xref: /linux/drivers/base/regmap/regmap.c (revision 95e9fd10f06cb5642028b6b851e32b8c8afb4571)
1 /*
2  * Register map access API
3  *
4  * Copyright 2011 Wolfson Microelectronics plc
5  *
6  * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/mutex.h>
17 #include <linux/err.h>
18 #include <linux/rbtree.h>
19 
20 #define CREATE_TRACE_POINTS
21 #include <trace/events/regmap.h>
22 
23 #include "internal.h"
24 
25 /*
26  * Sometimes for failures during very early init the trace
27  * infrastructure isn't available early enough to be used.  For this
28  * sort of problem defining LOG_DEVICE will add printks for basic
29  * register I/O on a specific device.
30  */
31 #undef LOG_DEVICE
32 
33 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
34 			       unsigned int mask, unsigned int val,
35 			       bool *change);
36 
37 bool regmap_writeable(struct regmap *map, unsigned int reg)
38 {
39 	if (map->max_register && reg > map->max_register)
40 		return false;
41 
42 	if (map->writeable_reg)
43 		return map->writeable_reg(map->dev, reg);
44 
45 	return true;
46 }
47 
48 bool regmap_readable(struct regmap *map, unsigned int reg)
49 {
50 	if (map->max_register && reg > map->max_register)
51 		return false;
52 
53 	if (map->format.format_write)
54 		return false;
55 
56 	if (map->readable_reg)
57 		return map->readable_reg(map->dev, reg);
58 
59 	return true;
60 }
61 
62 bool regmap_volatile(struct regmap *map, unsigned int reg)
63 {
64 	if (!regmap_readable(map, reg))
65 		return false;
66 
67 	if (map->volatile_reg)
68 		return map->volatile_reg(map->dev, reg);
69 
70 	return true;
71 }
72 
73 bool regmap_precious(struct regmap *map, unsigned int reg)
74 {
75 	if (!regmap_readable(map, reg))
76 		return false;
77 
78 	if (map->precious_reg)
79 		return map->precious_reg(map->dev, reg);
80 
81 	return false;
82 }
83 
84 static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
85 	unsigned int num)
86 {
87 	unsigned int i;
88 
89 	for (i = 0; i < num; i++)
90 		if (!regmap_volatile(map, reg + i))
91 			return false;
92 
93 	return true;
94 }
95 
96 static void regmap_format_2_6_write(struct regmap *map,
97 				     unsigned int reg, unsigned int val)
98 {
99 	u8 *out = map->work_buf;
100 
101 	*out = (reg << 6) | val;
102 }
103 
104 static void regmap_format_4_12_write(struct regmap *map,
105 				     unsigned int reg, unsigned int val)
106 {
107 	__be16 *out = map->work_buf;
108 	*out = cpu_to_be16((reg << 12) | val);
109 }
110 
111 static void regmap_format_7_9_write(struct regmap *map,
112 				    unsigned int reg, unsigned int val)
113 {
114 	__be16 *out = map->work_buf;
115 	*out = cpu_to_be16((reg << 9) | val);
116 }
117 
118 static void regmap_format_10_14_write(struct regmap *map,
119 				    unsigned int reg, unsigned int val)
120 {
121 	u8 *out = map->work_buf;
122 
123 	out[2] = val;
124 	out[1] = (val >> 8) | (reg << 6);
125 	out[0] = reg >> 2;
126 }
127 
128 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
129 {
130 	u8 *b = buf;
131 
132 	b[0] = val << shift;
133 }
134 
135 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
136 {
137 	__be16 *b = buf;
138 
139 	b[0] = cpu_to_be16(val << shift);
140 }
141 
142 static void regmap_format_16_native(void *buf, unsigned int val,
143 				    unsigned int shift)
144 {
145 	*(u16 *)buf = val << shift;
146 }
147 
148 static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
149 {
150 	u8 *b = buf;
151 
152 	val <<= shift;
153 
154 	b[0] = val >> 16;
155 	b[1] = val >> 8;
156 	b[2] = val;
157 }
158 
159 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
160 {
161 	__be32 *b = buf;
162 
163 	b[0] = cpu_to_be32(val << shift);
164 }
165 
166 static void regmap_format_32_native(void *buf, unsigned int val,
167 				    unsigned int shift)
168 {
169 	*(u32 *)buf = val << shift;
170 }
171 
172 static unsigned int regmap_parse_8(void *buf)
173 {
174 	u8 *b = buf;
175 
176 	return b[0];
177 }
178 
179 static unsigned int regmap_parse_16_be(void *buf)
180 {
181 	__be16 *b = buf;
182 
183 	b[0] = be16_to_cpu(b[0]);
184 
185 	return b[0];
186 }
187 
188 static unsigned int regmap_parse_16_native(void *buf)
189 {
190 	return *(u16 *)buf;
191 }
192 
193 static unsigned int regmap_parse_24(void *buf)
194 {
195 	u8 *b = buf;
196 	unsigned int ret = b[2];
197 	ret |= ((unsigned int)b[1]) << 8;
198 	ret |= ((unsigned int)b[0]) << 16;
199 
200 	return ret;
201 }
202 
203 static unsigned int regmap_parse_32_be(void *buf)
204 {
205 	__be32 *b = buf;
206 
207 	b[0] = be32_to_cpu(b[0]);
208 
209 	return b[0];
210 }
211 
212 static unsigned int regmap_parse_32_native(void *buf)
213 {
214 	return *(u32 *)buf;
215 }
216 
217 static void regmap_lock_mutex(struct regmap *map)
218 {
219 	mutex_lock(&map->mutex);
220 }
221 
222 static void regmap_unlock_mutex(struct regmap *map)
223 {
224 	mutex_unlock(&map->mutex);
225 }
226 
227 static void regmap_lock_spinlock(struct regmap *map)
228 {
229 	spin_lock(&map->spinlock);
230 }
231 
232 static void regmap_unlock_spinlock(struct regmap *map)
233 {
234 	spin_unlock(&map->spinlock);
235 }
236 
237 static void dev_get_regmap_release(struct device *dev, void *res)
238 {
239 	/*
240 	 * We don't actually have anything to do here; the goal here
241 	 * is not to manage the regmap but to provide a simple way to
242 	 * get the regmap back given a struct device.
