xref: /linux/drivers/base/regmap/regmap.c (revision 93d90ad708b8da6efc0e487b66111aa9db7f70c7)
1 /*
2  * Register map access API
3  *
4  * Copyright 2011 Wolfson Microelectronics plc
5  *
6  * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/mutex.h>
17 #include <linux/err.h>
18 #include <linux/of.h>
19 #include <linux/rbtree.h>
20 #include <linux/sched.h>
21 
22 #define CREATE_TRACE_POINTS
23 #include <trace/events/regmap.h>
24 
25 #include "internal.h"
26 
27 /*
28  * Sometimes for failures during very early init the trace
29  * infrastructure isn't available early enough to be used.  For this
30  * sort of problem defining LOG_DEVICE will add printks for basic
31  * register I/O on a specific device.
32  */
33 #undef LOG_DEVICE
34 
35 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
36 			       unsigned int mask, unsigned int val,
37 			       bool *change);
38 
39 static int _regmap_bus_reg_read(void *context, unsigned int reg,
40 				unsigned int *val);
41 static int _regmap_bus_read(void *context, unsigned int reg,
42 			    unsigned int *val);
43 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
44 				       unsigned int val);
45 static int _regmap_bus_reg_write(void *context, unsigned int reg,
46 				 unsigned int val);
47 static int _regmap_bus_raw_write(void *context, unsigned int reg,
48 				 unsigned int val);
49 
50 bool regmap_reg_in_ranges(unsigned int reg,
51 			  const struct regmap_range *ranges,
52 			  unsigned int nranges)
53 {
54 	const struct regmap_range *r;
55 	int i;
56 
57 	for (i = 0, r = ranges; i < nranges; i++, r++)
58 		if (regmap_reg_in_range(reg, r))
59 			return true;
60 	return false;
61 }
62 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
63 
64 bool regmap_check_range_table(struct regmap *map, unsigned int reg,
65 			      const struct regmap_access_table *table)
66 {
67 	/* Check "no ranges" first */
68 	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
69 		return false;
70 
71 	/* In case zero "yes ranges" are supplied, any reg is OK */
72 	if (!table->n_yes_ranges)
73 		return true;
74 
75 	return regmap_reg_in_ranges(reg, table->yes_ranges,
76 				    table->n_yes_ranges);
77 }
78 EXPORT_SYMBOL_GPL(regmap_check_range_table);
79 
80 bool regmap_writeable(struct regmap *map, unsigned int reg)
81 {
82 	if (map->max_register && reg > map->max_register)
83 		return false;
84 
85 	if (map->writeable_reg)
86 		return map->writeable_reg(map->dev, reg);
87 
88 	if (map->wr_table)
89 		return regmap_check_range_table(map, reg, map->wr_table);
90 
91 	return true;
92 }
93 
94 bool regmap_readable(struct regmap *map, unsigned int reg)
95 {
96 	if (map->max_register && reg > map->max_register)
97 		return false;
98 
99 	if (map->format.format_write)
100 		return false;
101 
102 	if (map->readable_reg)
103 		return map->readable_reg(map->dev, reg);
104 
105 	if (map->rd_table)
106 		return regmap_check_range_table(map, reg, map->rd_table);
107 
108 	return true;
109 }
110 
111 bool regmap_volatile(struct regmap *map, unsigned int reg)
112 {
113 	if (!map->format.format_write && !regmap_readable(map, reg))
114 		return false;
115 
116 	if (map->volatile_reg)
117 		return map->volatile_reg(map->dev, reg);
118 
119 	if (map->volatile_table)
120 		return regmap_check_range_table(map, reg, map->volatile_table);
121 
122 	if (map->cache_ops)
123 		return false;
124 	else
125 		return true;
126 }
127 
128 bool regmap_precious(struct regmap *map, unsigned int reg)
129 {
130 	if (!regmap_readable(map, reg))
131 		return false;
132 
133 	if (map->precious_reg)
134 		return map->precious_reg(map->dev, reg);
135 
136 	if (map->precious_table)
137 		return regmap_check_range_table(map, reg, map->precious_table);
138 
139 	return false;
140 }
141 
142 static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
143 	size_t num)
144 {
145 	unsigned int i;
146 
147 	for (i = 0; i < num; i++)
148 		if (!regmap_volatile(map, reg + i))
149 			return false;
150 
151 	return true;
152 }
153 
154 static void regmap_format_2_6_write(struct regmap *map,
155 				     unsigned int reg, unsigned int val)
156 {
157 	u8 *out = map->work_buf;
158 
159 	*out = (reg << 6) | val;
160 }
161 
162 static void regmap_format_4_12_write(struct regmap *map,
163 				     unsigned int reg, unsigned int val)
164 {
165 	__be16 *out = map->work_buf;
166 	*out = cpu_to_be16((reg << 12) | val);
167 }
168 
169 static void regmap_format_7_9_write(struct regmap *map,
170 				    unsigned int reg, unsigned int val)
171 {
172 	__be16 *out = map->work_buf;
173 	*out = cpu_to_be16((reg << 9) | val);
174 }
175 
176 static void regmap_format_10_14_write(struct regmap *map,
177 				    unsigned int reg, unsigned int val)
178 {
179 	u8 *out = map->work_buf;
180 
181 	out[2] = val;
182 	out[1] = (val >> 8) | (reg << 6);
183 	out[0] = reg >> 2;
184 }
185 
186 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
187 {
188 	u8 *b = buf;
189 
190 	b[0] = val << shift;
191 }
192 
193 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
194 {
195 	__be16 *b = buf;
196 
197 	b[0] = cpu_to_be16(val << shift);
198 }
199 
200 static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
201 {
202 	__le16 *b = buf;
203 
204 	b[0] = cpu_to_le16(val << shift);
205 }
206 
207 static void regmap_format_16_native(void *buf, unsigned int val,
208 				    unsigned int shift)
209 {
210 	*(u16 *)buf = val << shift;
211 }
212 
213 static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
214 {
215 	u8 *b = buf;
216 
217 	val <<= shift;
218 
219 	b[0] = val >> 16;
220 	b[1] = val >> 8;
221 	b[2] = val;
222 }
223 
224 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
225 {
226 	__be32 *b = buf;
227 
228 	b[0] = cpu_to_be32(val << shift);
229 }
230 
231 static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
232 {
233 	__le32 *b = buf;
234 
235 	b[0] = cpu_to_le32(val << shift);
236 }
237 
238 static void regmap_format_32_native(void *buf, unsigned int val,
239 				    unsigned int shift)
240 {
241 	*(u32 *)buf = val << shift;
242 }
243 
244 static void regmap_parse_inplace_noop(void *buf)
245 {
246 }
247 
248 static unsigned int regmap_parse_8(const void *buf)
249 {
250 	const u8 *b = buf;
251 
252 	return b[0];
253 }
254 
255 static unsigned int regmap_parse_16_be(const void *buf)
256 {
257 	const __be16 *b = buf;
258 
259 	return be16_to_cpu(b[0]);
260 }
261 
262 static unsigned int regmap_parse_16_le(const void *buf)
263 {
264 	const __le16 *b = buf;
265 
266 	return le16_to_cpu(b[0]);
267 }
268 
269 static void regmap_parse_16_be_inplace(void *buf)
270 {
271 	__be16 *b = buf;
272 
273 	b[0] = be16_to_cpu(b[0]);
274 }
275 
276 static void regmap_parse_16_le_inplace(void *buf)
277 {
278 	__le16 *b = buf;
279 
280 	b[0] = le16_to_cpu(b[0]);
281 }
282 
283 static unsigned int regmap_parse_16_native(const void *buf)
284 {
285 	return *(u16 *)buf;
286 }
287 
288 static unsigned int regmap_parse_24(const void *buf)
289 {
290 	const u8 *b = buf;
291 	unsigned int ret = b[2];
292 	ret |= ((unsigned int)b[1]) << 8;
293 	ret |= ((unsigned int)b[0]) << 16;
294 
295 	return ret;
296 }
297 
298 static unsigned int regmap_parse_32_be(const void *buf)
299 {
300 	const __be32 *b = buf;
301 
302 	return be32_to_cpu(b[0]);
303 }
304 
305 static unsigned int regmap_parse_32_le(const void *buf)
306 {
307 	const __le32 *b = buf;
308 
309 	return le32_to_cpu(b[0]);
310 }
311 
312 static void regmap_parse_32_be_inplace(void *buf)
313 {
314 	__be32 *b = buf;
315 
316 	b[0] = be32_to_cpu(b[0]);
317 }
318 
319 static void regmap_parse_32_le_inplace(void *buf)
320 {
321 	__le32 *b = buf;
322 
323 	b[0] = le32_to_cpu(b[0]);
324 }
325 
326 static unsigned int regmap_parse_32_native(const void *buf)
327 {
328 	return *(u32 *)buf;
329 }
330 
331 static void regmap_lock_mutex(void *__map)
332 {
333 	struct regmap *map = __map;
334 	mutex_lock(&map->mutex);
335 }
336 
337 static void regmap_unlock_mutex(void *__map)
338 {
339 	struct regmap *map = __map;
340 	mutex_unlock(&map->mutex);
341 }
342 
343 static void regmap_lock_spinlock(void *__map)
344 __acquires(&map->spinlock)
345 {
346 	struct regmap *map = __map;
347 	unsigned long flags;
348 
349 	spin_lock_irqsave(&map->spinlock, flags);
350 	map->spinlock_flags = flags;
351 }
352 
353 static void regmap_unlock_spinlock(void *__map)
354 __releases(&map->spinlock)
355 {
356 	struct regmap *map = __map;
357 	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
358 }
359 
360 static void dev_get_regmap_release(struct device *dev, void *res)
361 {
362 	/*
363 	 * We don't actually have anything to do here; the goal here
364 	 * is not to manage the regmap but to provide a simple way to
365 	 * get the regmap back given a struct device.
