ENOMEM;
433 		goto err;
434 	}
435 
436 	if (config->lock && config->unlock) {
437 		map->lock = config->lock;
438 		map->unlock = config->unlock;
439 		map->lock_arg = config->lock_arg;
440 	} else {
441 		if ((bus && bus->fast_io) ||
442 		    config->fast_io) {
443 			spin_lock_init(&map->spinlock);
444 			map->lock = regmap_lock_spinlock;
445 			map->unlock = regmap_unlock_spinlock;
446 		} else {
447 			mutex_init(&map->mutex);
448 			map->lock = regmap_lock_mutex;
449 			map->unlock = regmap_unlock_mutex;
450 		}
451 		map->lock_arg = map;
452 	}
453 	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
454 	map->format.pad_bytes = config->pad_bits / 8;
455 	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
456 	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
457 			config->val_bits + config->pad_bits, 8);
458 	map->reg_shift = config->pad_bits % 8;
459 	if (config->reg_stride)
460 		map->reg_stride = config->reg_stride;
461 	else
462 		map->reg_stride = 1;
463 	map->use_single_rw = config->use_single_rw;
464 	map->can_multi_write = config->can_multi_write;
465 	map->dev = dev;
466 	map->bus = bus;
467 	map->bus_context = bus_context;
468 	map->max_register = config->max_register;
469 	map->wr_table = config->wr_table;
470 	map->rd_table = config->rd_table;
471 	map->volatile_table = config->volatile_table;
472 	map->precious_table = config->precious_table;
473 	map->writeable_reg = config->writeable_reg;
474 	map->readable_reg = config->readable_reg;
475 	map->volatile_reg = config->volatile_reg;
476 	map->precious_reg = config->precious_reg;
477 	map->cache_type = config->cache_type;
478 	map->name = config->name;
479 
480 	spin_lock_init(&map->async_lock);
481 	INIT_LIST_HEAD(&map->async_list);
482 	INIT_LIST_HEAD(&map->async_free);
483 	init_waitqueue_head(&map->async_waitq);
484 
485 	if (config->read_flag_mask || config->write_flag_mask) {
486 		map->read_flag_mask = config->read_flag_mask;
487 		map->write_flag_mask = config->write_flag_mask;
488 	} else if (bus) {
489 		map->read_flag_mask = bus->read_flag_mask;
490 	}
491 
492 	if (!bus) {
493 		map->reg_read  = config->reg_read;
494 		map->reg_write = config->reg_write;
495 
496 		map->defer_caching = false;
497 		goto skip_format_initialization;
498 	} else {
499 		map->reg_read  = _regmap_bus_read;
500 	}
501 
502 	reg_endian = config->reg_format_endian;
503 	if (reg_endian == REGMAP_ENDIAN_DEFAULT)
504 		reg_endian = bus->reg_format_endian_default;
505 	if (reg_endian == REGMAP_ENDIAN_DEFAULT)
506 		reg_endian = REGMAP_ENDIAN_BIG;
507 
508 	val_endian = config->val_format_endian;
509 	if (val_endian == REGMAP_ENDIAN_DEFAULT)
510 		val_endian = bus->val_format_endian_default;
511 	if (val_endian == REGMAP_ENDIAN_DEFAULT)
512 		val_endian = REGMAP_ENDIAN_BIG;
513 
514 	switch (config->reg_bits + map->reg_shift) {
515 	case 2:
516 		switch (config->val_bits) {
517 		case 6:
518 			map->format.format_write = regmap_format_2_6_write;
519 			break;
520 		default:
521 			goto err_map;
522 		}
523 		break;
524 
525 	case 4:
526 		switch (config->val_bits) {
527 		case 12:
528 			map->format.format_write = regmap_format_4_12_write;
529 			break;
530 		default:
531 			goto err_map;
532 		}
533 		break;
534 
535 	case 7:
536 		switch (config->val_bits) {
537 		case 9:
538 			map->format.format_write = regmap_format_7_9_write;
539 			break;
540 		default:
541 			goto err_map;
542 		}
543 		break;
544 
545 	case 10:
546 		switch (config->val_bits) {
547 		case 14:
548 			map->format.format_write = regmap_format_10_14_write;
549 			break;
550 		default:
551 			goto err_map;
552 		}
553 		break;
554 
555 	case 8:
556 		map->format.format_reg = regmap_format_8;
557 		break;
558 
559 	case 16:
560 		switch (reg_endian) {
561 		case REGMAP_ENDIAN_BIG:
562 			map->format.format_reg = regmap_format_16_be;
563 			break;
564 		case REGMAP_ENDIAN_NATIVE:
565 			map->format.format_reg = regmap_format_16_native;
566 			break;
567 		default:
568 			goto err_map;
569 		}
570 		break;
571 
572 	case 24:
573 		if (reg_endian != REGMAP_ENDIAN_BIG)
574 			goto err_map;
575 		map->format.format_reg = regmap_format_24;
576 		break;
577 
578 	case 32:
579 		switch (reg_endian) {
580 		case REGMAP_ENDIAN_BIG:
581 			map->format.format_reg = regmap_format_32_be;
582 			break;
583 		case REGMAP_ENDIAN_NATIVE:
584 			map->format.format_reg = regmap_format_32_native;
585 			break;
586 		default:
587 			goto err_map;
588 		}
589 		break;
590 
591 	default:
592 		goto err_map;
593 	}
594 
595 	if (val_endian == REGMAP_ENDIAN_NATIVE)
596 		map->format.parse_inplace = regmap_parse_inplace_noop;
597 
598 	switch (config->val_bits) {
599 	case 8:
600 		map->format.format_val = regmap_format_8;
601 		map->format.parse_val = regmap_parse_8;
602 		map->format.parse_inplace = regmap_parse_inplace_noop;
603 		break;
604 	case 16:
605 		switch (val_endian) {
606 		case REGMAP_ENDIAN_BIG:
607 			map->format.format_val = regmap_format_16_be;
608 			map->format.parse_val = regmap_parse_16_be;
609 			map->format.parse_inplace = regmap_parse_16_be_inplace;
610 			break;
611 		case REGMAP_ENDIAN_NATIVE:
612 			map->format.format_val = regmap_format_16_native;
613 			map->format.parse_val = regmap_parse_16_native;
614 			break;
615 		default:
616 			goto err_map;
617 		}
618 		break;
619 	case 24:
620 		if (val_endian != REGMAP_ENDIAN_BIG)
621 			goto err_map;
622 		map->format.format_val = regmap_format_24;
623 		map->format.parse_val = regmap_parse_24;
624 		break;
625 	case 32:
626 		switch (val_endian) {
627 		case REGMAP_ENDIAN_BIG:
628 			map->format.format_val = regmap_format_32_be;
629 			map->format.parse_val = regmap_parse_32_be;
630 			map->format.parse_inplace = regmap_parse_32_be_inplace;
631 			break;
632 		case REGMAP_ENDIAN_NATIVE:
633 			map->format.format_val = regmap_format_32_native;
634 			map->format.parse_val = regmap_parse_32_native;
635 			break;
636 		default:
637 			goto err_map;
638 		}
639 		break;
640 	}
641 
642 	if (map->format.format_write) {
643 		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
644 		    (val_endian != REGMAP_ENDIAN_BIG))
645 			goto err_map;
646 		map->use_single_rw = true;
647 	}
648 
649 	if (!map->format.format_write &&
650 	    !(map->format.format_reg && map->format.format_val))
651 		goto err_map;
652 
653 	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
654 	if (map->work_buf == NULL) {
655 		ret = -ENOMEM;
656 		goto err_map;
657 	}
658 
659 	if (map->format.format_write) {
660 		map->defer_caching = false;
661 		map->reg_write = _regmap_bus_formatted_write;
662 	} else if (map->format.format_val) {
663 		map->defer_caching = true;
664 		map->reg_write = _regmap_bus_raw_write;
665 	}
666 
667 skip_format_initialization:
668 
669 	map->range_tree = RB_ROOT;
670 	for (i = 0; i < config->num_ranges; i++) {
671 		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
672 		struct regmap_range_node *new;
673 
674 		/* Sanity check */
675 		if (range_cfg->range_max < range_cfg->range_min) {
676 			dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
677 				range_cfg->range_max, range_cfg->range_min);
678 			goto err_range;
679 		}
680 
681 		if (range_cfg->range_max > map->max_register) {
682 			dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
683 				range_cfg->range_max, map->max_register);
684 			goto err_range;
685 		}
686 
687 		if (range_cfg->selector_reg > map->max_register) {
688 			dev_err(map->dev,