243 	 */
244 }
245 
246 static bool _regmap_range_add(struct regmap *map,
247 			      struct regmap_range_node *data)
248 {
249 	struct rb_root *root = &map->range_tree;
250 	struct rb_node **new = &(root->rb_node), *parent = NULL;
251 
252 	while (*new) {
253 		struct regmap_range_node *this =
254 			container_of(*new, struct regmap_range_node, node);
255 
256 		parent = *new;
257 		if (data->range_max < this->range_min)
258 			new = &((*new)->rb_left);
259 		else if (data->range_min > this->range_max)
260 			new = &((*new)->rb_right);
261 		else
262 			return false;
263 	}
264 
265 	rb_link_node(&data->node, parent, new);
266 	rb_insert_color(&data->node, root);
267 
268 	return true;
269 }
270 
271 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
272 						      unsigned int reg)
273 {
274 	struct rb_node *node = map->range_tree.rb_node;
275 
276 	while (node) {
277 		struct regmap_range_node *this =
278 			container_of(node, struct regmap_range_node, node);
279 
280 		if (reg < this->range_min)
281 			node = node->rb_left;
282 		else if (reg > this->range_max)
283 			node = node->rb_right;
284 		else
285 			return this;
286 	}
287 
288 	return NULL;
289 }
290 
291 static void regmap_range_exit(struct regmap *map)
292 {
293 	struct rb_node *next;
294 	struct regmap_range_node *range_node;
295 
296 	next = rb_first(&map->range_tree);
297 	while (next) {
298 		range_node = rb_entry(next, struct regmap_range_node, node);
299 		next = rb_next(&range_node->node);
300 		rb_erase(&range_node->node, &map->range_tree);
301 		kfree(range_node);
302 	}
303 
304 	kfree(map->selector_work_buf);
305 }
306 
307 /**
308  * regmap_init(): Initialise register map
309  *
310  * @dev: Device that will be interacted with
311  * @bus: Bus-specific callbacks to use with device
312  * @bus_context: Data passed to bus-specific callbacks
313  * @config: Configuration for register map
314  *
315  * The return value will be an ERR_PTR() on error or a valid pointer to
316  * a struct regmap.  This function should generally not be called
317  * directly, it should be called by bus-specific init functions.
318  */
319 struct regmap *regmap_init(struct device *dev,
320 			   const struct regmap_bus *bus,
321 			   void *bus_context,
322 			   const struct regmap_config *config)
323 {
324 	struct regmap *map, **m;
325 	int ret = -EINVAL;
326 	enum regmap_endian reg_endian, val_endian;
327 	int i, j;
328 
329 	if (!bus || !config)
330 		goto err;
331 
332 	map = kzalloc(sizeof(*map), GFP_KERNEL);
333 	if (map == NULL) {
334 		ret = -ENOMEM;
335 		goto err;
336 	}
337 
338 	if (bus->fast_io) {
339 		spin_lock_init(&map->spinlock);
340 		map->lock = regmap_lock_spinlock;
341 		map->unlock = regmap_unlock_spinlock;
342 	} else {
343 		mutex_init(&map->mutex);
344 		map->lock = regmap_lock_mutex;
345 		map->unlock = regmap_unlock_mutex;
346 	}
347 	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
348 	map->format.pad_bytes = config->pad_bits / 8;
349 	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
350 	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
351 			config->val_bits + config->pad_bits, 8);
352 	map->reg_shift = config->pad_bits % 8;
353 	if (config->reg_stride)
354 		map->reg_stride = config->reg_stride;
355 	else
356 		map->reg_stride = 1;
357 	map->use_single_rw = config->use_single_rw;
358 	map->dev = dev;
359 	map->bus = bus;
360 	map->bus_context = bus_context;
361 	map->max_register = config->max_register;
362 	map->writeable_reg = config->writeable_reg;
363 	map->readable_reg = config->readable_reg;
364 	map->volatile_reg = config->volatile_reg;
365 	map->precious_reg = config->precious_reg;
366 	map->cache_type = config->cache_type;
367 	map->name = config->name;
368 
369 	if (config->read_flag_mask || config->write_flag_mask) {
370 		map->read_flag_mask = config->read_flag_mask;
371 		map->write_flag_mask = config->write_flag_mask;
372 	} else {
373 		map->read_flag_mask = bus->read_flag_mask;
374 	}
375 
376 	reg_endian = config->reg_format_endian;
377 	if (reg_endian == REGMAP_ENDIAN_DEFAULT)
378 		reg_endian = bus->reg_format_endian_default;
379 	if (reg_endian == REGMAP_ENDIAN_DEFAULT)
380 		reg_endian = REGMAP_ENDIAN_BIG;
381 
382 	val_endian = config->val_format_endian;
383 	if (val_endian == REGMAP_ENDIAN_DEFAULT)
384 		val_endian = bus->val_format_endian_default;
385 	if (val_endian == REGMAP_ENDIAN_DEFAULT)
386 		val_endian = REGMAP_ENDIAN_BIG;
387 
388 	switch (config->reg_bits + map->reg_shift) {
389 	case 2:
390 		switch (config->val_bits) {
391 		case 6:
392 			map->format.format_write = regmap_format_2_6_write;
393 			break;
394 		default:
395 			goto err_map;
396 		}
397 		break;
398 
399 	case 4:
400 		switch (config->val_bits) {
401 		case 12:
402 			map->format.format_write = regmap_format_4_12_write;
403 			break;
404 		default:
405 			goto err_map;
406 		}
407 		break;
408 
409 	case 7:
410 		switch (config->val_bits) {
411 		case 9:
412 			map->format.format_write = regmap_format_7_9_write;
413 			break;
414 		default:
415 			goto err_map;
416 		}
417 		break;
418 
419 	case 10:
420 		switch (config->val_bits) {
421 		case 14:
422 			map->format.format_write = regmap_format_10_14_write;
423 			break;
424 		default:
425 			goto err_map;
426 		}
427 		break;
428 
429 	case 8:
430 		map->format.format_reg = regmap_format_8;
431 		break;
432 
433 	case 16:
434 		switch (reg_endian) {
435 		case REGMAP_ENDIAN_BIG:
436 			map->format.format_reg = regmap_format_16_be;
437 			break;
438 		case REGMAP_ENDIAN_NATIVE:
439 			map->format.format_reg = regmap_format_16_native;
440 			break;
441 		default:
442 			goto err_map;
443 		}
444 		break;
445 
446 	case 32:
447 		switch (reg_endian) {
448 		case REGMAP_ENDIAN_BIG:
449 			map->format.format_reg = regmap_format_32_be;
450 			break;
451 		case REGMAP_ENDIAN_NATIVE:
452 			map->format.format_reg = regmap_format_32_native;
453 			break;
454 		default:
455 			goto err_map;
456 		}
457 		break;
458 
459 	default:
460 		goto err_map;
461 	}
462 
463 	switch (config->val_bits) {
464 	case 8:
465 		map->format.format_val = regmap_format_8;
466 		map->format.parse_val = regmap_parse_8;
467 		break;
468 	case 16:
469 		switch (val_endian) {
470 		case REGMAP_ENDIAN_BIG:
471 			map->format.format_val = regmap_format_16_be;
472 			map->format.parse_val = regmap_parse_16_be;
473 			break;
474 		case REGMAP_ENDIAN_NATIVE:
475 			map->format.format_val = regmap_format_16_native;
476 			map->format.parse_val = regmap_parse_16_native;
477 			break;
478 		default:
479 			goto err_map;
480 		}
481 		break;
482 	case 24:
483 		if (val_endian != REGMAP_ENDIAN_BIG)
484 			goto err_map;
485 		map->format.format_val = regmap_format_24;
486 		map->format.parse_val = regmap_parse_24;
487 		break;
488 	case 32:
489 		switch (val_endian) {
490 		case REGMAP_ENDIAN_BIG:
491 			map->format.format_val = regmap_format_32_be;
492 			map->format.parse_val = regmap_parse_32_be;
493 			break;
494 		case REGMAP_ENDIAN_NATIVE:
495 			map->format.format_val = regmap_format_32_native;
496 			map->format.parse_val = regmap_parse_32_native;
497 			break;
498 		default:
499 			goto err_map;
500 		}
501 		break;
502 	}
503 
504 	if (map->format.format_write) {
505 		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
506 		    (val_endian != REGMAP_ENDIAN_BIG))
507 			goto err_map;
508 		map->use_single_rw = true;
509 	}
510 
511 	if (!map->format.format_write &&
512 	    !(map->format.format_reg && map->format.format_val))
513 		goto err_map;
514 
515 	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
516 	if (map->work_buf == NULL) {
517 		ret = -ENOMEM;
518 		goto err_map;
519 	}
520 
521 	map->range_tree = RB_ROOT;
522 	for (i = 0; i < config->n_ranges; i++) {
523 		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
524 		struct regmap_range_node *new;
525 
526 		/* Sanity check */
527 		if (range_cfg->range_max < range_cfg->range_min ||
528 		    range_cfg->range_max > map->max_register ||
529 		    range_cfg->selector_reg > map->max_register ||
530 		    range_cfg->window_len == 0)
531 			goto err_range;
532 
533 		/* Make sure, that this register range has no selector
534 		   or data window within its boundary */
535 		for (j = 0; j < config->n_ranges; j++) {
536 			unsigned sel_reg = config->ranges[j].selector_reg;
537 			unsigned win_min = config->ranges[j].window_start;
538 			unsigned win_max = win_min +
539 					   config->ranges[j].window_len - 1;
540 
541 			if (range_cfg->range_min <= sel_reg &&
542 			    sel_reg <= range_cfg->range_max) {
543 				goto err_range;
544 			}
545 
546 			if (!(win_max < range_cfg->range_min ||
547 			      win_min > range_cfg->range_max)) {
548 				goto err_range;
549 			}
550 		}
551 
552 		new = kzalloc(sizeof(*new), GFP_KERNEL);
553 		if (new == NULL) {
554 			ret = -ENOMEM;
555 			goto err_range;
556 		}
557 
558 		new->range_min = range_cfg->range_min;
559 		new->range_max = range_cfg->range_max;
560 		new->selector_reg = range_cfg->selector_reg;
561 		new->selector_mask = range_cfg->selector_mask;
562 		new->selector_shift = range_cfg->selector_shift;
563 		new->window_start = range_cfg->window_start;
564 		new->window_len = range_cfg->window_len;
565 
566 		if (_regmap_range_add(map, new) == false) {
567 			kfree(new);
