xref: /linux/drivers/base/regmap/regmap.c (revision 6fdcba32711044c35c0e1b094cbd8f3f0b4472c9)
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // Register map access API
4 //
5 // Copyright 2011 Wolfson Microelectronics plc
6 //
7 // Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8 
9 #include <linux/device.h>
10 #include <linux/slab.h>
11 #include <linux/export.h>
12 #include <linux/mutex.h>
13 #include <linux/err.h>
14 #include <linux/of.h>
15 #include <linux/rbtree.h>
16 #include <linux/sched.h>
17 #include <linux/delay.h>
18 #include <linux/log2.h>
19 #include <linux/hwspinlock.h>
20 
21 #define CREATE_TRACE_POINTS
22 #include "trace.h"
23 
24 #include "internal.h"
25 
26 /*
27  * Sometimes for failures during very early init the trace
28  * infrastructure isn't available early enough to be used.  For this
29  * sort of problem defining LOG_DEVICE will add printks for basic
30  * register I/O on a specific device.
31  */
32 #undef LOG_DEVICE
33 
34 #ifdef LOG_DEVICE
35 static inline bool regmap_should_log(struct regmap *map)
36 {
37 	return (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0);
38 }
39 #else
40 static inline bool regmap_should_log(struct regmap *map) { return false; }
41 #endif
42 
43 
44 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
45 			       unsigned int mask, unsigned int val,
46 			       bool *change, bool force_write);
47 
48 static int _regmap_bus_reg_read(void *context, unsigned int reg,
49 				unsigned int *val);
50 static int _regmap_bus_read(void *context, unsigned int reg,
51 			    unsigned int *val);
52 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
53 				       unsigned int val);
54 static int _regmap_bus_reg_write(void *context, unsigned int reg,
55 				 unsigned int val);
56 static int _regmap_bus_raw_write(void *context, unsigned int reg,
57 				 unsigned int val);
58 
59 bool regmap_reg_in_ranges(unsigned int reg,
60 			  const struct regmap_range *ranges,
61 			  unsigned int nranges)
62 {
63 	const struct regmap_range *r;
64 	int i;
65 
66 	for (i = 0, r = ranges; i < nranges; i++, r++)
67 		if (regmap_reg_in_range(reg, r))
68 			return true;
69 	return false;
70 }
71 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
72 
73 bool regmap_check_range_table(struct regmap *map, unsigned int reg,
74 			      const struct regmap_access_table *table)
75 {
76 	/* Check "no ranges" first */
77 	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
78 		return false;
79 
80 	/* In case zero "yes ranges" are supplied, any reg is OK */
81 	if (!table->n_yes_ranges)
82 		return true;
83 
84 	return regmap_reg_in_ranges(reg, table->yes_ranges,
85 				    table->n_yes_ranges);
86 }
87 EXPORT_SYMBOL_GPL(regmap_check_range_table);
88 
89 bool regmap_writeable(struct regmap *map, unsigned int reg)
90 {
91 	if (map->max_register && reg > map->max_register)
92 		return false;
93 
94 	if (map->writeable_reg)
95 		return map->writeable_reg(map->dev, reg);
96 
97 	if (map->wr_table)
98 		return regmap_check_range_table(map, reg, map->wr_table);
99 
100 	return true;
101 }
102 
103 bool regmap_cached(struct regmap *map, unsigned int reg)
104 {
105 	int ret;
106 	unsigned int val;
107 
108 	if (map->cache_type == REGCACHE_NONE)
109 		return false;
110 
111 	if (!map->cache_ops)
112 		return false;
113 
114 	if (map->max_register && reg > map->max_register)
115 		return false;
116 
117 	map->lock(map->lock_arg);
118 	ret = regcache_read(map, reg, &val);
119 	map->unlock(map->lock_arg);
120 	if (ret)
121 		return false;
122 
123 	return true;
124 }
125 
126 bool regmap_readable(struct regmap *map, unsigned int reg)
127 {
128 	if (!map->reg_read)
129 		return false;
130 
131 	if (map->max_register && reg > map->max_register)
132 		return false;
133 
134 	if (map->format.format_write)
135 		return false;
136 
137 	if (map->readable_reg)
138 		return map->readable_reg(map->dev, reg);
139 
140 	if (map->rd_table)
141 		return regmap_check_range_table(map, reg, map->rd_table);
142 
143 	return true;
144 }
145 
146 bool regmap_volatile(struct regmap *map, unsigned int reg)
147 {
148 	if (!map->format.format_write && !regmap_readable(map, reg))
149 		return false;
150 
151 	if (map->volatile_reg)
152 		return map->volatile_reg(map->dev, reg);
153 
154 	if (map->volatile_table)
155 		return regmap_check_range_table(map, reg, map->volatile_table);
156 
157 	if (map->cache_ops)
158 		return false;
159 	else
160 		return true;
161 }
162 
163 bool regmap_precious(struct regmap *map, unsigned int reg)
164 {
165 	if (!regmap_readable(map, reg))
166 		return false;
167 
168 	if (map->precious_reg)
169 		return map->precious_reg(map->dev, reg);
170 
171 	if (map->precious_table)
172 		return regmap_check_range_table(map, reg, map->precious_table);
173 
174 	return false;
175 }
176 
177 bool regmap_writeable_noinc(struct regmap *map, unsigned int reg)
178 {
179 	if (map->writeable_noinc_reg)
180 		return map->writeable_noinc_reg(map->dev, reg);
181 
182 	if (map->wr_noinc_table)
183 		return regmap_check_range_table(map, reg, map->wr_noinc_table);
184 
185 	return true;
186 }
187 
188 bool regmap_readable_noinc(struct regmap *map, unsigned int reg)
189 {
190 	if (map->readable_noinc_reg)
191 		return map->readable_noinc_reg(map->dev, reg);
192 
193 	if (map->rd_noinc_table)
194 		return regmap_check_range_table(map, reg, map->rd_noinc_table);
195 
196 	return true;
197 }
198 
199 static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
200 	size_t num)
201 {
202 	unsigned int i;
203 
204 	for (i = 0; i < num; i++)
205 		if (!regmap_volatile(map, reg + regmap_get_offset(map, i)))
206 			return false;
207 
208 	return true;
209 }
210 
211 static void regmap_format_2_6_write(struct regmap *map,
212 				     unsigned int reg, unsigned int val)
213 {
214 	u8 *out = map->work_buf;
215 
216 	*out = (reg << 6) | val;
217 }
218 
219 static void regmap_format_4_12_write(struct regmap *map,
220 				     unsigned int reg, unsigned int val)
221 {
222 	__be16 *out = map->work_buf;
223 	*out = cpu_to_be16((reg << 12) | val);
224 }
225 
226 static void regmap_format_7_9_write(struct regmap *map,
227 				    unsigned int reg, unsigned int val)
228 {
229 	__be16 *out = map->work_buf;
230 	*out = cpu_to_be16((reg << 9) | val);
231 }
232 
233 static void regmap_format_10_14_write(struct regmap *map,
234 				    unsigned int reg, unsigned int val)
235 {
236 	u8 *out = map->work_buf;
237 
238 	out[2] = val;
239 	out[1] = (val >> 8) | (reg << 6);
240 	out[0] = reg >> 2;
241 }
242 
243 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
244 {
245 	u8 *b = buf;
246 
247 	b[0] = val << shift;
248 }
249 
250 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
251 {
252 	__be16 *b = buf;
253 
254 	b[0] = cpu_to_be16(val << shift);
255 }
256 
257 static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
258 {
259 	__le16 *b = buf;
260 
261 	b[0] = cpu_to_le16(val << shift);
262 }
263 
264 static void regmap_format_16_native(void *buf, unsigned int val,
265 				    unsigned int shift)
266 {
267 	*(u16 *)buf = val << shift;
268 }
269 
270 static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
271 {
272 	u8 *b = buf;
273 
274 	val <<= shift;
275 
276 	b[0] = val >> 16;
277 	b[1] = val >> 8;
278 	b[2] = val;
279 }
280 
281 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
282 {
283 	__be32 *b = buf;
284 
285 	b[0] = cpu_to_be32(val << shift);
286 }
287 
288 static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
289 {
290 	__le32 *b = buf;
291 
292 	b[0] = cpu_to_le32(val << shift);
293 }
294 
295 static void regmap_format_32_native(void *buf, unsigned int val,
296 				    unsigned int shift)
297 {
298 	*(u32 *)buf = val << shift;
299 }
300 
301 #ifdef CONFIG_64BIT
302 static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
303 {
304 	__be64 *b = buf;
305 
306 	b[0] = cpu_to_be64((u64)val << shift);
307 }
308 
309 static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
310 {
311 	__le64 *b = buf;
312 
313 	b[0] = cpu_to_le64((u64)val << shift);
314 }
315 
316 static void regmap_format_64_native(void *buf, unsigned int val,
317 				    unsigned int shift)
318 {
319 	*(u64 *)buf = (u64)val << shift;
320 }
321 #endif
322 
323 static void regmap_parse_inplace_noop(void *buf)
324 {
325 }
326 
327 static unsigned int regmap_parse_8(const void *buf)
328 {
329 	const u8 *b = buf;
330 
331 	return b[0];
332 }
333 
334 static unsigned int regmap_parse_16_be(const void *buf)
335 {
336 	const __be16 *b = buf;
337 
338 	return be16_to_cpu(b[0]);
339 }
340 
341 static unsigned int regmap_parse_16_le(const void *buf)
342 {
343 	const __le16 *b = buf;
344 
345 	return le16_to_cpu(b[0]);
346 }
347 
348 static void regmap_parse_16_be_inplace(void *buf)
349 {
350 	__be16 *b = buf;
351 
352 	b[0] = be16_to_cpu(b[0]);
353 }
354 
355 static void regmap_parse_16_le_inplace(void *buf)
356 {
357 	__le16 *b = buf;
358 
359 	b[0] = le16_to_cpu(b[0]);
360 }
361 
362 static unsigned int regmap_parse_16_native(const void *buf)
363 {
364 	return *(u16 *)buf;
365 }
366 
367 static unsigned int regmap_parse_24(const void *buf)
368 {
369 	const u8 *b = buf;
370 	unsigned int ret = b[2];
371 	ret |= ((unsigned int)b[1]) << 8;
372 	ret |= ((unsigned int)b[0]) << 16;
373 
374 	return ret;
375 }
376 
377 static unsigned int regmap_parse_32_be(const void *buf)
378 {
379 	const __be32 *b = buf;
380 
381 	return be32_to_cpu(b[0]);
382 }
383 
384 static unsigned int regmap_parse_32_le(const void *buf)
385 {
386 	const __le32 *b = buf;
387 
388 	return le32_to_cpu(b[0]);
389 }
390 
391 static void regmap_parse_32_be_inplace(void *buf)
392 {
393 	__be32 *b = buf;
394 
395 	b[0] = be32_to_cpu(b[0]);
396 }
397 
398 static void regmap_parse_32_le_inplace(void *buf)
399 {
400 	__le32 *b = buf;
401 
402 	b[0] = le32_to_cpu(b[0]);
403 }
404 
405 static unsigned int regmap_parse_32_native(const void *buf)
406 {
407 	return *(u32 *)buf;
408 }
409 
410 #ifdef CONFIG_64BIT
411 static unsigned int regmap_parse_64_be(const void *buf)
412 {
413 	const __be64 *b = buf;
414 
415 	return be64_to_cpu(b[0]);
416 }
417 
418 static unsigned int regmap_parse_64_le(const void *buf)
419 {
420 	const __le64 *b = buf;
421 
422 	return le64_to_cpu(b[0]);
423 }
424 
425 static void regmap_parse_64_be_inplace(void *buf)
426 {
427 	__be64 *b = buf;
428 
429 	b[0] = be64_to_cpu(b[0]);
430 }
431 
432 static void regmap_parse_64_le_inplace(void *buf)
433 {
434 	__le64 *b = buf;
435 
436 	b[0] = le64_to_cpu(b[0]);
437 }
438 
439 static unsigned int regmap_parse_64_native(const void *buf)
440 {
441 	return *(u64 *)buf;
442 }
443 #endif
444 
445 static void regmap_lock_hwlock(void *__map)
446 {
447 	struct regmap *map = __map;
448 
449 	hwspin_lock_timeout(map->hwlock, UINT_MAX);
450 }
451 
452 static void regmap_lock_hwlock_irq(void *__map)
453 {
454 	struct regmap *map = __map;
455 
456 	hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
457 }
458 
459 static void regmap_lock_hwlock_irqsave(void *__map)
460 {
461 	struct regmap *map = __map;
462 
463 	hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
464 				    &map->spinlock_flags);
465 }
466 
467 static void regmap_unlock_hwlock(void *__map)
468 {
469 	struct regmap *map = __map;
470 
471 	hwspin_unlock(map->hwlock);
472 }
473 
474 static void regmap_unlock_hwlock_irq(void *__map)
475 {
476 	struct regmap *map = __map;
477 
478 	hwspin_unlock_irq(map->hwlock);
479 }
480 
481 static void regmap_unlock_hwlock_irqrestore(void *__map)
482 {
483 	struct regmap *map = __map;
484 
485 	hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
486 }
487 
488 static void regmap_lock_unlock_none(void *__map)
489 {
490 
491 }
492 
493 static void regmap_lock_mutex(void *__map)
494 {
495 	struct regmap *map = __map;
496 	mutex_lock(&map->mutex);
497 }
498 
499 static void regmap_unlock_mutex(void *__map)
500 {
501 	struct regmap *map = __map;
502 	mutex_unlock(&map->mutex);
503 }
504 
505 static void regmap_lock_spinlock(void *__map)
506 __acquires(&map->spinlock)
507 {
508 	struct regmap *map = __map;
509 	unsigned long flags;
510 
511 	spin_lock_irqsave(&map->spinlock, flags);
512 	map->spinlock_flags = flags;
513 }
514 
515 static void regmap_unlock_spinlock(void *__map)
516 __releases(&map->spinlock)
517 {
518 	struct regmap *map = __map;
519 	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
520 }
521 
522 static void dev_get_regmap_release(struct device *dev, void *res)
523 {
524 	/*
525 	 * We don't actually have anything to do here; the goal here
526 	 * is not to manage the regmap but to provide a simple way to
527 	 * get the regmap back given a struct device.
