xref: /linux/drivers/base/regmap/regmap.c (revision 603d6637aeb9a14cd0087d7c24c3777bfa51fcbf)
1 /*
2  * Register map access API
3  *
4  * Copyright 2011 Wolfson Microelectronics plc
5  *
6  * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/mutex.h>
17 #include <linux/err.h>
18 
19 #define CREATE_TRACE_POINTS
20 #include <trace/events/regmap.h>
21 
22 #include "internal.h"
23 
24 bool regmap_writeable(struct regmap *map, unsigned int reg)
25 {
26 	if (map->max_register && reg > map->max_register)
27 		return false;
28 
29 	if (map->writeable_reg)
30 		return map->writeable_reg(map->dev, reg);
31 
32 	return true;
33 }
34 
35 bool regmap_readable(struct regmap *map, unsigned int reg)
36 {
37 	if (map->max_register && reg > map->max_register)
38 		return false;
39 
40 	if (map->format.format_write)
41 		return false;
42 
43 	if (map->readable_reg)
44 		return map->readable_reg(map->dev, reg);
45 
46 	return true;
47 }
48 
49 bool regmap_volatile(struct regmap *map, unsigned int reg)
50 {
51 	if (!regmap_readable(map, reg))
52 		return false;
53 
54 	if (map->volatile_reg)
55 		return map->volatile_reg(map->dev, reg);
56 
57 	return true;
58 }
59 
60 bool regmap_precious(struct regmap *map, unsigned int reg)
61 {
62 	if (!regmap_readable(map, reg))
63 		return false;
64 
65 	if (map->precious_reg)
66 		return map->precious_reg(map->dev, reg);
67 
68 	return false;
69 }
70 
71 static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
72 	unsigned int num)
73 {
74 	unsigned int i;
75 
76 	for (i = 0; i < num; i++)
77 		if (!regmap_volatile(map, reg + i))
78 			return false;
79 
80 	return true;
81 }
82 
83 static void regmap_format_2_6_write(struct regmap *map,
84 				     unsigned int reg, unsigned int val)
85 {
86 	u8 *out = map->work_buf;
87 
88 	*out = (reg << 6) | val;
89 }
90 
91 static void regmap_format_4_12_write(struct regmap *map,
92 				     unsigned int reg, unsigned int val)
93 {
94 	__be16 *out = map->work_buf;
95 	*out = cpu_to_be16((reg << 12) | val);
96 }
97 
98 static void regmap_format_7_9_write(struct regmap *map,
99 				    unsigned int reg, unsigned int val)
100 {
101 	__be16 *out = map->work_buf;
102 	*out = cpu_to_be16((reg << 9) | val);
103 }
104 
105 static void regmap_format_10_14_write(struct regmap *map,
106 				    unsigned int reg, unsigned int val)
107 {
108 	u8 *out = map->work_buf;
109 
110 	out[2] = val;
111 	out[1] = (val >> 8) | (reg << 6);
112 	out[0] = reg >> 2;
113 }
114 
115 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
116 {
117 	u8 *b = buf;
118 
119 	b[0] = val << shift;
120 }
121 
122 static void regmap_format_16(void *buf, unsigned int val, unsigned int shift)
123 {
124 	__be16 *b = buf;
125 
126 	b[0] = cpu_to_be16(val << shift);
127 }
128 
129 static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
130 {
131 	u8 *b = buf;
132 
133 	val <<= shift;
134 
135 	b[0] = val >> 16;
136 	b[1] = val >> 8;
137 	b[2] = val;
138 }
139 
140 static void regmap_format_32(void *buf, unsigned int val, unsigned int shift)
141 {
142 	__be32 *b = buf;
143 
144 	b[0] = cpu_to_be32(val << shift);
145 }
146 
147 static unsigned int regmap_parse_8(void *buf)
148 {
149 	u8 *b = buf;
150 
151 	return b[0];
152 }
153 
154 static unsigned int regmap_parse_16(void *buf)
155 {
156 	__be16 *b = buf;
157 
158 	b[0] = be16_to_cpu(b[0]);
159 
160 	return b[0];
161 }
162 
163 static unsigned int regmap_parse_24(void *buf)
164 {
165 	u8 *b = buf;
166 	unsigned int ret = b[2];
167 	ret |= ((unsigned int)b[1]) << 8;
168 	ret |= ((unsigned int)b[0]) << 16;
169 
170 	return ret;
171 }
172 
173 static unsigned int regmap_parse_32(void *buf)
174 {
175 	__be32 *b = buf;
176 
177 	b[0] = be32_to_cpu(b[0]);
178 
179 	return b[0];
180 }
181 
182 static void regmap_lock_mutex(struct regmap *map)
183 {
184 	mutex_lock(&map->mutex);
185 }
186 
187 static void regmap_unlock_mutex(struct regmap *map)
188 {
189 	mutex_unlock(&map->mutex);
190 }
191 
192 static void regmap_lock_spinlock(struct regmap *map)
193 {
194 	spin_lock(&map->spinlock);
195 }
196 
197 static void regmap_unlock_spinlock(struct regmap *map)
198 {
199 	spin_unlock(&map->spinlock);
200 }
201 
202 static void dev_get_regmap_release(struct device *dev, void *res)
203 {
204 	/*
205 	 * We don't actually have anything to do here; the goal here
206 	 * is not to manage the regmap but to provide a simple way to
207 	 * get the regmap back given a struct device.