568 			goto err_range;
569 		}
570 
571 		if (map->selector_work_buf == NULL) {
572 			map->selector_work_buf =
573 				kzalloc(map->format.buf_size, GFP_KERNEL);
574 			if (map->selector_work_buf == NULL) {
575 				ret = -ENOMEM;
576 				goto err_range;
577 			}
578 		}
579 	}
580 
581 	ret = regcache_init(map, config);
582 	if (ret < 0)
583 		goto err_range;
584 
585 	regmap_debugfs_init(map, config->name);
586 
587 	/* Add a devres resource for dev_get_regmap() */
588 	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
589 	if (!m) {
590 		ret = -ENOMEM;
591 		goto err_debugfs;
592 	}
593 	*m = map;
594 	devres_add(dev, m);
595 
596 	return map;
597 
598 err_debugfs:
599 	regmap_debugfs_exit(map);
600 	regcache_exit(map);
601 err_range:
602 	regmap_range_exit(map);
603 	kfree(map->work_buf);
604 err_map:
605 	kfree(map);
606 err:
607 	return ERR_PTR(ret);
608 }
609 EXPORT_SYMBOL_GPL(regmap_init);
610 
611 static void devm_regmap_release(struct device *dev, void *res)
612 {
613 	regmap_exit(*(struct regmap **)res);
614 }
615 
616 /**
617  * devm_regmap_init(): Initialise managed register map
618  *
619  * @dev: Device that will be interacted with
620  * @bus: Bus-specific callbacks to use with device
621  * @bus_context: Data passed to bus-specific callbacks
622  * @config: Configuration for register map
623  *
624  * The return value will be an ERR_PTR() on error or a valid pointer
625  * to a struct regmap.  This function should generally not be called
626  * directly, it should be called by bus-specific init functions.  The
627  * map will be automatically freed by the device management code.
628  */
629 struct regmap *devm_regmap_init(struct device *dev,
630 				const struct regmap_bus *bus,
631 				void *bus_context,
632 				const struct regmap_config *config)
633 {
634 	struct regmap **ptr, *regmap;
635 
636 	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
637 	if (!ptr)
638 		return ERR_PTR(-ENOMEM);
639 
640 	regmap = regmap_init(dev, bus, bus_context, config);
641 	if (!IS_ERR(regmap)) {
642 		*ptr = regmap;
643 		devres_add(dev, ptr);
644 	} else {
645 		devres_free(ptr);
646 	}
647 
648 	return regmap;
649 }
650 EXPORT_SYMBOL_GPL(devm_regmap_init);
651 
652 /**
653  * regmap_reinit_cache(): Reinitialise the current register cache
654  *
655  * @map: Register map to operate on.
656  * @config: New configuration.  Only the cache data will be used.
657  *
658  * Discard any existing register cache for the map and initialize a
659  * new cache.  This can be used to restore the cache to defaults or to
660  * update the cache configuration to reflect runtime discovery of the
661  * hardware.
662  */
663 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
664 {
665 	int ret;
666 
667 	map->lock(map);
668 
669 	regcache_exit(map);
670 	regmap_debugfs_exit(map);
671 
672 	map->max_register = config->max_register;
673 	map->writeable_reg = config->writeable_reg;
674 	map->readable_reg = config->readable_reg;
675 	map->volatile_reg = config->volatile_reg;
676 	map->precious_reg = config->precious_reg;
677 	map->cache_type = config->cache_type;
678 
679 	regmap_debugfs_init(map, config->name);
680 
681 	map->cache_bypass = false;
682 	map->cache_only = false;
683 
684 	ret = regcache_init(map, config);
685 
686 	map->unlock(map);
687 
688 	return ret;
689 }
690 EXPORT_SYMBOL_GPL(regmap_reinit_cache);
691 
692 /**
693  * regmap_exit(): Free a previously allocated register map
694  */
695 void regmap_exit(struct regmap *map)
696 {
697 	regcache_exit(map);
698 	regmap_debugfs_exit(map);
699 	regmap_range_exit(map);
700 	if (map->bus->free_context)
701 		map->bus->free_context(map->bus_context);
702 	kfree(map->work_buf);
703 	kfree(map);
704 }
705 EXPORT_SYMBOL_GPL(regmap_exit);
706 
707 static int dev_get_regmap_match(struct device *dev, void *res, void *data)
708 {
709 	struct regmap **r = res;
710 	if (!r || !*r) {
711 		WARN_ON(!r || !*r);
712 		return 0;
713 	}
714 
715 	/* If the user didn't specify a name match any */
716 	if (data)
717 		return (*r)->name == data;
718 	else
719 		return 1;
720 }
721 
722 /**
723  * dev_get_regmap(): Obtain the regmap (if any) for a device
724  *
725  * @dev: Device to retrieve the map for
726  * @name: Optional name for the register map, usually NULL.
727  *
728  * Returns the regmap for the device if one is present, or NULL.  If
729  * name is specified then it must match the name specified when
730  * registering the device, if it is NULL then the first regmap found
731  * will be used.  Devices with multiple register maps are very rare,
732  * generic code should normally not need to specify a name.