689 				"Invalid range %d: selector out of map\n", i);
690 			goto err_range;
691 		}
692 
693 		if (range_cfg->window_len == 0) {
694 			dev_err(map->dev, "Invalid range %d: window_len 0\n",
695 				i);
696 			goto err_range;
697 		}
698 
699 		/* Make sure, that this register range has no selector
700 		   or data window within its boundary */
701 		for (j = 0; j < config->num_ranges; j++) {
702 			unsigned sel_reg = config->ranges[j].selector_reg;
703 			unsigned win_min = config->ranges[j].window_start;
704 			unsigned win_max = win_min +
705 					   config->ranges[j].window_len - 1;
706 
707 			/* Allow data window inside its own virtual range */
708 			if (j == i)
709 				continue;
710 
711 			if (range_cfg->range_min <= sel_reg &&
712 			    sel_reg <= range_cfg->range_max) {
713 				dev_err(map->dev,
714 					"Range %d: selector for %d in window\n",
715 					i, j);
716 				goto err_range;
717 			}
718 
719 			if (!(win_max < range_cfg->range_min ||
720 			      win_min > range_cfg->range_max)) {
721 				dev_err(map->dev,
722 					"Range %d: window for %d in window\n",
723 					i, j);
724 				goto err_range;
725 			}
726 		}
727 
728 		new = kzalloc(sizeof(*new), GFP_KERNEL);
729 		if (new == NULL) {
730 			ret = -ENOMEM;
731 			goto err_range;
732 		}
733 
734 		new->map = map;
735 		new->name = range_cfg->name;
736 		new->range_min = range_cfg->range_min;
737 		new->range_max = range_cfg->range_max;
738 		new->selector_reg = range_cfg->selector_reg;
739 		new->selector_mask = range_cfg->selector_mask;
740 		new->selector_shift = range_cfg->selector_shift;
741 		new->window_start = range_cfg->window_start;
742 		new->window_len = range_cfg->window_len;
743 
744 		if (!_regmap_range_add(map, new)) {
745 			dev_err(map->dev, "Failed to add range %d\n", i);
746 			kfree(new);
747 			goto err_range;
748 		}
749 
750 		if (map->selector_work_buf == NULL) {
751 			map->selector_work_buf =
752 				kzalloc(map->format.buf_size, GFP_KERNEL);
753 			if (map->selector_work_buf == NULL) {
754 				ret = -ENOMEM;
755 				goto err_range;
756 			}
757 		}
758 	}
759 
760 	ret = regcache_init(map, config);
761 	if (ret != 0)
762 		goto err_range;
763 
764 	if (dev) {
765 		ret = regmap_attach_dev(dev, map, config);
766 		if (ret != 0)
767 			goto err_regcache;
768 	}
769 
770 	return map;
771 
772 err_regcache:
773 	regcache_exit(map);
774 err_range:
775 	regmap_range_exit(map);
776 	kfree(map->work_buf);
777 err_map:
778 	kfree(map);
779 err:
780 	return ERR_PTR(ret);
781 }
782 EXPORT_SYMBOL_GPL(regmap_init);
783 
784 static void devm_regmap_release(struct device *dev, void *res)
785 {
786 	regmap_exit(*(struct regmap **)res);
787 }
788 
789 /**
790  * devm_regmap_init(): Initialise managed register map
791  *
792  * @dev: Device that will be interacted with
793  * @bus: Bus-specific callbacks to use with device
794  * @bus_context: Data passed to bus-specific callbacks
795  * @config: Configuration for register map
796  *
797  * The return value will be an ERR_PTR() on error or a valid pointer
798  * to a struct regmap.  This function should generally not be called
799  * directly, it should be called by bus-specific init functions.  The
800  * map will be automatically freed by the device management code.
801  */
802 struct regmap *devm_regmap_init(struct device *dev,
803 				const struct regmap_bus *bus,
804 				void *bus_context,
805 				const struct regmap_config *config)
806 {
807 	struct regmap **ptr, *regmap;
808 
809 	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
810 	if (!ptr)
811 		return ERR_PTR(-ENOMEM);
812 
813 	regmap = regmap_init(dev, bus, bus_context, config);
814 	if (!IS_ERR(regmap)) {
815 		*ptr = regmap;
816 		devres_add(dev, ptr);
817 	} else {
818 		devres_free(ptr);
819 	}
820 
821 	return regmap;
822 }
823 EXPORT_SYMBOL_GPL(devm_regmap_init);
824 
825 static void regmap_field_init(struct regmap_field *rm_field,
826 	struct regmap *regmap, struct reg_field reg_field)
827 {
828 	int field_bits = reg_field.msb - reg_field.lsb + 1;
829 	rm_field->regmap = regmap;
830 	rm_field->reg = reg_field.reg;
831 	rm_field->shift = reg_field.lsb;
832 	rm_field->mask = ((BIT(field_bits) - 1) << reg_field.lsb);
833 	rm_field->id_size = reg_field.id_size;
834 	rm_field->id_offset = reg_field.id_offset;
835 }
836 
837 /**
838  * devm_regmap_field_alloc(): Allocate and initialise a register field
839  * in a register map.
840  *
841  * @dev: Device that will be interacted with
842  * @regmap: regmap bank in which this register field is located.
843  * @reg_field: Register field with in the bank.
844  *
845  * The return value will be an ERR_PTR() on error or a valid pointer
846  * to a struct regmap_field. The regmap_field will be automatically freed
847  * by the device management code.
848  */
849 struct regmap_field *devm_regmap_field_alloc(struct device *dev,
850 		struct regmap *regmap, struct reg_field reg_field)
851 {
852 	struct regmap_field *rm_field = devm_kzalloc(dev,
853 					sizeof(*rm_field), GFP_KERNEL);
854 	if (!rm_field)
855 		return ERR_PTR(-ENOMEM);
856 
857 	regmap_field_init(rm_field, regmap, reg_field);
858 
859 	return rm_field;
860 
861 }
862 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
863 
864 /**
865  * devm_regmap_field_free(): Free register field allocated using
866  * devm_regmap_field_alloc. Usally drivers need not call this function,
867  * as the memory allocated via devm will be freed as per device-driver
868  * life-cyle.
869  *
870  * @dev: Device that will be interacted with
871  * @field: regmap field which should be freed.
872  */
873 void devm_regmap_field_free(struct device *dev,
874 	struct regmap_field *field)
875 {
876 	devm_kfree(dev, field);
877 }
878 EXPORT_SYMBOL_GPL(devm_regmap_field_free);
879 
880 /**
881  * regmap_field_alloc(): Allocate and initialise a register field
882  * in a register map.
883  *
884  * @regmap: regmap bank in which this register field is located.
885  * @reg_field: Register field with in the bank.
886  *
887  * The return value will be an ERR_PTR() on error or a valid pointer
888  * to a struct regmap_field. The regmap_field should be freed by the
889  * user once its finished working with it using regmap_field_free().
890  */
891 struct regmap_field *regmap_field_alloc(struct regmap *regmap,
892 		struct reg_field reg_field)
893 {
894 	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
895 
896 	if (!rm_field)
897 		return ERR_PTR(-ENOMEM);
898 
899 	regmap_field_init(rm_field, regmap, reg_field);
900 
901 	return rm_field;
902 }
903 EXPORT_SYMBOL_GPL(regmap_field_alloc);
904 
905 /**
906  * regmap_field_free(): Free register field allocated using regmap_field_alloc
907  *
908  * @field: regmap field which should be freed.
909  */
910 void regmap_field_free(struct regmap_field *field)
911 {
912 	kfree(field);
913 }
914 EXPORT_SYMBOL_GPL(regmap_field_free);
915 
916 /**
917  * regmap_reinit_cache(): Reinitialise the current register cache
918  *
919  * @map: Register map to operate on.
920  * @config: New configuration.  Only the cache data will be used.
921  *
922  * Discard any existing register cache for the map and initialize a
923  * new cache.  This can be used to restore the cache to defaults or to
924  * update the cache configuration to reflect runtime discovery of the
925  * hardware.
926  *
927  * No explicit locking is done here, the user needs to ensure that
928  * this function will not race with other calls to regmap.