528 	 */
529 }
530 
531 static bool _regmap_range_add(struct regmap *map,
532 			      struct regmap_range_node *data)
533 {
534 	struct rb_root *root = &map->range_tree;
535 	struct rb_node **new = &(root->rb_node), *parent = NULL;
536 
537 	while (*new) {
538 		struct regmap_range_node *this =
539 			rb_entry(*new, struct regmap_range_node, node);
540 
541 		parent = *new;
542 		if (data->range_max < this->range_min)
543 			new = &((*new)->rb_left);
544 		else if (data->range_min > this->range_max)
545 			new = &((*new)->rb_right);
546 		else
547 			return false;
548 	}
549 
550 	rb_link_node(&data->node, parent, new);
551 	rb_insert_color(&data->node, root);
552 
553 	return true;
554 }
555 
556 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
557 						      unsigned int reg)
558 {
559 	struct rb_node *node = map->range_tree.rb_node;
560 
561 	while (node) {
562 		struct regmap_range_node *this =
563 			rb_entry(node, struct regmap_range_node, node);
564 
565 		if (reg < this->range_min)
566 			node = node->rb_left;
567 		else if (reg > this->range_max)
568 			node = node->rb_right;
569 		else
570 			return this;
571 	}
572 
573 	return NULL;
574 }
575 
576 static void regmap_range_exit(struct regmap *map)
577 {
578 	struct rb_node *next;
579 	struct regmap_range_node *range_node;
580 
581 	next = rb_first(&map->range_tree);
582 	while (next) {
583 		range_node = rb_entry(next, struct regmap_range_node, node);
584 		next = rb_next(&range_node->node);
585 		rb_erase(&range_node->node, &map->range_tree);
586 		kfree(range_node);
587 	}
588 
589 	kfree(map->selector_work_buf);
590 }
591 
592 int regmap_attach_dev(struct device *dev, struct regmap *map,
593 		      const struct regmap_config *config)
594 {
595 	struct regmap **m;
596 
597 	map->dev = dev;
598 
599 	regmap_debugfs_init(map, config->name);
600 
601 	/* Add a devres resource for dev_get_regmap() */
602 	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
603 	if (!m) {
604 		regmap_debugfs_exit(map);
605 		return -ENOMEM;
606 	}
607 	*m = map;
608 	devres_add(dev, m);
609 
610 	return 0;
611 }
612 EXPORT_SYMBOL_GPL(regmap_attach_dev);
613 
614 static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
615 					const struct regmap_config *config)
616 {
617 	enum regmap_endian endian;
618 
619 	/* Retrieve the endianness specification from the regmap config */
620 	endian = config->reg_format_endian;
621 
622 	/* If the regmap config specified a non-default value, use that */
623 	if (endian != REGMAP_ENDIAN_DEFAULT)
624 		return endian;
625 
626 	/* Retrieve the endianness specification from the bus config */
627 	if (bus && bus->reg_format_endian_default)
628 		endian = bus->reg_format_endian_default;
629 
630 	/* If the bus specified a non-default value, use that */
631 	if (endian != REGMAP_ENDIAN_DEFAULT)
632 		return endian;
633 
634 	/* Use this if no other value was found */
635 	return REGMAP_ENDIAN_BIG;
636 }
637 
638 enum regmap_endian regmap_get_val_endian(struct device *dev,
639 					 const struct regmap_bus *bus,
640 					 const struct regmap_config *config)
641 {
642 	struct device_node *np;
643 	enum regmap_endian endian;
644 
645 	/* Retrieve the endianness specification from the regmap config */
646 	endian = config->val_format_endian;
647 
648 	/* If the regmap config specified a non-default value, use that */
649 	if (endian != REGMAP_ENDIAN_DEFAULT)
650 		return endian;
651 
652 	/* If the dev and dev->of_node exist try to get endianness from DT */
653 	if (dev && dev->of_node) {
654 		np = dev->of_node;
655 
656 		/* Parse the device's DT node for an endianness specification */
657 		if (of_property_read_bool(np, "big-endian"))
658 			endian = REGMAP_ENDIAN_BIG;
659 		else if (of_property_read_bool(np, "little-endian"))
660 			endian = REGMAP_ENDIAN_LITTLE;
661 		else if (of_property_read_bool(np, "native-endian"))
662 			endian = REGMAP_ENDIAN_NATIVE;
663 
664 		/* If the endianness was specified in DT, use that */
665 		if (endian != REGMAP_ENDIAN_DEFAULT)
666 			return endian;
667 	}
668 
669 	/* Retrieve the endianness specification from the bus config */
670 	if (bus && bus->val_format_endian_default)
671 		endian = bus->val_format_endian_default;
672 
673 	/* If the bus specified a non-default value, use that */
674 	if (endian != REGMAP_ENDIAN_DEFAULT)
675 		return endian;
676 
677 	/* Use this if no other value was found */
678 	return REGMAP_ENDIAN_BIG;
679 }
680 EXPORT_SYMBOL_GPL(regmap_get_val_endian);
681 
682 struct regmap *__regmap_init(struct device *dev,
683 			     const struct regmap_bus *bus,
684 			     void *bus_context,
685 			     const struct regmap_config *config,
686 			     struct lock_class_key *lock_key,
687 			     const char *lock_name)
688 {
689 	struct regmap *map;
690 	int ret = -EINVAL;
691 	enum regmap_endian reg_endian, val_endian;
692 	int i, j;
693 
694 	if (!config)
695 		goto err;
696 
697 	map = kzalloc(sizeof(*map), GFP_KERNEL);
698 	if (map == NULL) {
699 		ret = -ENOMEM;
700 		goto err;
701 	}
702 
703 	if (config->name) {
704 		map->name = kstrdup_const(config->name, GFP_KERNEL);
705 		if (!map->name) {
706 			ret = -ENOMEM;
707 			goto err_map;
708 		}
709 	}
710 
711 	if (config->disable_locking) {
712 		map->lock = map->unlock = regmap_lock_unlock_none;
713 		regmap_debugfs_disable(map);
714 	} else if (config->lock && config->unlock) {
715 		map->lock = config->lock;
716 		map->unlock = config->unlock;
717 		map->lock_arg = config->lock_arg;
718 	} else if (config->use_hwlock) {
719 		map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
720 		if (!map->hwlock) {
721 			ret = -ENXIO;
722 			goto err_name;
723 		}
724 
725 		switch (config->hwlock_mode) {
726 		case HWLOCK_IRQSTATE:
727 			map->lock = regmap_lock_hwlock_irqsave;
728 			map->unlock = regmap_unlock_hwlock_irqrestore;
729 			break;
730 		case HWLOCK_IRQ:
731 			map->lock = regmap_lock_hwlock_irq;
732 			map->unlock = regmap_unlock_hwlock_irq;
733 			break;
734 		default:
735 			map->lock = regmap_lock_hwlock;
736 			map->unlock = regmap_unlock_hwlock;
737 			break;
738 		}
739 
740 		map->lock_arg = map;
741 	} else {
742 		if ((bus && bus->fast_io) ||
743 		    config->fast_io) {
744 			spin_lock_init(&map->spinlock);
745 			map->lock = regmap_lock_spinlock;
746 			map->unlock = regmap_unlock_spinlock;
747 			lockdep_set_class_and_name(&map->spinlock,
748 						   lock_key, lock_name);
749 		} else {
750 			mutex_init(&map->mutex);
751 			map->lock = regmap_lock_mutex;
752 			map->unlock = regmap_unlock_mutex;
753 			lockdep_set_class_and_name(&map->mutex,
754 						   lock_key, lock_name);
755 		}
756 		map->lock_arg = map;
757 	}
758 
759 	/*
760 	 * When we write in fast-paths with regmap_bulk_write() don't allocate
761 	 * scratch buffers with sleeping allocations.
