1 // SPDX-License-Identifier: GPL-2.0 2 // 3 // Register map access API 4 // 5 // Copyright 2011 Wolfson Microelectronics plc 6 // 7 // Author: Mark Brown <broonie@opensource.wolfsonmicro.com> 8 9 #include <linux/device.h> 10 #include <linux/slab.h> 11 #include <linux/export.h> 12 #include <linux/mutex.h> 13 #include <linux/err.h> 14 #include <linux/property.h> 15 #include <linux/rbtree.h> 16 #include <linux/sched.h> 17 #include <linux/delay.h> 18 #include <linux/log2.h> 19 #include <linux/hwspinlock.h> 20 #include <asm/unaligned.h> 21 22 #define CREATE_TRACE_POINTS 23 #include "trace.h" 24 25 #include "internal.h" 26 27 /* 28 * Sometimes for failures during very early init the trace 29 * infrastructure isn't available early enough to be used. For this 30 * sort of problem defining LOG_DEVICE will add printks for basic 31 * register I/O on a specific device. 32 */ 33 #undef LOG_DEVICE 34 35 #ifdef LOG_DEVICE 36 static inline bool regmap_should_log(struct regmap *map) 37 { 38 return (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0); 39 } 40 #else 41 static inline bool regmap_should_log(struct regmap *map) { return false; } 42 #endif 43 44 45 static int _regmap_update_bits(struct regmap *map, unsigned int reg, 46 unsigned int mask, unsigned int val, 47 bool *change, bool force_write); 48 49 static int _regmap_bus_reg_read(void *context, unsigned int reg, 50 unsigned int *val); 51 static int _regmap_bus_read(void *context, unsigned int reg, 52 unsigned int *val); 53 static int _regmap_bus_formatted_write(void *context, unsigned int reg, 54 unsigned int val); 55 static int _regmap_bus_reg_write(void *context, unsigned int reg, 56 unsigned int val); 57 static int _regmap_bus_raw_write(void *context, unsigned int reg, 58 unsigned int val); 59 60 bool regmap_reg_in_ranges(unsigned int reg, 61 const struct regmap_range *ranges, 62 unsigned int nranges) 63 { 64 const struct regmap_range *r; 65 int i; 66 67 for (i = 0, r = ranges; i < nranges; i++, r++) 68 if (regmap_reg_in_range(reg, r)) 69 return true; 70 return false; 71 } 72 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges); 73 74 bool regmap_check_range_table(struct regmap *map, unsigned int reg, 75 const struct regmap_access_table *table) 76 { 77 /* Check "no ranges" first */ 78 if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges)) 79 return false; 80 81 /* In case zero "yes ranges" are supplied, any reg is OK */ 82 if (!table->n_yes_ranges) 83 return true; 84 85 return regmap_reg_in_ranges(reg, table->yes_ranges, 86 table->n_yes_ranges); 87 } 88 EXPORT_SYMBOL_GPL(regmap_check_range_table); 89 90 bool regmap_writeable(struct regmap *map, unsigned int reg) 91 { 92 if (map->max_register_is_set && reg > map->max_register) 93 return false; 94 95 if (map->writeable_reg) 96 return map->writeable_reg(map->dev, reg); 97 98 if (map->wr_table) 99 return regmap_check_range_table(map, reg, map->wr_table); 100 101 return true; 102 } 103 104 bool regmap_cached(struct regmap *map, unsigned int reg) 105 { 106 int ret; 107 unsigned int val; 108 109 if (map->cache_type == REGCACHE_NONE) 110 return false; 111 112 if (!map->cache_ops) 113 return false; 114 115 if (map->max_register_is_set && reg > map->max_register) 116 return false; 117 118 map->lock(map->lock_arg); 119 ret = regcache_read(map, reg, &val); 120 map->unlock(map->lock_arg); 121 if (ret) 122 return false; 123 124 return true; 125 } 126 127 bool regmap_readable(struct regmap *map, unsigned int reg) 128 { 129 if (!map->reg_read) 130 return false; 131 132 if (map->max_register_is_set && reg > map->max_register) 133 return false; 134 135 if (map->format.format_write) 136 return false; 137 138 if (map->readable_reg) 139 return map->readable_reg(map->dev, reg); 140 141 if (map->rd_table) 142 return regmap_check_range_table(map, reg, map->rd_table); 143 144 return true; 145 } 146 147 bool regmap_volatile(struct regmap *map, unsigned int reg) 148 { 149 if (!map->format.format_write && !regmap_readable(map, reg)) 150 return false; 151 152 if (map->volatile_reg) 153 return map->volatile_reg(map->dev, reg); 154 155 if (map->volatile_table) 156 return regmap_check_range_table(map, reg, map->volatile_table); 157 158 if (map->cache_ops) 159 return false; 160 else 161 return true; 162 } 163 164 bool regmap_precious(struct regmap *map, unsigned int reg) 165 { 166 if (!regmap_readable(map, reg)) 167 return false; 168 169 if (map->precious_reg) 170 return map->precious_reg(map->dev, reg); 171 172 if (map->precious_table) 173 return regmap_check_range_table(map, reg, map->precious_table); 174 175 return false; 176 } 177 178 bool regmap_writeable_noinc(struct regmap *map, unsigned int reg) 179 { 180 if (map->writeable_noinc_reg) 181 return map->writeable_noinc_reg(map->dev, reg); 182 183 if (map->wr_noinc_table) 184 return regmap_check_range_table(map, reg, map->wr_noinc_table); 185 186 return true; 187 } 188 189 bool regmap_readable_noinc(struct regmap *map, unsigned int reg) 190 { 191 if (map->readable_noinc_reg) 192 return map->readable_noinc_reg(map->dev, reg); 193 194 if (map->rd_noinc_table) 195 return regmap_check_range_table(map, reg, map->rd_noinc_table); 196 197 return true; 198 } 199 200 static bool regmap_volatile_range(struct regmap *map, unsigned int reg, 201 size_t num) 202 { 203 unsigned int i; 204 205 for (i = 0; i < num; i++) 206 if (!regmap_volatile(map, reg + regmap_get_offset(map, i))) 207 return false; 208 209 return true; 210 } 211 212 static void regmap_format_12_20_write(struct regmap *map, 213 unsigned int reg, unsigned int val) 214 { 215 u8 *out = map->work_buf; 216 217 out[0] = reg >> 4; 218 out[1] = (reg << 4) | (val >> 16); 219 out[2] = val >> 8; 220 out[3] = val; 221 } 222 223 224 static void regmap_format_2_6_write(struct regmap *map, 225 unsigned int reg, unsigned int val) 226 { 227 u8 *out = map->work_buf; 228 229 *out = (reg << 6) | val; 230 } 231 232 static void regmap_format_4_12_write(struct regmap *map, 233 unsigned int reg, unsigned int val) 234 { 235 __be16 *out = map->work_buf; 236 *out = cpu_to_be16((reg << 12) | val); 237 } 238 239 static void regmap_format_7_9_write(struct regmap *map, 240 unsigned int reg, unsigned int val) 241 { 242 __be16 *out = map->work_buf; 243 *out = cpu_to_be16((reg << 9) | val); 244 } 245 246 static void regmap_format_7_17_write(struct regmap *map, 247 unsigned int reg, unsigned int val) 248 { 249 u8 *out = map->work_buf; 250 251 out[2] = val; 252 out[1] = val >> 8; 253 out[0] = (val >> 16) | (reg << 1); 254 } 255 256 static void regmap_format_10_14_write(struct regmap *map, 257 unsigned int reg, unsigned int val) 258 { 259 u8 *out = map->work_buf; 260 261 out[2] = val; 262 out[1] = (val >> 8) | (reg << 6); 263 out[0] = reg >> 2; 264 } 265 266 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift) 267 { 268 u8 *b = buf; 269 270 b[0] = val << shift; 271 } 272 273 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift) 274 { 275 put_unaligned_be16(val << shift, buf); 276 } 277 278 static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift) 279 { 280 put_unaligned_le16(val << shift, buf); 281 } 282 283 static void regmap_format_16_native(void *buf, unsigned int val, 284 unsigned int shift) 285 { 286 u16 v = val << shift; 287 288 memcpy(buf, &v, sizeof(v)); 289 } 290 291 static void regmap_format_24_be(void *buf, unsigned int val, unsigned int shift) 292 { 293 put_unaligned_be24(val << shift, buf); 294 } 295 296 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift) 297 { 298 put_unaligned_be32(val << shift, buf); 299 } 300 301 static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift) 302 { 303 put_unaligned_le32(val << shift, buf); 304 } 305 306 static void regmap_format_32_native(void *buf, unsigned int val, 307 unsigned int shift) 308 { 309 u32 v = val << shift; 310 311 memcpy(buf, &v, sizeof(v)); 312 } 313 314 static void regmap_parse_inplace_noop(void *buf) 315 { 316 } 317 318 static unsigned int regmap_parse_8(const void *buf) 319 { 320 const u8 *b = buf; 321 322 return b[0]; 323 } 324 325 static unsigned int regmap_parse_16_be(const void *buf) 326 { 327 return get_unaligned_be16(buf); 328 } 329 330 static unsigned int regmap_parse_16_le(const void *buf) 331 { 332 return get_unaligned_le16(buf); 333 } 334 335 static void regmap_parse_16_be_inplace(void *buf) 336 { 337 u16 v = get_unaligned_be16(buf); 338 339 memcpy(buf, &v, sizeof(v)); 340 } 341 342 static void regmap_parse_16_le_inplace(void *buf) 343 { 344 u16 v = get_unaligned_le16(buf); 345 346 memcpy(buf, &v, sizeof(v)); 347 } 348 349 static unsigned int regmap_parse_16_native(const void *buf) 350 { 351 u16 v; 352 353 memcpy(&v, buf, sizeof(v)); 354 return v; 355 } 356 357 static unsigned int regmap_parse_24_be(const void *buf) 358 { 359 return get_unaligned_be24(buf); 360 } 361 362 static unsigned int regmap_parse_32_be(const void *buf) 363 { 364 return get_unaligned_be32(buf); 365 } 366 367 static unsigned int regmap_parse_32_le(const void *buf) 368 { 369 return get_unaligned_le32(buf); 370 } 371 372 static void regmap_parse_32_be_inplace(void *buf) 373 { 374 u32 v = get_unaligned_be32(buf); 375 376 memcpy(buf, &v, sizeof(v)); 377 } 378 379 static void regmap_parse_32_le_inplace(void *buf) 380 { 381 u32 v = get_unaligned_le32(buf); 382 383 memcpy(buf, &v, sizeof(v)); 384 } 385 386 static unsigned int regmap_parse_32_native(const void *buf) 387 { 388 u32 v; 389 390 memcpy(&v, buf, sizeof(v)); 391 return v; 392 } 393 394 static void regmap_lock_hwlock(void *__map) 395 { 396 struct regmap *map = __map; 397 398 hwspin_lock_timeout(map->hwlock, UINT_MAX); 399 } 400 401 static void regmap_lock_hwlock_irq(void *__map) 402 { 403 struct regmap *map = __map; 404 405 hwspin_lock_timeout_irq(map->hwlock, UINT_MAX); 406 } 407 408 static void regmap_lock_hwlock_irqsave(void *__map) 409 { 410 struct regmap *map = __map; 411 412 hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX, 413 &map->spinlock_flags); 414 } 415 416 static void regmap_unlock_hwlock(void *__map) 417 { 418 struct regmap *map = __map; 419 420 hwspin_unlock(map->hwlock); 421 } 422 423 static void regmap_unlock_hwlock_irq(void *__map) 424 { 425 struct regmap *map = __map; 426 427 hwspin_unlock_irq(map->hwlock); 428 } 429 430 static void regmap_unlock_hwlock_irqrestore(void *__map) 431 { 432 struct regmap *map = __map; 433 434 hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags); 435 } 436 437 static void regmap_lock_unlock_none(void *__map) 438 { 439 440 } 441 442 static void regmap_lock_mutex(void *__map) 443 { 444 struct regmap *map = __map; 445 mutex_lock(&map->mutex); 446 } 447 448 static void regmap_unlock_mutex(void *__map) 449 { 450 struct regmap *map = __map; 451 mutex_unlock(&map->mutex); 452 } 453 454 static void regmap_lock_spinlock(void *__map) 455 __acquires(&map->spinlock) 456 { 457 struct regmap *map = __map; 458 unsigned long flags; 459 460 spin_lock_irqsave(&map->spinlock, flags); 461 map->spinlock_flags = flags; 462 } 463 464 static void regmap_unlock_spinlock(void *__map) 465 __releases(&map->spinlock) 466 { 467 struct regmap *map = __map; 468 spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags); 469 } 470 471 static void regmap_lock_raw_spinlock(void *__map) 472 __acquires(&map->raw_spinlock) 473 { 474 struct regmap *map = __map; 475 unsigned long flags; 476 477 raw_spin_lock_irqsave(&map->raw_spinlock, flags); 478 map->raw_spinlock_flags = flags; 479 } 480 481 static void regmap_unlock_raw_spinlock(void *__map) 482 __releases(&map->raw_spinlock) 483 { 484 struct regmap *map = __map; 485 raw_spin_unlock_irqrestore(&map->raw_spinlock, map->raw_spinlock_flags); 486 } 487 488 static void dev_get_regmap_release(struct device *dev, void *res) 489 { 490 /* 491 * We don't actually have anything to do here; the goal here 492 * is not to manage the regmap but to provide a simple way to 493 * get the regmap back given a struct device. 