929  */
930 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
931 {
932 	regcache_exit(map);
933 	regmap_debugfs_exit(map);
934 
935 	map->max_register = config->max_register;
936 	map->writeable_reg = config->writeable_reg;
937 	map->readable_reg = config->readable_reg;
938 	map->volatile_reg = config->volatile_reg;
939 	map->precious_reg = config->precious_reg;
940 	map->cache_type = config->cache_type;
941 
942 	regmap_debugfs_init(map, config->name);
943 
944 	map->cache_bypass = false;
945 	map->cache_only = false;
946 
947 	return regcache_init(map, config);
948 }
949 EXPORT_SYMBOL_GPL(regmap_reinit_cache);
950 
951 /**
952  * regmap_exit(): Free a previously allocated register map
953  */
954 void regmap_exit(struct regmap *map)
955 {
956 	struct regmap_async *async;
957 
958 	regcache_exit(map);
959 	regmap_debugfs_exit(map);
960 	regmap_range_exit(map);
961 	if (map->bus && map->bus->free_context)
962 		map->bus->free_context(map->bus_context);
963 	kfree(map->work_buf);
964 	while (!list_empty(&map->async_free)) {
965 		async = list_first_entry_or_null(&map->async_free,
966 						 struct regmap_async,
967 						 list);
968 		list_del(&async->list);
969 		kfree(async->work_buf);
970 		kfree(async);
971 	}
972 	kfree(map);
973 }
974 EXPORT_SYMBOL_GPL(regmap_exit);
975 
976 static int dev_get_regmap_match(struct device *dev, void *res, void *data)
977 {
978 	struct regmap **r = res;
979 	if (!r || !*r) {
980 		WARN_ON(!r || !*r);
981 		return 0;
982 	}
983 
984 	/* If the user didn't specify a name match any */
985 	if (data)
986 		return (*r)->name == data;
987 	else
988 		return 1;
989 }
990 
991 /**
992  * dev_get_regmap(): Obtain the regmap (if any) for a device
993  *
994  * @dev: Device to retrieve the map for
995  * @name: Optional name for the register map, usually NULL.
996  *
997  * Returns the regmap for the device if one is present, or NULL.  If
998  * name is specified then it must match the name specified when
999  * registering the device, if it is NULL then the first regmap found
1000  * will be used.  Devices with multiple register maps are very rare,
1001  * generic code should normally not need to specify a name.
1002  */
1003 struct regmap *dev_get_regmap(struct device *dev, const char *name)
1004 {
1005 	struct regmap **r = devres_find(dev, dev_get_regmap_release,
1006 					dev_get_regmap_match, (void *)name);
1007 
1008 	if (!r)
1009 		return NULL;
1010 	return *r;
1011 }
1012 EXPORT_SYMBOL_GPL(dev_get_regmap);
1013 
1014 static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1015 			       struct regmap_range_node *range,
1016 			       unsigned int val_num)
1017 {
1018 	void *orig_work_buf;
1019 	unsigned int win_offset;
1020 	unsigned int win_page;
1021 	bool page_chg;
1022 	int ret;
1023 
1024 	win_offset = (*reg - range->range_min) % range->window_len;
1025 	win_page = (*reg - range->range_min) / range->window_len;
1026 
1027 	if (val_num > 1) {
1028 		/* Bulk write shouldn't cross range boundary */
1029 		if (*reg + val_num - 1 > range->range_max)
1030 			return -EINVAL;
1031 
1032 		/* ... or single page boundary */
1033 		if (val_num > range->window_len - win_offset)
1034 			return -EINVAL;
1035 	}
1036 
1037 	/* It is possible to have selector register inside data window.
1038 	   In that case, selector register is located on every page and
1039 	   it needs no page switching, when accessed alone. */
1040 	if (val_num > 1 ||
1041 	    range->window_start + win_offset != range->selector_reg) {
1042 		/* Use separate work_buf during page switching */
1043 		orig_work_buf = map->work_buf;
1044 		map->work_buf = map->selector_work_buf;
1045 
1046 		ret = _regmap_update_bits(map, range->selector_reg,
1047 					  range->selector_mask,
1048 					  win_page << range->selector_shift,
1049 					  &page_chg);
1050 
1051 		map->work_buf = orig_work_buf;
1052 
1053 		if (ret != 0)
1054 			return ret;
1055 	}
1056 
1057 	*reg = range->window_start + win_offset;
1058 
1059 	return 0;
1060 }
1061 
1062 int _regmap_raw_write(struct regmap *map, unsigned int reg,
1063 		      const void *val, size_t val_len)
1064 {
1065 	struct regmap_range_node *range;
1066 	unsigned long flags;
1067 	u8 *u8 = map->work_buf;
1068 	void *work_val = map->work_buf + map->format.reg_bytes +
1069 		map->format.pad_bytes;
1070 	void *buf;
1071 	int ret = -ENOTSUPP;
1072 	size_t len;
1073 	int i;
1074 
1075 	WARN_ON(!map->bus);
1076 
1077 	/* Check for unwritable registers before we start */
1078 	if (map->writeable_reg)
1079 		for (i = 0; i < val_len / map->format.val_bytes; i++)
1080 			if (!map->writeable_reg(map->dev,
1081 						reg + (i * map->reg_stride)))
1082 				return -EINVAL;
1083 
1084 	if (!map->cache_bypass && map->format.parse_val) {
1085 		unsigned int ival;
1086 		int val_bytes = map->format.val_bytes;
1087 		for (i = 0; i < val_len / val_bytes; i++) {
1088 			ival = map->format.parse_val(val + (i * val_bytes));
1089 			ret = regcache_write(map, reg + (i * map->reg_stride),
1090 					     ival);
1091 			if (ret) {
1092 				dev_err(map->dev,
1093 					"Error in caching of register: %x ret: %d\n",
1094 					reg + i, ret);
1095 				return ret;
1096 			}
1097 		}
1098 		if (map->cache_only) {
1099 			map->cache_dirty = true;
1100 			return 0;
1101 		}
1102 	}
1103 
1104 	range = _regmap_range_lookup(map, reg);
1105 	if (range) {
1106 		int val_num = val_len / map->format.val_bytes;
1107 		int win_offset = (reg - range->range_min) % range->window_len;
1108 		int win_residue = range->window_len - win_offset;
1109 
1110 		/* If the write goes beyond the end of the window split it */
1111 		while (val_num > win_residue) {
1112 			dev_dbg(map->dev, "Writing window %d/%zu\n",
1113 				win_residue, val_len / map->format.val_bytes);
1114 			ret = _regmap_raw_write(map, reg, val, win_residue *
1115 						map->format.val_bytes);
1116 			if (ret != 0)
1117 				return ret;
1118 
1119 			reg += win_residue;
1120 			val_num -= win_residue;
1121 			val += win_residue * map->format.val_bytes;
1122 			val_len -= win_residue * map->format.val_bytes;
1123 
1124 			win_offset = (reg - range->range_min) %
1125 				range->window_len;
1126 			win_residue = range->window_len - win_offset;
1127 		}
1128 
1129 		ret = _regmap_select_page(map, &reg, range, val_num);
1130 		if (ret != 0)
1131 			return ret;
1132 	}
1133 
1134 	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1135 
1136 	u8[0] |= map->write_flag_mask;
1137 
1138 	/*
1139 	 * Essentially all I/O mechanisms will be faster with a single
1140 	 * buffer to write.  Since register syncs often generate raw
1141 	 * writes of single registers optimise that case.
1142 	 */
1143 	if (val != work_val && val_len == map->format.val_bytes) {
1144 		memcpy(work_val, val, map->format.val_bytes);
1145 		val = work_val;
1146 	}
1147 
1148 	if (map->async && map->bus->async_write) {
1149 		struct regmap_async *async;
1150 
1151 		trace_regmap_async_write_start(map->dev, reg, val_len);
1152 
1153 		spin_lock_irqsave(&map->async_lock, flags);
1154 		async = list_first_entry_or_null(&map->async_free,
1155 						 struct regmap_async,
1156 						 list);
1157 		if (async)
1158 			list_del(&async->list);
1159 		spin_unlock_irqrestore(&map->async_lock, flags);
1160 
1161 		if (!async) {
1162 			async = map->bus->async_alloc();
1163 			if (!async)
1164 				return -ENOMEM;
1165 
1166 			async->work_buf = kzalloc(map->format.buf_size,
1167 						  GFP_KERNEL | GFP_DMA);
1168 			if (!async->work_buf) {
1169 				kfree(async);
1170 				return -ENOMEM;
1171 			}
1172 		}
1173 
1174 		async->map = map;
1175 
1176 		/* If the caller supplied the value we can use it safely. */
1177 		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1178 		       map->format.reg_bytes + map->format.val_bytes);
1179 
1180 		spin_lock_irqsave(&map->async_lock, flags);
1181 		list_add_tail(&async->list, &map->async_list);
1182 		spin_unlock_irqrestore(&map->async_lock, flags);
1183 
1184 		if (val != work_val)
1185 			ret = map->bus->async_write(map->bus_context,
1186 						    async->work_buf,
1187 						    map->format.reg_bytes +
1188 						    map->format.pad_bytes,
1189 						    val, val_len, async);
1190 		else
1191 			ret = map->bus->async_write(map->bus_context,
1192 						    async->work_buf,
1193 						    map->format.reg_bytes +
1194 						    map->format.pad_bytes +
1195 						    val_len, NULL, 0, async);
1196 
1197 		if (ret != 0) {
1198 			dev_err(map->dev, "Failed to schedule write: %d\n",
1199 				ret);
1200 
1201 			spin_lock_irqsave(&map->async_lock, flags);
1202 			list_move(&async->list, &map->async_free);
1203 			spin_unlock_irqrestore(&map->async_lock, flags);
1204 		}
1205 
1206 		return ret;
1207 	}
1208 
1209 	trace_regmap_hw_write_start(map->dev, reg,
1210 				    val_len / map->format.val_bytes);
1211 
1212 	/* If we're doing a single register write we can probably just
1213 	 * send the work_buf directly, otherwise try to do a gather
1214 	 * write.