733  */
734 struct regmap *dev_get_regmap(struct device *dev, const char *name)
735 {
736 	struct regmap **r = devres_find(dev, dev_get_regmap_release,
737 					dev_get_regmap_match, (void *)name);
738 
739 	if (!r)
740 		return NULL;
741 	return *r;
742 }
743 EXPORT_SYMBOL_GPL(dev_get_regmap);
744 
745 static int _regmap_select_page(struct regmap *map, unsigned int *reg,
746 			       unsigned int val_num)
747 {
748 	struct regmap_range_node *range;
749 	void *orig_work_buf;
750 	unsigned int win_offset;
751 	unsigned int win_page;
752 	bool page_chg;
753 	int ret;
754 
755 	range = _regmap_range_lookup(map, *reg);
756 	if (range) {
757 		win_offset = (*reg - range->range_min) % range->window_len;
758 		win_page = (*reg - range->range_min) / range->window_len;
759 
760 		if (val_num > 1) {
761 			/* Bulk write shouldn't cross range boundary */
762 			if (*reg + val_num - 1 > range->range_max)
763 				return -EINVAL;
764 
765 			/* ... or single page boundary */
766 			if (val_num > range->window_len - win_offset)
767 				return -EINVAL;
768 		}
769 
770 		/* It is possible to have selector register inside data window.
771 		   In that case, selector register is located on every page and
772 		   it needs no page switching, when accessed alone. */
773 		if (val_num > 1 ||
774 		    range->window_start + win_offset != range->selector_reg) {
775 			/* Use separate work_buf during page switching */
776 			orig_work_buf = map->work_buf;
777 			map->work_buf = map->selector_work_buf;
778 
779 			ret = _regmap_update_bits(map, range->selector_reg,
780 					range->selector_mask,
781 					win_page << range->selector_shift,
782 					&page_chg);
783 
784 			map->work_buf = orig_work_buf;
785 
786 			if (ret < 0)
787 				return ret;
788 		}
789 
790 		*reg = range->window_start + win_offset;
791 	}
792 
793 	return 0;
794 }
795 
796 static int _regmap_raw_write(struct regmap *map, unsigned int reg,
797 			     const void *val, size_t val_len)
798 {
799 	u8 *u8 = map->work_buf;
800 	void *buf;
801 	int ret = -ENOTSUPP;
802 	size_t len;
803 	int i;
804 
805 	/* Check for unwritable registers before we start */
806 	if (map->writeable_reg)
807 		for (i = 0; i < val_len / map->format.val_bytes; i++)
808 			if (!map->writeable_reg(map->dev,
809 						reg + (i * map->reg_stride)))
810 				return -EINVAL;
811 
812 	if (!map->cache_bypass && map->format.parse_val) {
813 		unsigned int ival;
814 		int val_bytes = map->format.val_bytes;
815 		for (i = 0; i < val_len / val_bytes; i++) {
816 			memcpy(map->work_buf, val + (i * val_bytes), val_bytes);
817 			ival = map->format.parse_val(map->work_buf);
818 			ret = regcache_write(map, reg + (i * map->reg_stride),
819 					     ival);
820 			if (ret) {
821 				dev_err(map->dev,
822 				   "Error in caching of register: %u ret: %d\n",
823 					reg + i, ret);
824 				return ret;
825 			}
826 		}
827 		if (map->cache_only) {
828 			map->cache_dirty = true;
829 			return 0;
830 		}
831 	}
832 
833 	ret = _regmap_select_page(map, &reg, val_len / map->format.val_bytes);
834 	if (ret < 0)
835 		return ret;
836 
837 	map->format.format_reg(map->work_buf, reg, map->reg_shift);
838 
839 	u8[0] |= map->write_flag_mask;
840 
841 	trace_regmap_hw_write_start(map->dev, reg,
842 				    val_len / map->format.val_bytes);
843 
844 	/* If we're doing a single register write we can probably just
845 	 * send the work_buf directly, otherwise try to do a gather
846 	 * write.
847 	 */
848 	if (val == (map->work_buf + map->format.pad_bytes +
849 		    map->format.reg_bytes))
850 		ret = map->bus->write(map->bus_context, map->work_buf,
851 				      map->format.reg_bytes +
852 				      map->format.pad_bytes +
853 				      val_len);
854 	else if (map->bus->gather_write)
855 		ret = map->bus->gather_write(map->bus_context, map->work_buf,
856 					     map->format.reg_bytes +
857 					     map->format.pad_bytes,
858 					     val, val_len);
859 
860 	/* If that didn't work fall back on linearising by hand. */
861 	if (ret == -ENOTSUPP) {
862 		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
863 		buf = kzalloc(len, GFP_KERNEL);
864 		if (!buf)
865 			return -ENOMEM;
866 
867 		memcpy(buf, map->work_buf, map->format.reg_bytes);
868 		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
869 		       val, val_len);
870 		ret = map->bus->write(map->bus_context, buf, len);
871 
872 		kfree(buf);
873 	}
874 
875 	trace_regmap_hw_write_done(map->dev, reg,
876 				   val_len / map->format.val_bytes);
877 
878 	return ret;
879 }
880 
881 int _regmap_write(struct regmap *map, unsigned int reg,
882 		  unsigned int val)
883 {
884 	int ret;
885 	BUG_ON(!map->format.format_write && !map->format.format_val);
886 
887 	if (!map->cache_bypass && map->format.format_write) {
888 		ret = regcache_write(map, reg, val);
889 		if (ret != 0)
890 			return ret;
891 		if (map->cache_only) {
892 			map->cache_dirty = true;
893 			return 0;
894 		}
895 	}
896 
897 #ifdef LOG_DEVICE
898 	if (strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
899 		dev_info(map->dev, "%x <= %x\n", reg, val);
900 #endif
901 
902 	trace_regmap_reg_write(map->dev, reg, val);
903 
904 	if (map->format.format_write) {
905 		ret = _regmap_select_page(map, &reg, 1);
906 		if (ret < 0)
907 			return ret;
908 
909 		map->format.format_write(map, reg, val);
910 
911 		trace_regmap_hw_write_start(map->dev, reg, 1);
912 
913 		ret = map->bus->write(map->bus_context, map->work_buf,
914 				      map->format.buf_size);
915 
916 		trace_regmap_hw_write_done(map->dev, reg, 1);
917 
918 		return ret;
919 	} else {
920 		map->format.format_val(map->work_buf + map->format.reg_bytes
921 				       + map->format.pad_bytes, val, 0);
922 		return _regmap_raw_write(map, reg,
923 					 map->work_buf +
924 					 map->format.reg_bytes +
925 					 map->format.pad_bytes,
926 					 map->format.val_bytes);
927 	}
928 }
929 
930 /**
931  * regmap_write(): Write a value to a single register
932  *
933  * @map: Register map to write to
934  * @reg: Register to write to
935  * @val: Value to be written
936  *
937  * A value of zero will be returned on success, a negative errno will
938  * be returned in error cases.