366 	 */
367 }
368 
369 static bool _regmap_range_add(struct regmap *map,
370 			      struct regmap_range_node *data)
371 {
372 	struct rb_root *root = &map->range_tree;
373 	struct rb_node **new = &(root->rb_node), *parent = NULL;
374 
375 	while (*new) {
376 		struct regmap_range_node *this =
377 			container_of(*new, struct regmap_range_node, node);
378 
379 		parent = *new;
380 		if (data->range_max < this->range_min)
381 			new = &((*new)->rb_left);
382 		else if (data->range_min > this->range_max)
383 			new = &((*new)->rb_right);
384 		else
385 			return false;
386 	}
387 
388 	rb_link_node(&data->node, parent, new);
389 	rb_insert_color(&data->node, root);
390 
391 	return true;
392 }
393 
394 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
395 						      unsigned int reg)
396 {
397 	struct rb_node *node = map->range_tree.rb_node;
398 
399 	while (node) {
400 		struct regmap_range_node *this =
401 			container_of(node, struct regmap_range_node, node);
402 
403 		if (reg < this->range_min)
404 			node = node->rb_left;
405 		else if (reg > this->range_max)
406 			node = node->rb_right;
407 		else
408 			return this;
409 	}
410 
411 	return NULL;
412 }
413 
414 static void regmap_range_exit(struct regmap *map)
415 {
416 	struct rb_node *next;
417 	struct regmap_range_node *range_node;
418 
419 	next = rb_first(&map->range_tree);
420 	while (next) {
421 		range_node = rb_entry(next, struct regmap_range_node, node);
422 		next = rb_next(&range_node->node);
423 		rb_erase(&range_node->node, &map->range_tree);
424 		kfree(range_node);
425 	}
426 
427 	kfree(map->selector_work_buf);
428 }
429 
430 int regmap_attach_dev(struct device *dev, struct regmap *map,
431 		      const struct regmap_config *config)
432 {
433 	struct regmap **m;
434 
435 	map->dev = dev;
436 
437 	regmap_debugfs_init(map, config->name);
438 
439 	/* Add a devres resource for dev_get_regmap() */
440 	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
441 	if (!m) {
442 		regmap_debugfs_exit(map);
443 		return -ENOMEM;
444 	}
445 	*m = map;
446 	devres_add(dev, m);
447 
448 	return 0;
449 }
450 EXPORT_SYMBOL_GPL(regmap_attach_dev);
451 
452 static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
453 					const struct regmap_config *config)
454 {
455 	enum regmap_endian endian;
456 
457 	/* Retrieve the endianness specification from the regmap config */
458 	endian = config->reg_format_endian;
459 
460 	/* If the regmap config specified a non-default value, use that */
461 	if (endian != REGMAP_ENDIAN_DEFAULT)
462 		return endian;
463 
464 	/* Retrieve the endianness specification from the bus config */
465 	if (bus && bus->reg_format_endian_default)
466 		endian = bus->reg_format_endian_default;
467 
468 	/* If the bus specified a non-default value, use that */
469 	if (endian != REGMAP_ENDIAN_DEFAULT)
470 		return endian;
471 
472 	/* Use this if no other value was found */
473 	return REGMAP_ENDIAN_BIG;
474 }
475 
476 static enum regmap_endian regmap_get_val_endian(struct device *dev,
477 					const struct regmap_bus *bus,
478 					const struct regmap_config *config)
479 {
480 	struct device_node *np;
481 	enum regmap_endian endian;
482 
483 	/* Retrieve the endianness specification from the regmap config */
484 	endian = config->val_format_endian;
485 
486 	/* If the regmap config specified a non-default value, use that */
487 	if (endian != REGMAP_ENDIAN_DEFAULT)
488 		return endian;
489 
490 	/* If the dev and dev->of_node exist try to get endianness from DT */
491 	if (dev && dev->of_node) {
492 		np = dev->of_node;
493 
494 		/* Parse the device's DT node for an endianness specification */
495 		if (of_property_read_bool(np, "big-endian"))
496 			endian = REGMAP_ENDIAN_BIG;
497 		else if (of_property_read_bool(np, "little-endian"))
498 			endian = REGMAP_ENDIAN_LITTLE;
499 
500 		/* If the endianness was specified in DT, use that */
501 		if (endian != REGMAP_ENDIAN_DEFAULT)
502 			return endian;
503 	}
504 
505 	/* Retrieve the endianness specification from the bus config */
506 	if (bus && bus->val_format_endian_default)
507 		endian = bus->val_format_endian_default;
508 
509 	/* If the bus specified a non-default value, use that */
510 	if (endian != REGMAP_ENDIAN_DEFAULT)
511 		return endian;
512 
513 	/* Use this if no other value was found */
514 	return REGMAP_ENDIAN_BIG;
515 }
516 
517 /**
518  * regmap_init(): Initialise register map
519  *
520  * @dev: Device that will be interacted with
521  * @bus: Bus-specific callbacks to use with device
522  * @bus_context: Data passed to bus-specific callbacks
523  * @config: Configuration for register map
524  *
525  * The return value will be an ERR_PTR() on error or a valid pointer to
526  * a struct regmap.  This function should generally not be called
527  * directly, it should be called by bus-specific init functions.
528  */
529 struct regmap *regmap_init(struct device *dev,
530 			   const struct regmap_bus *bus,
531 			   void *bus_context,
532 			   const struct regmap_config *config)
533 {
534 	struct regmap *map;
535 	int ret = -EINVAL;
536 	enum regmap_endian reg_endian, val_endian;
537 	int i, j;
538 
539 	if (!config)
540 		goto err;
541 
542 	map = kzalloc(sizeof(*map), GFP_KERNEL);
543 	if (map == NULL) {
544 		ret = -ENOMEM;
545 		goto err;
546 	}
547 
548 	if (config->lock && config->unlock) {
549 		map->lock = config->lock;
550 		map->unlock = config->unlock;
551 		map->lock_arg = config->lock_arg;
552 	} else {
553 		if ((bus && bus->fast_io) ||
554 		    config->fast_io) {
555 			spin_lock_init(&map->spinlock);
556 			map->lock = regmap_lock_spinlock;
557 			map->unlock = regmap_unlock_spinlock;
558 		} else {
559 			mutex_init(&map->mutex);
560 			map->lock = regmap_lock_mutex;
561 			map->unlock = regmap_unlock_mutex;
562 		}
563 		map->lock_arg = map;
564 	}
565 	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
566 	map->format.pad_bytes = config->pad_bits / 8;
567 	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
568 	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
569 			config->val_bits + config->pad_bits, 8);
570 	map->reg_shift = config->pad_bits % 8;
571 	if (config->reg_stride)
572 		map->reg_stride = config->reg_stride;
573 	else
574 		map->reg_stride = 1;
575 	map->use_single_rw = config->use_single_rw;
576 	map->can_multi_write = config->can_multi_write;
577 	map->dev = dev;
578 	map->bus = bus;
579 	map->bus_context = bus_context;
580 	map->max_register = config->max_register;
581 	map->wr_table = config->wr_table;
582 	map->rd_table = config->rd_table;
583 	map->volatile_table = config->volatile_table;
584 	map->precious_table = config->precious_table;
585 	map->writeable_reg = config->writeable_reg;
586 	map->readable_reg = config->readable_reg;
587 	map->volatile_reg = config->volatile_reg;
588 	map->precious_reg = config->precious_reg;
589 	map->cache_type = config->cache_type;
590 	map->name = config->name;
591 
592 	spin_lock_init(&map->async_lock);
593 	INIT_LIST_HEAD(&map->async_list);
594 	INIT_LIST_HEAD(&map->async_free);
595 	init_waitqueue_head(&map->async_waitq);
596 
597 	if (config->read_flag_mask || config->write_flag_mask) {
598 		map->read_flag_mask = config->read_flag_mask;
599 		map->write_flag_mask = config->write_flag_mask;
600 	} else if (bus) {
601 		map->read_flag_mask = bus->read_flag_mask;
602 	}
603 
604 	if (!bus) {
605 		map->reg_read  = config->reg_read;
606 		map->reg_write = config->reg_write;
607 
608 		map->defer_caching = false;
609 		goto skip_format_initialization;
610 	} else if (!bus->read || !bus->write) {
611 		map->reg_read = _regmap_bus_reg_read;
612 		map->reg_write = _regmap_bus_reg_write;
613 
614 		map->defer_caching = false;
615 		goto skip_format_initialization;
616 	} else {
617 		map->reg_read  = _regmap_bus_read;
618 	}
619 
620 	reg_endian = regmap_get_reg_endian(bus, config);
621 	val_endian = regmap_get_val_endian(dev, bus, config);
622 
623 	switch (config->reg_bits + map->reg_shift) {
624 	case 2:
625 		switch (config->val_bits) {
626 		case 6:
627 			map->format.format_write = regmap_format_2_6_write;
628 			break;
629 		default:
630 			goto err_map;
631 		}
632 		break;
633 
634 	case 4:
635 		switch (config->val_bits) {
636 		case 12:
637 			map->format.format_write = regmap_format_4_12_write;
638 			break;
639 		default:
640 			goto err_map;
641 		}
642 		break;
643 
644 	case 7:
645 		switch (config->val_bits) {
646 		case 9:
647 			map->format.format_write = regmap_format_7_9_write;
648 			break;
649 		default:
650 			goto err_map;
651 		}
652 		break;
653 
654 	case 10:
655 		switch (config->val_bits) {
656 		case 14:
657 			map->format.format_write = regmap_format_10_14_write;
658 			break;
659 		default:
660 			goto err_map;
661 		}
662 		break;
663 
664 	case 8:
665 		map->format.format_reg = regmap_format_8;
666 		break;
667 
668 	case 16:
669 		switch (reg_endian) {
670 		case REGMAP_ENDIAN_BIG:
671 			map->format.format_reg = regmap_format_16_be;
672 			break;
673 		case REGMAP_ENDIAN_NATIVE:
674 			map->format.format_reg = regmap_format_16_native;
675 			break;
676 		default:
677 			goto err_map;
678 		}
679 		break;
680 
681 	case 24:
682 		if (reg_endian != REGMAP_ENDIAN_BIG)
683 			goto err_map;
684 		map->format.format_reg = regmap_format_24;
685 		break;
686 
687 	case 32:
688 		switch (reg_endian) {
689 		case REGMAP_ENDIAN_BIG:
690 			map->format.format_reg = regmap_format_32_be;
691 			break;
692 		case REGMAP_ENDIAN_NATIVE:
693 			map->format.format_reg = regmap_format_32_native;
694 			break;
695 		default:
696 			goto err_map;
697 		}
698 		break;
699 
700 	default:
701 		goto err_map;
702 	}
703 
704 	if (val_endian == REGMAP_ENDIAN_NATIVE)
705 		map->format.parse_inplace = regmap_parse_inplace_noop;
706 
707 	switch (config->val_bits) {
708 	case 8:
709 		map->format.format_val = regmap_format_8;
710 		map->format.parse_val = regmap_parse_8;