762 	 */
763 	if ((bus && bus->fast_io) || config->fast_io)
764 		map->alloc_flags = GFP_ATOMIC;
765 	else
766 		map->alloc_flags = GFP_KERNEL;
767 
768 	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
769 	map->format.pad_bytes = config->pad_bits / 8;
770 	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
771 	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
772 			config->val_bits + config->pad_bits, 8);
773 	map->reg_shift = config->pad_bits % 8;
774 	if (config->reg_stride)
775 		map->reg_stride = config->reg_stride;
776 	else
777 		map->reg_stride = 1;
778 	if (is_power_of_2(map->reg_stride))
779 		map->reg_stride_order = ilog2(map->reg_stride);
780 	else
781 		map->reg_stride_order = -1;
782 	map->use_single_read = config->use_single_read || !bus || !bus->read;
783 	map->use_single_write = config->use_single_write || !bus || !bus->write;
784 	map->can_multi_write = config->can_multi_write && bus && bus->write;
785 	if (bus) {
786 		map->max_raw_read = bus->max_raw_read;
787 		map->max_raw_write = bus->max_raw_write;
788 	}
789 	map->dev = dev;
790 	map->bus = bus;
791 	map->bus_context = bus_context;
792 	map->max_register = config->max_register;
793 	map->wr_table = config->wr_table;
794 	map->rd_table = config->rd_table;
795 	map->volatile_table = config->volatile_table;
796 	map->precious_table = config->precious_table;
797 	map->wr_noinc_table = config->wr_noinc_table;
798 	map->rd_noinc_table = config->rd_noinc_table;
799 	map->writeable_reg = config->writeable_reg;
800 	map->readable_reg = config->readable_reg;
801 	map->volatile_reg = config->volatile_reg;
802 	map->precious_reg = config->precious_reg;
803 	map->writeable_noinc_reg = config->writeable_noinc_reg;
804 	map->readable_noinc_reg = config->readable_noinc_reg;
805 	map->cache_type = config->cache_type;
806 
807 	spin_lock_init(&map->async_lock);
808 	INIT_LIST_HEAD(&map->async_list);
809 	INIT_LIST_HEAD(&map->async_free);
810 	init_waitqueue_head(&map->async_waitq);
811 
812 	if (config->read_flag_mask ||
813 	    config->write_flag_mask ||
814 	    config->zero_flag_mask) {
815 		map->read_flag_mask = config->read_flag_mask;
816 		map->write_flag_mask = config->write_flag_mask;
817 	} else if (bus) {
818 		map->read_flag_mask = bus->read_flag_mask;
819 	}
820 
821 	if (!bus) {
822 		map->reg_read  = config->reg_read;
823 		map->reg_write = config->reg_write;
824 
825 		map->defer_caching = false;
826 		goto skip_format_initialization;
827 	} else if (!bus->read || !bus->write) {
828 		map->reg_read = _regmap_bus_reg_read;
829 		map->reg_write = _regmap_bus_reg_write;
830 
831 		map->defer_caching = false;
832 		goto skip_format_initialization;
833 	} else {
834 		map->reg_read  = _regmap_bus_read;
835 		map->reg_update_bits = bus->reg_update_bits;
836 	}
837 
838 	reg_endian = regmap_get_reg_endian(bus, config);
839 	val_endian = regmap_get_val_endian(dev, bus, config);
840 
841 	switch (config->reg_bits + map->reg_shift) {
842 	case 2:
843 		switch (config->val_bits) {
844 		case 6:
845 			map->format.format_write = regmap_format_2_6_write;
846 			break;
847 		default:
848 			goto err_hwlock;
849 		}
850 		break;
851 
852 	case 4:
853 		switch (config->val_bits) {
854 		case 12:
855 			map->format.format_write = regmap_format_4_12_write;
856 			break;
857 		default:
858 			goto err_hwlock;
859 		}
860 		break;
861 
862 	case 7:
863 		switch (config->val_bits) {
864 		case 9:
865 			map->format.format_write = regmap_format_7_9_write;
866 			break;
867 		default:
868 			goto err_hwlock;
869 		}
870 		break;
871 
872 	case 10:
873 		switch (config->val_bits) {
874 		case 14:
875 			map->format.format_write = regmap_format_10_14_write;
876 			break;
877 		default:
878 			goto err_hwlock;
879 		}
880 		break;
881 
882 	case 8:
883 		map->format.format_reg = regmap_format_8;
884 		break;
885 
886 	case 16:
887 		switch (reg_endian) {
888 		case REGMAP_ENDIAN_BIG:
889 			map->format.format_reg = regmap_format_16_be;
890 			break;
891 		case REGMAP_ENDIAN_LITTLE:
892 			map->format.format_reg = regmap_format_16_le;
893 			break;
894 		case REGMAP_ENDIAN_NATIVE:
895 			map->format.format_reg = regmap_format_16_native;
896 			break;
897 		default:
898 			goto err_hwlock;
899 		}
900 		break;
901 
902 	case 24:
903 		if (reg_endian != REGMAP_ENDIAN_BIG)
904 			goto err_hwlock;
905 		map->format.format_reg = regmap_format_24;
906 		break;
907 
908 	case 32:
909 		switch (reg_endian) {
910 		case REGMAP_ENDIAN_BIG:
911 			map->format.format_reg = regmap_format_32_be;
912 			break;
913 		case REGMAP_ENDIAN_LITTLE:
914 			map->format.format_reg = regmap_format_32_le;
915 			break;
916 		case REGMAP_ENDIAN_NATIVE:
917 			map->format.format_reg = regmap_format_32_native;
918 			break;
919 		default:
920 			goto err_hwlock;
921 		}
922 		break;
923 
924 #ifdef CONFIG_64BIT
925 	case 64:
926 		switch (reg_endian) {
927 		case REGMAP_ENDIAN_BIG:
928 			map->format.format_reg = regmap_format_64_be;
929 			break;
930 		case REGMAP_ENDIAN_LITTLE:
931 			map->format.format_reg = regmap_format_64_le;
932 			break;
933 		case REGMAP_ENDIAN_NATIVE:
934 			map->format.format_reg = regmap_format_64_native;
935 			break;
936 		default:
937 			goto err_hwlock;
938 		}
939 		break;
940 #endif
941 
942 	default:
943 		goto err_hwlock;
944 	}
945 
946 	if (val_endian == REGMAP_ENDIAN_NATIVE)
947 		map->format.parse_inplace = regmap_parse_inplace_noop;
948 
949 	switch (config->val_bits) {
950 	case 8:
951 		map->format.format_val = regmap_format_8;
952 		map->format.parse_val = regmap_parse_8;
953 		map->format.parse_inplace = regmap_parse_inplace_noop;
954 		break;
955 	case 16:
956 		switch (val_endian) {
957 		case REGMAP_ENDIAN_BIG:
958 			map->format.format_val = regmap_format_16_be;
959 			map->format.parse_val = regmap_parse_16_be;
960 			map->format.parse_inplace = regmap_parse_16_be_inplace;
961 			break;
962 		case REGMAP_ENDIAN_LITTLE:
963 			map->format.format_val = regmap_format_16_le;
964 			map->format.parse_val = regmap_parse_16_le;
965 			map->format.parse_inplace = regmap_parse_16_le_inplace;
966 			break;
967 		case REGMAP_ENDIAN_NATIVE:
968 			map->format.format_val = regmap_format_16_native;
969 			map->format.parse_val = regmap_parse_16_native;
970 			break;
971 		default:
972 			goto err_hwlock;
973 		}
974 		break;
975 	case 24:
976 		if (val_endian != REGMAP_ENDIAN_BIG)
977 			goto err_hwlock;
978 		map->format.format_val = regmap_format_24;
979 		map->format.parse_val = regmap_parse_24;
980 		break;
981 	case 32:
982 		switch (val_endian) {
983 		case REGMAP_ENDIAN_BIG:
984 			map->format.format_val = regmap_format_32_be;
985 			map->format.parse_val = regmap_parse_32_be;
986 			map->format.parse_inplace = regmap_parse_32_be_inplace;
987 			break;
988 		case REGMAP_ENDIAN_LITTLE:
989 			map->format.format_val = regmap_format_32_le;
990 			map->format.parse_val = regmap_parse_32_le;
991 			map->format.parse_inplace = regmap_parse_32_le_inplace;
992 			break;
993 		case REGMAP_ENDIAN_NATIVE:
994 			map->format.format_val = regmap_format_32_native;
995 			map->format.parse_val = regmap_parse_32_native;
996 			break;
997 		default:
998 			goto err_hwlock;
999 		}
1000 		break;
1001 #ifdef CONFIG_64BIT
1002 	case 64:
1003 		switch (val_endian) {
1004 		case REGMAP_ENDIAN_BIG:
1005 			map->format.format_val = regmap_format_64_be;
1006 			map->format.parse_val = regmap_parse_64_be;
1007 			map->format.parse_inplace = regmap_parse_64_be_inplace;
1008 			break;
1009 		case REGMAP_ENDIAN_LITTLE:
1010 			map->format.format_val = regmap_format_64_le;
1011 			map->format.parse_val = regmap_parse_64_le;
1012 			map->format.parse_inplace = regmap_parse_64_le_inplace;
1013 			break;
1014 		case REGMAP_ENDIAN_NATIVE:
1015 			map->format.format_val = regmap_format_64_native;
1016 			map->format.parse_val = regmap_parse_64_native;
1017 			break;
1018 		default:
1019 			goto err_hwlock;
1020 		}
1021 		break;
1022 #endif
1023 	}
1024 
1025 	if (map->format.format_write) {
1026 		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
1027 		    (val_endian != REGMAP_ENDIAN_BIG))
1028 			goto err_hwlock;
1029 		map->use_single_write = true;
1030 	}
1031 
1032 	if (!map->format.format_write &&
1033 	    !(map->format.format_reg && map->format.format_val))
1034 		goto err_hwlock;
1035 
1036 	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1037 	if (map->work_buf == NULL) {
1038 		ret = -ENOMEM;
1039 		goto err_hwlock;
1040 	}
1041 
1042 	if (map->format.format_write) {
1043 		map->defer_caching = false;
1044 		map->reg_write = _regmap_bus_formatted_write;
1045 	} else if (map->format.format_val) {
1046 		map->defer_caching = true;
1047 		map->reg_write = _regmap_bus_raw_write;
1048 	}
1049 
1050 skip_format_initialization:
1051 
1052 	map->range_tree = RB_ROOT;
1053 	for (i = 0; i < config->num_ranges; i++) {
1054 		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
1055 		struct regmap_range_node *new;
1056 
1057 		/* Sanity check */
1058 		if (range_cfg->range_max < range_cfg->range_min) {
1059 			dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
1060 				range_cfg->range_max, range_cfg->range_min);
1061 			goto err_range;
1062 		}
1063 
1064 		if (range_cfg->range_max > map->max_register) {
1065 			dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
1066 				range_cfg->range_max, map->max_register);
1067 			goto err_range;
1068 		}
1069 
1070 		if (range_cfg->selector_reg > map->max_register) {
1071 			dev_err(map->dev,
1072 				"Invalid range %d: selector out of map\n", i);
1073 			goto err_range;
1074 		}
1075 
1076 		if (range_cfg->window_len == 0) {
1077 			dev_err(map->dev, "Invalid range %d: window_len 0\n",
1078 				i);
1079 			goto err_range;
1080 		}
1081 
1082 		/* Make sure, that this register range has no selector
1083 		   or data window within its boundary */
1084 		for (j = 0; j < config->num_ranges; j++) {
1085 			unsigned sel_reg = config->ranges[j].selector_reg;
1086 			unsigned win_min = config->ranges[j].window_start;
1087 			unsigned win_max = win_min +
1088 					   config->ranges[j].window_len - 1;
1089 
1090 			/* Allow data window inside its own virtual range */
1091 			if (j == i)
1092 				continue;
1093 
1094 			if (range_cfg->range_min <= sel_reg &&
1095 			    sel_reg <= range_cfg->range_max) {
1096 				dev_err(map->dev,
1097 					"Range %d: selector for %d in window\n",
1098 					i, j);
1099 				goto err_range;
1100 			}
1101 
1102 			if (!(win_max < range_cfg->range_min ||
1103 			      win_min > range_cfg->range_max)) {
1104 				dev_err(map->dev,
1105 					"Range %d: window for %d in window\n",
1106 					i, j);
1107 				goto err_range;
1108 			}
1109 		}
1110 
1111 		new = kzalloc(sizeof(*new), GFP_KERNEL);
1112 		if (new == NULL) {
1113 			ret = -ENOMEM;
1114 			goto err_range;
1115 		}
1116 
1117 		new->map = map;
1118 		new->name = range_cfg->name;
1119 		new->range_min = range_cfg->range_min;
1120 		new->range_max = range_cfg->range_max;
1121 		new->selector_reg = range_cfg->selector_reg;
1122 		new->selector_mask = range_cfg->selector_mask;
1123 		new->selector_shift = range_cfg->selector_shift;
1124 		new->window_start = range_cfg->window_start;
1125 		new->window_len = range_cfg->window_len;
1126 
1127 		if (!_regmap_range_add(map, new)) {
1128 			dev_err(map->dev, "Failed to add range %d\n", i);
1129 			kfree(new);
1130 			goto err_range;
1131 		}
1132 
1133 		if (map->selector_work_buf == NULL) {
1134 			map->selector_work_buf =
1135 				kzalloc(map->format.buf_size, GFP_KERNEL);
1136 			if (map->selector_work_buf == NULL) {
1137 				ret = -ENOMEM;
1138 				goto err_range;
1139 			}
1140 		}
1141 	}
1142 
1143 	ret = regcache_init(map, config);
1144 	if (ret != 0)
1145 		goto err_range;
1146 
1147 	if (dev) {
1148 		ret = regmap_attach_dev(dev, map, config);
1149 		if (ret != 0)
1150 			goto err_regcache;
1151 	} else {
1152 		regmap_debugfs_init(map, config->name);
1153 	}
1154 
1155 	return map;
1156 
1157 err_regcache:
1158 	regcache_exit(map);
1159 err_range:
1160 	regmap_range_exit(map);
1161 	kfree(map->work_buf);
1162 err_hwlock:
1163 	if (map->hwlock)
1164 		hwspin_lock_free(map->hwlock);
1165 err_name:
1166 	kfree_const(map->name);
1167 err_map:
1168 	kfree(map);
1169 err:
1170 	return ERR_PTR(ret);
1171 }
1172 EXPORT_SYMBOL_GPL(__regmap_init);
1173 
1174 static void devm_regmap_release(struct device *dev, void *res)
1175 {
1176 	regmap_exit(*(struct regmap **)res);
1177 }
1178 
1179 struct regmap *__devm_regmap_init(struct device *dev,
1180 				  const struct regmap_bus *bus,
1181 				  void *bus_context,
1182 				  const struct regmap_config *config,
1183 				  struct lock_class_key *lock_key,
1184 				  const char *lock_name)
1185 {
1186 	struct regmap **ptr, *regmap;
1187 
1188 	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1189 	if (!ptr)
1190 		return ERR_PTR(-ENOMEM);
1191 
1192 	regmap = __regmap_init(dev, bus, bus_context, config,
1193 			       lock_key, lock_name);
1194 	if (!IS_ERR(regmap)) {
1195 		*ptr = regmap;
1196 		devres_add(dev, ptr);
1197 	} else {
1198 		devres_free(ptr);
1199 	}
1200 
1201 	return regmap;
1202 }
1203 EXPORT_SYMBOL_GPL(__devm_regmap_init);
1204 
1205 static void regmap_field_init(struct regmap_field *rm_field,
1206 	struct regmap *regmap, struct reg_field reg_field)
1207 {
1208 	rm_field->regmap = regmap;
1209 	rm_field->reg = reg_field.reg;
1210 	rm_field->shift = reg_field.lsb;
1211 	rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1212 	rm_field->id_size = reg_field.id_size;
1213 	rm_field->id_offset = reg_field.id_offset;
1214 }
1215 
1216 /**
1217  * devm_regmap_field_alloc() - Allocate and initialise a register field.