939  */
940 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
941 {
942 	int ret;
943 
944 	if (reg % map->reg_stride)
945 		return -EINVAL;
946 
947 	map->lock(map);
948 
949 	ret = _regmap_write(map, reg, val);
950 
951 	map->unlock(map);
952 
953 	return ret;
954 }
955 EXPORT_SYMBOL_GPL(regmap_write);
956 
957 /**
958  * regmap_raw_write(): Write raw values to one or more registers
959  *
960  * @map: Register map to write to
961  * @reg: Initial register to write to
962  * @val: Block of data to be written, laid out for direct transmission to the
963  *       device
964  * @val_len: Length of data pointed to by val.
965  *
966  * This function is intended to be used for things like firmware
967  * download where a large block of data needs to be transferred to the
968  * device.  No formatting will be done on the data provided.
969  *
970  * A value of zero will be returned on success, a negative errno will
971  * be returned in error cases.
972  */
973 int regmap_raw_write(struct regmap *map, unsigned int reg,
974 		     const void *val, size_t val_len)
975 {
976 	int ret;
977 
978 	if (val_len % map->format.val_bytes)
979 		return -EINVAL;
980 	if (reg % map->reg_stride)
981 		return -EINVAL;
982 
983 	map->lock(map);
984 
985 	ret = _regmap_raw_write(map, reg, val, val_len);
986 
987 	map->unlock(map);
988 
989 	return ret;
990 }
991 EXPORT_SYMBOL_GPL(regmap_raw_write);
992 
993 /*
994  * regmap_bulk_write(): Write multiple registers to the device
995  *
996  * @map: Register map to write to
997  * @reg: First register to be write from
998  * @val: Block of data to be written, in native register size for device
999  * @val_count: Number of registers to write
1000  *
1001  * This function is intended to be used for writing a large block of
1002  * data to be device either in single transfer or multiple transfer.
1003  *
1004  * A value of zero will be returned on success, a negative errno will
1005  * be returned in error cases.
1006  */
1007 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
1008 		     size_t val_count)
1009 {
1010 	int ret = 0, i;
1011 	size_t val_bytes = map->format.val_bytes;
1012 	void *wval;
1013 
1014 	if (!map->format.parse_val)
1015 		return -EINVAL;
1016 	if (reg % map->reg_stride)
1017 		return -EINVAL;
1018 
1019 	map->lock(map);
1020 
1021 	/* No formatting is require if val_byte is 1 */
1022 	if (val_bytes == 1) {
1023 		wval = (void *)val;
1024 	} else {
1025 		wval = kmemdup(val, val_count * val_bytes, GFP_KERNEL);
1026 		if (!wval) {
1027 			ret = -ENOMEM;
1028 			dev_err(map->dev, "Error in memory allocation\n");
1029 			goto out;
1030 		}
1031 		for (i = 0; i < val_count * val_bytes; i += val_bytes)
1032 			map->format.parse_val(wval + i);
1033 	}
1034 	/*
1035 	 * Some devices does not support bulk write, for
1036 	 * them we have a series of single write operations.
1037 	 */
1038 	if (map->use_single_rw) {
1039 		for (i = 0; i < val_count; i++) {
1040 			ret = regmap_raw_write(map,
1041 						reg + (i * map->reg_stride),
1042 						val + (i * val_bytes),
1043 						val_bytes);
1044 			if (ret != 0)
1045 				return ret;
1046 		}
1047 	} else {
1048 		ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count);
1049 	}
1050 
1051 	if (val_bytes != 1)
1052 		kfree(wval);
1053 
1054 out:
1055 	map->unlock(map);
1056 	return ret;
1057 }
1058 EXPORT_SYMBOL_GPL(regmap_bulk_write);
1059 
1060 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
1061 			    unsigned int val_len)
1062 {
1063 	u8 *u8 = map->work_buf;
1064 	int ret;
1065 
1066 	ret = _regmap_select_page(map, &reg, val_len / map->format.val_bytes);
1067 	if (ret < 0)
1068 		return ret;
1069 
1070 	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1071 
1072 	/*
1073 	 * Some buses or devices flag reads by setting the high bits in the
1074 	 * register addresss; since it's always the high bits for all
1075 	 * current formats we can do this here rather than in
1076 	 * formatting.  This may break if we get interesting formats.