711 		map->format.parse_inplace = regmap_parse_inplace_noop;
712 		break;
713 	case 16:
714 		switch (val_endian) {
715 		case REGMAP_ENDIAN_BIG:
716 			map->format.format_val = regmap_format_16_be;
717 			map->format.parse_val = regmap_parse_16_be;
718 			map->format.parse_inplace = regmap_parse_16_be_inplace;
719 			break;
720 		case REGMAP_ENDIAN_LITTLE:
721 			map->format.format_val = regmap_format_16_le;
722 			map->format.parse_val = regmap_parse_16_le;
723 			map->format.parse_inplace = regmap_parse_16_le_inplace;
724 			break;
725 		case REGMAP_ENDIAN_NATIVE:
726 			map->format.format_val = regmap_format_16_native;
727 			map->format.parse_val = regmap_parse_16_native;
728 			break;
729 		default:
730 			goto err_map;
731 		}
732 		break;
733 	case 24:
734 		if (val_endian != REGMAP_ENDIAN_BIG)
735 			goto err_map;
736 		map->format.format_val = regmap_format_24;
737 		map->format.parse_val = regmap_parse_24;
738 		break;
739 	case 32:
740 		switch (val_endian) {
741 		case REGMAP_ENDIAN_BIG:
742 			map->format.format_val = regmap_format_32_be;
743 			map->format.parse_val = regmap_parse_32_be;
744 			map->format.parse_inplace = regmap_parse_32_be_inplace;
745 			break;
746 		case REGMAP_ENDIAN_LITTLE:
747 			map->format.format_val = regmap_format_32_le;
748 			map->format.parse_val = regmap_parse_32_le;
749 			map->format.parse_inplace = regmap_parse_32_le_inplace;
750 			break;
751 		case REGMAP_ENDIAN_NATIVE:
752 			map->format.format_val = regmap_format_32_native;
753 			map->format.parse_val = regmap_parse_32_native;
754 			break;
755 		default:
756 			goto err_map;
757 		}
758 		break;
759 	}
760 
761 	if (map->format.format_write) {
762 		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
763 		    (val_endian != REGMAP_ENDIAN_BIG))
764 			goto err_map;
765 		map->use_single_rw = true;
766 	}
767 
768 	if (!map->format.format_write &&
769 	    !(map->format.format_reg && map->format.format_val))
770 		goto err_map;
771 
772 	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
773 	if (map->work_buf == NULL) {
774 		ret = -ENOMEM;
775 		goto err_map;
776 	}
777 
778 	if (map->format.format_write) {
779 		map->defer_caching = false;
780 		map->reg_write = _regmap_bus_formatted_write;
781 	} else if (map->format.format_val) {
782 		map->defer_caching = true;
783 		map->reg_write = _regmap_bus_raw_write;
784 	}
785 
786 skip_format_initialization:
787 
788 	map->range_tree = RB_ROOT;
789 	for (i = 0; i < config->num_ranges; i++) {
790 		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
791 		struct regmap_range_node *new;
792 
793 		/* Sanity check */
794 		if (range_cfg->range_max < range_cfg->range_min) {
795 			dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
796 				range_cfg->range_max, range_cfg->range_min);
797 			goto err_range;
798 		}
799 
800 		if (range_cfg->range_max > map->max_register) {
801 			dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
802 				range_cfg->range_max, map->max_register);
803 			goto err_range;
804 		}
805 
806 		if (range_cfg->selector_reg > map->max_register) {
807 			dev_err(map->dev,
808 				"Invalid range %d: selector out of map\n", i);
809 			goto err_range;
810 		}
811 
812 		if (range_cfg->window_len == 0) {
813 			dev_err(map->dev, "Invalid range %d: window_len 0\n",
814 				i);
815 			goto err_range;
816 		}
817 
818 		/* Make sure, that this register range has no selector
819 		   or data window within its boundary */
820 		for (j = 0; j < config->num_ranges; j++) {
821 			unsigned sel_reg = config->ranges[j].selector_reg;
822 			unsigned win_min = config->ranges[j].window_start;
823 			unsigned win_max = win_min +
824 					   config->ranges[j].window_len - 1;
825 
826 			/* Allow data window inside its own virtual range */
827 			if (j == i)
828 				continue;
829 
830 			if (range_cfg->range_min <= sel_reg &&
831 			    sel_reg <= range_cfg->range_max) {
832 				dev_err(map->dev,
833 					"Range %d: selector for %d in window\n",
834 					i, j);
835 				goto err_range;
836 			}
837 
838 			if (!(win_max < range_cfg->range_min ||
839 			      win_min > range_cfg->range_max)) {
840 				dev_err(map->dev,
841 					"Range %d: window for %d in window\n",
842 					i, j);
843 				goto err_range;
844 			}
845 		}
846 
847 		new = kzalloc(sizeof(*new), GFP_KERNEL);
848 		if (new == NULL) {
849 			ret = -ENOMEM;
850 			goto err_range;
851 		}
852 
853 		new->map = map;
854 		new->name = range_cfg->name;
855 		new->range_min = range_cfg->range_min;
856 		new->range_max = range_cfg->range_max;
857 		new->selector_reg = range_cfg->selector_reg;
858 		new->selector_mask = range_cfg->selector_mask;
859 		new->selector_shift = range_cfg->selector_shift;
860 		new->window_start = range_cfg->window_start;
861 		new->window_len = range_cfg->window_len;
862 
863 		if (!_regmap_range_add(map, new)) {
864 			dev_err(map->dev, "Failed to add range %d\n", i);
865 			kfree(new);
866 			goto err_range;
867 		}
868 
869 		if (map->selector_work_buf == NULL) {
870 			map->selector_work_buf =
871 				kzalloc(map->format.buf_size, GFP_KERNEL);
872 			if (map->selector_work_buf == NULL) {
873 				ret = -ENOMEM;
874 				goto err_range;
875 			}
876 		}
877 	}
878 
879 	ret = regcache_init(map, config);
880 	if (ret != 0)
881 		goto err_range;
882 
883 	if (dev) {
884 		ret = regmap_attach_dev(dev, map, config);
885 		if (ret != 0)
886 			goto err_regcache;
887 	}
888 
889 	return map;
890 
891 err_regcache:
892 	regcache_exit(map);
893 err_range:
894 	regmap_range_exit(map);
895 	kfree(map->work_buf);
896 err_map:
897 	kfree(map);
898 err:
899 	return ERR_PTR(ret);
900 }
901 EXPORT_SYMBOL_GPL(regmap_init);
902 
903 static void devm_regmap_release(struct device *dev, void *res)
904 {
905 	regmap_exit(*(struct regmap **)res);
906 }
907 
908 /**
909  * devm_regmap_init(): Initialise managed register map
910  *
911  * @dev: Device that will be interacted with
912  * @bus: Bus-specific callbacks to use with device
913  * @bus_context: Data passed to bus-specific callbacks
914  * @config: Configuration for register map
915  *
916  * The return value will be an ERR_PTR() on error or a valid pointer
917  * to a struct regmap.  This function should generally not be called
918  * directly, it should be called by bus-specific init functions.  The
919  * map will be automatically freed by the device management code.
920  */
921 struct regmap *devm_regmap_init(struct device *dev,
922 				const struct regmap_bus *bus,
923 				void *bus_context,
924 				const struct regmap_config *config)
925 {
926 	struct regmap **ptr, *regmap;
927 
928 	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
929 	if (!ptr)
930 		return ERR_PTR(-ENOMEM);
931 
932 	regmap = regmap_init(dev, bus, bus_context, config);
933 	if (!IS_ERR(regmap)) {
934 		*ptr = regmap;
935 		devres_add(dev, ptr);
936 	} else {
937 		devres_free(ptr);
938 	}
939 
940 	return regmap;
941 }
942 EXPORT_SYMBOL_GPL(devm_regmap_init);
943 
944 static void regmap_field_init(struct regmap_field *rm_field,
945 	struct regmap *regmap, struct reg_field reg_field)
946 {
947 	int field_bits = reg_field.msb - reg_field.lsb + 1;
948 	rm_field->regmap = regmap;
949 	rm_field->reg = reg_field.reg;
950 	rm_field->shift = reg_field.lsb;
951 	rm_field->mask = ((BIT(field_bits) - 1) << reg_field.lsb);
952 	rm_field->id_size = reg_field.id_size;
953 	rm_field->id_offset = reg_field.id_offset;
954 }
955 
956 /**
957  * devm_regmap_field_alloc(): Allocate and initialise a register field
958  * in a register map.
959  *
960  * @dev: Device that will be interacted with
961  * @regmap: regmap bank in which this register field is located.
962  * @reg_field: Register field with in the bank.
963  *
964  * The return value will be an ERR_PTR() on error or a valid pointer
965  * to a struct regmap_field. The regmap_field will be automatically freed
966  * by the device management code.
967  */
968 struct regmap_field *devm_regmap_field_alloc(struct device *dev,
969 		struct regmap *regmap, struct reg_field reg_field)
970 {
971 	struct regmap_field *rm_field = devm_kzalloc(dev,
972 					sizeof(*rm_field), GFP_KERNEL);
973 	if (!rm_field)
974 		return ERR_PTR(-ENOMEM);
975 
976 	regmap_field_init(rm_field, regmap, reg_field);
977 
978 	return rm_field;
979 
980 }
981 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
982 
983 /**
984  * devm_regmap_field_free(): Free register field allocated using
985  * devm_regmap_field_alloc. Usally drivers need not call this function,
986  * as the memory allocated via devm will be freed as per device-driver
987  * life-cyle.
988  *
989  * @dev: Device that will be interacted with
990  * @field: regmap field which should be freed.
991  */
992 void devm_regmap_field_free(struct device *dev,
993 	struct regmap_field *field)
994 {
995 	devm_kfree(dev, field);
996 }
997 EXPORT_SYMBOL_GPL(devm_regmap_field_free);
998 
999 /**
1000  * regmap_field_alloc(): Allocate and initialise a register field
1001  * in a register map.
1002  *
1003  * @regmap: regmap bank in which this register field is located.
1004  * @reg_field: Register field with in the bank.
1005  *
1006  * The return value will be an ERR_PTR() on error or a valid pointer
1007  * to a struct regmap_field. The regmap_field should be freed by the
1008  * user once its finished working with it using regmap_field_free().
1009  */
1010 struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1011 		struct reg_field reg_field)
1012 {
1013 	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1014 
1015 	if (!rm_field)
1016 		return ERR_PTR(-ENOMEM);
1017 
1018 	regmap_field_init(rm_field, regmap, reg_field);
1019 
1020 	return rm_field;
1021 }
1022 EXPORT_SYMBOL_GPL(regmap_field_alloc);
1023 
1024 /**
1025  * regmap_field_free(): Free register field allocated using regmap_field_alloc
1026  *
1027  * @field: regmap field which should be freed.