494 */ 495 } 496 497 static bool _regmap_range_add(struct regmap *map, 498 struct regmap_range_node *data) 499 { 500 struct rb_root *root = &map->range_tree; 501 struct rb_node **new = &(root->rb_node), *parent = NULL; 502 503 while (*new) { 504 struct regmap_range_node *this = 505 rb_entry(*new, struct regmap_range_node, node); 506 507 parent = *new; 508 if (data->range_max < this->range_min) 509 new = &((*new)->rb_left); 510 else if (data->range_min > this->range_max) 511 new = &((*new)->rb_right); 512 else 513 return false; 514 } 515 516 rb_link_node(&data->node, parent, new); 517 rb_insert_color(&data->node, root); 518 519 return true; 520 } 521 522 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map, 523 unsigned int reg) 524 { 525 struct rb_node *node = map->range_tree.rb_node; 526 527 while (node) { 528 struct regmap_range_node *this = 529 rb_entry(node, struct regmap_range_node, node); 530 531 if (reg < this->range_min) 532 node = node->rb_left; 533 else if (reg > this->range_max) 534 node = node->rb_right; 535 else 536 return this; 537 } 538 539 return NULL; 540 } 541 542 static void regmap_range_exit(struct regmap *map) 543 { 544 struct rb_node *next; 545 struct regmap_range_node *range_node; 546 547 next = rb_first(&map->range_tree); 548 while (next) { 549 range_node = rb_entry(next, struct regmap_range_node, node); 550 next = rb_next(&range_node->node); 551 rb_erase(&range_node->node, &map->range_tree); 552 kfree(range_node); 553 } 554 555 kfree(map->selector_work_buf); 556 } 557 558 static int regmap_set_name(struct regmap *map, const struct regmap_config *config) 559 { 560 if (config->name) { 561 const char *name = kstrdup_const(config->name, GFP_KERNEL); 562 563 if (!name) 564 return -ENOMEM; 565 566 kfree_const(map->name); 567 map->name = name; 568 } 569 570 return 0; 571 } 572 573 int regmap_attach_dev(struct device *dev, struct regmap *map, 574 const struct regmap_config *config) 575 { 576 struct regmap **m; 577 int ret; 578 579 map->dev = dev; 580 581 ret = regmap_set_name(map, config); 582 if (ret) 583 return ret; 584 585 regmap_debugfs_exit(map); 586 regmap_debugfs_init(map); 587 588 /* Add a devres resource for dev_get_regmap() */ 589 m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL); 590 if (!m) { 591 regmap_debugfs_exit(map); 592 return -ENOMEM; 593 } 594 *m = map; 595 devres_add(dev, m); 596 597 return 0; 598 } 599 EXPORT_SYMBOL_GPL(regmap_attach_dev); 600 601 static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus, 602 const struct regmap_config *config) 603 { 604 enum regmap_endian endian; 605 606 /* Retrieve the endianness specification from the regmap config */ 607 endian = config->reg_format_endian; 608 609 /* If the regmap config specified a non-default value, use that */ 610 if (endian != REGMAP_ENDIAN_DEFAULT) 611 return endian; 612 613 /* Retrieve the endianness specification from the bus config */ 614 if (bus && bus->reg_format_endian_default) 615 endian = bus->reg_format_endian_default; 616 617 /* If the bus specified a non-default value, use that */ 618 if (endian != REGMAP_ENDIAN_DEFAULT) 619 return endian; 620 621 /* Use this if no other value was found */ 622 return REGMAP_ENDIAN_BIG; 623 } 624 625 enum regmap_endian regmap_get_val_endian(struct device *dev, 626 const struct regmap_bus *bus, 627 const struct regmap_config *config) 628 { 629 struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL; 630 enum regmap_endian endian; 631 632 /* Retrieve the endianness specification from the regmap config */ 633 endian = config->val_format_endian; 634 635 /* If the regmap config specified a non-default value, use that */ 636 if (endian != REGMAP_ENDIAN_DEFAULT) 637 return endian; 638 639 /* If the firmware node exist try to get endianness from it */ 640 if (fwnode_property_read_bool(fwnode, "big-endian")) 641 endian = REGMAP_ENDIAN_BIG; 642 else if (fwnode_property_read_bool(fwnode, "little-endian")) 643 endian = REGMAP_ENDIAN_LITTLE; 644 else if (fwnode_property_read_bool(fwnode, "native-endian")) 645 endian = REGMAP_ENDIAN_NATIVE; 646 647 /* If the endianness was specified in fwnode, use that */ 648 if (endian != REGMAP_ENDIAN_DEFAULT) 649 return endian; 650 651 /* Retrieve the endianness specification from the bus config */ 652 if (bus && bus->val_format_endian_default) 653 endian = bus->val_format_endian_default; 654 655 /* If the bus specified a non-default value, use that */ 656 if (endian != REGMAP_ENDIAN_DEFAULT) 657 return endian; 658 659 /* Use this if no other value was found */ 660 return REGMAP_ENDIAN_BIG; 661 } 662 EXPORT_SYMBOL_GPL(regmap_get_val_endian); 663 664 struct regmap *__regmap_init(struct device *dev, 665 const struct regmap_bus *bus, 666 void *bus_context, 667 const struct regmap_config *config, 668 struct lock_class_key *lock_key, 669 const char *lock_name) 670 { 671 struct regmap *map; 672 int ret = -EINVAL; 673 enum regmap_endian reg_endian, val_endian; 674 int i, j; 675 676 if (!config) 677 goto err; 678 679 map = kzalloc(sizeof(*map), GFP_KERNEL); 680 if (map == NULL) { 681 ret = -ENOMEM; 682 goto err; 683 } 684 685 ret = regmap_set_name(map, config); 686 if (ret) 687 goto err_map; 688 689 ret = -EINVAL; /* Later error paths rely on this */ 690 691 if (config->disable_locking) { 692 map->lock = map->unlock = regmap_lock_unlock_none; 693 map->can_sleep = config->can_sleep; 694 regmap_debugfs_disable(map); 695 } else if (config->lock && config->unlock) { 696 map->lock = config->lock; 697 map->unlock = config->unlock; 698 map->lock_arg = config->lock_arg; 699 map->can_sleep = config->can_sleep; 700 } else if (config->use_hwlock) { 701 map->hwlock = hwspin_lock_request_specific(config->hwlock_id); 702 if (!map->hwlock) { 703 ret = -ENXIO; 704 goto err_name; 705 } 706 707 switch (config->hwlock_mode) { 708 case HWLOCK_IRQSTATE: 709 map->lock = regmap_lock_hwlock_irqsave; 710 map->unlock = regmap_unlock_hwlock_irqrestore; 711 break; 712 case HWLOCK_IRQ: 713 map->lock = regmap_lock_hwlock_irq; 714 map->unlock = regmap_unlock_hwlock_irq; 715 break; 716 default: 717 map->lock = regmap_lock_hwlock; 718 map->unlock = regmap_unlock_hwlock; 719 break; 720 } 721 722 map->lock_arg = map; 723 } else { 724 if ((bus && bus->fast_io) || 725 config->fast_io) { 726 if (config->use_raw_spinlock) { 727 raw_spin_lock_init(&map->raw_spinlock); 728 map->lock = regmap_lock_raw_spinlock; 729 map->unlock = regmap_unlock_raw_spinlock; 730 lockdep_set_class_and_name(&map->raw_spinlock, 731 lock_key, lock_name); 732 } else { 733 spin_lock_init(&map->spinlock); 734 map->lock = regmap_lock_spinlock; 735 map->unlock = regmap_unlock_spinlock; 736 lockdep_set_class_and_name(&map->spinlock, 737 lock_key, lock_name); 738 } 739 } else { 740 mutex_init(&map->mutex); 741 map->lock = regmap_lock_mutex; 742 map->unlock = regmap_unlock_mutex; 743 map->can_sleep = true; 744 lockdep_set_class_and_name(&map->mutex, 745 lock_key, lock_name); 746 } 747 map->lock_arg = map; 748 } 749 750 /* 751 * When we write in fast-paths with regmap_bulk_write() don't allocate 752 * scratch buffers with sleeping allocations. 753 */ 754 if ((bus && bus->fast_io) || config->fast_io) 755 map->alloc_flags = GFP_ATOMIC; 756 else 757 map->alloc_flags = GFP_KERNEL; 758 759 map->reg_base = config->reg_base; 760 761 map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8); 762 map->format.pad_bytes = config->pad_bits / 8; 763 map->format.reg_shift = config->reg_shift; 764 map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8); 765 map->format.buf_size = DIV_ROUND_UP(config->reg_bits + 766 config->val_bits + config->pad_bits, 8); 767 map->reg_shift = config->pad_bits % 8; 768 if (config->reg_stride) 769 map->reg_stride = config->reg_stride; 770 else 771 map->reg_stride = 1; 772 if (is_power_of_2(map->reg_stride)) 773 map->reg_stride_order = ilog2(map->reg_stride); 774 else 775 map->reg_stride_order = -1; 776 map->use_single_read = config->use_single_read || !(config->read || (bus && bus->read)); 777 map->use_single_write = config->use_single_write || !(config->write || (bus && bus->write)); 778 map->can_multi_write = config->can_multi_write && (config->write || (bus && bus->write)); 779 if (bus) { 780 map->max_raw_read = bus->max_raw_read; 781 map->max_raw_write = bus->max_raw_write; 782 } else if (config->max_raw_read && config->max_raw_write) { 783 map->max_raw_read = config->max_raw_read; 784 map->max_raw_write = config->max_raw_write; 785 } 786 map->dev = dev; 787 map->bus = bus; 788 map->bus_context = bus_context; 789 map->max_register = config->max_register; 790 map->max_register_is_set = map->max_register ?: config->max_register_is_0; 791 map->wr_table = config->wr_table; 792 map->rd_table = config->rd_table; 793 map->volatile_table = config->volatile_table; 794 map->precious_table = config->precious_table; 795 map->wr_noinc_table = config->wr_noinc_table; 796 map->rd_noinc_table = config->rd_noinc_table; 797 map->writeable_reg = config->writeable_reg; 798 map->readable_reg = config->readable_reg; 799 map->volatile_reg = config->volatile_reg; 800 map->precious_reg = config->precious_reg; 801 map->writeable_noinc_reg = config->writeable_noinc_reg; 802 map->readable_noinc_reg = config->readable_noinc_reg; 803 map->cache_type = config->cache_type; 804 805 spin_lock_init(&map->async_lock); 806 INIT_LIST_HEAD(&map->async_list); 807 INIT_LIST_HEAD(&map->async_free); 808 init_waitqueue_head(&map->async_waitq); 809 810 if (config->read_flag_mask || 811 config->write_flag_mask || 812 config->zero_flag_mask) { 813 map->read_flag_mask = config->read_flag_mask; 814 map->write_flag_mask = config->write_flag_mask; 815 } else if (bus) { 816 map->read_flag_mask = bus->read_flag_mask; 817 } 818 819 if (config && config->read && config->write) { 820 map->reg_read = _regmap_bus_read; 821 if (config->reg_update_bits) 822 map->reg_update_bits = config->reg_update_bits; 823 824 /* Bulk read/write */ 825 map->read = config->read; 826 map->write = config->write; 827 828 reg_endian = REGMAP_ENDIAN_NATIVE; 829 val_endian = REGMAP_ENDIAN_NATIVE; 830 } else if (!bus) { 831 map->reg_read = config->reg_read; 832 map->reg_write = config->reg_write; 833 map->reg_update_bits = config->reg_update_bits; 834 835 map->defer_caching = false; 836 goto skip_format_initialization; 837 } else if (!bus->read || !bus->write) { 838 map->reg_read = _regmap_bus_reg_read; 839 map->reg_write = _regmap_bus_reg_write; 840 map->reg_update_bits = bus->reg_update_bits; 841 842 map->defer_caching = false; 843 goto skip_format_initialization; 844 } else { 845 map->reg_read = _regmap_bus_read; 846 map->reg_update_bits = bus->reg_update_bits; 847 /* Bulk read/write */ 848 map->read = bus->read; 849 map->write = bus->write; 850 851 reg_endian = regmap_get_reg_endian(bus, config); 852 val_endian = regmap_get_val_endian(dev, bus, config); 853 } 854 855 switch (config->reg_bits + map->reg_shift) { 856 case 2: 857 switch (config->val_bits) { 858 case 6: 859 map->format.format_write = regmap_format_2_6_write; 860 break; 861 default: 862 goto err_hwlock; 863 } 864 break; 865 866 case 4: 867 switch (config->val_bits) { 868 case 12: 869 map->format.format_write = regmap_format_4_12_write; 870 break; 871 default: 872 goto err_hwlock; 873 } 874 break; 875 876 case 7: 877 switch (config->val_bits) { 878 case 9: 879 map->format.format_write = regmap_format_7_9_write; 880 break; 881 case 17: 882 map->format.format_write = regmap_format_7_17_write; 883 break; 884 default: 885 goto err_hwlock; 886 } 887 break; 888 889 case 10: 890 switch (config->val_bits) { 891 case 14: 892 map->format.format_write = regmap_format_10_14_write; 893 break; 894 default: 895 goto err_hwlock; 896 } 897 break; 898 899 case 12: 900 switch (config->val_bits) { 901 case 20: 902 map->format.format_write = regmap_format_12_20_write; 903 break; 904 default: 905 goto err_hwlock; 906 } 907 break; 908 909 case 8: 910 map->format.format_reg = regmap_format_8; 911 break; 912 913 case 16: 914 switch (reg_endian) { 915 case REGMAP_ENDIAN_BIG: 916 map->format.format_reg = regmap_format_16_be; 917 break; 918 case REGMAP_ENDIAN_LITTLE: 919 map->format.format_reg = regmap_format_16_le; 920 break; 921 case REGMAP_ENDIAN_NATIVE: 922 map->format.format_reg = regmap_format_16_native; 923 break; 924 default: 925 goto err_hwlock; 926 } 927 break; 928 929 case 24: 930 switch (reg_endian) { 931 case REGMAP_ENDIAN_BIG: 932 map->format.format_reg = regmap_format_24_be; 933 break; 934 default: 935 goto err_hwlock; 936 } 937 break; 938 939 case 32: 940 switch (reg_endian) { 941 case REGMAP_ENDIAN_BIG: 942 map->format.format_reg = regmap_format_32_be; 943 break; 944 case REGMAP_ENDIAN_LITTLE: 945 map->format.format_reg = regmap_format_32_le; 946 break; 947 case REGMAP_ENDIAN_NATIVE: 948 map->format.format_reg = regmap_format_32_native; 949 break; 950 default: 951 goto err_hwlock; 952 } 953 break; 954 955 default: 956 goto err_hwlock; 957 } 958 959 if (val_endian == REGMAP_ENDIAN_NATIVE) 960 map->format.parse_inplace = regmap_parse_inplace_noop; 961 962 switch (config->val_bits) { 963 case 8: 964 map->format.format_val = regmap_format_8; 965 map->format.parse_val = regmap_parse_8; 966 map->format.parse_inplace = regmap_parse_inplace_noop; 967 break; 968 case 16: 969 switch (val_endian) { 970 case REGMAP_ENDIAN_BIG: 971 map->format.format_val = regmap_format_16_be; 972 map->format.parse_val = regmap_parse_16_be; 973 map->format.parse_inplace = regmap_parse_16_be_inplace; 974 break; 975 case REGMAP_ENDIAN_LITTLE: 976 map->format.format_val = regmap_format_16_le; 977 map->format.parse_val = regmap_parse_16_le; 978 map->format.parse_inplace = regmap_parse_16_le_inplace; 979 break; 980 case REGMAP_ENDIAN_NATIVE: 981 map->format.format_val = regmap_format_16_native; 982 map->format.parse_val = regmap_parse_16_native; 983 break; 984 default: 985 goto err_hwlock; 986 } 987 break; 988 case 24: 989 switch (val_endian) { 990 case REGMAP_ENDIAN_BIG: 991 map->format.format_val = regmap_format_24_be; 992 map->format.parse_val = regmap_parse_24_be; 993 break; 994 default: 995 goto err_hwlock; 996 } 997 break; 998 case 32: 999 switch (val_endian) { 1000 case REGMAP_ENDIAN_BIG: 1001 map->format.format_val = regmap_format_32_be; 1002 map->format.parse_val = regmap_parse_32_be; 1003 map->format.parse_inplace = regmap_parse_32_be_inplace; 1004 break; 1005 case REGMAP_ENDIAN_LITTLE: 1006 map->format.format_val = regmap_format_32_le; 1007 map->format.parse_val = regmap_parse_32_le; 1008 map->format.parse_inplace = regmap_parse_32_le_inplace; 1009 break; 1010 case REGMAP_ENDIAN_NATIVE: 1011 map->format.format_val = regmap_format_32_native; 1012 map->format.parse_val = regmap_parse_32_native; 1013 break; 1014 default: 1015 goto err_hwlock; 1016 } 1017 break; 1018 } 1019 1020 if (map->format.format_write) { 1021 if ((reg_endian != REGMAP_ENDIAN_BIG) || 1022 (val_endian != REGMAP_ENDIAN_BIG)) 1023 goto err_hwlock; 1024 map->use_single_write = true; 1025 } 1026 1027 if (!map->format.format_write && 1028 !(map->format.format_reg && map->format.format_val)) 1029 goto err_hwlock; 1030 1031 map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL); 1032 if (map->work_buf == NULL) { 1033 ret = -ENOMEM; 1034 goto err_hwlock; 1035 } 1036 1037 if (map->format.format_write) { 1038 map->defer_caching = false; 1039 map->reg_write = _regmap_bus_formatted_write; 1040 } else if (map->format.format_val) { 1041 map->defer_caching = true; 1042 map->reg_write = _regmap_bus_raw_write; 1043 } 1044 1045 skip_format_initialization: 1046 1047 map->range_tree = RB_ROOT; 1048 for (i = 0; i < config->num_ranges; i++) { 1049 const struct regmap_range_cfg *range_cfg = &config->ranges[i]; 1050 struct regmap_range_node *new; 1051 1052 /* Sanity check */ 1053 if (range_cfg->range_max < range_cfg->range_min) { 1054 dev_err(map->dev, "Invalid range %d: %d < %d\n", i, 1055 range_cfg->range_max, range_cfg->range_min); 1056 goto err_range; 1057 } 1058 1059 if (range_cfg->range_max > map->max_register) { 1060 dev_err(map->dev, "Invalid range %d: %d > %d\n", i, 1061 range_cfg->range_max, map->max_register); 1062 goto err_range; 1063 } 1064 1065 if (range_cfg->selector_reg > map->max_register) { 1066 dev_err(map->dev, 1067 "Invalid range %d: selector out of map\n", i); 1068 goto err_range; 1069 } 1070 1071 if (range_cfg->window_len == 0) { 1072 dev_err(map->dev, "Invalid range %d: window_len 0\n", 1073 i); 1074 goto err_range; 1075 } 1076 1077 /* Make sure, that this register range has no selector 1078 or data window within its boundary */ 1079 for (j = 0; j < config->num_ranges; j++) { 1080 unsigned int sel_reg = config->ranges[j].selector_reg; 1081 unsigned int win_min = config->ranges[j].window_start; 1082 unsigned int win_max = win_min + 1083 config->ranges[j].window_len - 1; 1084 1085 /* Allow data window inside its own virtual range */ 1086 if (j == i) 1087 continue; 1088 1089 if (range_cfg->range_min <= sel_reg && 1090 sel_reg <= range_cfg->range_max) { 1091 dev_err(map->dev, 1092 "Range %d: selector for %d in window\n", 1093 i, j); 1094 goto err_range; 1095 } 1096 1097 if (!(win_max < range_cfg->range_min || 1098 win_min > range_cfg->range_max)) { 1099 dev_err(map->dev, 1100 "Range %d: window for %d in window\n", 1101 i, j); 1102 goto err_range; 1103 } 1104 } 1105 1106 new = kzalloc(sizeof(*new), GFP_KERNEL); 1107 if (new == NULL) { 1108 ret = -ENOMEM; 1109 goto err_range; 1110 } 1111 1112 new->map = map; 1113 new->name = range_cfg->name; 1114 new->range_min = range_cfg->range_min; 1115 new->range_max = range_cfg->range_max; 1116 new->selector_reg = range_cfg->selector_reg; 1117 new->selector_mask = range_cfg->selector_mask; 1118 new->selector_shift = range_cfg->selector_shift; 1119 new->window_start = range_cfg->window_start; 1120 new->window_len = range_cfg->window_len; 1121 1122 if (!_regmap_range_add(map, new)) { 1123 dev_err(map->dev, "Failed to add range %d\n", i); 1124 kfree(new); 1125 goto err_range; 1126 } 1127 1128 if (map->selector_work_buf == NULL) { 1129 map->selector_work_buf = 1130 kzalloc(map->format.buf_size, GFP_KERNEL); 1131 if (map->selector_work_buf == NULL) { 1132 ret = -ENOMEM; 1133 goto err_range; 1134 } 1135 } 1136 } 1137 1138 ret = regcache_init(map, config); 1139 if (ret != 0) 1140 goto err_range; 1141 1142 if (dev) { 1143 ret = regmap_attach_dev(dev, map, config); 1144 if (ret != 0) 1145 goto err_regcache; 1146 } else { 1147 regmap_debugfs_init(map); 1148 } 1149 1150 return map; 1151 1152 err_regcache: 1153 regcache_exit(map); 1154 err_range: 1155 regmap_range_exit(map); 1156 kfree(map->work_buf); 1157 err_hwlock: 1158 if (map->hwlock) 1159 hwspin_lock_free(map->hwlock); 1160 err_name: 1161 kfree_const(map->name); 1162 err_map: 1163 kfree(map); 1164 err: 1165 return ERR_PTR(ret); 1166 } 1167 EXPORT_SYMBOL_GPL(__regmap_init); 1168 1169 static void devm_regmap_release(struct device *dev, void *res) 1170 { 1171 regmap_exit(*(struct regmap **)res); 1172 } 1173 1174 struct regmap *__devm_regmap_init(struct device *dev, 1175 const struct regmap_bus *bus, 1176 void *bus_context, 1177 const struct regmap_config *config, 1178 struct lock_class_key *lock_key, 1179 const char *lock_name) 1180 { 1181 struct regmap **ptr, *regmap; 1182 1183 ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL); 1184 if (!ptr) 1185 return ERR_PTR(-ENOMEM); 1186 1187 regmap = __regmap_init(dev, bus, bus_context, config, 1188 lock_key, lock_name); 1189 if (!IS_ERR(regmap)) { 1190 *ptr = regmap; 1191 devres_add(dev, ptr); 1192 } else { 1193 devres_free(ptr); 1194 } 1195 1196 return regmap; 1197 } 1198 EXPORT_SYMBOL_GPL(__devm_regmap_init); 1199 1200 static void regmap_field_init(struct regmap_field *rm_field, 1201 struct regmap *regmap, struct reg_field reg_field) 1202 { 1203 rm_field->regmap = regmap; 1204 rm_field->reg = reg_field.reg; 1205 rm_field->shift = reg_field.lsb; 1206 rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb); 1207 1208 WARN_ONCE(rm_field->mask == 0, "invalid empty mask defined\n"); 1209 1210 rm_field->id_size = reg_field.id_size; 1211 rm_field->id_offset = reg_field.id_offset; 1212 } 1213 1214 /** 1215 * devm_regmap_field_alloc() - Allocate and initialise a register field. 1216 * 1217 * @dev: Device that will be interacted with 1218 * @regmap: regmap bank in which this register field is located. 1219 * @reg_field: Register field with in the bank. 1220 * 1221 * The return value will be an ERR_PTR() on error or a valid pointer 1222 * to a struct regmap_field. The regmap_field will be automatically freed 1223 * by the device management code. 1224 */ 1225 struct regmap_field *devm_regmap_field_alloc(struct device *dev, 1226 struct regmap *regmap, struct reg_field reg_field) 1227 { 1228 struct regmap_field *rm_field = devm_kzalloc(dev, 1229 sizeof(*rm_field), GFP_KERNEL); 1230 if (!rm_field) 1231 return ERR_PTR(-ENOMEM); 1232 1233 regmap_field_init(rm_field, regmap, reg_field); 1234 1235 return rm_field; 1236 1237 } 1238 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc); 1239 1240 1241 /** 1242 * regmap_field_bulk_alloc() - Allocate and initialise a bulk register field. 1243 * 1244 * @regmap: regmap bank in which this register field is located. 1245 * @rm_field: regmap register fields within the bank. 1246 * @reg_field: Register fields within the bank. 1247 * @num_fields: Number of register fields. 1248 * 1249 * The return value will be an -ENOMEM on error or zero for success. 1250 * Newly allocated regmap_fields should be freed by calling 1251 * regmap_field_bulk_free() 1252 */ 1253 int regmap_field_bulk_alloc(struct regmap *regmap, 1254 struct regmap_field **rm_field, 1255 const struct reg_field *reg_field, 1256 int num_fields) 1257 { 1258 struct regmap_field *rf; 1259 int i; 1260 1261 rf = kcalloc(num_fields, sizeof(*rf), GFP_KERNEL); 1262 if (!rf) 1263 return -ENOMEM; 1264 1265 for (i = 0; i < num_fields; i++) { 1266 regmap_field_init(&rf[i], regmap, reg_field[i]); 1267 rm_field[i] = &rf[i]; 1268 } 1269 1270 return 0; 1271 } 1272 EXPORT_SYMBOL_GPL(regmap_field_bulk_alloc); 1273 1274 /** 1275 * devm_regmap_field_bulk_alloc() - Allocate and initialise a bulk register 1276 * fields. 1277 * 1278 * @dev: Device that will be interacted with 1279 * @regmap: regmap bank in which this register field is located. 1280 * @rm_field: regmap register fields within the bank. 1281 * @reg_field: Register fields within the bank. 1282 * @num_fields: Number of register fields. 1283 * 1284 * The return value will be an -ENOMEM on error or zero for success. 1285 * Newly allocated regmap_fields will be automatically freed by the 1286 * device management code. 1287 */ 1288 int devm_regmap_field_bulk_alloc(struct device *dev, 1289 struct regmap *regmap, 1290 struct regmap_field **rm_field, 1291 const struct reg_field *reg_field, 1292 int num_fields) 1293 { 1294 struct regmap_field *rf; 1295 int i; 1296 1297 rf = devm_kcalloc(dev, num_fields, sizeof(*rf), GFP_KERNEL); 1298 if (!rf) 1299 return -ENOMEM; 1300 1301 for (i = 0; i < num_fields; i++) { 1302 regmap_field_init(&rf[i], regmap, reg_field[i]); 1303 rm_field[i] = &rf[i]; 1304 } 1305 1306 return 0; 1307 } 1308 EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_alloc); 1309 1310 /** 1311 * regmap_field_bulk_free() - Free register field allocated using 1312 * regmap_field_bulk_alloc. 1313 * 1314 * @field: regmap fields which should be freed. 1315 */ 1316 void regmap_field_bulk_free(struct regmap_field *field) 1317 { 1318 kfree(field); 1319 } 1320 EXPORT_SYMBOL_GPL(regmap_field_bulk_free); 1321 1322 /** 1323 * devm_regmap_field_bulk_free() - Free a bulk register field allocated using 1324 * devm_regmap_field_bulk_alloc. 1325 * 1326 * @dev: Device that will be interacted with 1327 * @field: regmap field which should be freed. 