1077 	 */
1078 	u8[0] |= map->read_flag_mask;
1079 
1080 	trace_regmap_hw_read_start(map->dev, reg,
1081 				   val_len / map->format.val_bytes);
1082 
1083 	ret = map->bus->read(map->bus_context, map->work_buf,
1084 			     map->format.reg_bytes + map->format.pad_bytes,
1085 			     val, val_len);
1086 
1087 	trace_regmap_hw_read_done(map->dev, reg,
1088 				  val_len / map->format.val_bytes);
1089 
1090 	return ret;
1091 }
1092 
1093 static int _regmap_read(struct regmap *map, unsigned int reg,
1094 			unsigned int *val)
1095 {
1096 	int ret;
1097 
1098 	if (!map->cache_bypass) {
1099 		ret = regcache_read(map, reg, val);
1100 		if (ret == 0)
1101 			return 0;
1102 	}
1103 
1104 	if (!map->format.parse_val)
1105 		return -EINVAL;
1106 
1107 	if (map->cache_only)
1108 		return -EBUSY;
1109 
1110 	ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes);
1111 	if (ret == 0) {
1112 		*val = map->format.parse_val(map->work_buf);
1113 
1114 #ifdef LOG_DEVICE
1115 		if (strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1116 			dev_info(map->dev, "%x => %x\n", reg, *val);
1117 #endif
1118 
1119 		trace_regmap_reg_read(map->dev, reg, *val);
1120 	}
1121 
1122 	if (ret == 0 && !map->cache_bypass)
1123 		regcache_write(map, reg, *val);
1124 
1125 	return ret;
1126 }
1127 
1128 /**
1129  * regmap_read(): Read a value from a single register
1130  *
1131  * @map: Register map to write to
1132  * @reg: Register to be read from
1133  * @val: Pointer to store read value
1134  *
1135  * A value of zero will be returned on success, a negative errno will
1136  * be returned in error cases.
1137  */
1138 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
1139 {
1140 	int ret;
1141 
1142 	if (reg % map->reg_stride)
1143 		return -EINVAL;
1144 
1145 	map->lock(map);
1146 
1147 	ret = _regmap_read(map, reg, val);
1148 
1149 	map->unlock(map);
1150 
1151 	return ret;
1152 }
1153 EXPORT_SYMBOL_GPL(regmap_read);
1154 
1155 /**
1156  * regmap_raw_read(): Read raw data from the device
1157  *
1158  * @map: Register map to write to
1159  * @reg: First register to be read from
1160  * @val: Pointer to store read value
1161  * @val_len: Size of data to read
1162  *
1163  * A value of zero will be returned on success, a negative errno will
1164  * be returned in error cases.
1165  */
1166 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
1167 		    size_t val_len)
1168 {
1169 	size_t val_bytes = map->format.val_bytes;
1170 	size_t val_count = val_len / val_bytes;
1171 	unsigned int v;
1172 	int ret, i;
1173 
1174 	if (val_len % map->format.val_bytes)
1175 		return -EINVAL;
1176 	if (reg % map->reg_stride)
1177 		return -EINVAL;
1178 
1179 	map->lock(map);
1180 
1181 	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
1182 	    map->cache_type == REGCACHE_NONE) {
1183 		/* Physical block read if there's no cache involved */
1184 		ret = _regmap_raw_read(map, reg, val, val_len);
1185 
1186 	} else {
1187 		/* Otherwise go word by word for the cache; should be low
1188 		 * cost as we expect to hit the cache.
1189 		 */
1190 		for (i = 0; i < val_count; i++) {
1191 			ret = _regmap_read(map, reg + (i * map->reg_stride),
1192 					   &v);
1193 			if (ret != 0)
1194 				goto out;
1195 
1196 			map->format.format_val(val + (i * val_bytes), v, 0);
1197 		}
1198 	}
1199 
1200  out:
1201 	map->unlock(map);
1202 
1203 	return ret;
1204 }
1205 EXPORT_SYMBOL_GPL(regmap_raw_read);
1206 
1207 /**
1208  * regmap_bulk_read(): Read multiple registers from the device
1209  *
1210  * @map: Register map to write to
1211  * @reg: First register to be read from
1212  * @val: Pointer to store read value, in native register size for device
1213  * @val_count: Number of registers to read
1214  *
1215  * A value of zero will be returned on success, a negative errno will
1216  * be returned in error cases.
1217  */
1218 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
1219 		     size_t val_count)
1220 {
1221 	int ret, i;
1222 	size_t val_bytes = map->format.val_bytes;
1223 	bool vol = regmap_volatile_range(map, reg, val_count);
1224 
1225 	if (!map->format.parse_val)
1226 		return -EINVAL;
1227 	if (reg % map->reg_stride)
1228 		return -EINVAL;
1229 
1230 	if (vol || map->cache_type == REGCACHE_NONE) {
1231 		/*
1232 		 * Some devices does not support bulk read, for
1233 		 * them we have a series of single read operations.