1028  */
1029 void regmap_field_free(struct regmap_field *field)
1030 {
1031 	kfree(field);
1032 }
1033 EXPORT_SYMBOL_GPL(regmap_field_free);
1034 
1035 /**
1036  * regmap_reinit_cache(): Reinitialise the current register cache
1037  *
1038  * @map: Register map to operate on.
1039  * @config: New configuration.  Only the cache data will be used.
1040  *
1041  * Discard any existing register cache for the map and initialize a
1042  * new cache.  This can be used to restore the cache to defaults or to
1043  * update the cache configuration to reflect runtime discovery of the
1044  * hardware.
1045  *
1046  * No explicit locking is done here, the user needs to ensure that
1047  * this function will not race with other calls to regmap.
1048  */
1049 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1050 {
1051 	regcache_exit(map);
1052 	regmap_debugfs_exit(map);
1053 
1054 	map->max_register = config->max_register;
1055 	map->writeable_reg = config->writeable_reg;
1056 	map->readable_reg = config->readable_reg;
1057 	map->volatile_reg = config->volatile_reg;
1058 	map->precious_reg = config->precious_reg;
1059 	map->cache_type = config->cache_type;
1060 
1061 	regmap_debugfs_init(map, config->name);
1062 
1063 	map->cache_bypass = false;
1064 	map->cache_only = false;
1065 
1066 	return regcache_init(map, config);
1067 }
1068 EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1069 
1070 /**
1071  * regmap_exit(): Free a previously allocated register map
1072  */
1073 void regmap_exit(struct regmap *map)
1074 {
1075 	struct regmap_async *async;
1076 
1077 	regcache_exit(map);
1078 	regmap_debugfs_exit(map);
1079 	regmap_range_exit(map);
1080 	if (map->bus && map->bus->free_context)
1081 		map->bus->free_context(map->bus_context);
1082 	kfree(map->work_buf);
1083 	while (!list_empty(&map->async_free)) {
1084 		async = list_first_entry_or_null(&map->async_free,
1085 						 struct regmap_async,
1086 						 list);
1087 		list_del(&async->list);
1088 		kfree(async->work_buf);
1089 		kfree(async);
1090 	}
1091 	kfree(map);
1092 }
1093 EXPORT_SYMBOL_GPL(regmap_exit);
1094 
1095 static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1096 {
1097 	struct regmap **r = res;
1098 	if (!r || !*r) {
1099 		WARN_ON(!r || !*r);
1100 		return 0;
1101 	}
1102 
1103 	/* If the user didn't specify a name match any */
1104 	if (data)
1105 		return (*r)->name == data;
1106 	else
1107 		return 1;
1108 }
1109 
1110 /**
1111  * dev_get_regmap(): Obtain the regmap (if any) for a device
1112  *
1113  * @dev: Device to retrieve the map for
1114  * @name: Optional name for the register map, usually NULL.
1115  *
1116  * Returns the regmap for the device if one is present, or NULL.  If
1117  * name is specified then it must match the name specified when
1118  * registering the device, if it is NULL then the first regmap found
1119  * will be used.  Devices with multiple register maps are very rare,
1120  * generic code should normally not need to specify a name.
1121  */
1122 struct regmap *dev_get_regmap(struct device *dev, const char *name)
1123 {
1124 	struct regmap **r = devres_find(dev, dev_get_regmap_release,
1125 					dev_get_regmap_match, (void *)name);
1126 
1127 	if (!r)
1128 		return NULL;
1129 	return *r;
1130 }
1131 EXPORT_SYMBOL_GPL(dev_get_regmap);
1132 
1133 /**
1134  * regmap_get_device(): Obtain the device from a regmap
1135  *
1136  * @map: Register map to operate on.
1137  *
1138  * Returns the underlying device that the regmap has been created for.
1139  */
1140 struct device *regmap_get_device(struct regmap *map)
1141 {
1142 	return map->dev;
1143 }
1144 EXPORT_SYMBOL_GPL(regmap_get_device);
1145 
1146 static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1147 			       struct regmap_range_node *range,
1148 			       unsigned int val_num)
1149 {
1150 	void *orig_work_buf;
1151 	unsigned int win_offset;
1152 	unsigned int win_page;
1153 	bool page_chg;
1154 	int ret;
1155 
1156 	win_offset = (*reg - range->range_min) % range->window_len;
1157 	win_page = (*reg - range->range_min) / range->window_len;
1158 
1159 	if (val_num > 1) {
1160 		/* Bulk write shouldn't cross range boundary */
1161 		if (*reg + val_num - 1 > range->range_max)
1162 			return -EINVAL;
1163 
1164 		/* ... or single page boundary */
1165 		if (val_num > range->window_len - win_offset)
1166 			return -EINVAL;
1167 	}
1168 
1169 	/* It is possible to have selector register inside data window.
1170 	   In that case, selector register is located on every page and
1171 	   it needs no page switching, when accessed alone. */
1172 	if (val_num > 1 ||
1173 	    range->window_start + win_offset != range->selector_reg) {
1174 		/* Use separate work_buf during page switching */
1175 		orig_work_buf = map->work_buf;
1176 		map->work_buf = map->selector_work_buf;
1177 
1178 		ret = _regmap_update_bits(map, range->selector_reg,
1179 					  range->selector_mask,
1180 					  win_page << range->selector_shift,
1181 					  &page_chg);
1182 
1183 		map->work_buf = orig_work_buf;
1184 
1185 		if (ret != 0)
1186 			return ret;
1187 	}
1188 
1189 	*reg = range->window_start + win_offset;
1190 
1191 	return 0;
1192 }
1193 
1194 int _regmap_raw_write(struct regmap *map, unsigned int reg,
1195 		      const void *val, size_t val_len)
1196 {
1197 	struct regmap_range_node *range;
1198 	unsigned long flags;
1199 	u8 *u8 = map->work_buf;
1200 	void *work_val = map->work_buf + map->format.reg_bytes +
1201 		map->format.pad_bytes;
1202 	void *buf;
1203 	int ret = -ENOTSUPP;
1204 	size_t len;
1205 	int i;
1206 
1207 	WARN_ON(!map->bus);
1208 
1209 	/* Check for unwritable registers before we start */
1210 	if (map->writeable_reg)
1211 		for (i = 0; i < val_len / map->format.val_bytes; i++)
1212 			if (!map->writeable_reg(map->dev,
1213 						reg + (i * map->reg_stride)))
1214 				return -EINVAL;
1215 
1216 	if (!map->cache_bypass && map->format.parse_val) {
1217 		unsigned int ival;
1218 		int val_bytes = map->format.val_bytes;
1219 		for (i = 0; i < val_len / val_bytes; i++) {
1220 			ival = map->format.parse_val(val + (i * val_bytes));
1221 			ret = regcache_write(map, reg + (i * map->reg_stride),
1222 					     ival);
1223 			if (ret) {
1224 				dev_err(map->dev,
1225 					"Error in caching of register: %x ret: %d\n",
1226 					reg + i, ret);
1227 				return ret;
1228 			}
1229 		}
1230 		if (map->cache_only) {
1231 			map->cache_dirty = true;
1232 			return 0;
1233 		}
1234 	}
1235 
1236 	range = _regmap_range_lookup(map, reg);
1237 	if (range) {
1238 		int val_num = val_len / map->format.val_bytes;
1239 		int win_offset = (reg - range->range_min) % range->window_len;
1240 		int win_residue = range->window_len - win_offset;
1241 
1242 		/* If the write goes beyond the end of the window split it */
1243 		while (val_num > win_residue) {
1244 			dev_dbg(map->dev, "Writing window %d/%zu\n",
1245 				win_residue, val_len / map->format.val_bytes);
1246 			ret = _regmap_raw_write(map, reg, val, win_residue *
1247 						map->format.val_bytes);
1248 			if (ret != 0)
1249 				return ret;
1250 
1251 			reg += win_residue;
1252 			val_num -= win_residue;
1253 			val += win_residue * map->format.val_bytes;
1254 			val_len -= win_residue * map->format.val_bytes;
1255 
1256 			win_offset = (reg - range->range_min) %
1257 				range->window_len;
1258 			win_residue = range->window_len - win_offset;
1259 		}
1260 
1261 		ret = _regmap_select_page(map, &reg, range, val_num);
1262 		if (ret != 0)
1263 			return ret;
1264 	}
1265 
1266 	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1267 
1268 	u8[0] |= map->write_flag_mask;
1269 
1270 	/*
1271 	 * Essentially all I/O mechanisms will be faster with a single
1272 	 * buffer to write.  Since register syncs often generate raw
1273 	 * writes of single registers optimise that case.
1274 	 */
1275 	if (val != work_val && val_len == map->format.val_bytes) {
1276 		memcpy(work_val, val, map->format.val_bytes);
1277 		val = work_val;
1278 	}
1279 
1280 	if (map->async && map->bus->async_write) {
1281 		struct regmap_async *async;
1282 
1283 		trace_regmap_async_write_start(map->dev, reg, val_len);
1284 
1285 		spin_lock_irqsave(&map->async_lock, flags);
1286 		async = list_first_entry_or_null(&map->async_free,
1287 						 struct regmap_async,
1288 						 list);
1289 		if (async)
1290 			list_del(&async->list);
1291 		spin_unlock_irqrestore(&map->async_lock, flags);
1292 
1293 		if (!async) {
1294 			async = map->bus->async_alloc();
1295 			if (!async)
1296 				return -ENOMEM;
1297 
1298 			async->work_buf = kzalloc(map->format.buf_size,
1299 						  GFP_KERNEL | GFP_DMA);
1300 			if (!async->work_buf) {
1301 				kfree(async);
1302 				return -ENOMEM;
1303 			}
1304 		}
1305 
1306 		async->map = map;
1307 
1308 		/* If the caller supplied the value we can use it safely. */
1309 		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1310 		       map->format.reg_bytes + map->format.val_bytes);
1311 
1312 		spin_lock_irqsave(&map->async_lock, flags);
1313 		list_add_tail(&async->list, &map->async_list);
1314 		spin_unlock_irqrestore(&map->async_lock, flags);
1315 
1316 		if (val != work_val)
1317 			ret = map->bus->async_write(map->bus_context,
1318 						    async->work_buf,
1319 						    map->format.reg_bytes +
1320 						    map->format.pad_bytes,
1321 						    val, val_len, async);
1322 		else
1323 			ret = map->bus->async_write(map->bus_context,
1324 						    async->work_buf,
1325 						    map->format.reg_bytes +
1326 						    map->format.pad_bytes +
1327 						    val_len, NULL, 0, async);
1328 
1329 		if (ret != 0) {
1330 			dev_err(map->dev, "Failed to schedule write: %d\n",
1331 				ret);
1332 
1333 			spin_lock_irqsave(&map->async_lock, flags);
1334 			list_move(&async->list, &map->async_free);
1335 			spin_unlock_irqrestore(&map->async_lock, flags);
1336 		}
1337 
1338 		return ret;
1339 	}
1340 
1341 	trace_regmap_hw_write_start(map->dev, reg,
1342 				    val_len / map->format.val_bytes);
1343 
1344 	/* If we're doing a single register write we can probably just
1345 	 * send the work_buf directly, otherwise try to do a gather
1346 	 * write.