1328 * 1329 * Free register field allocated using devm_regmap_field_bulk_alloc(). Usually 1330 * drivers need not call this function, as the memory allocated via devm 1331 * will be freed as per device-driver life-cycle. 1332 */ 1333 void devm_regmap_field_bulk_free(struct device *dev, 1334 struct regmap_field *field) 1335 { 1336 devm_kfree(dev, field); 1337 } 1338 EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_free); 1339 1340 /** 1341 * devm_regmap_field_free() - Free a register field allocated using 1342 * devm_regmap_field_alloc. 1343 * 1344 * @dev: Device that will be interacted with 1345 * @field: regmap field which should be freed. 1346 * 1347 * Free register field allocated using devm_regmap_field_alloc(). Usually 1348 * drivers need not call this function, as the memory allocated via devm 1349 * will be freed as per device-driver life-cyle. 1350 */ 1351 void devm_regmap_field_free(struct device *dev, 1352 struct regmap_field *field) 1353 { 1354 devm_kfree(dev, field); 1355 } 1356 EXPORT_SYMBOL_GPL(devm_regmap_field_free); 1357 1358 /** 1359 * regmap_field_alloc() - Allocate and initialise a register field. 1360 * 1361 * @regmap: regmap bank in which this register field is located. 1362 * @reg_field: Register field with in the bank. 1363 * 1364 * The return value will be an ERR_PTR() on error or a valid pointer 1365 * to a struct regmap_field. The regmap_field should be freed by the 1366 * user once its finished working with it using regmap_field_free(). 1367 */ 1368 struct regmap_field *regmap_field_alloc(struct regmap *regmap, 1369 struct reg_field reg_field) 1370 { 1371 struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL); 1372 1373 if (!rm_field) 1374 return ERR_PTR(-ENOMEM); 1375 1376 regmap_field_init(rm_field, regmap, reg_field); 1377 1378 return rm_field; 1379 } 1380 EXPORT_SYMBOL_GPL(regmap_field_alloc); 1381 1382 /** 1383 * regmap_field_free() - Free register field allocated using 1384 * regmap_field_alloc. 1385 * 1386 * @field: regmap field which should be freed. 1387 */ 1388 void regmap_field_free(struct regmap_field *field) 1389 { 1390 kfree(field); 1391 } 1392 EXPORT_SYMBOL_GPL(regmap_field_free); 1393 1394 /** 1395 * regmap_reinit_cache() - Reinitialise the current register cache 1396 * 1397 * @map: Register map to operate on. 1398 * @config: New configuration. Only the cache data will be used. 1399 * 1400 * Discard any existing register cache for the map and initialize a 1401 * new cache. This can be used to restore the cache to defaults or to 1402 * update the cache configuration to reflect runtime discovery of the 1403 * hardware. 1404 * 1405 * No explicit locking is done here, the user needs to ensure that 1406 * this function will not race with other calls to regmap. 1407 */ 1408 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config) 1409 { 1410 int ret; 1411 1412 regcache_exit(map); 1413 regmap_debugfs_exit(map); 1414 1415 map->max_register = config->max_register; 1416 map->max_register_is_set = map->max_register ?: config->max_register_is_0; 1417 map->writeable_reg = config->writeable_reg; 1418 map->readable_reg = config->readable_reg; 1419 map->volatile_reg = config->volatile_reg; 1420 map->precious_reg = config->precious_reg; 1421 map->writeable_noinc_reg = config->writeable_noinc_reg; 1422 map->readable_noinc_reg = config->readable_noinc_reg; 1423 map->cache_type = config->cache_type; 1424 1425 ret = regmap_set_name(map, config); 1426 if (ret) 1427 return ret; 1428 1429 regmap_debugfs_init(map); 1430 1431 map->cache_bypass = false; 1432 map->cache_only = false; 1433 1434 return regcache_init(map, config); 1435 } 1436 EXPORT_SYMBOL_GPL(regmap_reinit_cache); 1437 1438 /** 1439 * regmap_exit() - Free a previously allocated register map 1440 * 1441 * @map: Register map to operate on. 1442 */ 1443 void regmap_exit(struct regmap *map) 1444 { 1445 struct regmap_async *async; 1446 1447 regcache_exit(map); 1448 regmap_debugfs_exit(map); 1449 regmap_range_exit(map); 1450 if (map->bus && map->bus->free_context) 1451 map->bus->free_context(map->bus_context); 1452 kfree(map->work_buf); 1453 while (!list_empty(&map->async_free)) { 1454 async = list_first_entry_or_null(&map->async_free, 1455 struct regmap_async, 1456 list); 1457 list_del(&async->list); 1458 kfree(async->work_buf); 1459 kfree(async); 1460 } 1461 if (map->hwlock) 1462 hwspin_lock_free(map->hwlock); 1463 if (map->lock == regmap_lock_mutex) 1464 mutex_destroy(&map->mutex); 1465 kfree_const(map->name); 1466 kfree(map->patch); 1467 if (map->bus && map->bus->free_on_exit) 1468 kfree(map->bus); 1469 kfree(map); 1470 } 1471 EXPORT_SYMBOL_GPL(regmap_exit); 1472 1473 static int dev_get_regmap_match(struct device *dev, void *res, void *data) 1474 { 1475 struct regmap **r = res; 1476 if (!r || !*r) { 1477 WARN_ON(!r || !*r); 1478 return 0; 1479 } 1480 1481 /* If the user didn't specify a name match any */ 1482 if (data) 1483 return (*r)->name && !strcmp((*r)->name, data); 1484 else 1485 return 1; 1486 } 1487 1488 /** 1489 * dev_get_regmap() - Obtain the regmap (if any) for a device 1490 * 1491 * @dev: Device to retrieve the map for 1492 * @name: Optional name for the register map, usually NULL. 1493 * 1494 * Returns the regmap for the device if one is present, or NULL. If 1495 * name is specified then it must match the name specified when 1496 * registering the device, if it is NULL then the first regmap found 1497 * will be used. Devices with multiple register maps are very rare, 1498 * generic code should normally not need to specify a name. 1499 */ 1500 struct regmap *dev_get_regmap(struct device *dev, const char *name) 1501 { 1502 struct regmap **r = devres_find(dev, dev_get_regmap_release, 1503 dev_get_regmap_match, (void *)name); 1504 1505 if (!r) 1506 return NULL; 1507 return *r; 1508 } 1509 EXPORT_SYMBOL_GPL(dev_get_regmap); 1510 1511 /** 1512 * regmap_get_device() - Obtain the device from a regmap 1513 * 1514 * @map: Register map to operate on. 1515 * 1516 * Returns the underlying device that the regmap has been created for. 1517 */ 1518 struct device *regmap_get_device(struct regmap *map) 1519 { 1520 return map->dev; 1521 } 1522 EXPORT_SYMBOL_GPL(regmap_get_device); 1523 1524 static int _regmap_select_page(struct regmap *map, unsigned int *reg, 1525 struct regmap_range_node *range, 1526 unsigned int val_num) 1527 { 1528 void *orig_work_buf; 1529 unsigned int win_offset; 1530 unsigned int win_page; 1531 bool page_chg; 1532 int ret; 1533 1534 win_offset = (*reg - range->range_min) % range->window_len; 1535 win_page = (*reg - range->range_min) / range->window_len; 1536 1537 if (val_num > 1) { 1538 /* Bulk write shouldn't cross range boundary */ 1539 if (*reg + val_num - 1 > range->range_max) 1540 return -EINVAL; 1541 1542 /* ... or single page boundary */ 1543 if (val_num > range->window_len - win_offset) 1544 return -EINVAL; 1545 } 1546 1547 /* It is possible to have selector register inside data window. 1548 In that case, selector register is located on every page and 1549 it needs no page switching, when accessed alone. */ 1550 if (val_num > 1 || 1551 range->window_start + win_offset != range->selector_reg) { 1552 /* Use separate work_buf during page switching */ 1553 orig_work_buf = map->work_buf; 1554 map->work_buf = map->selector_work_buf; 1555 1556 ret = _regmap_update_bits(map, range->selector_reg, 1557 range->selector_mask, 1558 win_page << range->selector_shift, 1559 &page_chg, false); 1560 1561 map->work_buf = orig_work_buf; 1562 1563 if (ret != 0) 1564 return ret; 1565 } 1566 1567 *reg = range->window_start + win_offset; 1568 1569 return 0; 1570 } 1571 1572 static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes, 1573 unsigned long mask) 1574 { 1575 u8 *buf; 1576 int i; 1577 1578 if (!mask || !map->work_buf) 1579 return; 1580 1581 buf = map->work_buf; 1582 1583 for (i = 0; i < max_bytes; i++) 1584 buf[i] |= (mask >> (8 * i)) & 0xff; 1585 } 1586 1587 static unsigned int regmap_reg_addr(struct regmap *map, unsigned int reg) 1588 { 1589 reg += map->reg_base; 1590 1591 if (map->format.reg_shift > 0) 1592 reg >>= map->format.reg_shift; 1593 else if (map->format.reg_shift < 0) 1594 reg <<= -(map->format.reg_shift); 1595 1596 return reg; 1597 } 1598 1599 static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg, 1600 const void *val, size_t val_len, bool noinc) 1601 { 1602 struct regmap_range_node *range; 1603 unsigned long flags; 1604 void *work_val = map->work_buf + map->format.reg_bytes + 1605 map->format.pad_bytes; 1606 void *buf; 1607 int ret = -ENOTSUPP; 1608 size_t len; 1609 int i; 1610 1611 /* Check for unwritable or noinc registers in range 1612 * before we start 1613 */ 1614 if (!regmap_writeable_noinc(map, reg)) { 1615 for (i = 0; i < val_len / map->format.val_bytes; i++) { 1616 unsigned int element = 1617 reg + regmap_get_offset(map, i); 1618 if (!regmap_writeable(map, element) || 1619 regmap_writeable_noinc(map, element)) 1620 return -EINVAL; 1621 } 1622 } 1623 1624 if (!map->cache_bypass && map->format.parse_val) { 1625 unsigned int ival, offset; 1626 int val_bytes = map->format.val_bytes; 1627 1628 /* Cache the last written value for noinc writes */ 1629 i = noinc ? val_len - val_bytes : 0; 1630 for (; i < val_len; i += val_bytes) { 1631 ival = map->format.parse_val(val + i); 1632 offset = noinc ? 0 : regmap_get_offset(map, i / val_bytes); 1633 ret = regcache_write(map, reg + offset, ival); 1634 if (ret) { 1635 dev_err(map->dev, 1636 "Error in caching of register: %x ret: %d\n", 1637 reg + offset, ret); 1638 return ret; 1639 } 1640 } 1641 if (map->cache_only) { 1642 map->cache_dirty = true; 1643 return 0; 1644 } 1645 } 1646 1647 range = _regmap_range_lookup(map, reg); 1648 if (range) { 1649 int val_num = val_len / map->format.val_bytes; 1650 int win_offset = (reg - range->range_min) % range->window_len; 1651 int win_residue = range->window_len - win_offset; 1652 1653 /* If the write goes beyond the end of the window split it */ 1654 while (val_num > win_residue) { 1655 dev_dbg(map->dev, "Writing window %d/%zu\n", 1656 win_residue, val_len / map->format.val_bytes); 1657 ret = _regmap_raw_write_impl(map, reg, val, 1658 win_residue * 1659 map->format.val_bytes, noinc); 1660 if (ret != 0) 1661 return ret; 1662 1663 reg += win_residue; 1664 val_num -= win_residue; 1665 val += win_residue * map->format.val_bytes; 1666 val_len -= win_residue * map->format.val_bytes; 1667 1668 win_offset = (reg - range->range_min) % 1669 range->window_len; 1670 win_residue = range->window_len - win_offset; 1671 } 1672 1673 ret = _regmap_select_page(map, ®, range, noinc ? 1 : val_num); 1674 if (ret != 0) 1675 return ret; 1676 } 1677 1678 reg = regmap_reg_addr(map, reg); 1679 map->format.format_reg(map->work_buf, reg, map->reg_shift); 1680 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes, 1681 map->write_flag_mask); 1682 1683 /* 1684 * Essentially all I/O mechanisms will be faster with a single 1685 * buffer to write. Since register syncs often generate raw 1686 * writes of single registers optimise that case. 1687 */ 1688 if (val != work_val && val_len == map->format.val_bytes) { 1689 memcpy(work_val, val, map->format.val_bytes); 1690 val = work_val; 1691 } 1692 1693 if (map->async && map->bus && map->bus->async_write) { 1694 struct regmap_async *async; 1695 1696 trace_regmap_async_write_start(map, reg, val_len); 1697 1698 spin_lock_irqsave(&map->async_lock, flags); 1699 async = list_first_entry_or_null(&map->async_free, 1700 struct regmap_async, 1701 list); 1702 if (async) 1703 list_del(&async->list); 1704 spin_unlock_irqrestore(&map->async_lock, flags); 1705 1706 if (!async) { 1707 async = map->bus->async_alloc(); 1708 if (!async) 1709 return -ENOMEM; 1710 1711 async->work_buf = kzalloc(map->format.buf_size, 1712 GFP_KERNEL | GFP_DMA); 1713 if (!async->work_buf) { 1714 kfree(async); 1715 return -ENOMEM; 1716 } 1717 } 1718 1719 async->map = map; 1720 1721 /* If the caller supplied the value we can use it safely. */ 1722 memcpy(async->work_buf, map->work_buf, map->format.pad_bytes + 1723 map->format.reg_bytes + map->format.val_bytes); 1724 1725 spin_lock_irqsave(&map->async_lock, flags); 1726 list_add_tail(&async->list, &map->async_list); 1727 spin_unlock_irqrestore(&map->async_lock, flags); 1728 1729 if (val != work_val) 1730 ret = map->bus->async_write(map->bus_context, 1731 async->work_buf, 1732 map->format.reg_bytes + 1733 map->format.pad_bytes, 1734 val, val_len, async); 1735 else 1736 ret = map->bus->async_write(map->bus_context, 1737 async->work_buf, 1738 map->format.reg_bytes + 1739 map->format.pad_bytes + 1740 val_len, NULL, 0, async); 1741 1742 if (ret != 0) { 1743 dev_err(map->dev, "Failed to schedule write: %d\n", 1744 ret); 1745 1746 spin_lock_irqsave(&map->async_lock, flags); 1747 list_move(&async->list, &map->async_free); 1748 spin_unlock_irqrestore(&map->async_lock, flags); 1749 } 1750 1751 return ret; 1752 } 1753 1754 trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes); 1755 1756 /* If we're doing a single register write we can probably just 1757 * send the work_buf directly, otherwise try to do a gather 1758 * write. 