1215 	 */
1216 	if (val == work_val)
1217 		ret = map->bus->write(map->bus_context, map->work_buf,
1218 				      map->format.reg_bytes +
1219 				      map->format.pad_bytes +
1220 				      val_len);
1221 	else if (map->bus->gather_write)
1222 		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1223 					     map->format.reg_bytes +
1224 					     map->format.pad_bytes,
1225 					     val, val_len);
1226 
1227 	/* If that didn't work fall back on linearising by hand. */
1228 	if (ret == -ENOTSUPP) {
1229 		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1230 		buf = kzalloc(len, GFP_KERNEL);
1231 		if (!buf)
1232 			return -ENOMEM;
1233 
1234 		memcpy(buf, map->work_buf, map->format.reg_bytes);
1235 		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1236 		       val, val_len);
1237 		ret = map->bus->write(map->bus_context, buf, len);
1238 
1239 		kfree(buf);
1240 	}
1241 
1242 	trace_regmap_hw_write_done(map->dev, reg,
1243 				   val_len / map->format.val_bytes);
1244 
1245 	return ret;
1246 }
1247 
1248 /**
1249  * regmap_can_raw_write - Test if regmap_raw_write() is supported
1250  *
1251  * @map: Map to check.
1252  */
1253 bool regmap_can_raw_write(struct regmap *map)
1254 {
1255 	return map->bus && map->format.format_val && map->format.format_reg;
1256 }
1257 EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1258 
1259 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1260 				       unsigned int val)
1261 {
1262 	int ret;
1263 	struct regmap_range_node *range;
1264 	struct regmap *map = context;
1265 
1266 	WARN_ON(!map->bus || !map->format.format_write);
1267 
1268 	range = _regmap_range_lookup(map, reg);
1269 	if (range) {
1270 		ret = _regmap_select_page(map, &reg, range, 1);
1271 		if (ret != 0)
1272 			return ret;
1273 	}
1274 
1275 	map->format.format_write(map, reg, val);
1276 
1277 	trace_regmap_hw_write_start(map->dev, reg, 1);
1278 
1279 	ret = map->bus->write(map->bus_context, map->work_buf,
1280 			      map->format.buf_size);
1281 
1282 	trace_regmap_hw_write_done(map->dev, reg, 1);
1283 
1284 	return ret;
1285 }
1286 
1287 static int _regmap_bus_raw_write(void *context, unsigned int reg,
1288 				 unsigned int val)
1289 {
1290 	struct regmap *map = context;
1291 
1292 	WARN_ON(!map->bus || !map->format.format_val);
1293 
1294 	map->format.format_val(map->work_buf + map->format.reg_bytes
1295 			       + map->format.pad_bytes, val, 0);
1296 	return _regmap_raw_write(map, reg,
1297 				 map->work_buf +
1298 				 map->format.reg_bytes +
1299 				 map->format.pad_bytes,
1300 				 map->format.val_bytes);
1301 }
1302 
1303 static inline void *_regmap_map_get_context(struct regmap *map)
1304 {
1305 	return (map->bus) ? map : map->bus_context;
1306 }
1307 
1308 int _regmap_write(struct regmap *map, unsigned int reg,
1309 		  unsigned int val)
1310 {
1311 	int ret;
1312 	void *context = _regmap_map_get_context(map);
1313 
1314 	if (!regmap_writeable(map, reg))
1315 		return -EIO;
1316 
1317 	if (!map->cache_bypass && !map->defer_caching) {
1318 		ret = regcache_write(map, reg, val);
1319 		if (ret != 0)
1320 			return ret;
1321 		if (map->cache_only) {
1322 			map->cache_dirty = true;
1323 			return 0;
1324 		}
1325 	}
1326 
1327 #ifdef LOG_DEVICE
1328 	if (strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1329 		dev_info(map->dev, "%x <= %x\n", reg, val);
1330 #endif
1331 
1332 	trace_regmap_reg_write(map->dev, reg, val);
1333 
1334 	return map->reg_write(context, reg, val);
1335 }
1336 
1337 /**
1338  * regmap_write(): Write a value to a single register
1339  *
1340  * @map: Register map to write to
1341  * @reg: Register to write to
1342  * @val: Value to be written
1343  *
1344  * A value of zero will be returned on success, a negative errno will
1345  * be returned in error cases.
1346  */
1347 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1348 {
1349 	int ret;
1350 
1351 	if (reg % map->reg_stride)
1352 		return -EINVAL;
1353 
1354 	map->lock(map->lock_arg);
1355 
1356 	ret = _regmap_write(map, reg, val);
1357 
1358 	map->unlock(map->lock_arg);
1359 
1360 	return ret;
1361 }
1362 EXPORT_SYMBOL_GPL(regmap_write);
1363 
1364 /**
1365  * regmap_write_async(): Write a value to a single register asynchronously
1366  *
1367  * @map: Register map to write to
1368  * @reg: Register to write to
1369  * @val: Value to be written
1370  *
1371  * A value of zero will be returned on success, a negative errno will
1372  * be returned in error cases.
1373  */
1374 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1375 {
1376 	int ret;
1377 
1378 	if (reg % map->reg_stride)
1379 		return -EINVAL;
1380 
1381 	map->lock(map->lock_arg);
1382 
1383 	map->async = true;
1384 
1385 	ret = _regmap_write(map, reg, val);
1386 
1387 	map->async = false;
1388 
1389 	map->unlock(map->lock_arg);
1390 
1391 	return ret;
1392 }
1393 EXPORT_SYMBOL_GPL(regmap_write_async);
1394 
1395 /**
1396  * regmap_raw_write(): Write raw values to one or more registers
1397  *
1398  * @map: Register map to write to
1399  * @reg: Initial register to write to
1400  * @val: Block of data to be written, laid out for direct transmission to the
1401  *       device
1402  * @val_len: Length of data pointed to by val.
1403  *
1404  * This function is intended to be used for things like firmware
1405  * download where a large block of data needs to be transferred to the
1406  * device.  No formatting will be done on the data provided.
1407  *
1408  * A value of zero will be returned on success, a negative errno will
1409  * be returned in error cases.
1410  */
1411 int regmap_raw_write(struct regmap *map, unsigned int reg,
1412 		     const void *val, size_t val_len)
1413 {
1414 	int ret;
1415 
1416 	if (!regmap_can_raw_write(map))
1417 		return -EINVAL;
1418 	if (val_len % map->format.val_bytes)
1419 		return -EINVAL;
1420 
1421 	map->lock(map->lock_arg);
1422 
1423 	ret = _regmap_raw_write(map, reg, val, val_len);
1424 
1425 	map->unlock(map->lock_arg);
1426 
1427 	return ret;
1428 }
1429 EXPORT_SYMBOL_GPL(regmap_raw_write);
1430 
1431 /**
1432  * regmap_field_write(): Write a value to a single register field
1433  *
1434  * @field: Register field to write to
1435  * @val: Value to be written
1436  *
1437  * A value of zero will be returned on success, a negative errno will
1438  * be returned in error cases.