1347 	 */
1348 	if (val == work_val)
1349 		ret = map->bus->write(map->bus_context, map->work_buf,
1350 				      map->format.reg_bytes +
1351 				      map->format.pad_bytes +
1352 				      val_len);
1353 	else if (map->bus->gather_write)
1354 		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1355 					     map->format.reg_bytes +
1356 					     map->format.pad_bytes,
1357 					     val, val_len);
1358 
1359 	/* If that didn't work fall back on linearising by hand. */
1360 	if (ret == -ENOTSUPP) {
1361 		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1362 		buf = kzalloc(len, GFP_KERNEL);
1363 		if (!buf)
1364 			return -ENOMEM;
1365 
1366 		memcpy(buf, map->work_buf, map->format.reg_bytes);
1367 		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1368 		       val, val_len);
1369 		ret = map->bus->write(map->bus_context, buf, len);
1370 
1371 		kfree(buf);
1372 	}
1373 
1374 	trace_regmap_hw_write_done(map->dev, reg,
1375 				   val_len / map->format.val_bytes);
1376 
1377 	return ret;
1378 }
1379 
1380 /**
1381  * regmap_can_raw_write - Test if regmap_raw_write() is supported
1382  *
1383  * @map: Map to check.
1384  */
1385 bool regmap_can_raw_write(struct regmap *map)
1386 {
1387 	return map->bus && map->format.format_val && map->format.format_reg;
1388 }
1389 EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1390 
1391 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1392 				       unsigned int val)
1393 {
1394 	int ret;
1395 	struct regmap_range_node *range;
1396 	struct regmap *map = context;
1397 
1398 	WARN_ON(!map->bus || !map->format.format_write);
1399 
1400 	range = _regmap_range_lookup(map, reg);
1401 	if (range) {
1402 		ret = _regmap_select_page(map, &reg, range, 1);
1403 		if (ret != 0)
1404 			return ret;
1405 	}
1406 
1407 	map->format.format_write(map, reg, val);
1408 
1409 	trace_regmap_hw_write_start(map->dev, reg, 1);
1410 
1411 	ret = map->bus->write(map->bus_context, map->work_buf,
1412 			      map->format.buf_size);
1413 
1414 	trace_regmap_hw_write_done(map->dev, reg, 1);
1415 
1416 	return ret;
1417 }
1418 
1419 static int _regmap_bus_reg_write(void *context, unsigned int reg,
1420 				 unsigned int val)
1421 {
1422 	struct regmap *map = context;
1423 
1424 	return map->bus->reg_write(map->bus_context, reg, val);
1425 }
1426 
1427 static int _regmap_bus_raw_write(void *context, unsigned int reg,
1428 				 unsigned int val)
1429 {
1430 	struct regmap *map = context;
1431 
1432 	WARN_ON(!map->bus || !map->format.format_val);
1433 
1434 	map->format.format_val(map->work_buf + map->format.reg_bytes
1435 			       + map->format.pad_bytes, val, 0);
1436 	return _regmap_raw_write(map, reg,
1437 				 map->work_buf +
1438 				 map->format.reg_bytes +
1439 				 map->format.pad_bytes,
1440 				 map->format.val_bytes);
1441 }
1442 
1443 static inline void *_regmap_map_get_context(struct regmap *map)
1444 {
1445 	return (map->bus) ? map : map->bus_context;
1446 }
1447 
1448 int _regmap_write(struct regmap *map, unsigned int reg,
1449 		  unsigned int val)
1450 {
1451 	int ret;
1452 	void *context = _regmap_map_get_context(map);
1453 
1454 	if (!regmap_writeable(map, reg))
1455 		return -EIO;
1456 
1457 	if (!map->cache_bypass && !map->defer_caching) {
1458 		ret = regcache_write(map, reg, val);
1459 		if (ret != 0)
1460 			return ret;
1461 		if (map->cache_only) {
1462 			map->cache_dirty = true;
1463 			return 0;
1464 		}
1465 	}
1466 
1467 #ifdef LOG_DEVICE
1468 	if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1469 		dev_info(map->dev, "%x <= %x\n", reg, val);
1470 #endif
1471 
1472 	trace_regmap_reg_write(map->dev, reg, val);
1473 
1474 	return map->reg_write(context, reg, val);
1475 }
1476 
1477 /**
1478  * regmap_write(): Write a value to a single register
1479  *
1480  * @map: Register map to write to
1481  * @reg: Register to write to
1482  * @val: Value to be written
1483  *
1484  * A value of zero will be returned on success, a negative errno will
1485  * be returned in error cases.
1486  */
1487 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1488 {
1489 	int ret;
1490 
1491 	if (reg % map->reg_stride)
1492 		return -EINVAL;
1493 
1494 	map->lock(map->lock_arg);
1495 
1496 	ret = _regmap_write(map, reg, val);
1497 
1498 	map->unlock(map->lock_arg);
1499 
1500 	return ret;
1501 }
1502 EXPORT_SYMBOL_GPL(regmap_write);
1503 
1504 /**
1505  * regmap_write_async(): Write a value to a single register asynchronously
1506  *
1507  * @map: Register map to write to
1508  * @reg: Register to write to
1509  * @val: Value to be written
1510  *
1511  * A value of zero will be returned on success, a negative errno will
1512  * be returned in error cases.
1513  */
1514 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1515 {
1516 	int ret;
1517 
1518 	if (reg % map->reg_stride)
1519 		return -EINVAL;
1520 
1521 	map->lock(map->lock_arg);
1522 
1523 	map->async = true;
1524 
1525 	ret = _regmap_write(map, reg, val);
1526 
1527 	map->async = false;
1528 
1529 	map->unlock(map->lock_arg);
1530 
1531 	return ret;
1532 }
1533 EXPORT_SYMBOL_GPL(regmap_write_async);
1534 
1535 /**
1536  * regmap_raw_write(): Write raw values to one or more registers
1537  *
1538  * @map: Register map to write to
1539  * @reg: Initial register to write to
1540  * @val: Block of data to be written, laid out for direct transmission to the
1541  *       device
1542  * @val_len: Length of data pointed to by val.
1543  *
1544  * This function is intended to be used for things like firmware
1545  * download where a large block of data needs to be transferred to the
1546  * device.  No formatting will be done on the data provided.
1547  *
1548  * A value of zero will be returned on success, a negative errno will
1549  * be returned in error cases.
1550  */
1551 int regmap_raw_write(struct regmap *map, unsigned int reg,
1552 		     const void *val, size_t val_len)
1553 {
1554 	int ret;
1555 
1556 	if (!regmap_can_raw_write(map))
1557 		return -EINVAL;
1558 	if (val_len % map->format.val_bytes)
1559 		return -EINVAL;
1560 
1561 	map->lock(map->lock_arg);
1562 
1563 	ret = _regmap_raw_write(map, reg, val, val_len);
1564 
1565 	map->unlock(map->lock_arg);
1566 
1567 	return ret;
1568 }
1569 EXPORT_SYMBOL_GPL(regmap_raw_write);
1570 
1571 /**
1572  * regmap_field_write(): Write a value to a single register field
1573  *
1574  * @field: Register field to write to
1575  * @val: Value to be written
1576  *
1577  * A value of zero will be returned on success, a negative errno will
1578  * be returned in error cases.
1579  */
1580 int regmap_field_write(struct regmap_field *field, unsigned int val)
1581 {
1582 	return regmap_update_bits(field->regmap, field->reg,
1583 				field->mask, val << field->shift);
1584 }
1585 EXPORT_SYMBOL_GPL(regmap_field_write);
1586 
1587 /**
1588  * regmap_field_update_bits():	Perform a read/modify/write cycle
1589  *                              on the register field
1590  *
1591  * @field: Register field to write to
1592  * @mask: Bitmask to change
1593  * @val: Value to be written
1594  *
1595  * A value of zero will be returned on success, a negative errno will
1596  * be returned in error cases.
1597  */
1598 int regmap_field_update_bits(struct regmap_field *field, unsigned int mask, unsigned int val)
1599 {
1600 	mask = (mask << field->shift) & field->mask;
1601 
1602 	return regmap_update_bits(field->regmap, field->reg,
1603 				  mask, val << field->shift);
1604 }
1605 EXPORT_SYMBOL_GPL(regmap_field_update_bits);
1606 
1607 /**
1608  * regmap_fields_write(): Write a value to a single register field with port ID
1609  *
1610  * @field: Register field to write to
1611  * @id: port ID
1612  * @val: Value to be written
1613  *
1614  * A value of zero will be returned on success, a negative errno will
1615  * be returned in error cases.
1616  */
1617 int regmap_fields_write(struct regmap_field *field, unsigned int id,
1618 			unsigned int val)
1619 {
1620 	if (id >= field->id_size)
1621 		return -EINVAL;
1622 
1623 	return regmap_update_bits(field->regmap,
1624 				  field->reg + (field->id_offset * id),
1625 				  field->mask, val << field->shift);
1626 }
1627 EXPORT_SYMBOL_GPL(regmap_fields_write);
1628 
1629 /**
1630  * regmap_fields_update_bits():	Perform a read/modify/write cycle
1631  *                              on the register field
1632  *
1633  * @field: Register field to write to
1634  * @id: port ID
1635  * @mask: Bitmask to change
1636  * @val: Value to be written
1637  *
1638  * A value of zero will be returned on success, a negative errno will
1639  * be returned in error cases.
1640  */
1641 int regmap_fields_update_bits(struct regmap_field *field,  unsigned int id,
1642 			      unsigned int mask, unsigned int val)
1643 {
1644 	if (id >= field->id_size)
1645 		return -EINVAL;
1646 
1647 	mask = (mask << field->shift) & field->mask;
1648 
1649 	return regmap_update_bits(field->regmap,
1650 				  field->reg + (field->id_offset * id),
1651 				  mask, val << field->shift);
1652 }
1653 EXPORT_SYMBOL_GPL(regmap_fields_update_bits);
1654 
1655 /*
1656  * regmap_bulk_write(): Write multiple registers to the device
1657  *
1658  * @map: Register map to write to
1659  * @reg: First register to be write from
1660  * @val: Block of data to be written, in native register size for device
1661  * @val_count: Number of registers to write
1662  *
1663  * This function is intended to be used for writing a large block of
1664  * data to the device either in single transfer or multiple transfer.