1759 */ 1760 if (val == work_val) 1761 ret = map->write(map->bus_context, map->work_buf, 1762 map->format.reg_bytes + 1763 map->format.pad_bytes + 1764 val_len); 1765 else if (map->bus && map->bus->gather_write) 1766 ret = map->bus->gather_write(map->bus_context, map->work_buf, 1767 map->format.reg_bytes + 1768 map->format.pad_bytes, 1769 val, val_len); 1770 else 1771 ret = -ENOTSUPP; 1772 1773 /* If that didn't work fall back on linearising by hand. */ 1774 if (ret == -ENOTSUPP) { 1775 len = map->format.reg_bytes + map->format.pad_bytes + val_len; 1776 buf = kzalloc(len, GFP_KERNEL); 1777 if (!buf) 1778 return -ENOMEM; 1779 1780 memcpy(buf, map->work_buf, map->format.reg_bytes); 1781 memcpy(buf + map->format.reg_bytes + map->format.pad_bytes, 1782 val, val_len); 1783 ret = map->write(map->bus_context, buf, len); 1784 1785 kfree(buf); 1786 } else if (ret != 0 && !map->cache_bypass && map->format.parse_val) { 1787 /* regcache_drop_region() takes lock that we already have, 1788 * thus call map->cache_ops->drop() directly 1789 */ 1790 if (map->cache_ops && map->cache_ops->drop) 1791 map->cache_ops->drop(map, reg, reg + 1); 1792 } 1793 1794 trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes); 1795 1796 return ret; 1797 } 1798 1799 /** 1800 * regmap_can_raw_write - Test if regmap_raw_write() is supported 1801 * 1802 * @map: Map to check. 1803 */ 1804 bool regmap_can_raw_write(struct regmap *map) 1805 { 1806 return map->write && map->format.format_val && map->format.format_reg; 1807 } 1808 EXPORT_SYMBOL_GPL(regmap_can_raw_write); 1809 1810 /** 1811 * regmap_get_raw_read_max - Get the maximum size we can read 1812 * 1813 * @map: Map to check. 1814 */ 1815 size_t regmap_get_raw_read_max(struct regmap *map) 1816 { 1817 return map->max_raw_read; 1818 } 1819 EXPORT_SYMBOL_GPL(regmap_get_raw_read_max); 1820 1821 /** 1822 * regmap_get_raw_write_max - Get the maximum size we can read 1823 * 1824 * @map: Map to check. 1825 */ 1826 size_t regmap_get_raw_write_max(struct regmap *map) 1827 { 1828 return map->max_raw_write; 1829 } 1830 EXPORT_SYMBOL_GPL(regmap_get_raw_write_max); 1831 1832 static int _regmap_bus_formatted_write(void *context, unsigned int reg, 1833 unsigned int val) 1834 { 1835 int ret; 1836 struct regmap_range_node *range; 1837 struct regmap *map = context; 1838 1839 WARN_ON(!map->format.format_write); 1840 1841 range = _regmap_range_lookup(map, reg); 1842 if (range) { 1843 ret = _regmap_select_page(map, ®, range, 1); 1844 if (ret != 0) 1845 return ret; 1846 } 1847 1848 reg = regmap_reg_addr(map, reg); 1849 map->format.format_write(map, reg, val); 1850 1851 trace_regmap_hw_write_start(map, reg, 1); 1852 1853 ret = map->write(map->bus_context, map->work_buf, map->format.buf_size); 1854 1855 trace_regmap_hw_write_done(map, reg, 1); 1856 1857 return ret; 1858 } 1859 1860 static int _regmap_bus_reg_write(void *context, unsigned int reg, 1861 unsigned int val) 1862 { 1863 struct regmap *map = context; 1864 struct regmap_range_node *range; 1865 int ret; 1866 1867 range = _regmap_range_lookup(map, reg); 1868 if (range) { 1869 ret = _regmap_select_page(map, ®, range, 1); 1870 if (ret != 0) 1871 return ret; 1872 } 1873 1874 reg = regmap_reg_addr(map, reg); 1875 return map->bus->reg_write(map->bus_context, reg, val); 1876 } 1877 1878 static int _regmap_bus_raw_write(void *context, unsigned int reg, 1879 unsigned int val) 1880 { 1881 struct regmap *map = context; 1882 1883 WARN_ON(!map->format.format_val); 1884 1885 map->format.format_val(map->work_buf + map->format.reg_bytes 1886 + map->format.pad_bytes, val, 0); 1887 return _regmap_raw_write_impl(map, reg, 1888 map->work_buf + 1889 map->format.reg_bytes + 1890 map->format.pad_bytes, 1891 map->format.val_bytes, 1892 false); 1893 } 1894 1895 static inline void *_regmap_map_get_context(struct regmap *map) 1896 { 1897 return (map->bus || (!map->bus && map->read)) ? map : map->bus_context; 1898 } 1899 1900 int _regmap_write(struct regmap *map, unsigned int reg, 1901 unsigned int val) 1902 { 1903 int ret; 1904 void *context = _regmap_map_get_context(map); 1905 1906 if (!regmap_writeable(map, reg)) 1907 return -EIO; 1908 1909 if (!map->cache_bypass && !map->defer_caching) { 1910 ret = regcache_write(map, reg, val); 1911 if (ret != 0) 1912 return ret; 1913 if (map->cache_only) { 1914 map->cache_dirty = true; 1915 return 0; 1916 } 1917 } 1918 1919 ret = map->reg_write(context, reg, val); 1920 if (ret == 0) { 1921 if (regmap_should_log(map)) 1922 dev_info(map->dev, "%x <= %x\n", reg, val); 1923 1924 trace_regmap_reg_write(map, reg, val); 1925 } 1926 1927 return ret; 1928 } 1929 1930 /** 1931 * regmap_write() - Write a value to a single register 1932 * 1933 * @map: Register map to write to 1934 * @reg: Register to write to 1935 * @val: Value to be written 1936 * 1937 * A value of zero will be returned on success, a negative errno will 1938 * be returned in error cases. 1939 */ 1940 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val) 1941 { 1942 int ret; 1943 1944 if (!IS_ALIGNED(reg, map->reg_stride)) 1945 return -EINVAL; 1946 1947 map->lock(map->lock_arg); 1948 1949 ret = _regmap_write(map, reg, val); 1950 1951 map->unlock(map->lock_arg); 1952 1953 return ret; 1954 } 1955 EXPORT_SYMBOL_GPL(regmap_write); 1956 1957 /** 1958 * regmap_write_async() - Write a value to a single register asynchronously 1959 * 1960 * @map: Register map to write to 1961 * @reg: Register to write to 1962 * @val: Value to be written 1963 * 1964 * A value of zero will be returned on success, a negative errno will 1965 * be returned in error cases. 1966 */ 1967 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val) 1968 { 1969 int ret; 1970 1971 if (!IS_ALIGNED(reg, map->reg_stride)) 1972 return -EINVAL; 1973 1974 map->lock(map->lock_arg); 1975 1976 map->async = true; 1977 1978 ret = _regmap_write(map, reg, val); 1979 1980 map->async = false; 1981 1982 map->unlock(map->lock_arg); 1983 1984 return ret; 1985 } 1986 EXPORT_SYMBOL_GPL(regmap_write_async); 1987 1988 int _regmap_raw_write(struct regmap *map, unsigned int reg, 1989 const void *val, size_t val_len, bool noinc) 1990 { 1991 size_t val_bytes = map->format.val_bytes; 1992 size_t val_count = val_len / val_bytes; 1993 size_t chunk_count, chunk_bytes; 1994 size_t chunk_regs = val_count; 1995 int ret, i; 1996 1997 if (!val_count) 1998 return -EINVAL; 1999 2000 if (map->use_single_write) 2001 chunk_regs = 1; 2002 else if (map->max_raw_write && val_len > map->max_raw_write) 2003 chunk_regs = map->max_raw_write / val_bytes; 2004 2005 chunk_count = val_count / chunk_regs; 2006 chunk_bytes = chunk_regs * val_bytes; 2007 2008 /* Write as many bytes as possible with chunk_size */ 2009 for (i = 0; i < chunk_count; i++) { 2010 ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes, noinc); 2011 if (ret) 2012 return ret; 2013 2014 reg += regmap_get_offset(map, chunk_regs); 2015 val += chunk_bytes; 2016 val_len -= chunk_bytes; 2017 } 2018 2019 /* Write remaining bytes */ 2020 if (val_len) 2021 ret = _regmap_raw_write_impl(map, reg, val, val_len, noinc); 2022 2023 return ret; 2024 } 2025 2026 /** 2027 * regmap_raw_write() - Write raw values to one or more registers 2028 * 2029 * @map: Register map to write to 2030 * @reg: Initial register to write to 2031 * @val: Block of data to be written, laid out for direct transmission to the 2032 * device 2033 * @val_len: Length of data pointed to by val. 2034 * 2035 * This function is intended to be used for things like firmware 2036 * download where a large block of data needs to be transferred to the 2037 * device. No formatting will be done on the data provided. 2038 * 2039 * A value of zero will be returned on success, a negative errno will 2040 * be returned in error cases. 2041 */ 2042 int regmap_raw_write(struct regmap *map, unsigned int reg, 2043 const void *val, size_t val_len) 2044 { 2045 int ret; 2046 2047 if (!regmap_can_raw_write(map)) 2048 return -EINVAL; 2049 if (val_len % map->format.val_bytes) 2050 return -EINVAL; 2051 2052 map->lock(map->lock_arg); 2053 2054 ret = _regmap_raw_write(map, reg, val, val_len, false); 2055 2056 map->unlock(map->lock_arg); 2057 2058 return ret; 2059 } 2060 EXPORT_SYMBOL_GPL(regmap_raw_write); 2061 2062 static int regmap_noinc_readwrite(struct regmap *map, unsigned int reg, 2063 void *val, unsigned int val_len, bool write) 2064 { 2065 size_t val_bytes = map->format.val_bytes; 2066 size_t val_count = val_len / val_bytes; 2067 unsigned int lastval; 2068 u8 *u8p; 2069 u16 *u16p; 2070 u32 *u32p; 2071 int ret; 2072 int i; 2073 2074 switch (val_bytes) { 2075 case 1: 2076 u8p = val; 2077 if (write) 2078 lastval = (unsigned int)u8p[val_count - 1]; 2079 break; 2080 case 2: 2081 u16p = val; 2082 if (write) 2083 lastval = (unsigned int)u16p[val_count - 1]; 2084 break; 2085 case 4: 2086 u32p = val; 2087 if (write) 2088 lastval = (unsigned int)u32p[val_count - 1]; 2089 break; 2090 default: 2091 return -EINVAL; 2092 } 2093 2094 /* 2095 * Update the cache with the last value we write, the rest is just 2096 * gone down in the hardware FIFO. We can't cache FIFOs. This makes 2097 * sure a single read from the cache will work. 2098 */ 2099 if (write) { 2100 if (!map->cache_bypass && !map->defer_caching) { 2101 ret = regcache_write(map, reg, lastval); 2102 if (ret != 0) 2103 return ret; 2104 if (map->cache_only) { 2105 map->cache_dirty = true; 2106 return 0; 2107 } 2108 } 2109 ret = map->bus->reg_noinc_write(map->bus_context, reg, val, val_count); 2110 } else { 2111 ret = map->bus->reg_noinc_read(map->bus_context, reg, val, val_count); 2112 } 2113 2114 if (!ret && regmap_should_log(map)) { 2115 dev_info(map->dev, "%x %s [", reg, write ? "<=" : "=>"); 2116 for (i = 0; i < val_count; i++) { 2117 switch (val_bytes) { 2118 case 1: 2119 pr_cont("%x", u8p[i]); 2120 break; 2121 case 2: 2122 pr_cont("%x", u16p[i]); 2123 break; 2124 case 4: 2125 pr_cont("%x", u32p[i]); 2126 break; 2127 default: 2128 break; 2129 } 2130 if (i == (val_count - 1)) 2131 pr_cont("]\n"); 2132 else 2133 pr_cont(","); 2134 } 2135 } 2136 2137 return 0; 2138 } 2139 2140 /** 2141 * regmap_noinc_write(): Write data to a register without incrementing the 2142 * register number 2143 * 2144 * @map: Register map to write to 2145 * @reg: Register to write to 2146 * @val: Pointer to data buffer 2147 * @val_len: Length of output buffer in bytes. 2148 * 2149 * The regmap API usually assumes that bulk bus write operations will write a 2150 * range of registers. Some devices have certain registers for which a write 2151 * operation can write to an internal FIFO. 2152 * 2153 * The target register must be volatile but registers after it can be 2154 * completely unrelated cacheable registers. 