1218  *
1219  * @dev: Device that will be interacted with
1220  * @regmap: regmap bank in which this register field is located.
1221  * @reg_field: Register field with in the bank.
1222  *
1223  * The return value will be an ERR_PTR() on error or a valid pointer
1224  * to a struct regmap_field. The regmap_field will be automatically freed
1225  * by the device management code.
1226  */
1227 struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1228 		struct regmap *regmap, struct reg_field reg_field)
1229 {
1230 	struct regmap_field *rm_field = devm_kzalloc(dev,
1231 					sizeof(*rm_field), GFP_KERNEL);
1232 	if (!rm_field)
1233 		return ERR_PTR(-ENOMEM);
1234 
1235 	regmap_field_init(rm_field, regmap, reg_field);
1236 
1237 	return rm_field;
1238 
1239 }
1240 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1241 
1242 /**
1243  * devm_regmap_field_free() - Free a register field allocated using
1244  *                            devm_regmap_field_alloc.
1245  *
1246  * @dev: Device that will be interacted with
1247  * @field: regmap field which should be freed.
1248  *
1249  * Free register field allocated using devm_regmap_field_alloc(). Usually
1250  * drivers need not call this function, as the memory allocated via devm
1251  * will be freed as per device-driver life-cyle.
1252  */
1253 void devm_regmap_field_free(struct device *dev,
1254 	struct regmap_field *field)
1255 {
1256 	devm_kfree(dev, field);
1257 }
1258 EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1259 
1260 /**
1261  * regmap_field_alloc() - Allocate and initialise a register field.
1262  *
1263  * @regmap: regmap bank in which this register field is located.
1264  * @reg_field: Register field with in the bank.
1265  *
1266  * The return value will be an ERR_PTR() on error or a valid pointer
1267  * to a struct regmap_field. The regmap_field should be freed by the
1268  * user once its finished working with it using regmap_field_free().
1269  */
1270 struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1271 		struct reg_field reg_field)
1272 {
1273 	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1274 
1275 	if (!rm_field)
1276 		return ERR_PTR(-ENOMEM);
1277 
1278 	regmap_field_init(rm_field, regmap, reg_field);
1279 
1280 	return rm_field;
1281 }
1282 EXPORT_SYMBOL_GPL(regmap_field_alloc);
1283 
1284 /**
1285  * regmap_field_free() - Free register field allocated using
1286  *                       regmap_field_alloc.
1287  *
1288  * @field: regmap field which should be freed.
1289  */
1290 void regmap_field_free(struct regmap_field *field)
1291 {
1292 	kfree(field);
1293 }
1294 EXPORT_SYMBOL_GPL(regmap_field_free);
1295 
1296 /**
1297  * regmap_reinit_cache() - Reinitialise the current register cache
1298  *
1299  * @map: Register map to operate on.
1300  * @config: New configuration.  Only the cache data will be used.
1301  *
1302  * Discard any existing register cache for the map and initialize a
1303  * new cache.  This can be used to restore the cache to defaults or to
1304  * update the cache configuration to reflect runtime discovery of the
1305  * hardware.
1306  *
1307  * No explicit locking is done here, the user needs to ensure that
1308  * this function will not race with other calls to regmap.
1309  */
1310 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1311 {
1312 	regcache_exit(map);
1313 	regmap_debugfs_exit(map);
1314 
1315 	map->max_register = config->max_register;
1316 	map->writeable_reg = config->writeable_reg;
1317 	map->readable_reg = config->readable_reg;
1318 	map->volatile_reg = config->volatile_reg;
1319 	map->precious_reg = config->precious_reg;
1320 	map->writeable_noinc_reg = config->writeable_noinc_reg;
1321 	map->readable_noinc_reg = config->readable_noinc_reg;
1322 	map->cache_type = config->cache_type;
1323 
1324 	regmap_debugfs_init(map, config->name);
1325 
1326 	map->cache_bypass = false;
1327 	map->cache_only = false;
1328 
1329 	return regcache_init(map, config);
1330 }
1331 EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1332 
1333 /**
1334  * regmap_exit() - Free a previously allocated register map
1335  *
1336  * @map: Register map to operate on.
1337  */
1338 void regmap_exit(struct regmap *map)
1339 {
1340 	struct regmap_async *async;
1341 
1342 	regcache_exit(map);
1343 	regmap_debugfs_exit(map);
1344 	regmap_range_exit(map);
1345 	if (map->bus && map->bus->free_context)
1346 		map->bus->free_context(map->bus_context);
1347 	kfree(map->work_buf);
1348 	while (!list_empty(&map->async_free)) {
1349 		async = list_first_entry_or_null(&map->async_free,
1350 						 struct regmap_async,
1351 						 list);
1352 		list_del(&async->list);
1353 		kfree(async->work_buf);
1354 		kfree(async);
1355 	}
1356 	if (map->hwlock)
1357 		hwspin_lock_free(map->hwlock);
1358 	kfree_const(map->name);
1359 	kfree(map);
1360 }
1361 EXPORT_SYMBOL_GPL(regmap_exit);
1362 
1363 static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1364 {
1365 	struct regmap **r = res;
1366 	if (!r || !*r) {
1367 		WARN_ON(!r || !*r);
1368 		return 0;
1369 	}
1370 
1371 	/* If the user didn't specify a name match any */
1372 	if (data)
1373 		return (*r)->name == data;
1374 	else
1375 		return 1;
1376 }
1377 
1378 /**
1379  * dev_get_regmap() - Obtain the regmap (if any) for a device
1380  *
1381  * @dev: Device to retrieve the map for
1382  * @name: Optional name for the register map, usually NULL.
1383  *
1384  * Returns the regmap for the device if one is present, or NULL.  If
1385  * name is specified then it must match the name specified when
1386  * registering the device, if it is NULL then the first regmap found
1387  * will be used.  Devices with multiple register maps are very rare,
1388  * generic code should normally not need to specify a name.
1389  */
1390 struct regmap *dev_get_regmap(struct device *dev, const char *name)
1391 {
1392 	struct regmap **r = devres_find(dev, dev_get_regmap_release,
1393 					dev_get_regmap_match, (void *)name);
1394 
1395 	if (!r)
1396 		return NULL;
1397 	return *r;
1398 }
1399 EXPORT_SYMBOL_GPL(dev_get_regmap);
1400 
1401 /**
1402  * regmap_get_device() - Obtain the device from a regmap
1403  *
1404  * @map: Register map to operate on.
1405  *
1406  * Returns the underlying device that the regmap has been created for.
1407  */
1408 struct device *regmap_get_device(struct regmap *map)
1409 {
1410 	return map->dev;
1411 }
1412 EXPORT_SYMBOL_GPL(regmap_get_device);
1413 
1414 static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1415 			       struct regmap_range_node *range,
1416 			       unsigned int val_num)
1417 {
1418 	void *orig_work_buf;
1419 	unsigned int win_offset;
1420 	unsigned int win_page;
1421 	bool page_chg;
1422 	int ret;
1423 
1424 	win_offset = (*reg - range->range_min) % range->window_len;
1425 	win_page = (*reg - range->range_min) / range->window_len;
1426 
1427 	if (val_num > 1) {
1428 		/* Bulk write shouldn't cross range boundary */
1429 		if (*reg + val_num - 1 > range->range_max)
1430 			return -EINVAL;
1431 
1432 		/* ... or single page boundary */
1433 		if (val_num > range->window_len - win_offset)
1434 			return -EINVAL;
1435 	}
1436 
1437 	/* It is possible to have selector register inside data window.
1438 	   In that case, selector register is located on every page and
1439 	   it needs no page switching, when accessed alone. */
1440 	if (val_num > 1 ||
1441 	    range->window_start + win_offset != range->selector_reg) {
1442 		/* Use separate work_buf during page switching */
1443 		orig_work_buf = map->work_buf;
1444 		map->work_buf = map->selector_work_buf;
1445 
1446 		ret = _regmap_update_bits(map, range->selector_reg,
1447 					  range->selector_mask,
1448 					  win_page << range->selector_shift,
1449 					  &page_chg, false);
1450 
1451 		map->work_buf = orig_work_buf;
1452 
1453 		if (ret != 0)
1454 			return ret;
1455 	}
1456 
1457 	*reg = range->window_start + win_offset;
1458 
1459 	return 0;
1460 }
1461 
1462 static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1463 					  unsigned long mask)
1464 {
1465 	u8 *buf;
1466 	int i;
1467 
1468 	if (!mask || !map->work_buf)
1469 		return;
1470 
1471 	buf = map->work_buf;
1472 
1473 	for (i = 0; i < max_bytes; i++)
1474 		buf[i] |= (mask >> (8 * i)) & 0xff;
1475 }
1476 
1477 static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg,
1478 				  const void *val, size_t val_len)
1479 {
1480 	struct regmap_range_node *range;
1481 	unsigned long flags;
1482 	void *work_val = map->work_buf + map->format.reg_bytes +
1483 		map->format.pad_bytes;
1484 	void *buf;
1485 	int ret = -ENOTSUPP;
1486 	size_t len;
1487 	int i;
1488 
1489 	WARN_ON(!map->bus);
1490 
1491 	/* Check for unwritable registers before we start */
1492 	for (i = 0; i < val_len / map->format.val_bytes; i++)
1493 		if (!regmap_writeable(map,
1494 				     reg + regmap_get_offset(map, i)))
1495 			return -EINVAL;
1496 
1497 	if (!map->cache_bypass && map->format.parse_val) {
1498 		unsigned int ival;
1499 		int val_bytes = map->format.val_bytes;
1500 		for (i = 0; i < val_len / val_bytes; i++) {
1501 			ival = map->format.parse_val(val + (i * val_bytes));
1502 			ret = regcache_write(map,
1503 					     reg + regmap_get_offset(map, i),
1504 					     ival);
1505 			if (ret) {
1506 				dev_err(map->dev,
1507 					"Error in caching of register: %x ret: %d\n",
1508 					reg + i, ret);
1509 				return ret;
1510 			}
1511 		}
1512 		if (map->cache_only) {
1513 			map->cache_dirty = true;
1514 			return 0;
1515 		}
1516 	}
1517 
1518 	range = _regmap_range_lookup(map, reg);
1519 	if (range) {
1520 		int val_num = val_len / map->format.val_bytes;
1521 		int win_offset = (reg - range->range_min) % range->window_len;
1522 		int win_residue = range->window_len - win_offset;
1523 
1524 		/* If the write goes beyond the end of the window split it */
1525 		while (val_num > win_residue) {
1526 			dev_dbg(map->dev, "Writing window %d/%zu\n",
1527 				win_residue, val_len / map->format.val_bytes);
1528 			ret = _regmap_raw_write_impl(map, reg, val,
1529 						     win_residue *
1530 						     map->format.val_bytes);
1531 			if (ret != 0)
1532 				return ret;
1533 
1534 			reg += win_residue;
1535 			val_num -= win_residue;
1536 			val += win_residue * map->format.val_bytes;
1537 			val_len -= win_residue * map->format.val_bytes;
1538 
1539 			win_offset = (reg - range->range_min) %
1540 				range->window_len;
1541 			win_residue = range->window_len - win_offset;
1542 		}
1543 
1544 		ret = _regmap_select_page(map, &reg, range, val_num);
1545 		if (ret != 0)
1546 			return ret;
1547 	}
1548 
1549 	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1550 	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1551 				      map->write_flag_mask);
1552 
1553 	/*
1554 	 * Essentially all I/O mechanisms will be faster with a single
1555 	 * buffer to write.  Since register syncs often generate raw
1556 	 * writes of single registers optimise that case.