1665  *
1666  * A value of zero will be returned on success, a negative errno will
1667  * be returned in error cases.
1668  */
1669 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
1670 		     size_t val_count)
1671 {
1672 	int ret = 0, i;
1673 	size_t val_bytes = map->format.val_bytes;
1674 
1675 	if (map->bus && !map->format.parse_inplace)
1676 		return -EINVAL;
1677 	if (reg % map->reg_stride)
1678 		return -EINVAL;
1679 
1680 	/*
1681 	 * Some devices don't support bulk write, for
1682 	 * them we have a series of single write operations.
1683 	 */
1684 	if (!map->bus || map->use_single_rw) {
1685 		map->lock(map->lock_arg);
1686 		for (i = 0; i < val_count; i++) {
1687 			unsigned int ival;
1688 
1689 			switch (val_bytes) {
1690 			case 1:
1691 				ival = *(u8 *)(val + (i * val_bytes));
1692 				break;
1693 			case 2:
1694 				ival = *(u16 *)(val + (i * val_bytes));
1695 				break;
1696 			case 4:
1697 				ival = *(u32 *)(val + (i * val_bytes));
1698 				break;
1699 #ifdef CONFIG_64BIT
1700 			case 8:
1701 				ival = *(u64 *)(val + (i * val_bytes));
1702 				break;
1703 #endif
1704 			default:
1705 				ret = -EINVAL;
1706 				goto out;
1707 			}
1708 
1709 			ret = _regmap_write(map, reg + (i * map->reg_stride),
1710 					ival);
1711 			if (ret != 0)
1712 				goto out;
1713 		}
1714 out:
1715 		map->unlock(map->lock_arg);
1716 	} else {
1717 		void *wval;
1718 
1719 		if (!val_count)
1720 			return -EINVAL;
1721 
1722 		wval = kmemdup(val, val_count * val_bytes, GFP_KERNEL);
1723 		if (!wval) {
1724 			dev_err(map->dev, "Error in memory allocation\n");
1725 			return -ENOMEM;
1726 		}
1727 		for (i = 0; i < val_count * val_bytes; i += val_bytes)
1728 			map->format.parse_inplace(wval + i);
1729 
1730 		map->lock(map->lock_arg);
1731 		ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count);
1732 		map->unlock(map->lock_arg);
1733 
1734 		kfree(wval);
1735 	}
1736 	return ret;
1737 }
1738 EXPORT_SYMBOL_GPL(regmap_bulk_write);
1739 
1740 /*
1741  * _regmap_raw_multi_reg_write()
1742  *
1743  * the (register,newvalue) pairs in regs have not been formatted, but
1744  * they are all in the same page and have been changed to being page
1745  * relative. The page register has been written if that was neccessary.
1746  */
1747 static int _regmap_raw_multi_reg_write(struct regmap *map,
1748 				       const struct reg_default *regs,
1749 				       size_t num_regs)
1750 {
1751 	int ret;
1752 	void *buf;
1753 	int i;
1754 	u8 *u8;
1755 	size_t val_bytes = map->format.val_bytes;
1756 	size_t reg_bytes = map->format.reg_bytes;
1757 	size_t pad_bytes = map->format.pad_bytes;
1758 	size_t pair_size = reg_bytes + pad_bytes + val_bytes;
1759 	size_t len = pair_size * num_regs;
1760 
1761 	if (!len)
1762 		return -EINVAL;
1763 
1764 	buf = kzalloc(len, GFP_KERNEL);
1765 	if (!buf)
1766 		return -ENOMEM;
1767 
1768 	/* We have to linearise by hand. */
1769 
1770 	u8 = buf;
1771 
1772 	for (i = 0; i < num_regs; i++) {
1773 		int reg = regs[i].reg;
1774 		int val = regs[i].def;
1775 		trace_regmap_hw_write_start(map->dev, reg, 1);
1776 		map->format.format_reg(u8, reg, map->reg_shift);
1777 		u8 += reg_bytes + pad_bytes;
1778 		map->format.format_val(u8, val, 0);
1779 		u8 += val_bytes;
1780 	}
1781 	u8 = buf;
1782 	*u8 |= map->write_flag_mask;
1783 
1784 	ret = map->bus->write(map->bus_context, buf, len);
1785 
1786 	kfree(buf);
1787 
1788 	for (i = 0; i < num_regs; i++) {
1789 		int reg = regs[i].reg;
1790 		trace_regmap_hw_write_done(map->dev, reg, 1);
1791 	}
1792 	return ret;
1793 }
1794 
1795 static unsigned int _regmap_register_page(struct regmap *map,
1796 					  unsigned int reg,
1797 					  struct regmap_range_node *range)
1798 {
1799 	unsigned int win_page = (reg - range->range_min) / range->window_len;
1800 
1801 	return win_page;
1802 }
1803 
1804 static int _regmap_range_multi_paged_reg_write(struct regmap *map,
1805 					       struct reg_default *regs,
1806 					       size_t num_regs)
1807 {
1808 	int ret;
1809 	int i, n;
1810 	struct reg_default *base;
1811 	unsigned int this_page = 0;
1812 	/*
1813 	 * the set of registers are not neccessarily in order, but
1814 	 * since the order of write must be preserved this algorithm
1815 	 * chops the set each time the page changes
1816 	 */
1817 	base = regs;
1818 	for (i = 0, n = 0; i < num_regs; i++, n++) {
1819 		unsigned int reg = regs[i].reg;
1820 		struct regmap_range_node *range;
1821 
1822 		range = _regmap_range_lookup(map, reg);
1823 		if (range) {
1824 			unsigned int win_page = _regmap_register_page(map, reg,
1825 								      range);
1826 
1827 			if (i == 0)
1828 				this_page = win_page;
1829 			if (win_page != this_page) {
1830 				this_page = win_page;
1831 				ret = _regmap_raw_multi_reg_write(map, base, n);
1832 				if (ret != 0)
1833 					return ret;
1834 				base += n;
1835 				n = 0;
1836 			}
1837 			ret = _regmap_select_page(map, &base[n].reg, range, 1);
1838 			if (ret != 0)
1839 				return ret;
1840 		}
1841 	}
1842 	if (n > 0)
1843 		return _regmap_raw_multi_reg_write(map, base, n);
1844 	return 0;
1845 }
1846 
1847 static int _regmap_multi_reg_write(struct regmap *map,
1848 				   const struct reg_default *regs,
1849 				   size_t num_regs)
1850 {
1851 	int i;
1852 	int ret;
1853 
1854 	if (!map->can_multi_write) {
1855 		for (i = 0; i < num_regs; i++) {
1856 			ret = _regmap_write(map, regs[i].reg, regs[i].def);
1857 			if (ret != 0)
1858 				return ret;
1859 		}
1860 		return 0;
1861 	}
1862 
1863 	if (!map->format.parse_inplace)
1864 		return -EINVAL;
1865 
1866 	if (map->writeable_reg)
1867 		for (i = 0; i < num_regs; i++) {
1868 			int reg = regs[i].reg;
1869 			if (!map->writeable_reg(map->dev, reg))
1870 				return -EINVAL;
1871 			if (reg % map->reg_stride)
1872 				return -EINVAL;
1873 		}
1874 
1875 	if (!map->cache_bypass) {
1876 		for (i = 0; i < num_regs; i++) {
1877 			unsigned int val = regs[i].def;
1878 			unsigned int reg = regs[i].reg;
1879 			ret = regcache_write(map, reg, val);
1880 			if (ret) {
1881 				dev_err(map->dev,
1882 				"Error in caching of register: %x ret: %d\n",
1883 								reg, ret);
1884 				return ret;
1885 			}
1886 		}
1887 		if (map->cache_only) {
1888 			map->cache_dirty = true;
1889 			return 0;
1890 		}
1891 	}
1892 
1893 	WARN_ON(!map->bus);
1894 
1895 	for (i = 0; i < num_regs; i++) {
1896 		unsigned int reg = regs[i].reg;
1897 		struct regmap_range_node *range;
1898 		range = _regmap_range_lookup(map, reg);
1899 		if (range) {
1900 			size_t len = sizeof(struct reg_default)*num_regs;
1901 			struct reg_default *base = kmemdup(regs, len,
1902 							   GFP_KERNEL);
1903 			if (!base)
1904 				return -ENOMEM;
1905 			ret = _regmap_range_multi_paged_reg_write(map, base,
1906 								  num_regs);
1907 			kfree(base);
1908 
1909 			return ret;
1910 		}
1911 	}
1912 	return _regmap_raw_multi_reg_write(map, regs, num_regs);
1913 }
1914 
1915 /*
1916  * regmap_multi_reg_write(): Write multiple registers to the device
1917  *
1918  * where the set of register,value pairs are supplied in any order,
1919  * possibly not all in a single range.
1920  *
1921  * @map: Register map to write to
1922  * @regs: Array of structures containing register,value to be written
1923  * @num_regs: Number of registers to write
1924  *
1925  * The 'normal' block write mode will send ultimately send data on the
1926  * target bus as R,V1,V2,V3,..,Vn where successively higer registers are
1927  * addressed. However, this alternative block multi write mode will send
1928  * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
1929  * must of course support the mode.
1930  *
1931  * A value of zero will be returned on success, a negative errno will be
1932  * returned in error cases.
1933  */
1934 int regmap_multi_reg_write(struct regmap *map, const struct reg_default *regs,
1935 			   int num_regs)
1936 {
1937 	int ret;
1938 
1939 	map->lock(map->lock_arg);
1940 
1941 	ret = _regmap_multi_reg_write(map, regs, num_regs);
1942 
1943 	map->unlock(map->lock_arg);
1944 
1945 	return ret;
1946 }
1947 EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
1948 
1949 /*
1950  * regmap_multi_reg_write_bypassed(): Write multiple registers to the
1951  *                                    device but not the cache
1952  *
1953  * where the set of register are supplied in any order
1954  *
1955  * @map: Register map to write to
1956  * @regs: Array of structures containing register,value to be written
1957  * @num_regs: Number of registers to write
1958  *
1959  * This function is intended to be used for writing a large block of data
1960  * atomically to the device in single transfer for those I2C client devices
1961  * that implement this alternative block write mode.
1962  *
1963  * A value of zero will be returned on success, a negative errno will
1964  * be returned in error cases.