2155 * 2156 * This will attempt multiple writes as required to write val_len bytes. 2157 * 2158 * A value of zero will be returned on success, a negative errno will be 2159 * returned in error cases. 2160 */ 2161 int regmap_noinc_write(struct regmap *map, unsigned int reg, 2162 const void *val, size_t val_len) 2163 { 2164 size_t write_len; 2165 int ret; 2166 2167 if (!map->write && !(map->bus && map->bus->reg_noinc_write)) 2168 return -EINVAL; 2169 if (val_len % map->format.val_bytes) 2170 return -EINVAL; 2171 if (!IS_ALIGNED(reg, map->reg_stride)) 2172 return -EINVAL; 2173 if (val_len == 0) 2174 return -EINVAL; 2175 2176 map->lock(map->lock_arg); 2177 2178 if (!regmap_volatile(map, reg) || !regmap_writeable_noinc(map, reg)) { 2179 ret = -EINVAL; 2180 goto out_unlock; 2181 } 2182 2183 /* 2184 * Use the accelerated operation if we can. The val drops the const 2185 * typing in order to facilitate code reuse in regmap_noinc_readwrite(). 2186 */ 2187 if (map->bus->reg_noinc_write) { 2188 ret = regmap_noinc_readwrite(map, reg, (void *)val, val_len, true); 2189 goto out_unlock; 2190 } 2191 2192 while (val_len) { 2193 if (map->max_raw_write && map->max_raw_write < val_len) 2194 write_len = map->max_raw_write; 2195 else 2196 write_len = val_len; 2197 ret = _regmap_raw_write(map, reg, val, write_len, true); 2198 if (ret) 2199 goto out_unlock; 2200 val = ((u8 *)val) + write_len; 2201 val_len -= write_len; 2202 } 2203 2204 out_unlock: 2205 map->unlock(map->lock_arg); 2206 return ret; 2207 } 2208 EXPORT_SYMBOL_GPL(regmap_noinc_write); 2209 2210 /** 2211 * regmap_field_update_bits_base() - Perform a read/modify/write cycle a 2212 * register field. 2213 * 2214 * @field: Register field to write to 2215 * @mask: Bitmask to change 2216 * @val: Value to be written 2217 * @change: Boolean indicating if a write was done 2218 * @async: Boolean indicating asynchronously 2219 * @force: Boolean indicating use force update 2220 * 2221 * Perform a read/modify/write cycle on the register field with change, 2222 * async, force option. 2223 * 2224 * A value of zero will be returned on success, a negative errno will 2225 * be returned in error cases. 2226 */ 2227 int regmap_field_update_bits_base(struct regmap_field *field, 2228 unsigned int mask, unsigned int val, 2229 bool *change, bool async, bool force) 2230 { 2231 mask = (mask << field->shift) & field->mask; 2232 2233 return regmap_update_bits_base(field->regmap, field->reg, 2234 mask, val << field->shift, 2235 change, async, force); 2236 } 2237 EXPORT_SYMBOL_GPL(regmap_field_update_bits_base); 2238 2239 /** 2240 * regmap_field_test_bits() - Check if all specified bits are set in a 2241 * register field. 2242 * 2243 * @field: Register field to operate on 2244 * @bits: Bits to test 2245 * 2246 * Returns -1 if the underlying regmap_field_read() fails, 0 if at least one of the 2247 * tested bits is not set and 1 if all tested bits are set. 2248 */ 2249 int regmap_field_test_bits(struct regmap_field *field, unsigned int bits) 2250 { 2251 unsigned int val, ret; 2252 2253 ret = regmap_field_read(field, &val); 2254 if (ret) 2255 return ret; 2256 2257 return (val & bits) == bits; 2258 } 2259 EXPORT_SYMBOL_GPL(regmap_field_test_bits); 2260 2261 /** 2262 * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a 2263 * register field with port ID 2264 * 2265 * @field: Register field to write to 2266 * @id: port ID 2267 * @mask: Bitmask to change 2268 * @val: Value to be written 2269 * @change: Boolean indicating if a write was done 2270 * @async: Boolean indicating asynchronously 2271 * @force: Boolean indicating use force update 2272 * 2273 * A value of zero will be returned on success, a negative errno will 2274 * be returned in error cases. 2275 */ 2276 int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id, 2277 unsigned int mask, unsigned int val, 2278 bool *change, bool async, bool force) 2279 { 2280 if (id >= field->id_size) 2281 return -EINVAL; 2282 2283 mask = (mask << field->shift) & field->mask; 2284 2285 return regmap_update_bits_base(field->regmap, 2286 field->reg + (field->id_offset * id), 2287 mask, val << field->shift, 2288 change, async, force); 2289 } 2290 EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base); 2291 2292 /** 2293 * regmap_bulk_write() - Write multiple registers to the device 2294 * 2295 * @map: Register map to write to 2296 * @reg: First register to be write from 2297 * @val: Block of data to be written, in native register size for device 2298 * @val_count: Number of registers to write 2299 * 2300 * This function is intended to be used for writing a large block of 2301 * data to the device either in single transfer or multiple transfer. 2302 * 2303 * A value of zero will be returned on success, a negative errno will 2304 * be returned in error cases. 2305 */ 2306 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val, 2307 size_t val_count) 2308 { 2309 int ret = 0, i; 2310 size_t val_bytes = map->format.val_bytes; 2311 2312 if (!IS_ALIGNED(reg, map->reg_stride)) 2313 return -EINVAL; 2314 2315 /* 2316 * Some devices don't support bulk write, for them we have a series of 2317 * single write operations. 2318 */ 2319 if (!map->write || !map->format.parse_inplace) { 2320 map->lock(map->lock_arg); 2321 for (i = 0; i < val_count; i++) { 2322 unsigned int ival; 2323 2324 switch (val_bytes) { 2325 case 1: 2326 ival = *(u8 *)(val + (i * val_bytes)); 2327 break; 2328 case 2: 2329 ival = *(u16 *)(val + (i * val_bytes)); 2330 break; 2331 case 4: 2332 ival = *(u32 *)(val + (i * val_bytes)); 2333 break; 2334 default: 2335 ret = -EINVAL; 2336 goto out; 2337 } 2338 2339 ret = _regmap_write(map, 2340 reg + regmap_get_offset(map, i), 2341 ival); 2342 if (ret != 0) 2343 goto out; 2344 } 2345 out: 2346 map->unlock(map->lock_arg); 2347 } else { 2348 void *wval; 2349 2350 wval = kmemdup(val, val_count * val_bytes, map->alloc_flags); 2351 if (!wval) 2352 return -ENOMEM; 2353 2354 for (i = 0; i < val_count * val_bytes; i += val_bytes) 2355 map->format.parse_inplace(wval + i); 2356 2357 ret = regmap_raw_write(map, reg, wval, val_bytes * val_count); 2358 2359 kfree(wval); 2360 } 2361 2362 if (!ret) 2363 trace_regmap_bulk_write(map, reg, val, val_bytes * val_count); 2364 2365 return ret; 2366 } 2367 EXPORT_SYMBOL_GPL(regmap_bulk_write); 2368 2369 /* 2370 * _regmap_raw_multi_reg_write() 2371 * 2372 * the (register,newvalue) pairs in regs have not been formatted, but 2373 * they are all in the same page and have been changed to being page 2374 * relative. The page register has been written if that was necessary. 2375 */ 2376 static int _regmap_raw_multi_reg_write(struct regmap *map, 2377 const struct reg_sequence *regs, 2378 size_t num_regs) 2379 { 2380 int ret; 2381 void *buf; 2382 int i; 2383 u8 *u8; 2384 size_t val_bytes = map->format.val_bytes; 2385 size_t reg_bytes = map->format.reg_bytes; 2386 size_t pad_bytes = map->format.pad_bytes; 2387 size_t pair_size = reg_bytes + pad_bytes + val_bytes; 2388 size_t len = pair_size * num_regs; 2389 2390 if (!len) 2391 return -EINVAL; 2392 2393 buf = kzalloc(len, GFP_KERNEL); 2394 if (!buf) 2395 return -ENOMEM; 2396 2397 /* We have to linearise by hand. */ 2398 2399 u8 = buf; 2400 2401 for (i = 0; i < num_regs; i++) { 2402 unsigned int reg = regs[i].reg; 2403 unsigned int val = regs[i].def; 2404 trace_regmap_hw_write_start(map, reg, 1); 2405 reg = regmap_reg_addr(map, reg); 2406 map->format.format_reg(u8, reg, map->reg_shift); 2407 u8 += reg_bytes + pad_bytes; 2408 map->format.format_val(u8, val, 0); 2409 u8 += val_bytes; 2410 } 2411 u8 = buf; 2412 *u8 |= map->write_flag_mask; 2413 2414 ret = map->write(map->bus_context, buf, len); 2415 2416 kfree(buf); 2417 2418 for (i = 0; i < num_regs; i++) { 2419 int reg = regs[i].reg; 2420 trace_regmap_hw_write_done(map, reg, 1); 2421 } 2422 return ret; 2423 } 2424 2425 static unsigned int _regmap_register_page(struct regmap *map, 2426 unsigned int reg, 2427 struct regmap_range_node *range) 2428 { 2429 unsigned int win_page = (reg - range->range_min) / range->window_len; 2430 2431 return win_page; 2432 } 2433 2434 static int _regmap_range_multi_paged_reg_write(struct regmap *map, 2435 struct reg_sequence *regs, 2436 size_t num_regs) 2437 { 2438 int ret; 2439 int i, n; 2440 struct reg_sequence *base; 2441 unsigned int this_page = 0; 2442 unsigned int page_change = 0; 2443 /* 2444 * the set of registers are not neccessarily in order, but 2445 * since the order of write must be preserved this algorithm 2446 * chops the set each time the page changes. This also applies 2447 * if there is a delay required at any point in the sequence. 2448 */ 2449 base = regs; 2450 for (i = 0, n = 0; i < num_regs; i++, n++) { 2451 unsigned int reg = regs[i].reg; 2452 struct regmap_range_node *range; 2453 2454 range = _regmap_range_lookup(map, reg); 2455 if (range) { 2456 unsigned int win_page = _regmap_register_page(map, reg, 2457 range); 2458 2459 if (i == 0) 2460 this_page = win_page; 2461 if (win_page != this_page) { 2462 this_page = win_page; 2463 page_change = 1; 2464 } 2465 } 2466 2467 /* If we have both a page change and a delay make sure to 2468 * write the regs and apply the delay before we change the 2469 * page. 2470 */ 2471 2472 if (page_change || regs[i].delay_us) { 2473 2474 /* For situations where the first write requires 2475 * a delay we need to make sure we don't call 2476 * raw_multi_reg_write with n=0 2477 * This can't occur with page breaks as we 2478 * never write on the first iteration 2479 */ 2480 if (regs[i].delay_us && i == 0) 2481 n = 1; 2482 2483 ret = _regmap_raw_multi_reg_write(map, base, n); 2484 if (ret != 0) 2485 return ret; 2486 2487 if (regs[i].delay_us) { 2488 if (map->can_sleep) 2489 fsleep(regs[i].delay_us); 2490 else 2491 udelay(regs[i].delay_us); 2492 } 2493 2494 base += n; 2495 n = 0; 2496 2497 if (page_change) { 2498 ret = _regmap_select_page(map, 2499 &base[n].reg, 2500 range, 1); 2501 if (ret != 0) 2502 return ret; 2503 2504 page_change = 0; 2505 } 2506 2507 } 2508 2509 } 2510 if (n > 0) 2511 return _regmap_raw_multi_reg_write(map, base, n); 2512 return 0; 2513 } 2514 2515 static int _regmap_multi_reg_write(struct regmap *map, 2516 const struct reg_sequence *regs, 2517 size_t num_regs) 2518 { 2519 int i; 2520 int ret; 2521 2522 if (!map->can_multi_write) { 2523 for (i = 0; i < num_regs; i++) { 2524 ret = _regmap_write(map, regs[i].reg, regs[i].def); 2525 if (ret != 0) 2526 return ret; 2527 2528 if (regs[i].delay_us) { 2529 if (map->can_sleep) 2530 fsleep(regs[i].delay_us); 2531 else 2532 udelay(regs[i].delay_us); 2533 } 2534 } 2535 return 0; 2536 } 2537 2538 if (!map->format.parse_inplace) 2539 return -EINVAL; 2540 2541 if (map->writeable_reg) 2542 for (i = 0; i < num_regs; i++) { 2543 int reg = regs[i].reg; 2544 if (!map->writeable_reg(map->dev, reg)) 2545 return -EINVAL; 2546 if (!IS_ALIGNED(reg, map->reg_stride)) 2547 return -EINVAL; 2548 } 2549 2550 if (!map->cache_bypass) { 2551 for (i = 0; i < num_regs; i++) { 2552 unsigned int val = regs[i].def; 2553 unsigned int reg = regs[i].reg; 2554 ret = regcache_write(map, reg, val); 2555 if (ret) { 2556 dev_err(map->dev, 2557 "Error in caching of register: %x ret: %d\n", 2558 reg, ret); 2559 return ret; 2560 } 2561 } 2562 if (map->cache_only) { 2563 map->cache_dirty = true; 2564 return 0; 2565 } 2566 } 2567 2568 WARN_ON(!map->bus); 2569 2570 for (i = 0; i < num_regs; i++) { 2571 unsigned int reg = regs[i].reg; 2572 struct regmap_range_node *range; 2573 2574 /* Coalesce all the writes between a page break or a delay 2575 * in a sequence 2576 */ 2577 range = _regmap_range_lookup(map, reg); 2578 if (range || regs[i].delay_us) { 2579 size_t len = sizeof(struct reg_sequence)*num_regs; 2580 struct reg_sequence *base = kmemdup(regs, len, 2581 GFP_KERNEL); 2582 if (!base) 2583 return -ENOMEM; 2584 ret = _regmap_range_multi_paged_reg_write(map, base, 2585 num_regs); 2586 kfree(base); 2587 2588 return ret; 2589 } 2590 } 2591 return _regmap_raw_multi_reg_write(map, regs, num_regs); 2592 } 2593 2594 /** 2595 * regmap_multi_reg_write() - Write multiple registers to the device 2596 * 2597 * @map: Register map to write to 2598 * @regs: Array of structures containing register,value to be written 2599 * @num_regs: Number of registers to write 2600 * 2601 * Write multiple registers to the device where the set of register, value 2602 * pairs are supplied in any order, possibly not all in a single range. 