1234 		 */
1235 		if (map->use_single_rw) {
1236 			for (i = 0; i < val_count; i++) {
1237 				ret = regmap_raw_read(map,
1238 						reg + (i * map->reg_stride),
1239 						val + (i * val_bytes),
1240 						val_bytes);
1241 				if (ret != 0)
1242 					return ret;
1243 			}
1244 		} else {
1245 			ret = regmap_raw_read(map, reg, val,
1246 					      val_bytes * val_count);
1247 			if (ret != 0)
1248 				return ret;
1249 		}
1250 
1251 		for (i = 0; i < val_count * val_bytes; i += val_bytes)
1252 			map->format.parse_val(val + i);
1253 	} else {
1254 		for (i = 0; i < val_count; i++) {
1255 			unsigned int ival;
1256 			ret = regmap_read(map, reg + (i * map->reg_stride),
1257 					  &ival);
1258 			if (ret != 0)
1259 				return ret;
1260 			memcpy(val + (i * val_bytes), &ival, val_bytes);
1261 		}
1262 	}
1263 
1264 	return 0;
1265 }
1266 EXPORT_SYMBOL_GPL(regmap_bulk_read);
1267 
1268 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
1269 			       unsigned int mask, unsigned int val,
1270 			       bool *change)
1271 {
1272 	int ret;
1273 	unsigned int tmp, orig;
1274 
1275 	ret = _regmap_read(map, reg, &orig);
1276 	if (ret != 0)
1277 		return ret;
1278 
1279 	tmp = orig & ~mask;
1280 	tmp |= val & mask;
1281 
1282 	if (tmp != orig) {
1283 		ret = _regmap_write(map, reg, tmp);
1284 		*change = true;
1285 	} else {
1286 		*change = false;
1287 	}
1288 
1289 	return ret;
1290 }
1291 
1292 /**
1293  * regmap_update_bits: Perform a read/modify/write cycle on the register map
1294  *
1295  * @map: Register map to update
1296  * @reg: Register to update
1297  * @mask: Bitmask to change
1298  * @val: New value for bitmask
1299  *
1300  * Returns zero for success, a negative number on error.
1301  */
1302 int regmap_update_bits(struct regmap *map, unsigned int reg,
1303 		       unsigned int mask, unsigned int val)
1304 {
1305 	bool change;
1306 	int ret;
1307 
1308 	map->lock(map);
1309 	ret = _regmap_update_bits(map, reg, mask, val, &change);
1310 	map->unlock(map);
1311 
1312 	return ret;
1313 }
1314 EXPORT_SYMBOL_GPL(regmap_update_bits);
1315 
1316 /**
1317  * regmap_update_bits_check: Perform a read/modify/write cycle on the
1318  *                           register map and report if updated
1319  *
1320  * @map: Register map to update
1321  * @reg: Register to update
1322  * @mask: Bitmask to change
1323  * @val: New value for bitmask
1324  * @change: Boolean indicating if a write was done
1325  *
1326  * Returns zero for success, a negative number on error.
1327  */
1328 int regmap_update_bits_check(struct regmap *map, unsigned int reg,
1329 			     unsigned int mask, unsigned int val,
1330 			     bool *change)
1331 {
1332 	int ret;
1333 
1334 	map->lock(map);
1335 	ret = _regmap_update_bits(map, reg, mask, val, change);
1336 	map->unlock(map);
1337 	return ret;
1338 }
1339 EXPORT_SYMBOL_GPL(regmap_update_bits_check);
1340 
1341 /**
1342  * regmap_register_patch: Register and apply register updates to be applied
1343  *                        on device initialistion
1344  *
1345  * @map: Register map to apply updates to.
1346  * @regs: Values to update.
1347  * @num_regs: Number of entries in regs.
1348  *
1349  * Register a set of register updates to be applied to the device
1350  * whenever the device registers are synchronised with the cache and
1351  * apply them immediately.  Typically this is used to apply
1352  * corrections to be applied to the device defaults on startup, such
1353  * as the updates some vendors provide to undocumented registers.
1354  */
1355 int regmap_register_patch(struct regmap *map, const struct reg_default *regs,
1356 			  int num_regs)
1357 {
1358 	int i, ret;
1359 	bool bypass;
1360 
1361 	/* If needed the implementation can be extended to support this */
1362 	if (map->patch)
1363 		return -EBUSY;
1364 
1365 	map->lock(map);
1366 
1367 	bypass = map->cache_bypass;
1368 
1369 	map->cache_bypass = true;
1370 
1371 	/* Write out first; it's useful to apply even if we fail later. */
1372 	for (i = 0; i < num_regs; i++) {
1373 		ret = _regmap_write(map, regs[i].reg, regs[i].def);
1374 		if (ret != 0) {
1375 			dev_err(map->dev, "Failed to write %x = %x: %d\n",
1376 				regs[i].reg, regs[i].def, ret);
1377 			goto out;
1378 		}
1379 	}
1380 
1381 	map->patch = kcalloc(num_regs, sizeof(struct reg_default), GFP_KERNEL);
1382 	if (map->patch != NULL) {
1383 		memcpy(map->patch, regs,
1384 		       num_regs * sizeof(struct reg_default));
1385 		map->patch_regs = num_regs;
1386 	} else {
1387 		ret = -ENOMEM;
1388 	}
1389 
1390 out:
1391 	map->cache_bypass = bypass;
1392 
1393 	map->unlock(map);
1394 
1395 	return ret;
1396 }
1397 EXPORT_SYMBOL_GPL(regmap_register_patch);
1398 
1399 /*
1400  * regmap_get_val_bytes(): Report the size of a register value
1401  *
1402  * Report the size of a register value, mainly intended to for use by
1403  * generic infrastructure built on top of regmap.
1404  */
1405 int regmap_get_val_bytes(struct regmap *map)
1406 {
1407 	if (map->format.format_write)
1408 		return -EINVAL;
1409 
1410 	return map->format.val_bytes;
1411 }
1412 EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
1413 
1414 static int __init regmap_initcall(void)
1415 {
1416 	regmap_debugfs_initcall();
1417 
1418 	return 0;
1419 }
1420 postcore_initcall(regmap_initcall);
1421