1965  */
1966 int regmap_multi_reg_write_bypassed(struct regmap *map,
1967 				    const struct reg_default *regs,
1968 				    int num_regs)
1969 {
1970 	int ret;
1971 	bool bypass;
1972 
1973 	map->lock(map->lock_arg);
1974 
1975 	bypass = map->cache_bypass;
1976 	map->cache_bypass = true;
1977 
1978 	ret = _regmap_multi_reg_write(map, regs, num_regs);
1979 
1980 	map->cache_bypass = bypass;
1981 
1982 	map->unlock(map->lock_arg);
1983 
1984 	return ret;
1985 }
1986 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
1987 
1988 /**
1989  * regmap_raw_write_async(): Write raw values to one or more registers
1990  *                           asynchronously
1991  *
1992  * @map: Register map to write to
1993  * @reg: Initial register to write to
1994  * @val: Block of data to be written, laid out for direct transmission to the
1995  *       device.  Must be valid until regmap_async_complete() is called.
1996  * @val_len: Length of data pointed to by val.
1997  *
1998  * This function is intended to be used for things like firmware
1999  * download where a large block of data needs to be transferred to the
2000  * device.  No formatting will be done on the data provided.
2001  *
2002  * If supported by the underlying bus the write will be scheduled
2003  * asynchronously, helping maximise I/O speed on higher speed buses
2004  * like SPI.  regmap_async_complete() can be called to ensure that all
2005  * asynchrnous writes have been completed.
2006  *
2007  * A value of zero will be returned on success, a negative errno will
2008  * be returned in error cases.
2009  */
2010 int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2011 			   const void *val, size_t val_len)
2012 {
2013 	int ret;
2014 
2015 	if (val_len % map->format.val_bytes)
2016 		return -EINVAL;
2017 	if (reg % map->reg_stride)
2018 		return -EINVAL;
2019 
2020 	map->lock(map->lock_arg);
2021 
2022 	map->async = true;
2023 
2024 	ret = _regmap_raw_write(map, reg, val, val_len);
2025 
2026 	map->async = false;
2027 
2028 	map->unlock(map->lock_arg);
2029 
2030 	return ret;
2031 }
2032 EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2033 
2034 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2035 			    unsigned int val_len)
2036 {
2037 	struct regmap_range_node *range;
2038 	u8 *u8 = map->work_buf;
2039 	int ret;
2040 
2041 	WARN_ON(!map->bus);
2042 
2043 	range = _regmap_range_lookup(map, reg);
2044 	if (range) {
2045 		ret = _regmap_select_page(map, &reg, range,
2046 					  val_len / map->format.val_bytes);
2047 		if (ret != 0)
2048 			return ret;
2049 	}
2050 
2051 	map->format.format_reg(map->work_buf, reg, map->reg_shift);
2052 
2053 	/*
2054 	 * Some buses or devices flag reads by setting the high bits in the
2055 	 * register addresss; since it's always the high bits for all
2056 	 * current formats we can do this here rather than in
2057 	 * formatting.  This may break if we get interesting formats.
2058 	 */
2059 	u8[0] |= map->read_flag_mask;
2060 
2061 	trace_regmap_hw_read_start(map->dev, reg,
2062 				   val_len / map->format.val_bytes);
2063 
2064 	ret = map->bus->read(map->bus_context, map->work_buf,
2065 			     map->format.reg_bytes + map->format.pad_bytes,
2066 			     val, val_len);
2067 
2068 	trace_regmap_hw_read_done(map->dev, reg,
2069 				  val_len / map->format.val_bytes);
2070 
2071 	return ret;
2072 }
2073 
2074 static int _regmap_bus_reg_read(void *context, unsigned int reg,
2075 				unsigned int *val)
2076 {
2077 	struct regmap *map = context;
2078 
2079 	return map->bus->reg_read(map->bus_context, reg, val);
2080 }
2081 
2082 static int _regmap_bus_read(void *context, unsigned int reg,
2083 			    unsigned int *val)
2084 {
2085 	int ret;
2086 	struct regmap *map = context;
2087 
2088 	if (!map->format.parse_val)
2089 		return -EINVAL;
2090 
2091 	ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes);
2092 	if (ret == 0)
2093 		*val = map->format.parse_val(map->work_buf);
2094 
2095 	return ret;
2096 }
2097 
2098 static int _regmap_read(struct regmap *map, unsigned int reg,
2099 			unsigned int *val)
2100 {
2101 	int ret;
2102 	void *context = _regmap_map_get_context(map);
2103 
2104 	WARN_ON(!map->reg_read);
2105 
2106 	if (!map->cache_bypass) {
2107 		ret = regcache_read(map, reg, val);
2108 		if (ret == 0)
2109 			return 0;
2110 	}
2111 
2112 	if (map->cache_only)
2113 		return -EBUSY;
2114 
2115 	if (!regmap_readable(map, reg))
2116 		return -EIO;
2117 
2118 	ret = map->reg_read(context, reg, val);
2119 	if (ret == 0) {
2120 #ifdef LOG_DEVICE
2121 		if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
2122 			dev_info(map->dev, "%x => %x\n", reg, *val);
2123 #endif
2124 
2125 		trace_regmap_reg_read(map->dev, reg, *val);
2126 
2127 		if (!map->cache_bypass)
2128 			regcache_write(map, reg, *val);
2129 	}
2130 
2131 	return ret;
2132 }
2133 
2134 /**
2135  * regmap_read(): Read a value from a single register
2136  *
2137  * @map: Register map to read from
2138  * @reg: Register to be read from
2139  * @val: Pointer to store read value
2140  *
2141  * A value of zero will be returned on success, a negative errno will
2142  * be returned in error cases.
2143  */
2144 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2145 {
2146 	int ret;
2147 
2148 	if (reg % map->reg_stride)
2149 		return -EINVAL;
2150 
2151 	map->lock(map->lock_arg);
2152 
2153 	ret = _regmap_read(map, reg, val);
2154 
2155 	map->unlock(map->lock_arg);
2156 
2157 	return ret;
2158 }
2159 EXPORT_SYMBOL_GPL(regmap_read);
2160 
2161 /**
2162  * regmap_raw_read(): Read raw data from the device
2163  *
2164  * @map: Register map to read from
2165  * @reg: First register to be read from
2166  * @val: Pointer to store read value
2167  * @val_len: Size of data to read
2168  *
2169  * A value of zero will be returned on success, a negative errno will
2170  * be returned in error cases.
2171  */
2172 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2173 		    size_t val_len)
2174 {
2175 	size_t val_bytes = map->format.val_bytes;
2176 	size_t val_count = val_len / val_bytes;
2177 	unsigned int v;
2178 	int ret, i;
2179 
2180 	if (!map->bus)
2181 		return -EINVAL;
2182 	if (val_len % map->format.val_bytes)
2183 		return -EINVAL;
2184 	if (reg % map->reg_stride)
2185 		return -EINVAL;
2186 
2187 	map->lock(map->lock_arg);
2188 
2189 	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2190 	    map->cache_type == REGCACHE_NONE) {
2191 		/* Physical block read if there's no cache involved */
2192 		ret = _regmap_raw_read(map, reg, val, val_len);
2193 
2194 	} else {
2195 		/* Otherwise go word by word for the cache; should be low
2196 		 * cost as we expect to hit the cache.
2197 		 */
2198 		for (i = 0; i < val_count; i++) {
2199 			ret = _regmap_read(map, reg + (i * map->reg_stride),
2200 					   &v);
2201 			if (ret != 0)
2202 				goto out;
2203 
2204 			map->format.format_val(val + (i * val_bytes), v, 0);
2205 		}
2206 	}
2207 
2208  out:
2209 	map->unlock(map->lock_arg);
2210 
2211 	return ret;
2212 }
2213 EXPORT_SYMBOL_GPL(regmap_raw_read);
2214 
2215 /**
2216  * regmap_field_read(): Read a value to a single register field
2217  *
2218  * @field: Register field to read from
2219  * @val: Pointer to store read value
2220  *
2221  * A value of zero will be returned on success, a negative errno will
2222  * be returned in error cases.
2223  */
2224 int regmap_field_read(struct regmap_field *field, unsigned int *val)
2225 {
2226 	int ret;
2227 	unsigned int reg_val;
2228 	ret = regmap_read(field->regmap, field->reg, &reg_val);
2229 	if (ret != 0)
2230 		return ret;
2231 
2232 	reg_val &= field->mask;
2233 	reg_val >>= field->shift;
2234 	*val = reg_val;
2235 
2236 	return ret;
2237 }
2238 EXPORT_SYMBOL_GPL(regmap_field_read);
2239 
2240 /**
2241  * regmap_fields_read(): Read a value to a single register field with port ID
2242  *
2243  * @field: Register field to read from
2244  * @id: port ID
2245  * @val: Pointer to store read value
2246  *
2247  * A value of zero will be returned on success, a negative errno will
2248  * be returned in error cases.
2249  */
2250 int regmap_fields_read(struct regmap_field *field, unsigned int id,
2251 		       unsigned int *val)
2252 {
2253 	int ret;
2254 	unsigned int reg_val;
2255 
2256 	if (id >= field->id_size)
2257 		return -EINVAL;
2258 
2259 	ret = regmap_read(field->regmap,
2260 			  field->reg + (field->id_offset * id),
2261 			  &reg_val);
2262 	if (ret != 0)
2263 		return ret;
2264 
2265 	reg_val &= field->mask;
2266 	reg_val >>= field->shift;
2267 	*val = reg_val;
2268 
2269 	return ret;
2270 }
2271 EXPORT_SYMBOL_GPL(regmap_fields_read);
2272 
2273 /**
2274  * regmap_bulk_read(): Read multiple registers from the device
2275  *
2276  * @map: Register map to read from
2277  * @reg: First register to be read from
2278  * @val: Pointer to store read value, in native register size for device
2279  * @val_count: Number of registers to read
2280  *
2281  * A value of zero will be returned on success, a negative errno will
2282  * be returned in error cases.
2283  */
2284 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2285 		     size_t val_count)
2286 {
2287 	int ret, i;
2288 	size_t val_bytes = map->format.val_bytes;
2289 	bool vol = regmap_volatile_range(map, reg, val_count);
2290 
2291 	if (reg % map->reg_stride)
2292 		return -EINVAL;
2293 
2294 	if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2295 		/*
2296 		 * Some devices does not support bulk read, for
2297 		 * them we have a series of single read operations.