1557 	 */
1558 	if (val != work_val && val_len == map->format.val_bytes) {
1559 		memcpy(work_val, val, map->format.val_bytes);
1560 		val = work_val;
1561 	}
1562 
1563 	if (map->async && map->bus->async_write) {
1564 		struct regmap_async *async;
1565 
1566 		trace_regmap_async_write_start(map, reg, val_len);
1567 
1568 		spin_lock_irqsave(&map->async_lock, flags);
1569 		async = list_first_entry_or_null(&map->async_free,
1570 						 struct regmap_async,
1571 						 list);
1572 		if (async)
1573 			list_del(&async->list);
1574 		spin_unlock_irqrestore(&map->async_lock, flags);
1575 
1576 		if (!async) {
1577 			async = map->bus->async_alloc();
1578 			if (!async)
1579 				return -ENOMEM;
1580 
1581 			async->work_buf = kzalloc(map->format.buf_size,
1582 						  GFP_KERNEL | GFP_DMA);
1583 			if (!async->work_buf) {
1584 				kfree(async);
1585 				return -ENOMEM;
1586 			}
1587 		}
1588 
1589 		async->map = map;
1590 
1591 		/* If the caller supplied the value we can use it safely. */
1592 		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1593 		       map->format.reg_bytes + map->format.val_bytes);
1594 
1595 		spin_lock_irqsave(&map->async_lock, flags);
1596 		list_add_tail(&async->list, &map->async_list);
1597 		spin_unlock_irqrestore(&map->async_lock, flags);
1598 
1599 		if (val != work_val)
1600 			ret = map->bus->async_write(map->bus_context,
1601 						    async->work_buf,
1602 						    map->format.reg_bytes +
1603 						    map->format.pad_bytes,
1604 						    val, val_len, async);
1605 		else
1606 			ret = map->bus->async_write(map->bus_context,
1607 						    async->work_buf,
1608 						    map->format.reg_bytes +
1609 						    map->format.pad_bytes +
1610 						    val_len, NULL, 0, async);
1611 
1612 		if (ret != 0) {
1613 			dev_err(map->dev, "Failed to schedule write: %d\n",
1614 				ret);
1615 
1616 			spin_lock_irqsave(&map->async_lock, flags);
1617 			list_move(&async->list, &map->async_free);
1618 			spin_unlock_irqrestore(&map->async_lock, flags);
1619 		}
1620 
1621 		return ret;
1622 	}
1623 
1624 	trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1625 
1626 	/* If we're doing a single register write we can probably just
1627 	 * send the work_buf directly, otherwise try to do a gather
1628 	 * write.
1629 	 */
1630 	if (val == work_val)
1631 		ret = map->bus->write(map->bus_context, map->work_buf,
1632 				      map->format.reg_bytes +
1633 				      map->format.pad_bytes +
1634 				      val_len);
1635 	else if (map->bus->gather_write)
1636 		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1637 					     map->format.reg_bytes +
1638 					     map->format.pad_bytes,
1639 					     val, val_len);
1640 	else
1641 		ret = -ENOTSUPP;
1642 
1643 	/* If that didn't work fall back on linearising by hand. */
1644 	if (ret == -ENOTSUPP) {
1645 		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1646 		buf = kzalloc(len, GFP_KERNEL);
1647 		if (!buf)
1648 			return -ENOMEM;
1649 
1650 		memcpy(buf, map->work_buf, map->format.reg_bytes);
1651 		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1652 		       val, val_len);
1653 		ret = map->bus->write(map->bus_context, buf, len);
1654 
1655 		kfree(buf);
1656 	} else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1657 		/* regcache_drop_region() takes lock that we already have,
1658 		 * thus call map->cache_ops->drop() directly
1659 		 */
1660 		if (map->cache_ops && map->cache_ops->drop)
1661 			map->cache_ops->drop(map, reg, reg + 1);
1662 	}
1663 
1664 	trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1665 
1666 	return ret;
1667 }
1668 
1669 /**
1670  * regmap_can_raw_write - Test if regmap_raw_write() is supported
1671  *
1672  * @map: Map to check.
1673  */
1674 bool regmap_can_raw_write(struct regmap *map)
1675 {
1676 	return map->bus && map->bus->write && map->format.format_val &&
1677 		map->format.format_reg;
1678 }
1679 EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1680 
1681 /**
1682  * regmap_get_raw_read_max - Get the maximum size we can read
1683  *
1684  * @map: Map to check.
1685  */
1686 size_t regmap_get_raw_read_max(struct regmap *map)
1687 {
1688 	return map->max_raw_read;
1689 }
1690 EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1691 
1692 /**
1693  * regmap_get_raw_write_max - Get the maximum size we can read
1694  *
1695  * @map: Map to check.
1696  */
1697 size_t regmap_get_raw_write_max(struct regmap *map)
1698 {
1699 	return map->max_raw_write;
1700 }
1701 EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1702 
1703 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1704 				       unsigned int val)
1705 {
1706 	int ret;
1707 	struct regmap_range_node *range;
1708 	struct regmap *map = context;
1709 
1710 	WARN_ON(!map->bus || !map->format.format_write);
1711 
1712 	range = _regmap_range_lookup(map, reg);
1713 	if (range) {
1714 		ret = _regmap_select_page(map, &reg, range, 1);
1715 		if (ret != 0)
1716 			return ret;
1717 	}
1718 
1719 	map->format.format_write(map, reg, val);
1720 
1721 	trace_regmap_hw_write_start(map, reg, 1);
1722 
1723 	ret = map->bus->write(map->bus_context, map->work_buf,
1724 			      map->format.buf_size);
1725 
1726 	trace_regmap_hw_write_done(map, reg, 1);
1727 
1728 	return ret;
1729 }
1730 
1731 static int _regmap_bus_reg_write(void *context, unsigned int reg,
1732 				 unsigned int val)
1733 {
1734 	struct regmap *map = context;
1735 
1736 	return map->bus->reg_write(map->bus_context, reg, val);
1737 }
1738 
1739 static int _regmap_bus_raw_write(void *context, unsigned int reg,
1740 				 unsigned int val)
1741 {
1742 	struct regmap *map = context;
1743 
1744 	WARN_ON(!map->bus || !map->format.format_val);
1745 
1746 	map->format.format_val(map->work_buf + map->format.reg_bytes
1747 			       + map->format.pad_bytes, val, 0);
1748 	return _regmap_raw_write_impl(map, reg,
1749 				      map->work_buf +
1750 				      map->format.reg_bytes +
1751 				      map->format.pad_bytes,
1752 				      map->format.val_bytes);
1753 }
1754 
1755 static inline void *_regmap_map_get_context(struct regmap *map)
1756 {
1757 	return (map->bus) ? map : map->bus_context;
1758 }
1759 
1760 int _regmap_write(struct regmap *map, unsigned int reg,
1761 		  unsigned int val)
1762 {
1763 	int ret;
1764 	void *context = _regmap_map_get_context(map);
1765 
1766 	if (!regmap_writeable(map, reg))
1767 		return -EIO;
1768 
1769 	if (!map->cache_bypass && !map->defer_caching) {
1770 		ret = regcache_write(map, reg, val);
1771 		if (ret != 0)
1772 			return ret;
1773 		if (map->cache_only) {
1774 			map->cache_dirty = true;
1775 			return 0;
1776 		}
1777 	}
1778 
1779 	if (regmap_should_log(map))
1780 		dev_info(map->dev, "%x <= %x\n", reg, val);
1781 
1782 	trace_regmap_reg_write(map, reg, val);
1783 
1784 	return map->reg_write(context, reg, val);
1785 }
1786 
1787 /**
1788  * regmap_write() - Write a value to a single register
1789  *
1790  * @map: Register map to write to
1791  * @reg: Register to write to
1792  * @val: Value to be written
1793  *
1794  * A value of zero will be returned on success, a negative errno will
1795  * be returned in error cases.
1796  */
1797 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1798 {
1799 	int ret;
1800 
1801 	if (!IS_ALIGNED(reg, map->reg_stride))
1802 		return -EINVAL;
1803 
1804 	map->lock(map->lock_arg);
1805 
1806 	ret = _regmap_write(map, reg, val);
1807 
1808 	map->unlock(map->lock_arg);
1809 
1810 	return ret;
1811 }
1812 EXPORT_SYMBOL_GPL(regmap_write);
1813 
1814 /**
1815  * regmap_write_async() - Write a value to a single register asynchronously
1816  *
1817  * @map: Register map to write to
1818  * @reg: Register to write to
1819  * @val: Value to be written
1820  *
1821  * A value of zero will be returned on success, a negative errno will
1822  * be returned in error cases.
1823  */
1824 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1825 {
1826 	int ret;
1827 
1828 	if (!IS_ALIGNED(reg, map->reg_stride))
1829 		return -EINVAL;
1830 
1831 	map->lock(map->lock_arg);
1832 
1833 	map->async = true;
1834 
1835 	ret = _regmap_write(map, reg, val);
1836 
1837 	map->async = false;
1838 
1839 	map->unlock(map->lock_arg);
1840 
1841 	return ret;
1842 }
1843 EXPORT_SYMBOL_GPL(regmap_write_async);
1844 
1845 int _regmap_raw_write(struct regmap *map, unsigned int reg,
1846 		      const void *val, size_t val_len)
1847 {
1848 	size_t val_bytes = map->format.val_bytes;
1849 	size_t val_count = val_len / val_bytes;
1850 	size_t chunk_count, chunk_bytes;
1851 	size_t chunk_regs = val_count;
1852 	int ret, i;
1853 
1854 	if (!val_count)
1855 		return -EINVAL;
1856 
1857 	if (map->use_single_write)
1858 		chunk_regs = 1;
1859 	else if (map->max_raw_write && val_len > map->max_raw_write)
1860 		chunk_regs = map->max_raw_write / val_bytes;
1861 
1862 	chunk_count = val_count / chunk_regs;
1863 	chunk_bytes = chunk_regs * val_bytes;
1864 
1865 	/* Write as many bytes as possible with chunk_size */
1866 	for (i = 0; i < chunk_count; i++) {
1867 		ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes);
1868 		if (ret)
1869 			return ret;
1870 
1871 		reg += regmap_get_offset(map, chunk_regs);
1872 		val += chunk_bytes;
1873 		val_len -= chunk_bytes;
1874 	}
1875 
1876 	/* Write remaining bytes */
1877 	if (val_len)
1878 		ret = _regmap_raw_write_impl(map, reg, val, val_len);
1879 
1880 	return ret;
1881 }
1882 
1883 /**
1884  * regmap_raw_write() - Write raw values to one or more registers
1885  *
1886  * @map: Register map to write to
1887  * @reg: Initial register to write to
1888  * @val: Block of data to be written, laid out for direct transmission to the
1889  *       device
1890  * @val_len: Length of data pointed to by val.
1891  *
1892  * This function is intended to be used for things like firmware
1893  * download where a large block of data needs to be transferred to the
1894  * device.  No formatting will be done on the data provided.
1895  *
1896  * A value of zero will be returned on success, a negative errno will
1897  * be returned in error cases.
1898  */
1899 int regmap_raw_write(struct regmap *map, unsigned int reg,
1900 		     const void *val, size_t val_len)
1901 {
1902 	int ret;
1903 
1904 	if (!regmap_can_raw_write(map))
1905 		return -EINVAL;
1906 	if (val_len % map->format.val_bytes)
1907 		return -EINVAL;
1908 
1909 	map->lock(map->lock_arg);
1910 
1911 	ret = _regmap_raw_write(map, reg, val, val_len);
1912 
1913 	map->unlock(map->lock_arg);
1914 
1915 	return ret;
1916 }
1917 EXPORT_SYMBOL_GPL(regmap_raw_write);
1918 
1919 /**
1920  * regmap_noinc_write(): Write data from a register without incrementing the
1921  *			register number
1922  *
1923  * @map: Register map to write to
1924  * @reg: Register to write to
1925  * @val: Pointer to data buffer
1926  * @val_len: Length of output buffer in bytes.
1927  *
1928  * The regmap API usually assumes that bulk bus write operations will write a
1929  * range of registers. Some devices have certain registers for which a write
1930  * operation can write to an internal FIFO.
1931  *
1932  * The target register must be volatile but registers after it can be
1933  * completely unrelated cacheable registers.
1934  *
1935  * This will attempt multiple writes as required to write val_len bytes.
1936  *
1937  * A value of zero will be returned on success, a negative errno will be
1938  * returned in error cases.