1439  */
1440 int regmap_field_write(struct regmap_field *field, unsigned int val)
1441 {
1442 	return regmap_update_bits(field->regmap, field->reg,
1443 				field->mask, val << field->shift);
1444 }
1445 EXPORT_SYMBOL_GPL(regmap_field_write);
1446 
1447 /**
1448  * regmap_field_update_bits():	Perform a read/modify/write cycle
1449  *                              on the register field
1450  *
1451  * @field: Register field to write to
1452  * @mask: Bitmask to change
1453  * @val: Value to be written
1454  *
1455  * A value of zero will be returned on success, a negative errno will
1456  * be returned in error cases.
1457  */
1458 int regmap_field_update_bits(struct regmap_field *field, unsigned int mask, unsigned int val)
1459 {
1460 	mask = (mask << field->shift) & field->mask;
1461 
1462 	return regmap_update_bits(field->regmap, field->reg,
1463 				  mask, val << field->shift);
1464 }
1465 EXPORT_SYMBOL_GPL(regmap_field_update_bits);
1466 
1467 /**
1468  * regmap_fields_write(): Write a value to a single register field with port ID
1469  *
1470  * @field: Register field to write to
1471  * @id: port ID
1472  * @val: Value to be written
1473  *
1474  * A value of zero will be returned on success, a negative errno will
1475  * be returned in error cases.
1476  */
1477 int regmap_fields_write(struct regmap_field *field, unsigned int id,
1478 			unsigned int val)
1479 {
1480 	if (id >= field->id_size)
1481 		return -EINVAL;
1482 
1483 	return regmap_update_bits(field->regmap,
1484 				  field->reg + (field->id_offset * id),
1485 				  field->mask, val << field->shift);
1486 }
1487 EXPORT_SYMBOL_GPL(regmap_fields_write);
1488 
1489 /**
1490  * regmap_fields_update_bits():	Perform a read/modify/write cycle
1491  *                              on the register field
1492  *
1493  * @field: Register field to write to
1494  * @id: port ID
1495  * @mask: Bitmask to change
1496  * @val: Value to be written
1497  *
1498  * A value of zero will be returned on success, a negative errno will
1499  * be returned in error cases.
1500  */
1501 int regmap_fields_update_bits(struct regmap_field *field,  unsigned int id,
1502 			      unsigned int mask, unsigned int val)
1503 {
1504 	if (id >= field->id_size)
1505 		return -EINVAL;
1506 
1507 	mask = (mask << field->shift) & field->mask;
1508 
1509 	return regmap_update_bits(field->regmap,
1510 				  field->reg + (field->id_offset * id),
1511 				  mask, val << field->shift);
1512 }
1513 EXPORT_SYMBOL_GPL(regmap_fields_update_bits);
1514 
1515 /*
1516  * regmap_bulk_write(): Write multiple registers to the device
1517  *
1518  * @map: Register map to write to
1519  * @reg: First register to be write from
1520  * @val: Block of data to be written, in native register size for device
1521  * @val_count: Number of registers to write
1522  *
1523  * This function is intended to be used for writing a large block of
1524  * data to the device either in single transfer or multiple transfer.
1525  *
1526  * A value of zero will be returned on success, a negative errno will
1527  * be returned in error cases.
1528  */
1529 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
1530 		     size_t val_count)
1531 {
1532 	int ret = 0, i;
1533 	size_t val_bytes = map->format.val_bytes;
1534 
1535 	if (map->bus && !map->format.parse_inplace)
1536 		return -EINVAL;
1537 	if (reg % map->reg_stride)
1538 		return -EINVAL;
1539 
1540 	/*
1541 	 * Some devices don't support bulk write, for
1542 	 * them we have a series of single write operations.
1543 	 */
1544 	if (!map->bus || map->use_single_rw) {
1545 		map->lock(map->lock_arg);
1546 		for (i = 0; i < val_count; i++) {
1547 			unsigned int ival;
1548 
1549 			switch (val_bytes) {
1550 			case 1:
1551 				ival = *(u8 *)(val + (i * val_bytes));
1552 				break;
1553 			case 2:
1554 				ival = *(u16 *)(val + (i * val_bytes));
1555 				break;
1556 			case 4:
1557 				ival = *(u32 *)(val + (i * val_bytes));
1558 				break;
1559 #ifdef CONFIG_64BIT
1560 			case 8:
1561 				ival = *(u64 *)(val + (i * val_bytes));
1562 				break;
1563 #endif
1564 			default:
1565 				ret = -EINVAL;
1566 				goto out;
1567 			}
1568 
1569 			ret = _regmap_write(map, reg + (i * map->reg_stride),
1570 					ival);
1571 			if (ret != 0)
1572 				goto out;
1573 		}
1574 out:
1575 		map->unlock(map->lock_arg);
1576 	} else {
1577 		void *wval;
1578 
1579 		wval = kmemdup(val, val_count * val_bytes, GFP_KERNEL);
1580 		if (!wval) {
1581 			dev_err(map->dev, "Error in memory allocation\n");
1582 			return -ENOMEM;
1583 		}
1584 		for (i = 0; i < val_count * val_bytes; i += val_bytes)
1585 			map->format.parse_inplace(wval + i);
1586 
1587 		map->lock(map->lock_arg);
1588 		ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count);
1589 		map->unlock(map->lock_arg);
1590 
1591 		kfree(wval);
1592 	}
1593 	return ret;
1594 }
1595 EXPORT_SYMBOL_GPL(regmap_bulk_write);
1596 
1597 /*
1598  * _regmap_raw_multi_reg_write()
1599  *
1600  * the (register,newvalue) pairs in regs have not been formatted, but
1601  * they are all in the same page and have been changed to being page
1602  * relative. The page register has been written if that was neccessary.
1603  */
1604 static int _regmap_raw_multi_reg_write(struct regmap *map,
1605 				       const struct reg_default *regs,
1606 				       size_t num_regs)
1607 {
1608 	int ret;
1609 	void *buf;
1610 	int i;
1611 	u8 *u8;
1612 	size_t val_bytes = map->format.val_bytes;
1613 	size_t reg_bytes = map->format.reg_bytes;
1614 	size_t pad_bytes = map->format.pad_bytes;
1615 	size_t pair_size = reg_bytes + pad_bytes + val_bytes;
1616 	size_t len = pair_size * num_regs;
1617 
1618 	buf = kzalloc(len, GFP_KERNEL);
1619 	if (!buf)
1620 		return -ENOMEM;
1621 
1622 	/* We have to linearise by hand. */
1623 
1624 	u8 = buf;
1625 
1626 	for (i = 0; i < num_regs; i++) {
1627 		int reg = regs[i].reg;
1628 		int val = regs[i].def;
1629 		trace_regmap_hw_write_start(map->dev, reg, 1);
1630 		map->format.format_reg(u8, reg, map->reg_shift);
1631 		u8 += reg_bytes + pad_bytes;
1632 		map->format.format_val(u8, val, 0);
1633 		u8 += val_bytes;
1634 	}
1635 	u8 = buf;
1636 	*u8 |= map->write_flag_mask;
1637 
1638 	ret = map->bus->write(map->bus_context, buf, len);
1639 
1640 	kfree(buf);
1641 
1642 	for (i = 0; i < num_regs; i++) {
1643 		int reg = regs[i].reg;
1644 		trace_regmap_hw_write_done(map->dev, reg, 1);
1645 	}
1646 	return ret;
1647 }
1648 
1649 static unsigned int _regmap_register_page(struct regmap *map,
1650 					  unsigned int reg,
1651 					  struct regmap_range_node *range)
1652 {
1653 	unsigned int win_page = (reg - range->range_min) / range->window_len;
1654 
1655 	return win_page;
1656 }
1657 
1658 static int _regmap_range_multi_paged_reg_write(struct regmap *map,
1659 					       struct reg_default *regs,
1660 					       size_t num_regs)
1661 {
1662 	int ret;
1663 	int i, n;
1664 	struct reg_default *base;
1665 	unsigned int this_page;
1666 	/*
1667 	 * the set of registers are not neccessarily in order, but
1668 	 * since the order of write must be preserved this algorithm
1669 	 * chops the set each time the page changes
1670 	 */
1671 	base = regs;
1672 	for (i = 0, n = 0; i < num_regs; i++, n++) {
1673 		unsigned int reg = regs[i].reg;
1674 		struct regmap_range_node *range;
1675 