2298 		 */
2299 		if (map->use_single_rw) {
2300 			for (i = 0; i < val_count; i++) {
2301 				ret = regmap_raw_read(map,
2302 						reg + (i * map->reg_stride),
2303 						val + (i * val_bytes),
2304 						val_bytes);
2305 				if (ret != 0)
2306 					return ret;
2307 			}
2308 		} else {
2309 			ret = regmap_raw_read(map, reg, val,
2310 					      val_bytes * val_count);
2311 			if (ret != 0)
2312 				return ret;
2313 		}
2314 
2315 		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2316 			map->format.parse_inplace(val + i);
2317 	} else {
2318 		for (i = 0; i < val_count; i++) {
2319 			unsigned int ival;
2320 			ret = regmap_read(map, reg + (i * map->reg_stride),
2321 					  &ival);
2322 			if (ret != 0)
2323 				return ret;
2324 			memcpy(val + (i * val_bytes), &ival, val_bytes);
2325 		}
2326 	}
2327 
2328 	return 0;
2329 }
2330 EXPORT_SYMBOL_GPL(regmap_bulk_read);
2331 
2332 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
2333 			       unsigned int mask, unsigned int val,
2334 			       bool *change)
2335 {
2336 	int ret;
2337 	unsigned int tmp, orig;
2338 
2339 	ret = _regmap_read(map, reg, &orig);
2340 	if (ret != 0)
2341 		return ret;
2342 
2343 	tmp = orig & ~mask;
2344 	tmp |= val & mask;
2345 
2346 	if (tmp != orig) {
2347 		ret = _regmap_write(map, reg, tmp);
2348 		if (change)
2349 			*change = true;
2350 	} else {
2351 		if (change)
2352 			*change = false;
2353 	}
2354 
2355 	return ret;
2356 }
2357 
2358 /**
2359  * regmap_update_bits: Perform a read/modify/write cycle on the register map
2360  *
2361  * @map: Register map to update
2362  * @reg: Register to update
2363  * @mask: Bitmask to change
2364  * @val: New value for bitmask
2365  *
2366  * Returns zero for success, a negative number on error.
2367  */
2368 int regmap_update_bits(struct regmap *map, unsigned int reg,
2369 		       unsigned int mask, unsigned int val)
2370 {
2371 	int ret;
2372 
2373 	map->lock(map->lock_arg);
2374 	ret = _regmap_update_bits(map, reg, mask, val, NULL);
2375 	map->unlock(map->lock_arg);
2376 
2377 	return ret;
2378 }
2379 EXPORT_SYMBOL_GPL(regmap_update_bits);
2380 
2381 /**
2382  * regmap_update_bits_async: Perform a read/modify/write cycle on the register
2383  *                           map asynchronously
2384  *
2385  * @map: Register map to update
2386  * @reg: Register to update
2387  * @mask: Bitmask to change
2388  * @val: New value for bitmask
2389  *
2390  * With most buses the read must be done synchronously so this is most
2391  * useful for devices with a cache which do not need to interact with
2392  * the hardware to determine the current register value.
2393  *
2394  * Returns zero for success, a negative number on error.
2395  */
2396 int regmap_update_bits_async(struct regmap *map, unsigned int reg,
2397 			     unsigned int mask, unsigned int val)
2398 {
2399 	int ret;
2400 
2401 	map->lock(map->lock_arg);
2402 
2403 	map->async = true;
2404 
2405 	ret = _regmap_update_bits(map, reg, mask, val, NULL);
2406 
2407 	map->async = false;
2408 
2409 	map->unlock(map->lock_arg);
2410 
2411 	return ret;
2412 }
2413 EXPORT_SYMBOL_GPL(regmap_update_bits_async);
2414 
2415 /**
2416  * regmap_update_bits_check: Perform a read/modify/write cycle on the
2417  *                           register map and report if updated
2418  *
2419  * @map: Register map to update
2420  * @reg: Register to update
2421  * @mask: Bitmask to change
2422  * @val: New value for bitmask
2423  * @change: Boolean indicating if a write was done
2424  *
2425  * Returns zero for success, a negative number on error.
2426  */
2427 int regmap_update_bits_check(struct regmap *map, unsigned int reg,
2428 			     unsigned int mask, unsigned int val,
2429 			     bool *change)
2430 {
2431 	int ret;
2432 
2433 	map->lock(map->lock_arg);
2434 	ret = _regmap_update_bits(map, reg, mask, val, change);
2435 	map->unlock(map->lock_arg);
2436 	return ret;
2437 }
2438 EXPORT_SYMBOL_GPL(regmap_update_bits_check);
2439 
2440 /**
2441  * regmap_update_bits_check_async: Perform a read/modify/write cycle on the
2442  *                                 register map asynchronously and report if
2443  *                                 updated
2444  *
2445  * @map: Register map to update
2446  * @reg: Register to update
2447  * @mask: Bitmask to change
2448  * @val: New value for bitmask
2449  * @change: Boolean indicating if a write was done
2450  *
2451  * With most buses the read must be done synchronously so this is most
2452  * useful for devices with a cache which do not need to interact with
2453  * the hardware to determine the current register value.
2454  *
2455  * Returns zero for success, a negative number on error.
2456  */
2457 int regmap_update_bits_check_async(struct regmap *map, unsigned int reg,
2458 				   unsigned int mask, unsigned int val,
2459 				   bool *change)
2460 {
2461 	int ret;
2462 
2463 	map->lock(map->lock_arg);
2464 
2465 	map->async = true;
2466 
2467 	ret = _regmap_update_bits(map, reg, mask, val, change);
2468 
2469 	map->async = false;
2470 
2471 	map->unlock(map->lock_arg);
2472 
2473 	return ret;
2474 }
2475 EXPORT_SYMBOL_GPL(regmap_update_bits_check_async);
2476 
2477 void regmap_async_complete_cb(struct regmap_async *async, int ret)
2478 {
2479 	struct regmap *map = async->map;
2480 	bool wake;
2481 
2482 	trace_regmap_async_io_complete(map->dev);
2483 
2484 	spin_lock(&map->async_lock);
2485 	list_move(&async->list, &map->async_free);
2486 	wake = list_empty(&map->async_list);
2487 
2488 	if (ret != 0)
2489 		map->async_ret = ret;
2490 
2491 	spin_unlock(&map->async_lock);
2492 
2493 	if (wake)
2494 		wake_up(&map->async_waitq);
2495 }
2496 EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2497 
2498 static int regmap_async_is_done(struct regmap *map)
2499 {
2500 	unsigned long flags;
2501 	int ret;
2502 
2503 	spin_lock_irqsave(&map->async_lock, flags);
2504 	ret = list_empty(&map->async_list);
2505 	spin_unlock_irqrestore(&map->async_lock, flags);
2506 
2507 	return ret;
2508 }
2509 
2510 /**
2511  * regmap_async_complete: Ensure all asynchronous I/O has completed.
2512  *
2513  * @map: Map to operate on.
2514  *
2515  * Blocks until any pending asynchronous I/O has completed.  Returns
2516  * an error code for any failed I/O operations.
2517  */
2518 int regmap_async_complete(struct regmap *map)
2519 {
2520 	unsigned long flags;
2521 	int ret;
2522 
2523 	/* Nothing to do with no async support */
2524 	if (!map->bus || !map->bus->async_write)
2525 		return 0;
2526 
2527 	trace_regmap_async_complete_start(map->dev);
2528 
2529 	wait_event(map->async_waitq, regmap_async_is_done(map));
2530 
2531 	spin_lock_irqsave(&map->async_lock, flags);
2532 	ret = map->async_ret;
2533 	map->async_ret = 0;
2534 	spin_unlock_irqrestore(&map->async_lock, flags);
2535 
2536 	trace_regmap_async_complete_done(map->dev);
2537 
2538 	return ret;
2539 }
2540 EXPORT_SYMBOL_GPL(regmap_async_complete);
2541 
2542 /**
2543  * regmap_register_patch: Register and apply register updates to be applied
2544  *                        on device initialistion
2545  *
2546  * @map: Register map to apply updates to.
2547  * @regs: Values to update.
2548  * @num_regs: Number of entries in regs.
2549  *
2550  * Register a set of register updates to be applied to the device
2551  * whenever the device registers are synchronised with the cache and
2552  * apply them immediately.  Typically this is used to apply
2553  * corrections to be applied to the device defaults on startup, such
2554  * as the updates some vendors provide to undocumented registers.
2555  *
2556  * The caller must ensure that this function cannot be called
2557  * concurrently with either itself or regcache_sync().
2558  */
2559 int regmap_register_patch(struct regmap *map, const struct reg_default *regs,
2560 			  int num_regs)
2561 {
2562 	struct reg_default *p;
2563 	int ret;
2564 	bool bypass;
2565 
2566 	if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
2567 	    num_regs))
2568 		return 0;
2569 
2570 	p = krealloc(map->patch,
2571 		     sizeof(struct reg_default) * (map->patch_regs + num_regs),
2572 		     GFP_KERNEL);
2573 	if (p) {
2574 		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
2575 		map->patch = p;
2576 		map->patch_regs += num_regs;
2577 	} else {
2578 		return -ENOMEM;
2579 	}
2580 
2581 	map->lock(map->lock_arg);
2582 
2583 	bypass = map->cache_bypass;
2584 
2585 	map->cache_bypass = true;
2586 	map->async = true;
2587 
2588 	ret = _regmap_multi_reg_write(map, regs, num_regs);
2589 	if (ret != 0)
2590 		goto out;
2591 
2592 out:
2593 	map->async = false;
2594 	map->cache_bypass = bypass;
2595 
2596 	map->unlock(map->lock_arg);
2597 
2598 	regmap_async_complete(map);
2599 
2600 	return ret;
2601 }
2602 EXPORT_SYMBOL_GPL(regmap_register_patch);
2603 
2604 /*
2605  * regmap_get_val_bytes(): Report the size of a register value
2606  *
2607  * Report the size of a register value, mainly intended to for use by
2608  * generic infrastructure built on top of regmap.
2609  */
2610 int regmap_get_val_bytes(struct regmap *map)
2611 {
2612 	if (map->format.format_write)
2613 		return -EINVAL;
2614 
2615 	return map->format.val_bytes;
2616 }
2617 EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
2618 
2619 int regmap_parse_val(struct regmap *map, const void *buf,
2620 			unsigned int *val)
2621 {
2622 	if (!map->format.parse_val)
2623 		return -EINVAL;
2624 
2625 	*val = map->format.parse_val(buf);
2626 
2627 	return 0;
2628 }
2629 EXPORT_SYMBOL_GPL(regmap_parse_val);
2630 
2631 static int __init regmap_initcall(void)
2632 {
2633 	regmap_debugfs_initcall();
2634 
2635 	return 0;
2636 }
2637 postcore_initcall(regmap_initcall);
2638