1939  */
1940 int regmap_noinc_write(struct regmap *map, unsigned int reg,
1941 		      const void *val, size_t val_len)
1942 {
1943 	size_t write_len;
1944 	int ret;
1945 
1946 	if (!map->bus)
1947 		return -EINVAL;
1948 	if (!map->bus->write)
1949 		return -ENOTSUPP;
1950 	if (val_len % map->format.val_bytes)
1951 		return -EINVAL;
1952 	if (!IS_ALIGNED(reg, map->reg_stride))
1953 		return -EINVAL;
1954 	if (val_len == 0)
1955 		return -EINVAL;
1956 
1957 	map->lock(map->lock_arg);
1958 
1959 	if (!regmap_volatile(map, reg) || !regmap_writeable_noinc(map, reg)) {
1960 		ret = -EINVAL;
1961 		goto out_unlock;
1962 	}
1963 
1964 	while (val_len) {
1965 		if (map->max_raw_write && map->max_raw_write < val_len)
1966 			write_len = map->max_raw_write;
1967 		else
1968 			write_len = val_len;
1969 		ret = _regmap_raw_write(map, reg, val, write_len);
1970 		if (ret)
1971 			goto out_unlock;
1972 		val = ((u8 *)val) + write_len;
1973 		val_len -= write_len;
1974 	}
1975 
1976 out_unlock:
1977 	map->unlock(map->lock_arg);
1978 	return ret;
1979 }
1980 EXPORT_SYMBOL_GPL(regmap_noinc_write);
1981 
1982 /**
1983  * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
1984  *                                   register field.
1985  *
1986  * @field: Register field to write to
1987  * @mask: Bitmask to change
1988  * @val: Value to be written
1989  * @change: Boolean indicating if a write was done
1990  * @async: Boolean indicating asynchronously
1991  * @force: Boolean indicating use force update
1992  *
1993  * Perform a read/modify/write cycle on the register field with change,
1994  * async, force option.
1995  *
1996  * A value of zero will be returned on success, a negative errno will
1997  * be returned in error cases.
1998  */
1999 int regmap_field_update_bits_base(struct regmap_field *field,
2000 				  unsigned int mask, unsigned int val,
2001 				  bool *change, bool async, bool force)
2002 {
2003 	mask = (mask << field->shift) & field->mask;
2004 
2005 	return regmap_update_bits_base(field->regmap, field->reg,
2006 				       mask, val << field->shift,
2007 				       change, async, force);
2008 }
2009 EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
2010 
2011 /**
2012  * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
2013  *                                    register field with port ID
2014  *
2015  * @field: Register field to write to
2016  * @id: port ID
2017  * @mask: Bitmask to change
2018  * @val: Value to be written
2019  * @change: Boolean indicating if a write was done
2020  * @async: Boolean indicating asynchronously
2021  * @force: Boolean indicating use force update
2022  *
2023  * A value of zero will be returned on success, a negative errno will
2024  * be returned in error cases.
2025  */
2026 int regmap_fields_update_bits_base(struct regmap_field *field,  unsigned int id,
2027 				   unsigned int mask, unsigned int val,
2028 				   bool *change, bool async, bool force)
2029 {
2030 	if (id >= field->id_size)
2031 		return -EINVAL;
2032 
2033 	mask = (mask << field->shift) & field->mask;
2034 
2035 	return regmap_update_bits_base(field->regmap,
2036 				       field->reg + (field->id_offset * id),
2037 				       mask, val << field->shift,
2038 				       change, async, force);
2039 }
2040 EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
2041 
2042 /**
2043  * regmap_bulk_write() - Write multiple registers to the device
2044  *
2045  * @map: Register map to write to
2046  * @reg: First register to be write from
2047  * @val: Block of data to be written, in native register size for device
2048  * @val_count: Number of registers to write
2049  *
2050  * This function is intended to be used for writing a large block of
2051  * data to the device either in single transfer or multiple transfer.
2052  *
2053  * A value of zero will be returned on success, a negative errno will
2054  * be returned in error cases.
2055  */
2056 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
2057 		     size_t val_count)
2058 {
2059 	int ret = 0, i;
2060 	size_t val_bytes = map->format.val_bytes;
2061 
2062 	if (!IS_ALIGNED(reg, map->reg_stride))
2063 		return -EINVAL;
2064 
2065 	/*
2066 	 * Some devices don't support bulk write, for them we have a series of
2067 	 * single write operations.
2068 	 */
2069 	if (!map->bus || !map->format.parse_inplace) {
2070 		map->lock(map->lock_arg);
2071 		for (i = 0; i < val_count; i++) {
2072 			unsigned int ival;
2073 
2074 			switch (val_bytes) {
2075 			case 1:
2076 				ival = *(u8 *)(val + (i * val_bytes));
2077 				break;
2078 			case 2:
2079 				ival = *(u16 *)(val + (i * val_bytes));
2080 				break;
2081 			case 4:
2082 				ival = *(u32 *)(val + (i * val_bytes));
2083 				break;
2084 #ifdef CONFIG_64BIT
2085 			case 8:
2086 				ival = *(u64 *)(val + (i * val_bytes));
2087 				break;
2088 #endif
2089 			default:
2090 				ret = -EINVAL;
2091 				goto out;
2092 			}
2093 
2094 			ret = _regmap_write(map,
2095 					    reg + regmap_get_offset(map, i),
2096 					    ival);
2097 			if (ret != 0)
2098 				goto out;
2099 		}
2100 out:
2101 		map->unlock(map->lock_arg);
2102 	} else {
2103 		void *wval;
2104 
2105 		wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
2106 		if (!wval)
2107 			return -ENOMEM;
2108 
2109 		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2110 			map->format.parse_inplace(wval + i);
2111 
2112 		ret = regmap_raw_write(map, reg, wval, val_bytes * val_count);
2113 
2114 		kfree(wval);
2115 	}
2116 	return ret;
2117 }
2118 EXPORT_SYMBOL_GPL(regmap_bulk_write);
2119 
2120 /*
2121  * _regmap_raw_multi_reg_write()
2122  *
2123  * the (register,newvalue) pairs in regs have not been formatted, but
2124  * they are all in the same page and have been changed to being page
2125  * relative. The page register has been written if that was necessary.
2126  */
2127 static int _regmap_raw_multi_reg_write(struct regmap *map,
2128 				       const struct reg_sequence *regs,
2129 				       size_t num_regs)
2130 {
2131 	int ret;
2132 	void *buf;
2133 	int i;
2134 	u8 *u8;
2135 	size_t val_bytes = map->format.val_bytes;
2136 	size_t reg_bytes = map->format.reg_bytes;
2137 	size_t pad_bytes = map->format.pad_bytes;
2138 	size_t pair_size = reg_bytes + pad_bytes + val_bytes;
2139 	size_t len = pair_size * num_regs;
2140 
2141 	if (!len)
2142 		return -EINVAL;
2143 
2144 	buf = kzalloc(len, GFP_KERNEL);
2145 	if (!buf)
2146 		return -ENOMEM;
2147 
2148 	/* We have to linearise by hand. */
2149 
2150 	u8 = buf;
2151 
2152 	for (i = 0; i < num_regs; i++) {
2153 		unsigned int reg = regs[i].reg;
2154 		unsigned int val = regs[i].def;
2155 		trace_regmap_hw_write_start(map, reg, 1);
2156 		map->format.format_reg(u8, reg, map->reg_shift);
2157 		u8 += reg_bytes + pad_bytes;
2158 		map->format.format_val(u8, val, 0);
2159 		u8 += val_bytes;
2160 	}
2161 	u8 = buf;
2162 	*u8 |= map->write_flag_mask;
2163 
2164 	ret = map->bus->write(map->bus_context, buf, len);
2165 
2166 	kfree(buf);
2167 
2168 	for (i = 0; i < num_regs; i++) {
2169 		int reg = regs[i].reg;
2170 		trace_regmap_hw_write_done(map, reg, 1);
2171 	}
2172 	return ret;
2173 }
2174 
2175 static unsigned int _regmap_register_page(struct regmap *map,
2176 					  unsigned int reg,
2177 					  struct regmap_range_node *range)
2178 {
2179 	unsigned int win_page = (reg - range->range_min) / range->window_len;
2180 
2181 	return win_page;
2182 }
2183 
2184 static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2185 					       struct reg_sequence *regs,
2186 					       size_t num_regs)
2187 {
2188 	int ret;
2189 	int i, n;
2190 	struct reg_sequence *base;
2191 	unsigned int this_page = 0;
2192 	unsigned int page_change = 0;
2193 	/*
2194 	 * the set of registers are not neccessarily in order, but
2195 	 * since the order of write must be preserved this algorithm
2196 	 * chops the set each time the page changes. This also applies
2197 	 * if there is a delay required at any point in the sequence.
2198 	 */
2199 	base = regs;
2200 	for (i = 0, n = 0; i < num_regs; i++, n++) {
2201 		unsigned int reg = regs[i].reg;
2202 		struct regmap_range_node *range;
2203 
2204 		range = _regmap_range_lookup(map, reg);
2205 		if (range) {
2206 			unsigned int win_page = _regmap_register_page(map, reg,
2207 								      range);
2208 
2209 			if (i == 0)
2210 				this_page = win_page;
2211 			if (win_page != this_page) {
2212 				this_page = win_page;
2213 				page_change = 1;
2214 			}
2215 		}
2216 
2217 		/* If we have both a page change and a delay make sure to
2218 		 * write the regs and apply the delay before we change the
2219 		 * page.
2220 		 */
2221 
2222 		if (page_change || regs[i].delay_us) {
2223 
2224 				/* For situations where the first write requires
2225 				 * a delay we need to make sure we don't call
2226 				 * raw_multi_reg_write with n=0
2227 				 * This can't occur with page breaks as we
2228 				 * never write on the first iteration
2229 				 */
2230 				if (regs[i].delay_us && i == 0)
2231 					n = 1;
2232 
2233 				ret = _regmap_raw_multi_reg_write(map, base, n);
2234 				if (ret != 0)
2235 					return ret;
2236 
2237 				if (regs[i].delay_us)
2238 					udelay(regs[i].delay_us);
2239 
2240 				base += n;
2241 				n = 0;
2242 
2243 				if (page_change) {
2244 					ret = _regmap_select_page(map,
2245 								  &base[n].reg,
2246 								  range, 1);
2247 					if (ret != 0)
2248 						return ret;
2249 
2250 					page_change = 0;
2251 				}
2252 
2253 		}
2254 
2255 	}
2256 	if (n > 0)
2257 		return _regmap_raw_multi_reg_write(map, base, n);
2258 	return 0;
2259 }
2260 
2261 static int _regmap_multi_reg_write(struct regmap *map,
2262 				   const struct reg_sequence *regs,
2263 				   size_t num_regs)
2264 {
2265 	int i;
2266 	int ret;
2267 
2268 	if (!map->can_multi_write) {
2269 		for (i = 0; i < num_regs; i++) {
2270 			ret = _regmap_write(map, regs[i].reg, regs[i].def);
2271 			if (ret != 0)
2272 				return ret;
2273 
2274 			if (regs[i].delay_us)
2275 				udelay(regs[i].delay_us);
2276 		}
2277 		return 0;
2278 	}
2279 
2280 	if (!map->format.parse_inplace)
2281 		return -EINVAL;
2282 
2283 	if (map->writeable_reg)
2284 		for (i = 0; i < num_regs; i++) {
2285 			int reg = regs[i].reg;
2286 			if (!map->writeable_reg(map->dev, reg))
2287 				return -EINVAL;
2288 			if (!IS_ALIGNED(reg, map->reg_stride))
2289 				return -EINVAL;
2290 		}
2291 
2292 	if (!map->cache_bypass) {
2293 		for (i = 0; i < num_regs; i++) {
2294 			unsigned int val = regs[i].def;
2295 			unsigned int reg = regs[i].reg;
2296 			ret = regcache_write(map, reg, val);
2297 			if (ret) {
2298 				dev_err(map->dev,
2299 				"Error in caching of register: %x ret: %d\n",
2300 								reg, ret);
2301 				return ret;
2302 			}
2303 		}
2304 		if (map->cache_only) {
2305 			map->cache_dirty = true;
2306 			return 0;
2307 		}
2308 	}
2309 
2310 	WARN_ON(!map->bus);
2311 
2312 	for (i = 0; i < num_regs; i++) {
2313 		unsigned int reg = regs[i].reg;
2314 		struct regmap_range_node *range;
2315 
2316 		/* Coalesce all the writes between a page break or a delay
2317 		 * in a sequence
2318 		 */
2319 		range = _regmap_range_lookup(map, reg);
2320 		if (range || regs[i].delay_us) {
2321 			size_t len = sizeof(struct reg_sequence)*num_regs;
2322 			struct reg_sequence *base = kmemdup(regs, len,
2323 							   GFP_KERNEL);
2324 			if (!base)
2325 				return -ENOMEM;
2326 			ret = _regmap_range_multi_paged_reg_write(map, base,
2327 								  num_regs);
2328 			kfree(base);
2329 
2330 			return ret;
2331 		}
2332 	}
2333 	return _regmap_raw_multi_reg_write(map, regs, num_regs);
2334 }
2335 
2336 /**
2337  * regmap_multi_reg_write() - Write multiple registers to the device
2338  *
2339  * @map: Register map to write to
2340  * @regs: Array of structures containing register,value to be written
2341  * @num_regs: Number of registers to write
2342  *
2343  * Write multiple registers to the device where the set of register, value
2344  * pairs are supplied in any order, possibly not all in a single range.