2603 * 2604 * The 'normal' block write mode will send ultimately send data on the 2605 * target bus as R,V1,V2,V3,..,Vn where successively higher registers are 2606 * addressed. However, this alternative block multi write mode will send 2607 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device 2608 * must of course support the mode. 2609 * 2610 * A value of zero will be returned on success, a negative errno will be 2611 * returned in error cases. 2612 */ 2613 int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs, 2614 int num_regs) 2615 { 2616 int ret; 2617 2618 map->lock(map->lock_arg); 2619 2620 ret = _regmap_multi_reg_write(map, regs, num_regs); 2621 2622 map->unlock(map->lock_arg); 2623 2624 return ret; 2625 } 2626 EXPORT_SYMBOL_GPL(regmap_multi_reg_write); 2627 2628 /** 2629 * regmap_multi_reg_write_bypassed() - Write multiple registers to the 2630 * device but not the cache 2631 * 2632 * @map: Register map to write to 2633 * @regs: Array of structures containing register,value to be written 2634 * @num_regs: Number of registers to write 2635 * 2636 * Write multiple registers to the device but not the cache where the set 2637 * of register are supplied in any order. 2638 * 2639 * This function is intended to be used for writing a large block of data 2640 * atomically to the device in single transfer for those I2C client devices 2641 * that implement this alternative block write mode. 2642 * 2643 * A value of zero will be returned on success, a negative errno will 2644 * be returned in error cases. 2645 */ 2646 int regmap_multi_reg_write_bypassed(struct regmap *map, 2647 const struct reg_sequence *regs, 2648 int num_regs) 2649 { 2650 int ret; 2651 bool bypass; 2652 2653 map->lock(map->lock_arg); 2654 2655 bypass = map->cache_bypass; 2656 map->cache_bypass = true; 2657 2658 ret = _regmap_multi_reg_write(map, regs, num_regs); 2659 2660 map->cache_bypass = bypass; 2661 2662 map->unlock(map->lock_arg); 2663 2664 return ret; 2665 } 2666 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed); 2667 2668 /** 2669 * regmap_raw_write_async() - Write raw values to one or more registers 2670 * asynchronously 2671 * 2672 * @map: Register map to write to 2673 * @reg: Initial register to write to 2674 * @val: Block of data to be written, laid out for direct transmission to the 2675 * device. Must be valid until regmap_async_complete() is called. 2676 * @val_len: Length of data pointed to by val. 2677 * 2678 * This function is intended to be used for things like firmware 2679 * download where a large block of data needs to be transferred to the 2680 * device. No formatting will be done on the data provided. 2681 * 2682 * If supported by the underlying bus the write will be scheduled 2683 * asynchronously, helping maximise I/O speed on higher speed buses 2684 * like SPI. regmap_async_complete() can be called to ensure that all 2685 * asynchrnous writes have been completed. 2686 * 2687 * A value of zero will be returned on success, a negative errno will 2688 * be returned in error cases. 2689 */ 2690 int regmap_raw_write_async(struct regmap *map, unsigned int reg, 2691 const void *val, size_t val_len) 2692 { 2693 int ret; 2694 2695 if (val_len % map->format.val_bytes) 2696 return -EINVAL; 2697 if (!IS_ALIGNED(reg, map->reg_stride)) 2698 return -EINVAL; 2699 2700 map->lock(map->lock_arg); 2701 2702 map->async = true; 2703 2704 ret = _regmap_raw_write(map, reg, val, val_len, false); 2705 2706 map->async = false; 2707 2708 map->unlock(map->lock_arg); 2709 2710 return ret; 2711 } 2712 EXPORT_SYMBOL_GPL(regmap_raw_write_async); 2713 2714 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val, 2715 unsigned int val_len, bool noinc) 2716 { 2717 struct regmap_range_node *range; 2718 int ret; 2719 2720 if (!map->read) 2721 return -EINVAL; 2722 2723 range = _regmap_range_lookup(map, reg); 2724 if (range) { 2725 ret = _regmap_select_page(map, ®, range, 2726 noinc ? 1 : val_len / map->format.val_bytes); 2727 if (ret != 0) 2728 return ret; 2729 } 2730 2731 reg = regmap_reg_addr(map, reg); 2732 map->format.format_reg(map->work_buf, reg, map->reg_shift); 2733 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes, 2734 map->read_flag_mask); 2735 trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes); 2736 2737 ret = map->read(map->bus_context, map->work_buf, 2738 map->format.reg_bytes + map->format.pad_bytes, 2739 val, val_len); 2740 2741 trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes); 2742 2743 return ret; 2744 } 2745 2746 static int _regmap_bus_reg_read(void *context, unsigned int reg, 2747 unsigned int *val) 2748 { 2749 struct regmap *map = context; 2750 struct regmap_range_node *range; 2751 int ret; 2752 2753 range = _regmap_range_lookup(map, reg); 2754 if (range) { 2755 ret = _regmap_select_page(map, ®, range, 1); 2756 if (ret != 0) 2757 return ret; 2758 } 2759 2760 reg = regmap_reg_addr(map, reg); 2761 return map->bus->reg_read(map->bus_context, reg, val); 2762 } 2763 2764 static int _regmap_bus_read(void *context, unsigned int reg, 2765 unsigned int *val) 2766 { 2767 int ret; 2768 struct regmap *map = context; 2769 void *work_val = map->work_buf + map->format.reg_bytes + 2770 map->format.pad_bytes; 2771 2772 if (!map->format.parse_val) 2773 return -EINVAL; 2774 2775 ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes, false); 2776 if (ret == 0) 2777 *val = map->format.parse_val(work_val); 2778 2779 return ret; 2780 } 2781 2782 static int _regmap_read(struct regmap *map, unsigned int reg, 2783 unsigned int *val) 2784 { 2785 int ret; 2786 void *context = _regmap_map_get_context(map); 2787 2788 if (!map->cache_bypass) { 2789 ret = regcache_read(map, reg, val); 2790 if (ret == 0) 2791 return 0; 2792 } 2793 2794 if (map->cache_only) 2795 return -EBUSY; 2796 2797 if (!regmap_readable(map, reg)) 2798 return -EIO; 2799 2800 ret = map->reg_read(context, reg, val); 2801 if (ret == 0) { 2802 if (regmap_should_log(map)) 2803 dev_info(map->dev, "%x => %x\n", reg, *val); 2804 2805 trace_regmap_reg_read(map, reg, *val); 2806 2807 if (!map->cache_bypass) 2808 regcache_write(map, reg, *val); 2809 } 2810 2811 return ret; 2812 } 2813 2814 /** 2815 * regmap_read() - Read a value from a single register 2816 * 2817 * @map: Register map to read from 2818 * @reg: Register to be read from 2819 * @val: Pointer to store read value 2820 * 2821 * A value of zero will be returned on success, a negative errno will 2822 * be returned in error cases. 2823 */ 2824 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val) 2825 { 2826 int ret; 2827 2828 if (!IS_ALIGNED(reg, map->reg_stride)) 2829 return -EINVAL; 2830 2831 map->lock(map->lock_arg); 2832 2833 ret = _regmap_read(map, reg, val); 2834 2835 map->unlock(map->lock_arg); 2836 2837 return ret; 2838 } 2839 EXPORT_SYMBOL_GPL(regmap_read); 2840 2841 /** 2842 * regmap_raw_read() - Read raw data from the device 2843 * 2844 * @map: Register map to read from 2845 * @reg: First register to be read from 2846 * @val: Pointer to store read value 2847 * @val_len: Size of data to read 2848 * 2849 * A value of zero will be returned on success, a negative errno will 2850 * be returned in error cases. 2851 */ 2852 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val, 2853 size_t val_len) 2854 { 2855 size_t val_bytes = map->format.val_bytes; 2856 size_t val_count = val_len / val_bytes; 2857 unsigned int v; 2858 int ret, i; 2859 2860 if (val_len % map->format.val_bytes) 2861 return -EINVAL; 2862 if (!IS_ALIGNED(reg, map->reg_stride)) 2863 return -EINVAL; 2864 if (val_count == 0) 2865 return -EINVAL; 2866 2867 map->lock(map->lock_arg); 2868 2869 if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass || 2870 map->cache_type == REGCACHE_NONE) { 2871 size_t chunk_count, chunk_bytes; 2872 size_t chunk_regs = val_count; 2873 2874 if (!map->cache_bypass && map->cache_only) { 2875 ret = -EBUSY; 2876 goto out; 2877 } 2878 2879 if (!map->read) { 2880 ret = -ENOTSUPP; 2881 goto out; 2882 } 2883 2884 if (map->use_single_read) 2885 chunk_regs = 1; 2886 else if (map->max_raw_read && val_len > map->max_raw_read) 2887 chunk_regs = map->max_raw_read / val_bytes; 2888 2889 chunk_count = val_count / chunk_regs; 2890 chunk_bytes = chunk_regs * val_bytes; 2891 2892 /* Read bytes that fit into whole chunks */ 2893 for (i = 0; i < chunk_count; i++) { 2894 ret = _regmap_raw_read(map, reg, val, chunk_bytes, false); 2895 if (ret != 0) 2896 goto out; 2897 2898 reg += regmap_get_offset(map, chunk_regs); 2899 val += chunk_bytes; 2900 val_len -= chunk_bytes; 2901 } 2902 2903 /* Read remaining bytes */ 2904 if (val_len) { 2905 ret = _regmap_raw_read(map, reg, val, val_len, false); 2906 if (ret != 0) 2907 goto out; 2908 } 2909 } else { 2910 /* Otherwise go word by word for the cache; should be low 2911 * cost as we expect to hit the cache. 2912 */ 2913 for (i = 0; i < val_count; i++) { 2914 ret = _regmap_read(map, reg + regmap_get_offset(map, i), 2915 &v); 2916 if (ret != 0) 2917 goto out; 2918 2919 map->format.format_val(val + (i * val_bytes), v, 0); 2920 } 2921 } 2922 2923 out: 2924 map->unlock(map->lock_arg); 2925 2926 return ret; 2927 } 2928 EXPORT_SYMBOL_GPL(regmap_raw_read); 2929 2930 /** 2931 * regmap_noinc_read(): Read data from a register without incrementing the 2932 * register number 2933 * 2934 * @map: Register map to read from 2935 * @reg: Register to read from 2936 * @val: Pointer to data buffer 2937 * @val_len: Length of output buffer in bytes. 2938 * 2939 * The regmap API usually assumes that bulk read operations will read a 2940 * range of registers. Some devices have certain registers for which a read 2941 * operation read will read from an internal FIFO. 2942 * 2943 * The target register must be volatile but registers after it can be 2944 * completely unrelated cacheable registers. 2945 * 2946 * This will attempt multiple reads as required to read val_len bytes. 2947 * 2948 * A value of zero will be returned on success, a negative errno will be 2949 * returned in error cases. 2950 */ 2951 int regmap_noinc_read(struct regmap *map, unsigned int reg, 2952 void *val, size_t val_len) 2953 { 2954 size_t read_len; 2955 int ret; 2956 2957 if (!map->read) 2958 return -ENOTSUPP; 2959 2960 if (val_len % map->format.val_bytes) 2961 return -EINVAL; 2962 if (!IS_ALIGNED(reg, map->reg_stride)) 2963 return -EINVAL; 2964 if (val_len == 0) 2965 return -EINVAL; 2966 2967 map->lock(map->lock_arg); 2968 2969 if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) { 2970 ret = -EINVAL; 2971 goto out_unlock; 2972 } 2973 2974 /* 2975 * We have not defined the FIFO semantics for cache, as the 2976 * cache is just one value deep. Should we return the last 2977 * written value? Just avoid this by always reading the FIFO 2978 * even when using cache. Cache only will not work. 2979 */ 2980 if (!map->cache_bypass && map->cache_only) { 2981 ret = -EBUSY; 2982 goto out_unlock; 2983 } 2984 2985 /* Use the accelerated operation if we can */ 2986 if (map->bus->reg_noinc_read) { 2987 ret = regmap_noinc_readwrite(map, reg, val, val_len, false); 2988 goto out_unlock; 2989 } 2990 2991 while (val_len) { 2992 if (map->max_raw_read && map->max_raw_read < val_len) 2993 read_len = map->max_raw_read; 2994 else 2995 read_len = val_len; 2996 ret = _regmap_raw_read(map, reg, val, read_len, true); 2997 if (ret) 2998 goto out_unlock; 2999 val = ((u8 *)val) + read_len; 3000 val_len -= read_len; 3001 } 3002 3003 out_unlock: 3004 map->unlock(map->lock_arg); 3005 return ret; 3006 } 3007 EXPORT_SYMBOL_GPL(regmap_noinc_read); 3008 3009 /** 3010 * regmap_field_read(): Read a value to a single register field 3011 * 3012 * @field: Register field to read from 3013 * @val: Pointer to store read value 3014 * 3015 * A value of zero will be returned on success, a negative errno will 3016 * be returned in error cases. 