1676 		range = _regmap_range_lookup(map, reg);
1677 		if (range) {
1678 			unsigned int win_page = _regmap_register_page(map, reg,
1679 								      range);
1680 
1681 			if (i == 0)
1682 				this_page = win_page;
1683 			if (win_page != this_page) {
1684 				this_page = win_page;
1685 				ret = _regmap_raw_multi_reg_write(map, base, n);
1686 				if (ret != 0)
1687 					return ret;
1688 				base += n;
1689 				n = 0;
1690 			}
1691 			ret = _regmap_select_page(map, &base[n].reg, range, 1);
1692 			if (ret != 0)
1693 				return ret;
1694 		}
1695 	}
1696 	if (n > 0)
1697 		return _regmap_raw_multi_reg_write(map, base, n);
1698 	return 0;
1699 }
1700 
1701 static int _regmap_multi_reg_write(struct regmap *map,
1702 				   const struct reg_default *regs,
1703 				   size_t num_regs)
1704 {
1705 	int i;
1706 	int ret;
1707 
1708 	if (!map->can_multi_write) {
1709 		for (i = 0; i < num_regs; i++) {
1710 			ret = _regmap_write(map, regs[i].reg, regs[i].def);
1711 			if (ret != 0)
1712 				return ret;
1713 		}
1714 		return 0;
1715 	}
1716 
1717 	if (!map->format.parse_inplace)
1718 		return -EINVAL;
1719 
1720 	if (map->writeable_reg)
1721 		for (i = 0; i < num_regs; i++) {
1722 			int reg = regs[i].reg;
1723 			if (!map->writeable_reg(map->dev, reg))
1724 				return -EINVAL;
1725 			if (reg % map->reg_stride)
1726 				return -EINVAL;
1727 		}
1728 
1729 	if (!map->cache_bypass) {
1730 		for (i = 0; i < num_regs; i++) {
1731 			unsigned int val = regs[i].def;
1732 			unsigned int reg = regs[i].reg;
1733 			ret = regcache_write(map, reg, val);
1734 			if (ret) {
1735 				dev_err(map->dev,
1736 				"Error in caching of register: %x ret: %d\n",
1737 								reg, ret);
1738 				return ret;
1739 			}
1740 		}
1741 		if (map->cache_only) {
1742 			map->cache_dirty = true;
1743 			return 0;
1744 		}
1745 	}
1746 
1747 	WARN_ON(!map->bus);
1748 
1749 	for (i = 0; i < num_regs; i++) {
1750 		unsigned int reg = regs[i].reg;
1751 		struct regmap_range_node *range;
1752 		range = _regmap_range_lookup(map, reg);
1753 		if (range) {
1754 			size_t len = sizeof(struct reg_default)*num_regs;
1755 			struct reg_default *base = kmemdup(regs, len,
1756 							   GFP_KERNEL);
1757 			if (!base)
1758 				return -ENOMEM;
1759 			ret = _regmap_range_multi_paged_reg_write(map, base,
1760 								  num_regs);
1761 			kfree(base);
1762 
1763 			return ret;
1764 		}
1765 	}
1766 	return _regmap_raw_multi_reg_write(map, regs, num_regs);
1767 }
1768 
1769 /*
1770  * regmap_multi_reg_write(): Write multiple registers to the device
1771  *
1772  * where the set of register,value pairs are supplied in any order,
1773  * possibly not all in a single range.
1774  *
1775  * @map: Register map to write to
1776  * @regs: Array of structures containing register,value to be written
1777  * @num_regs: Number of registers to write
1778  *
1779  * The 'normal' block write mode will send ultimately send data on the
1780  * target bus as R,V1,V2,V3,..,Vn where successively higer registers are
1781  * addressed. However, this alternative block multi write mode will send
1782  * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
1783  * must of course support the mode.
1784  *
1785  * A value of zero will be returned on success, a negative errno will be
1786  * returned in error cases.
1787  */
1788 int regmap_multi_reg_write(struct regmap *map, const struct reg_default *regs,
1789 			   int num_regs)
1790 {
1791 	int ret;
1792 
1793 	map->lock(map->lock_arg);
1794 
1795 	ret = _regmap_multi_reg_write(map, regs, num_regs);
1796 
1797 	map->unlock(map->lock_arg);
1798 
1799 	return ret;
1800 }
1801 EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
1802 
1803 /*
1804  * regmap_multi_reg_write_bypassed(): Write multiple registers to the
1805  *                                    device but not the cache
1806  *
1807  * where the set of register are supplied in any order
1808  *
1809  * @map: Register map to write to
1810  * @regs: Array of structures containing register,value to be written
1811  * @num_regs: Number of registers to write
1812  *
1813  * This function is intended to be used for writing a large block of data
1814  * atomically to the device in single transfer for those I2C client devices
1815  * that implement this alternative block write mode.
1816  *
1817  * A value of zero will be returned on success, a negative errno will
1818  * be returned in error cases.
1819  */
1820 int regmap_multi_reg_write_bypassed(struct regmap *map,
1821 				    const struct reg_default *regs,
1822 				    int num_regs)
1823 {
1824 	int ret;
1825 	bool bypass;
1826 
1827 	map->lock(map->lock_arg);
1828 
1829 	bypass = map->cache_bypass;
1830 	map->cache_bypass = true;
1831 
1832 	ret = _regmap_multi_reg_write(map, regs, num_regs);
1833 
1834 	map->cache_bypass = bypass;
1835 
1836 	map->unlock(map->lock_arg);
1837 
1838 	return ret;
1839 }
1840 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
1841 
1842 /**
1843  * regmap_raw_write_async(): Write raw values to one or more registers
1844  *                           asynchronously
1845  *
1846  * @map: Register map to write to
1847  * @reg: Initial register to write to
1848  * @val: Block of data to be written, laid out for direct transmission to the
1849  *       device.  Must be valid until regmap_async_complete() is called.
1850  * @val_len: Length of data pointed to by val.
1851  *
1852  * This function is intended to be used for things like firmware
1853  * download where a large block of data needs to be transferred to the
1854  * device.  No formatting will be done on the data provided.
1855  *
1856  * If supported by the underlying bus the write will be scheduled
1857  * asynchronously, helping maximise I/O speed on higher speed buses
1858  * like SPI.  regmap_async_complete() can be called to ensure that all
1859  * asynchrnous writes have been completed.
1860  *
1861  * A value of zero will be returned on success, a negative errno will
1862  * be returned in error cases.
1863  */
1864 int regmap_raw_write_async(struct regmap *map, unsigned int reg,
1865 			   const void *val, size_t val_len)
1866 {
1867 	int ret;
1868 
1869 	if (val_len % map->format.val_bytes)
1870 		return -EINVAL;
1871 	if (reg % map->reg_stride)
1872 		return -EINVAL;
1873 
1874 	map->lock(map->lock_arg);
1875 
1876 	map->async = true;
1877 
1878 	ret = _regmap_raw_write(map, reg, val, val_len);
1879 
1880 	map->async = false;
1881 
1882 	map->unlock(map->lock_arg);
1883 
1884 	return ret;
1885 }
1886 EXPORT_SYMBOL_GPL(regmap_raw_write_async);
1887 
1888 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
1889 			    unsigned int val_len)
1890 {
1891 	struct regmap_range_node *range;
1892 	u8 *u8 = map->work_buf;
1893 	int ret;
1894 
1895 	WARN_ON(!map->bus);
1896 
1897 	range = _regmap_range_lookup(map, reg);
1898 	if (range) {
1899 		ret = _regmap_select_page(map, &reg, range,
1900 					  val_len / map->format.val_bytes);
1901 		if (ret != 0)
1902 			return ret;
1903 	}
1904 
1905 	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1906 
1907 	/*
1908 	 * Some buses or devices flag reads by setting the high bits in the
1909 	 * register addresss; since it's always the high bits for all
1910 	 * current formats we can do this here rather than in
1911 	 * formatting.  This may break if we get interesting formats.