2345  *
2346  * The 'normal' block write mode will send ultimately send data on the
2347  * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2348  * addressed. However, this alternative block multi write mode will send
2349  * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2350  * must of course support the mode.
2351  *
2352  * A value of zero will be returned on success, a negative errno will be
2353  * returned in error cases.
2354  */
2355 int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2356 			   int num_regs)
2357 {
2358 	int ret;
2359 
2360 	map->lock(map->lock_arg);
2361 
2362 	ret = _regmap_multi_reg_write(map, regs, num_regs);
2363 
2364 	map->unlock(map->lock_arg);
2365 
2366 	return ret;
2367 }
2368 EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2369 
2370 /**
2371  * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2372  *                                     device but not the cache
2373  *
2374  * @map: Register map to write to
2375  * @regs: Array of structures containing register,value to be written
2376  * @num_regs: Number of registers to write
2377  *
2378  * Write multiple registers to the device but not the cache where the set
2379  * of register are supplied in any order.
2380  *
2381  * This function is intended to be used for writing a large block of data
2382  * atomically to the device in single transfer for those I2C client devices
2383  * that implement this alternative block write mode.
2384  *
2385  * A value of zero will be returned on success, a negative errno will
2386  * be returned in error cases.
2387  */
2388 int regmap_multi_reg_write_bypassed(struct regmap *map,
2389 				    const struct reg_sequence *regs,
2390 				    int num_regs)
2391 {
2392 	int ret;
2393 	bool bypass;
2394 
2395 	map->lock(map->lock_arg);
2396 
2397 	bypass = map->cache_bypass;
2398 	map->cache_bypass = true;
2399 
2400 	ret = _regmap_multi_reg_write(map, regs, num_regs);
2401 
2402 	map->cache_bypass = bypass;
2403 
2404 	map->unlock(map->lock_arg);
2405 
2406 	return ret;
2407 }
2408 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2409 
2410 /**
2411  * regmap_raw_write_async() - Write raw values to one or more registers
2412  *                            asynchronously
2413  *
2414  * @map: Register map to write to
2415  * @reg: Initial register to write to
2416  * @val: Block of data to be written, laid out for direct transmission to the
2417  *       device.  Must be valid until regmap_async_complete() is called.
2418  * @val_len: Length of data pointed to by val.
2419  *
2420  * This function is intended to be used for things like firmware
2421  * download where a large block of data needs to be transferred to the
2422  * device.  No formatting will be done on the data provided.
2423  *
2424  * If supported by the underlying bus the write will be scheduled
2425  * asynchronously, helping maximise I/O speed on higher speed buses
2426  * like SPI.  regmap_async_complete() can be called to ensure that all
2427  * asynchrnous writes have been completed.
2428  *
2429  * A value of zero will be returned on success, a negative errno will
2430  * be returned in error cases.
2431  */
2432 int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2433 			   const void *val, size_t val_len)
2434 {
2435 	int ret;
2436 
2437 	if (val_len % map->format.val_bytes)
2438 		return -EINVAL;
2439 	if (!IS_ALIGNED(reg, map->reg_stride))
2440 		return -EINVAL;
2441 
2442 	map->lock(map->lock_arg);
2443 
2444 	map->async = true;
2445 
2446 	ret = _regmap_raw_write(map, reg, val, val_len);
2447 
2448 	map->async = false;
2449 
2450 	map->unlock(map->lock_arg);
2451 
2452 	return ret;
2453 }
2454 EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2455 
2456 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2457 			    unsigned int val_len)
2458 {
2459 	struct regmap_range_node *range;
2460 	int ret;
2461 
2462 	WARN_ON(!map->bus);
2463 
2464 	if (!map->bus || !map->bus->read)
2465 		return -EINVAL;
2466 
2467 	range = _regmap_range_lookup(map, reg);
2468 	if (range) {
2469 		ret = _regmap_select_page(map, &reg, range,
2470 					  val_len / map->format.val_bytes);
2471 		if (ret != 0)
2472 			return ret;
2473 	}
2474 
2475 	map->format.format_reg(map->work_buf, reg, map->reg_shift);
2476 	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2477 				      map->read_flag_mask);
2478 	trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2479 
2480 	ret = map->bus->read(map->bus_context, map->work_buf,
2481 			     map->format.reg_bytes + map->format.pad_bytes,
2482 			     val, val_len);
2483 
2484 	trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2485 
2486 	return ret;
2487 }
2488 
2489 static int _regmap_bus_reg_read(void *context, unsigned int reg,
2490 				unsigned int *val)
2491 {
2492 	struct regmap *map = context;
2493 
2494 	return map->bus->reg_read(map->bus_context, reg, val);
2495 }
2496 
2497 static int _regmap_bus_read(void *context, unsigned int reg,
2498 			    unsigned int *val)
2499 {
2500 	int ret;
2501 	struct regmap *map = context;
2502 	void *work_val = map->work_buf + map->format.reg_bytes +
2503 		map->format.pad_bytes;
2504 
2505 	if (!map->format.parse_val)
2506 		return -EINVAL;
2507 
2508 	ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes);
2509 	if (ret == 0)
2510 		*val = map->format.parse_val(work_val);
2511 
2512 	return ret;
2513 }
2514 
2515 static int _regmap_read(struct regmap *map, unsigned int reg,
2516 			unsigned int *val)
2517 {
2518 	int ret;
2519 	void *context = _regmap_map_get_context(map);
2520 
2521 	if (!map->cache_bypass) {
2522 		ret = regcache_read(map, reg, val);
2523 		if (ret == 0)
2524 			return 0;
2525 	}
2526 
2527 	if (map->cache_only)
2528 		return -EBUSY;
2529 
2530 	if (!regmap_readable(map, reg))
2531 		return -EIO;
2532 
2533 	ret = map->reg_read(context, reg, val);
2534 	if (ret == 0) {
2535 		if (regmap_should_log(map))
2536 			dev_info(map->dev, "%x => %x\n", reg, *val);
2537 
2538 		trace_regmap_reg_read(map, reg, *val);
2539 
2540 		if (!map->cache_bypass)
2541 			regcache_write(map, reg, *val);
2542 	}
2543 
2544 	return ret;
2545 }
2546 
2547 /**
2548  * regmap_read() - Read a value from a single register
2549  *
2550  * @map: Register map to read from
2551  * @reg: Register to be read from
2552  * @val: Pointer to store read value
2553  *
2554  * A value of zero will be returned on success, a negative errno will
2555  * be returned in error cases.
2556  */
2557 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2558 {
2559 	int ret;
2560 
2561 	if (!IS_ALIGNED(reg, map->reg_stride))
2562 		return -EINVAL;
2563 
2564 	map->lock(map->lock_arg);
2565 
2566 	ret = _regmap_read(map, reg, val);
2567 
2568 	map->unlock(map->lock_arg);
2569 
2570 	return ret;
2571 }
2572 EXPORT_SYMBOL_GPL(regmap_read);
2573 
2574 /**
2575  * regmap_raw_read() - Read raw data from the device
2576  *
2577  * @map: Register map to read from
2578  * @reg: First register to be read from
2579  * @val: Pointer to store read value
2580  * @val_len: Size of data to read
2581  *
2582  * A value of zero will be returned on success, a negative errno will
2583  * be returned in error cases.
2584  */
2585 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2586 		    size_t val_len)
2587 {
2588 	size_t val_bytes = map->format.val_bytes;
2589 	size_t val_count = val_len / val_bytes;
2590 	unsigned int v;
2591 	int ret, i;
2592 
2593 	if (!map->bus)
2594 		return -EINVAL;
2595 	if (val_len % map->format.val_bytes)
2596 		return -EINVAL;
2597 	if (!IS_ALIGNED(reg, map->reg_stride))
2598 		return -EINVAL;
2599 	if (val_count == 0)
2600 		return -EINVAL;
2601 
2602 	map->lock(map->lock_arg);
2603 
2604 	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2605 	    map->cache_type == REGCACHE_NONE) {
2606 		size_t chunk_count, chunk_bytes;
2607 		size_t chunk_regs = val_count;
2608 
2609 		if (!map->bus->read) {
2610 			ret = -ENOTSUPP;
2611 			goto out;
2612 		}
2613 
2614 		if (map->use_single_read)
2615 			chunk_regs = 1;
2616 		else if (map->max_raw_read && val_len > map->max_raw_read)
2617 			chunk_regs = map->max_raw_read / val_bytes;
2618 
2619 		chunk_count = val_count / chunk_regs;
2620 		chunk_bytes = chunk_regs * val_bytes;
2621 
2622 		/* Read bytes that fit into whole chunks */
2623 		for (i = 0; i < chunk_count; i++) {
2624 			ret = _regmap_raw_read(map, reg, val, chunk_bytes);
2625 			if (ret != 0)
2626 				goto out;
2627 
2628 			reg += regmap_get_offset(map, chunk_regs);
2629 			val += chunk_bytes;
2630 			val_len -= chunk_bytes;
2631 		}
2632 
2633 		/* Read remaining bytes */
2634 		if (val_len) {
2635 			ret = _regmap_raw_read(map, reg, val, val_len);
2636 			if (ret != 0)
2637 				goto out;
2638 		}
2639 	} else {
2640 		/* Otherwise go word by word for the cache; should be low
2641 		 * cost as we expect to hit the cache.
2642 		 */
2643 		for (i = 0; i < val_count; i++) {
2644 			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2645 					   &v);
2646 			if (ret != 0)
2647 				goto out;
2648 
2649 			map->format.format_val(val + (i * val_bytes), v, 0);
2650 		}
2651 	}
2652 
2653  out:
2654 	map->unlock(map->lock_arg);
2655 
2656 	return ret;
2657 }
2658 EXPORT_SYMBOL_GPL(regmap_raw_read);
2659 
2660 /**
2661  * regmap_noinc_read(): Read data from a register without incrementing the
2662  *			register number
2663  *
2664  * @map: Register map to read from
2665  * @reg: Register to read from
2666  * @val: Pointer to data buffer
2667  * @val_len: Length of output buffer in bytes.
2668  *
2669  * The regmap API usually assumes that bulk bus read operations will read a
2670  * range of registers. Some devices have certain registers for which a read
2671  * operation read will read from an internal FIFO.
2672  *
2673  * The target register must be volatile but registers after it can be
2674  * completely unrelated cacheable registers.
2675  *
2676  * This will attempt multiple reads as required to read val_len bytes.
2677  *
2678  * A value of zero will be returned on success, a negative errno will be
2679  * returned in error cases.
2680  */
2681 int regmap_noinc_read(struct regmap *map, unsigned int reg,
2682 		      void *val, size_t val_len)
2683 {
2684 	size_t read_len;
2685 	int ret;
2686 
2687 	if (!map->bus)
2688 		return -EINVAL;
2689 	if (!map->bus->read)
2690 		return -ENOTSUPP;
2691 	if (val_len % map->format.val_bytes)
2692 		return -EINVAL;
2693 	if (!IS_ALIGNED(reg, map->reg_stride))
2694 		return -EINVAL;
2695 	if (val_len == 0)
2696 		return -EINVAL;
2697 
2698 	map->lock(map->lock_arg);
2699 
2700 	if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) {
2701 		ret = -EINVAL;
2702 		goto out_unlock;
2703 	}
2704 
2705 	while (val_len) {
2706 		if (map->max_raw_read && map->max_raw_read < val_len)
2707 			read_len = map->max_raw_read;
2708 		else
2709 			read_len = val_len;
2710 		ret = _regmap_raw_read(map, reg, val, read_len);
2711 		if (ret)
2712 			goto out_unlock;
2713 		val = ((u8 *)val) + read_len;
2714 		val_len -= read_len;
2715 	}
2716 
2717 out_unlock:
2718 	map->unlock(map->lock_arg);
2719 	return ret;
2720 }
2721 EXPORT_SYMBOL_GPL(regmap_noinc_read);
2722 
2723 /**
2724  * regmap_field_read(): Read a value to a single register field
2725  *
2726  * @field: Register field to read from
2727  * @val: Pointer to store read value
2728  *
2729  * A value of zero will be returned on success, a negative errno will
2730  * be returned in error cases.