3017 */ 3018 int regmap_field_read(struct regmap_field *field, unsigned int *val) 3019 { 3020 int ret; 3021 unsigned int reg_val; 3022 ret = regmap_read(field->regmap, field->reg, ®_val); 3023 if (ret != 0) 3024 return ret; 3025 3026 reg_val &= field->mask; 3027 reg_val >>= field->shift; 3028 *val = reg_val; 3029 3030 return ret; 3031 } 3032 EXPORT_SYMBOL_GPL(regmap_field_read); 3033 3034 /** 3035 * regmap_fields_read() - Read a value to a single register field with port ID 3036 * 3037 * @field: Register field to read from 3038 * @id: port ID 3039 * @val: Pointer to store read value 3040 * 3041 * A value of zero will be returned on success, a negative errno will 3042 * be returned in error cases. 3043 */ 3044 int regmap_fields_read(struct regmap_field *field, unsigned int id, 3045 unsigned int *val) 3046 { 3047 int ret; 3048 unsigned int reg_val; 3049 3050 if (id >= field->id_size) 3051 return -EINVAL; 3052 3053 ret = regmap_read(field->regmap, 3054 field->reg + (field->id_offset * id), 3055 ®_val); 3056 if (ret != 0) 3057 return ret; 3058 3059 reg_val &= field->mask; 3060 reg_val >>= field->shift; 3061 *val = reg_val; 3062 3063 return ret; 3064 } 3065 EXPORT_SYMBOL_GPL(regmap_fields_read); 3066 3067 /** 3068 * regmap_bulk_read() - Read multiple registers from the device 3069 * 3070 * @map: Register map to read from 3071 * @reg: First register to be read from 3072 * @val: Pointer to store read value, in native register size for device 3073 * @val_count: Number of registers to read 3074 * 3075 * A value of zero will be returned on success, a negative errno will 3076 * be returned in error cases. 3077 */ 3078 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val, 3079 size_t val_count) 3080 { 3081 int ret, i; 3082 size_t val_bytes = map->format.val_bytes; 3083 bool vol = regmap_volatile_range(map, reg, val_count); 3084 3085 if (!IS_ALIGNED(reg, map->reg_stride)) 3086 return -EINVAL; 3087 if (val_count == 0) 3088 return -EINVAL; 3089 3090 if (map->read && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) { 3091 ret = regmap_raw_read(map, reg, val, val_bytes * val_count); 3092 if (ret != 0) 3093 return ret; 3094 3095 for (i = 0; i < val_count * val_bytes; i += val_bytes) 3096 map->format.parse_inplace(val + i); 3097 } else { 3098 u32 *u32 = val; 3099 u16 *u16 = val; 3100 u8 *u8 = val; 3101 3102 map->lock(map->lock_arg); 3103 3104 for (i = 0; i < val_count; i++) { 3105 unsigned int ival; 3106 3107 ret = _regmap_read(map, reg + regmap_get_offset(map, i), 3108 &ival); 3109 if (ret != 0) 3110 goto out; 3111 3112 switch (map->format.val_bytes) { 3113 case 4: 3114 u32[i] = ival; 3115 break; 3116 case 2: 3117 u16[i] = ival; 3118 break; 3119 case 1: 3120 u8[i] = ival; 3121 break; 3122 default: 3123 ret = -EINVAL; 3124 goto out; 3125 } 3126 } 3127 3128 out: 3129 map->unlock(map->lock_arg); 3130 } 3131 3132 if (!ret) 3133 trace_regmap_bulk_read(map, reg, val, val_bytes * val_count); 3134 3135 return ret; 3136 } 3137 EXPORT_SYMBOL_GPL(regmap_bulk_read); 3138 3139 static int _regmap_update_bits(struct regmap *map, unsigned int reg, 3140 unsigned int mask, unsigned int val, 3141 bool *change, bool force_write) 3142 { 3143 int ret; 3144 unsigned int tmp, orig; 3145 3146 if (change) 3147 *change = false; 3148 3149 if (regmap_volatile(map, reg) && map->reg_update_bits) { 3150 reg = regmap_reg_addr(map, reg); 3151 ret = map->reg_update_bits(map->bus_context, reg, mask, val); 3152 if (ret == 0 && change) 3153 *change = true; 3154 } else { 3155 ret = _regmap_read(map, reg, &orig); 3156 if (ret != 0) 3157 return ret; 3158 3159 tmp = orig & ~mask; 3160 tmp |= val & mask; 3161 3162 if (force_write || (tmp != orig) || map->force_write_field) { 3163 ret = _regmap_write(map, reg, tmp); 3164 if (ret == 0 && change) 3165 *change = true; 3166 } 3167 } 3168 3169 return ret; 3170 } 3171 3172 /** 3173 * regmap_update_bits_base() - Perform a read/modify/write cycle on a register 3174 * 3175 * @map: Register map to update 3176 * @reg: Register to update 3177 * @mask: Bitmask to change 3178 * @val: New value for bitmask 3179 * @change: Boolean indicating if a write was done 3180 * @async: Boolean indicating asynchronously 3181 * @force: Boolean indicating use force update 3182 * 3183 * Perform a read/modify/write cycle on a register map with change, async, force 3184 * options. 3185 * 3186 * If async is true: 3187 * 3188 * With most buses the read must be done synchronously so this is most useful 3189 * for devices with a cache which do not need to interact with the hardware to 3190 * determine the current register value. 3191 * 3192 * Returns zero for success, a negative number on error. 3193 */ 3194 int regmap_update_bits_base(struct regmap *map, unsigned int reg, 3195 unsigned int mask, unsigned int val, 3196 bool *change, bool async, bool force) 3197 { 3198 int ret; 3199 3200 map->lock(map->lock_arg); 3201 3202 map->async = async; 3203 3204 ret = _regmap_update_bits(map, reg, mask, val, change, force); 3205 3206 map->async = false; 3207 3208 map->unlock(map->lock_arg); 3209 3210 return ret; 3211 } 3212 EXPORT_SYMBOL_GPL(regmap_update_bits_base); 3213 3214 /** 3215 * regmap_test_bits() - Check if all specified bits are set in a register. 3216 * 3217 * @map: Register map to operate on 3218 * @reg: Register to read from 3219 * @bits: Bits to test 3220 * 3221 * Returns 0 if at least one of the tested bits is not set, 1 if all tested 3222 * bits are set and a negative error number if the underlying regmap_read() 3223 * fails. 3224 */ 3225 int regmap_test_bits(struct regmap *map, unsigned int reg, unsigned int bits) 3226 { 3227 unsigned int val, ret; 3228 3229 ret = regmap_read(map, reg, &val); 3230 if (ret) 3231 return ret; 3232 3233 return (val & bits) == bits; 3234 } 3235 EXPORT_SYMBOL_GPL(regmap_test_bits); 3236 3237 void regmap_async_complete_cb(struct regmap_async *async, int ret) 3238 { 3239 struct regmap *map = async->map; 3240 bool wake; 3241 3242 trace_regmap_async_io_complete(map); 3243 3244 spin_lock(&map->async_lock); 3245 list_move(&async->list, &map->async_free); 3246 wake = list_empty(&map->async_list); 3247 3248 if (ret != 0) 3249 map->async_ret = ret; 3250 3251 spin_unlock(&map->async_lock); 3252 3253 if (wake) 3254 wake_up(&map->async_waitq); 3255 } 3256 EXPORT_SYMBOL_GPL(regmap_async_complete_cb); 3257 3258 static int regmap_async_is_done(struct regmap *map) 3259 { 3260 unsigned long flags; 3261 int ret; 3262 3263 spin_lock_irqsave(&map->async_lock, flags); 3264 ret = list_empty(&map->async_list); 3265 spin_unlock_irqrestore(&map->async_lock, flags); 3266 3267 return ret; 3268 } 3269 3270 /** 3271 * regmap_async_complete - Ensure all asynchronous I/O has completed. 3272 * 3273 * @map: Map to operate on. 3274 * 3275 * Blocks until any pending asynchronous I/O has completed. Returns 3276 * an error code for any failed I/O operations. 3277 */ 3278 int regmap_async_complete(struct regmap *map) 3279 { 3280 unsigned long flags; 3281 int ret; 3282 3283 /* Nothing to do with no async support */ 3284 if (!map->bus || !map->bus->async_write) 3285 return 0; 3286 3287 trace_regmap_async_complete_start(map); 3288 3289 wait_event(map->async_waitq, regmap_async_is_done(map)); 3290 3291 spin_lock_irqsave(&map->async_lock, flags); 3292 ret = map->async_ret; 3293 map->async_ret = 0; 3294 spin_unlock_irqrestore(&map->async_lock, flags); 3295 3296 trace_regmap_async_complete_done(map); 3297 3298 return ret; 3299 } 3300 EXPORT_SYMBOL_GPL(regmap_async_complete); 3301 3302 /** 3303 * regmap_register_patch - Register and apply register updates to be applied 3304 * on device initialistion 3305 * 3306 * @map: Register map to apply updates to. 3307 * @regs: Values to update. 3308 * @num_regs: Number of entries in regs. 3309 * 3310 * Register a set of register updates to be applied to the device 3311 * whenever the device registers are synchronised with the cache and 3312 * apply them immediately. Typically this is used to apply 3313 * corrections to be applied to the device defaults on startup, such 3314 * as the updates some vendors provide to undocumented registers. 3315 * 3316 * The caller must ensure that this function cannot be called 3317 * concurrently with either itself or regcache_sync(). 3318 */ 3319 int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs, 3320 int num_regs) 3321 { 3322 struct reg_sequence *p; 3323 int ret; 3324 bool bypass; 3325 3326 if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n", 3327 num_regs)) 3328 return 0; 3329 3330 p = krealloc(map->patch, 3331 sizeof(struct reg_sequence) * (map->patch_regs + num_regs), 3332 GFP_KERNEL); 3333 if (p) { 3334 memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs)); 3335 map->patch = p; 3336 map->patch_regs += num_regs; 3337 } else { 3338 return -ENOMEM; 3339 } 3340 3341 map->lock(map->lock_arg); 3342 3343 bypass = map->cache_bypass; 3344 3345 map->cache_bypass = true; 3346 map->async = true; 3347 3348 ret = _regmap_multi_reg_write(map, regs, num_regs); 3349 3350 map->async = false; 3351 map->cache_bypass = bypass; 3352 3353 map->unlock(map->lock_arg); 3354 3355 regmap_async_complete(map); 3356 3357 return ret; 3358 } 3359 EXPORT_SYMBOL_GPL(regmap_register_patch); 3360 3361 /** 3362 * regmap_get_val_bytes() - Report the size of a register value 3363 * 3364 * @map: Register map to operate on. 3365 * 3366 * Report the size of a register value, mainly intended to for use by 3367 * generic infrastructure built on top of regmap. 3368 */ 3369 int regmap_get_val_bytes(struct regmap *map) 3370 { 3371 if (map->format.format_write) 3372 return -EINVAL; 3373 3374 return map->format.val_bytes; 3375 } 3376 EXPORT_SYMBOL_GPL(regmap_get_val_bytes); 3377 3378 /** 3379 * regmap_get_max_register() - Report the max register value 3380 * 3381 * @map: Register map to operate on. 3382 * 3383 * Report the max register value, mainly intended to for use by 3384 * generic infrastructure built on top of regmap. 3385 */ 3386 int regmap_get_max_register(struct regmap *map) 3387 { 3388 return map->max_register_is_set ? map->max_register : -EINVAL; 3389 } 3390 EXPORT_SYMBOL_GPL(regmap_get_max_register); 3391 3392 /** 3393 * regmap_get_reg_stride() - Report the register address stride 3394 * 3395 * @map: Register map to operate on. 3396 * 3397 * Report the register address stride, mainly intended to for use by 3398 * generic infrastructure built on top of regmap. 3399 */ 3400 int regmap_get_reg_stride(struct regmap *map) 3401 { 3402 return map->reg_stride; 3403 } 3404 EXPORT_SYMBOL_GPL(regmap_get_reg_stride); 3405 3406 /** 3407 * regmap_might_sleep() - Returns whether a regmap access might sleep. 3408 * 3409 * @map: Register map to operate on. 3410 * 3411 * Returns true if an access to the register might sleep, else false. 3412 */ 3413 bool regmap_might_sleep(struct regmap *map) 3414 { 3415 return map->can_sleep; 3416 } 3417 EXPORT_SYMBOL_GPL(regmap_might_sleep); 3418 3419 int regmap_parse_val(struct regmap *map, const void *buf, 3420 unsigned int *val) 3421 { 3422 if (!map->format.parse_val) 3423 return -EINVAL; 3424 3425 *val = map->format.parse_val(buf); 3426 3427 return 0; 3428 } 3429 EXPORT_SYMBOL_GPL(regmap_parse_val); 3430 3431 static int __init regmap_initcall(void) 3432 { 3433 regmap_debugfs_initcall(); 3434 3435 return 0; 3436 } 3437 postcore_initcall(regmap_initcall); 3438