1912 	 */
1913 	u8[0] |= map->read_flag_mask;
1914 
1915 	trace_regmap_hw_read_start(map->dev, reg,
1916 				   val_len / map->format.val_bytes);
1917 
1918 	ret = map->bus->read(map->bus_context, map->work_buf,
1919 			     map->format.reg_bytes + map->format.pad_bytes,
1920 			     val, val_len);
1921 
1922 	trace_regmap_hw_read_done(map->dev, reg,
1923 				  val_len / map->format.val_bytes);
1924 
1925 	return ret;
1926 }
1927 
1928 static int _regmap_bus_read(void *context, unsigned int reg,
1929 			    unsigned int *val)
1930 {
1931 	int ret;
1932 	struct regmap *map = context;
1933 
1934 	if (!map->format.parse_val)
1935 		return -EINVAL;
1936 
1937 	ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes);
1938 	if (ret == 0)
1939 		*val = map->format.parse_val(map->work_buf);
1940 
1941 	return ret;
1942 }
1943 
1944 static int _regmap_read(struct regmap *map, unsigned int reg,
1945 			unsigned int *val)
1946 {
1947 	int ret;
1948 	void *context = _regmap_map_get_context(map);
1949 
1950 	WARN_ON(!map->reg_read);
1951 
1952 	if (!map->cache_bypass) {
1953 		ret = regcache_read(map, reg, val);
1954 		if (ret == 0)
1955 			return 0;
1956 	}
1957 
1958 	if (map->cache_only)
1959 		return -EBUSY;
1960 
1961 	if (!regmap_readable(map, reg))
1962 		return -EIO;
1963 
1964 	ret = map->reg_read(context, reg, val);
1965 	if (ret == 0) {
1966 #ifdef LOG_DEVICE
1967 		if (strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1968 			dev_info(map->dev, "%x => %x\n", reg, *val);
1969 #endif
1970 
1971 		trace_regmap_reg_read(map->dev, reg, *val);
1972 
1973 		if (!map->cache_bypass)
1974 			regcache_write(map, reg, *val);
1975 	}
1976 
1977 	return ret;
1978 }
1979 
1980 /**
1981  * regmap_read(): Read a value from a single register
1982  *
1983  * @map: Register map to read from
1984  * @reg: Register to be read from
1985  * @val: Pointer to store read value
1986  *
1987  * A value of zero will be returned on success, a negative errno will
1988  * be returned in error cases.
1989  */
1990 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
1991 {
1992 	int ret;
1993 
1994 	if (reg % map->reg_stride)
1995 		return -EINVAL;
1996 
1997 	map->lock(map->lock_arg);
1998 
1999 	ret = _regmap_read(map, reg, val);
2000 
2001 	map->unlock(map->lock_arg);
2002 
2003 	return ret;
2004 }
2005 EXPORT_SYMBOL_GPL(regmap_read);
2006 
2007 /**
2008  * regmap_raw_read(): Read raw data from the device
2009  *
2010  * @map: Register map to read from
2011  * @reg: First register to be read from
2012  * @val: Pointer to store read value
2013  * @val_len: Size of data to read
2014  *
2015  * A value of zero will be returned on success, a negative errno will
2016  * be returned in error cases.
2017  */
2018 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2019 		    size_t val_len)
2020 {
2021 	size_t val_bytes = map->format.val_bytes;
2022 	size_t val_count = val_len / val_bytes;
2023 	unsigned int v;
2024 	int ret, i;
2025 
2026 	if (!map->bus)
2027 		return -EINVAL;
2028 	if (val_len % map->format.val_bytes)
2029 		return -EINVAL;
2030 	if (reg % map->reg_stride)
2031 		return -EINVAL;
2032 
2033 	map->lock(map->lock_arg);
2034 
2035 	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2036 	    map->cache_type == REGCACHE_NONE) {
2037 		/* Physical block read if there's no cache involved */
2038 		ret = _regmap_raw_read(map, reg, val, val_len);
2039 
2040 	} else {
2041 		/* Otherwise go word by word for the cache; should be low
2042 		 * cost as we expect to hit the cache.
2043 		 */
2044 		for (i = 0; i < val_count; i++) {
2045 			ret = _regmap_read(map, reg + (i * map->reg_stride),
2046 					   &v);
2047 			if (ret != 0)
2048 				goto out;
2049 
2050 			map->format.format_val(val + (i * val_bytes), v, 0);
2051 		}
2052 	}
2053 
2054  out:
2055 	map->unlock(map->lock_arg);
2056 
2057 	return ret;
2058 }
2059 EXPORT_SYMBOL_GPL(regmap_raw_read);
2060 
2061 /**
2062  * regmap_field_read(): Read a value to a single register field
2063  *
2064  * @field: Register field to read from
2065  * @val: Pointer to store read value
2066  *
2067  * A value of zero will be returned on success, a negative errno will
2068  * be returned in error cases.
2069  */
2070 int regmap_field_read(struct regmap_field *field, unsigned int *val)
2071 {
2072 	int ret;
2073 	unsigned int reg_val;
2074 	ret = regmap_read(field->regmap, field->reg, &reg_val);
2075 	if (ret != 0)
2076 		return ret;
2077 
2078 	reg_val &= field->mask;
2079 	reg_val >>= field->shift;
2080 	*val = reg_val;
2081 
2082 	return ret;
2083 }
2084 EXPORT_SYMBOL_GPL(regmap_field_read);
2085 
2086 /**
2087  * regmap_fields_read(): Read a value to a single register field with port ID
2088  *
2089  * @field: Register field to read from
2090  * @id: port ID
2091  * @val: Pointer to store read value
2092  *
2093  * A value of zero will be returned on success, a negative errno will
2094  * be returned in error cases.
2095  */
2096 int regmap_fields_read(struct regmap_field *field, unsigned int id,
2097 		       unsigned int *val)
2098 {
2099 	int ret;
2100 	unsigned int reg_val;
2101 
2102 	if (id >= field->id_size)
2103 		return -EINVAL;
2104 
2105 	ret = regmap_read(field->regmap,
2106 			  field->reg + (field->id_offset * id),
2107 			  &reg_val);
2108 	if (ret != 0)
2109 		return ret;
2110 
2111 	reg_val &= field->mask;
2112 	reg_val >>= field->shift;
2113 	*val = reg_val;
2114 
2115 	return ret;
2116 }
2117 EXPORT_SYMBOL_GPL(regmap_fields_read);
2118 
2119 /**
2120  * regmap_bulk_read(): Read multiple registers from the device
2121  *
2122  * @map: Register map to read from
2123  * @reg: First register to be read from
2124  * @val: Pointer to store read value, in native register size for device
2125  * @val_count: Number of registers to read
2126  *
2127  * A value of zero will be returned on success, a negative errno will
2128  * be returned in error cases.
2129  */
2130 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2131 		     size_t val_count)
2132 {
2133 	int ret, i;
2134 	size_t val_bytes = map->format.val_bytes;
2135 	bool vol = regmap_volatile_range(map, reg, val_count);
2136 
2137 	if (reg % map->reg_stride)
2138 		return -EINVAL;
2139 
2140 	if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2141 		/*
2142 		 * Some devices does not support bulk read, for
2143 		 * them we have a series of single read operations.
2144 		 */
2145 		if (map->use_single_rw) {
2146 			for (i = 0; i < val_count; i++) {
2147 				ret = regmap_raw_read(map,
2148 						reg + (i * map->reg_stride),
2149 						val + (i * val_bytes),
2150 						val_bytes);
2151 				if (ret != 0)
2152 					return ret;
2153 			}
2154 		} else {
2155 			ret = regmap_raw_read(map, reg, val,
2156 					      val_bytes * val_count);
2157 			if (ret != 0)
2158 				return ret;
2159 		}
2160 
2161 		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2162 			map->format.parse_inplace(val + i);
2163 	} else {
2164 		for (i = 0; i < val_count; i++) {
2165 			unsigned int ival;
2166 			ret = regmap_read(map, reg + (i * map->reg_stride),
2167 					  &ival);
2168 			if (ret != 0)
2169 				return ret;
2170 			memcpy(val + (i * val_bytes), &ival, val_bytes);
2171 		}
2172 	}
2173 
2174 	return 0;
2175 }
2176 EXPORT_SYMBOL_GPL(regmap_bulk_read);
2177 
2178 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
2179 			       unsigned int mask, unsigned int val,
2180 			       bool *change)
2181 {
2182 	int ret;
2183 	unsigned int tmp, orig;
2184 
2185 	ret = _regmap_read(map, reg, &orig);
2186 	if (ret != 0)
2187 		return ret;
2188 
2189 	tmp = orig & ~mask;
2190 	tmp |= val & mask;
2191 
2192 	if (tmp != orig) {
2193 		ret = _regmap_write(map, reg, tmp);
2194 		if (change)
2195 			*change = true;
2196 	} else {
2197 		if (change)
2198 			*change = false;
2199 	}
2200 
2201 	return ret;
2202 }
2203 
2204 /**
2205  * regmap_update_bits: Perform a read/modify/write cycle on the register map
2206  *
2207  * @map: Register map to update
2208  * @reg: Register to update
2209  * @mask: Bitmask to change
2210  * @val: New value for bitmask
2211  *
2212  * Returns zero for success, a negative number on error.