2731  */
2732 int regmap_field_read(struct regmap_field *field, unsigned int *val)
2733 {
2734 	int ret;
2735 	unsigned int reg_val;
2736 	ret = regmap_read(field->regmap, field->reg, &reg_val);
2737 	if (ret != 0)
2738 		return ret;
2739 
2740 	reg_val &= field->mask;
2741 	reg_val >>= field->shift;
2742 	*val = reg_val;
2743 
2744 	return ret;
2745 }
2746 EXPORT_SYMBOL_GPL(regmap_field_read);
2747 
2748 /**
2749  * regmap_fields_read() - Read a value to a single register field with port ID
2750  *
2751  * @field: Register field to read from
2752  * @id: port ID
2753  * @val: Pointer to store read value
2754  *
2755  * A value of zero will be returned on success, a negative errno will
2756  * be returned in error cases.
2757  */
2758 int regmap_fields_read(struct regmap_field *field, unsigned int id,
2759 		       unsigned int *val)
2760 {
2761 	int ret;
2762 	unsigned int reg_val;
2763 
2764 	if (id >= field->id_size)
2765 		return -EINVAL;
2766 
2767 	ret = regmap_read(field->regmap,
2768 			  field->reg + (field->id_offset * id),
2769 			  &reg_val);
2770 	if (ret != 0)
2771 		return ret;
2772 
2773 	reg_val &= field->mask;
2774 	reg_val >>= field->shift;
2775 	*val = reg_val;
2776 
2777 	return ret;
2778 }
2779 EXPORT_SYMBOL_GPL(regmap_fields_read);
2780 
2781 /**
2782  * regmap_bulk_read() - Read multiple registers from the device
2783  *
2784  * @map: Register map to read from
2785  * @reg: First register to be read from
2786  * @val: Pointer to store read value, in native register size for device
2787  * @val_count: Number of registers to read
2788  *
2789  * A value of zero will be returned on success, a negative errno will
2790  * be returned in error cases.
2791  */
2792 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2793 		     size_t val_count)
2794 {
2795 	int ret, i;
2796 	size_t val_bytes = map->format.val_bytes;
2797 	bool vol = regmap_volatile_range(map, reg, val_count);
2798 
2799 	if (!IS_ALIGNED(reg, map->reg_stride))
2800 		return -EINVAL;
2801 	if (val_count == 0)
2802 		return -EINVAL;
2803 
2804 	if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2805 		ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
2806 		if (ret != 0)
2807 			return ret;
2808 
2809 		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2810 			map->format.parse_inplace(val + i);
2811 	} else {
2812 #ifdef CONFIG_64BIT
2813 		u64 *u64 = val;
2814 #endif
2815 		u32 *u32 = val;
2816 		u16 *u16 = val;
2817 		u8 *u8 = val;
2818 
2819 		map->lock(map->lock_arg);
2820 
2821 		for (i = 0; i < val_count; i++) {
2822 			unsigned int ival;
2823 
2824 			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2825 					   &ival);
2826 			if (ret != 0)
2827 				goto out;
2828 
2829 			switch (map->format.val_bytes) {
2830 #ifdef CONFIG_64BIT
2831 			case 8:
2832 				u64[i] = ival;
2833 				break;
2834 #endif
2835 			case 4:
2836 				u32[i] = ival;
2837 				break;
2838 			case 2:
2839 				u16[i] = ival;
2840 				break;
2841 			case 1:
2842 				u8[i] = ival;
2843 				break;
2844 			default:
2845 				ret = -EINVAL;
2846 				goto out;
2847 			}
2848 		}
2849 
2850 out:
2851 		map->unlock(map->lock_arg);
2852 	}
2853 
2854 	return ret;
2855 }
2856 EXPORT_SYMBOL_GPL(regmap_bulk_read);
2857 
2858 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
2859 			       unsigned int mask, unsigned int val,
2860 			       bool *change, bool force_write)
2861 {
2862 	int ret;
2863 	unsigned int tmp, orig;
2864 
2865 	if (change)
2866 		*change = false;
2867 
2868 	if (regmap_volatile(map, reg) && map->reg_update_bits) {
2869 		ret = map->reg_update_bits(map->bus_context, reg, mask, val);
2870 		if (ret == 0 && change)
2871 			*change = true;
2872 	} else {
2873 		ret = _regmap_read(map, reg, &orig);
2874 		if (ret != 0)
2875 			return ret;
2876 
2877 		tmp = orig & ~mask;
2878 		tmp |= val & mask;
2879 
2880 		if (force_write || (tmp != orig)) {
2881 			ret = _regmap_write(map, reg, tmp);
2882 			if (ret == 0 && change)
2883 				*change = true;
2884 		}
2885 	}
2886 
2887 	return ret;
2888 }
2889 
2890 /**
2891  * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
2892  *
2893  * @map: Register map to update
2894  * @reg: Register to update
2895  * @mask: Bitmask to change
2896  * @val: New value for bitmask
2897  * @change: Boolean indicating if a write was done
2898  * @async: Boolean indicating asynchronously
2899  * @force: Boolean indicating use force update
2900  *
2901  * Perform a read/modify/write cycle on a register map with change, async, force
2902  * options.
2903  *
2904  * If async is true:
2905  *
2906  * With most buses the read must be done synchronously so this is most useful
2907  * for devices with a cache which do not need to interact with the hardware to
2908  * determine the current register value.
2909  *
2910  * Returns zero for success, a negative number on error.
2911  */
2912 int regmap_update_bits_base(struct regmap *map, unsigned int reg,
2913 			    unsigned int mask, unsigned int val,
2914 			    bool *change, bool async, bool force)
2915 {
2916 	int ret;
2917 
2918 	map->lock(map->lock_arg);
2919 
2920 	map->async = async;
2921 
2922 	ret = _regmap_update_bits(map, reg, mask, val, change, force);
2923 
2924 	map->async = false;
2925 
2926 	map->unlock(map->lock_arg);
2927 
2928 	return ret;
2929 }
2930 EXPORT_SYMBOL_GPL(regmap_update_bits_base);
2931 
2932 void regmap_async_complete_cb(struct regmap_async *async, int ret)
2933 {
2934 	struct regmap *map = async->map;
2935 	bool wake;
2936 
2937 	trace_regmap_async_io_complete(map);
2938 
2939 	spin_lock(&map->async_lock);
2940 	list_move(&async->list, &map->async_free);
2941 	wake = list_empty(&map->async_list);
2942 
2943 	if (ret != 0)
2944 		map->async_ret = ret;
2945 
2946 	spin_unlock(&map->async_lock);
2947 
2948 	if (wake)
2949 		wake_up(&map->async_waitq);
2950 }
2951 EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2952 
2953 static int regmap_async_is_done(struct regmap *map)
2954 {
2955 	unsigned long flags;
2956 	int ret;
2957 
2958 	spin_lock_irqsave(&map->async_lock, flags);
2959 	ret = list_empty(&map->async_list);
2960 	spin_unlock_irqrestore(&map->async_lock, flags);
2961 
2962 	return ret;
2963 }
2964 
2965 /**
2966  * regmap_async_complete - Ensure all asynchronous I/O has completed.
2967  *
2968  * @map: Map to operate on.
2969  *
2970  * Blocks until any pending asynchronous I/O has completed.  Returns
2971  * an error code for any failed I/O operations.
2972  */
2973 int regmap_async_complete(struct regmap *map)
2974 {
2975 	unsigned long flags;
2976 	int ret;
2977 
2978 	/* Nothing to do with no async support */
2979 	if (!map->bus || !map->bus->async_write)
2980 		return 0;
2981 
2982 	trace_regmap_async_complete_start(map);
2983 
2984 	wait_event(map->async_waitq, regmap_async_is_done(map));
2985 
2986 	spin_lock_irqsave(&map->async_lock, flags);
2987 	ret = map->async_ret;
2988 	map->async_ret = 0;
2989 	spin_unlock_irqrestore(&map->async_lock, flags);
2990 
2991 	trace_regmap_async_complete_done(map);
2992 
2993 	return ret;
2994 }
2995 EXPORT_SYMBOL_GPL(regmap_async_complete);
2996 
2997 /**
2998  * regmap_register_patch - Register and apply register updates to be applied
2999  *                         on device initialistion
3000  *
3001  * @map: Register map to apply updates to.
3002  * @regs: Values to update.
3003  * @num_regs: Number of entries in regs.
3004  *
3005  * Register a set of register updates to be applied to the device
3006  * whenever the device registers are synchronised with the cache and
3007  * apply them immediately.  Typically this is used to apply
3008  * corrections to be applied to the device defaults on startup, such
3009  * as the updates some vendors provide to undocumented registers.
3010  *
3011  * The caller must ensure that this function cannot be called
3012  * concurrently with either itself or regcache_sync().
3013  */
3014 int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
3015 			  int num_regs)
3016 {
3017 	struct reg_sequence *p;
3018 	int ret;
3019 	bool bypass;
3020 
3021 	if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
3022 	    num_regs))
3023 		return 0;
3024 
3025 	p = krealloc(map->patch,
3026 		     sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
3027 		     GFP_KERNEL);
3028 	if (p) {
3029 		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
3030 		map->patch = p;
3031 		map->patch_regs += num_regs;
3032 	} else {
3033 		return -ENOMEM;
3034 	}
3035 
3036 	map->lock(map->lock_arg);
3037 
3038 	bypass = map->cache_bypass;
3039 
3040 	map->cache_bypass = true;
3041 	map->async = true;
3042 
3043 	ret = _regmap_multi_reg_write(map, regs, num_regs);
3044 
3045 	map->async = false;
3046 	map->cache_bypass = bypass;
3047 
3048 	map->unlock(map->lock_arg);
3049 
3050 	regmap_async_complete(map);
3051 
3052 	return ret;
3053 }
3054 EXPORT_SYMBOL_GPL(regmap_register_patch);
3055 
3056 /**
3057  * regmap_get_val_bytes() - Report the size of a register value
3058  *
3059  * @map: Register map to operate on.
3060  *
3061  * Report the size of a register value, mainly intended to for use by
3062  * generic infrastructure built on top of regmap.
3063  */
3064 int regmap_get_val_bytes(struct regmap *map)
3065 {
3066 	if (map->format.format_write)
3067 		return -EINVAL;
3068 
3069 	return map->format.val_bytes;
3070 }
3071 EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
3072 
3073 /**
3074  * regmap_get_max_register() - Report the max register value
3075  *
3076  * @map: Register map to operate on.
3077  *
3078  * Report the max register value, mainly intended to for use by
3079  * generic infrastructure built on top of regmap.
3080  */
3081 int regmap_get_max_register(struct regmap *map)
3082 {
3083 	return map->max_register ? map->max_register : -EINVAL;
3084 }
3085 EXPORT_SYMBOL_GPL(regmap_get_max_register);
3086 
3087 /**
3088  * regmap_get_reg_stride() - Report the register address stride
3089  *
3090  * @map: Register map to operate on.
3091  *
3092  * Report the register address stride, mainly intended to for use by
3093  * generic infrastructure built on top of regmap.
3094  */
3095 int regmap_get_reg_stride(struct regmap *map)
3096 {
3097 	return map->reg_stride;
3098 }
3099 EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
3100 
3101 int regmap_parse_val(struct regmap *map, const void *buf,
3102 			unsigned int *val)
3103 {
3104 	if (!map->format.parse_val)
3105 		return -EINVAL;
3106 
3107 	*val = map->format.parse_val(buf);
3108 
3109 	return 0;
3110 }
3111 EXPORT_SYMBOL_GPL(regmap_parse_val);
3112 
3113 static int __init regmap_initcall(void)
3114 {
3115 	regmap_debugfs_initcall();
3116 
3117 	return 0;
3118 }
3119 postcore_initcall(regmap_initcall);
3120