2213  */
2214 int regmap_update_bits(struct regmap *map, unsigned int reg,
2215 		       unsigned int mask, unsigned int val)
2216 {
2217 	int ret;
2218 
2219 	map->lock(map->lock_arg);
2220 	ret = _regmap_update_bits(map, reg, mask, val, NULL);
2221 	map->unlock(map->lock_arg);
2222 
2223 	return ret;
2224 }
2225 EXPORT_SYMBOL_GPL(regmap_update_bits);
2226 
2227 /**
2228  * regmap_update_bits_async: Perform a read/modify/write cycle on the register
2229  *                           map asynchronously
2230  *
2231  * @map: Register map to update
2232  * @reg: Register to update
2233  * @mask: Bitmask to change
2234  * @val: New value for bitmask
2235  *
2236  * With most buses the read must be done synchronously so this is most
2237  * useful for devices with a cache which do not need to interact with
2238  * the hardware to determine the current register value.
2239  *
2240  * Returns zero for success, a negative number on error.
2241  */
2242 int regmap_update_bits_async(struct regmap *map, unsigned int reg,
2243 			     unsigned int mask, unsigned int val)
2244 {
2245 	int ret;
2246 
2247 	map->lock(map->lock_arg);
2248 
2249 	map->async = true;
2250 
2251 	ret = _regmap_update_bits(map, reg, mask, val, NULL);
2252 
2253 	map->async = false;
2254 
2255 	map->unlock(map->lock_arg);
2256 
2257 	return ret;
2258 }
2259 EXPORT_SYMBOL_GPL(regmap_update_bits_async);
2260 
2261 /**
2262  * regmap_update_bits_check: Perform a read/modify/write cycle on the
2263  *                           register map and report if updated
2264  *
2265  * @map: Register map to update
2266  * @reg: Register to update
2267  * @mask: Bitmask to change
2268  * @val: New value for bitmask
2269  * @change: Boolean indicating if a write was done
2270  *
2271  * Returns zero for success, a negative number on error.
2272  */
2273 int regmap_update_bits_check(struct regmap *map, unsigned int reg,
2274 			     unsigned int mask, unsigned int val,
2275 			     bool *change)
2276 {
2277 	int ret;
2278 
2279 	map->lock(map->lock_arg);
2280 	ret = _regmap_update_bits(map, reg, mask, val, change);
2281 	map->unlock(map->lock_arg);
2282 	return ret;
2283 }
2284 EXPORT_SYMBOL_GPL(regmap_update_bits_check);
2285 
2286 /**
2287  * regmap_update_bits_check_async: Perform a read/modify/write cycle on the
2288  *                                 register map asynchronously and report if
2289  *                                 updated
2290  *
2291  * @map: Register map to update
2292  * @reg: Register to update
2293  * @mask: Bitmask to change
2294  * @val: New value for bitmask
2295  * @change: Boolean indicating if a write was done
2296  *
2297  * With most buses the read must be done synchronously so this is most
2298  * useful for devices with a cache which do not need to interact with
2299  * the hardware to determine the current register value.
2300  *
2301  * Returns zero for success, a negative number on error.
2302  */
2303 int regmap_update_bits_check_async(struct regmap *map, unsigned int reg,
2304 				   unsigned int mask, unsigned int val,
2305 				   bool *change)
2306 {
2307 	int ret;
2308 
2309 	map->lock(map->lock_arg);
2310 
2311 	map->async = true;
2312 
2313 	ret = _regmap_update_bits(map, reg, mask, val, change);
2314 
2315 	map->async = false;
2316 
2317 	map->unlock(map->lock_arg);
2318 
2319 	return ret;
2320 }
2321 EXPORT_SYMBOL_GPL(regmap_update_bits_check_async);
2322 
2323 void regmap_async_complete_cb(struct regmap_async *async, int ret)
2324 {
2325 	struct regmap *map = async->map;
2326 	bool wake;
2327 
2328 	trace_regmap_async_io_complete(map->dev);
2329 
2330 	spin_lock(&map->async_lock);
2331 	list_move(&async->list, &map->async_free);
2332 	wake = list_empty(&map->async_list);
2333 
2334 	if (ret != 0)
2335 		map->async_ret = ret;
2336 
2337 	spin_unlock(&map->async_lock);
2338 
2339 	if (wake)
2340 		wake_up(&map->async_waitq);
2341 }
2342 EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2343 
2344 static int regmap_async_is_done(struct regmap *map)
2345 {
2346 	unsigned long flags;
2347 	int ret;
2348 
2349 	spin_lock_irqsave(&map->async_lock, flags);
2350 	ret = list_empty(&map->async_list);
2351 	spin_unlock_irqrestore(&map->async_lock, flags);
2352 
2353 	return ret;
2354 }
2355 
2356 /**
2357  * regmap_async_complete: Ensure all asynchronous I/O has completed.
2358  *
2359  * @map: Map to operate on.
2360  *
2361  * Blocks until any pending asynchronous I/O has completed.  Returns
2362  * an error code for any failed I/O operations.
2363  */
2364 int regmap_async_complete(struct regmap *map)
2365 {
2366 	unsigned long flags;
2367 	int ret;
2368 
2369 	/* Nothing to do with no async support */
2370 	if (!map->bus || !map->bus->async_write)
2371 		return 0;
2372 
2373 	trace_regmap_async_complete_start(map->dev);
2374 
2375 	wait_event(map->async_waitq, regmap_async_is_done(map));
2376 
2377 	spin_lock_irqsave(&map->async_lock, flags);
2378 	ret = map->async_ret;
2379 	map->async_ret = 0;
2380 	spin_unlock_irqrestore(&map->async_lock, flags);
2381 
2382 	trace_regmap_async_complete_done(map->dev);
2383 
2384 	return ret;
2385 }
2386 EXPORT_SYMBOL_GPL(regmap_async_complete);
2387 
2388 /**
2389  * regmap_register_patch: Register and apply register updates to be applied
2390  *                        on device initialistion
2391  *
2392  * @map: Register map to apply updates to.
2393  * @regs: Values to update.
2394  * @num_regs: Number of entries in regs.
2395  *
2396  * Register a set of register updates to be applied to the device
2397  * whenever the device registers are synchronised with the cache and
2398  * apply them immediately.  Typically this is used to apply
2399  * corrections to be applied to the device defaults on startup, such
2400  * as the updates some vendors provide to undocumented registers.
2401  *
2402  * The caller must ensure that this function cannot be called
2403  * concurrently with either itself or regcache_sync().
2404  */
2405 int regmap_register_patch(struct regmap *map, const struct reg_default *regs,
2406 			  int num_regs)
2407 {
2408 	struct reg_default *p;
2409 	int ret;
2410 	bool bypass;
2411 
2412 	if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
2413 	    num_regs))
2414 		return 0;
2415 
2416 	p = krealloc(map->patch,
2417 		     sizeof(struct reg_default) * (map->patch_regs + num_regs),
2418 		     GFP_KERNEL);
2419 	if (p) {
2420 		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
2421 		map->patch = p;
2422 		map->patch_regs += num_regs;
2423 	} else {
2424 		return -ENOMEM;
2425 	}
2426 
2427 	map->lock(map->lock_arg);
2428 
2429 	bypass = map->cache_bypass;
2430 
2431 	map->cache_bypass = true;
2432 	map->async = true;
2433 
2434 	ret = _regmap_multi_reg_write(map, regs, num_regs);
2435 	if (ret != 0)
2436 		goto out;
2437 
2438 out:
2439 	map->async = false;
2440 	map->cache_bypass = bypass;
2441 
2442 	map->unlock(map->lock_arg);
2443 
2444 	regmap_async_complete(map);
2445 
2446 	return ret;
2447 }
2448 EXPORT_SYMBOL_GPL(regmap_register_patch);
2449 
2450 /*
2451  * regmap_get_val_bytes(): Report the size of a register value
2452  *
2453  * Report the size of a register value, mainly intended to for use by
2454  * generic infrastructure built on top of regmap.
2455  */
2456 int regmap_get_val_bytes(struct regmap *map)
2457 {
2458 	if (map->format.format_write)
2459 		return -EINVAL;
2460 
2461 	return map->format.val_bytes;
2462 }
2463 EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
2464 
2465 int regmap_parse_val(struct regmap *map, const void *buf,
2466 			unsigned int *val)
2467 {
2468 	if (!map->format.parse_val)
2469 		return -EINVAL;
2470 
2471 	*val = map->format.parse_val(buf);
2472 
2473 	return 0;
2474 }
2475 EXPORT_SYMBOL_GPL(regmap_parse_val);
2476 
2477 static int __init regmap_initcall(void)
2478 {
2479 	regmap_debugfs_initcall();
2480 
2481 	return 0;
2482 }
2483 postcore_initcall(regmap_initcall);
2484