208 	 */
209 }
210 
211 /**
212  * regmap_init(): Initialise register map
213  *
214  * @dev: Device that will be interacted with
215  * @bus: Bus-specific callbacks to use with device
216  * @bus_context: Data passed to bus-specific callbacks
217  * @config: Configuration for register map
218  *
219  * The return value will be an ERR_PTR() on error or a valid pointer to
220  * a struct regmap.  This function should generally not be called
221  * directly, it should be called by bus-specific init functions.
222  */
223 struct regmap *regmap_init(struct device *dev,
224 			   const struct regmap_bus *bus,
225 			   void *bus_context,
226 			   const struct regmap_config *config)
227 {
228 	struct regmap *map, **m;
229 	int ret = -EINVAL;
230 
231 	if (!bus || !config)
232 		goto err;
233 
234 	map = kzalloc(sizeof(*map), GFP_KERNEL);
235 	if (map == NULL) {
236 		ret = -ENOMEM;
237 		goto err;
238 	}
239 
240 	if (bus->fast_io) {
241 		spin_lock_init(&map->spinlock);
242 		map->lock = regmap_lock_spinlock;
243 		map->unlock = regmap_unlock_spinlock;
244 	} else {
245 		mutex_init(&map->mutex);
246 		map->lock = regmap_lock_mutex;
247 		map->unlock = regmap_unlock_mutex;
248 	}
249 	map->format.buf_size = (config->reg_bits + config->val_bits) / 8;
250 	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
251 	map->format.pad_bytes = config->pad_bits / 8;
252 	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
253 	map->format.buf_size += map->format.pad_bytes;
254 	map->reg_shift = config->pad_bits % 8;
255 	if (config->reg_stride)
256 		map->reg_stride = config->reg_stride;
257 	else
258 		map->reg_stride = 1;
259 	map->use_single_rw = config->use_single_rw;
260 	map->dev = dev;
261 	map->bus = bus;
262 	map->bus_context = bus_context;
263 	map->max_register = config->max_register;
264 	map->writeable_reg = config->writeable_reg;
265 	map->readable_reg = config->readable_reg;
266 	map->volatile_reg = config->volatile_reg;
267 	map->precious_reg = config->precious_reg;
268 	map->cache_type = config->cache_type;
269 	map->name = config->name;
270 
271 	if (config->read_flag_mask || config->write_flag_mask) {
272 		map->read_flag_mask = config->read_flag_mask;
273 		map->write_flag_mask = config->write_flag_mask;
274 	} else {
275 		map->read_flag_mask = bus->read_flag_mask;
276 	}
277 
278 	switch (config->reg_bits + map->reg_shift) {
279 	case 2:
280 		switch (config->val_bits) {
281 		case 6:
282 			map->format.format_write = regmap_format_2_6_write;
283 			break;
284 		default:
285 			goto err_map;
286 		}
287 		break;
288 
289 	case 4:
290 		switch (config->val_bits) {
291 		case 12:
292 			map->format.format_write = regmap_format_4_12_write;
293 			break;
294 		default:
295 			goto err_map;
296 		}
297 		break;
298 
299 	case 7:
300 		switch (config->val_bits) {
301 		case 9:
302 			map->format.format_write = regmap_format_7_9_write;
303 			break;
304 		default:
305 			goto err_map;
306 		}
307 		break;
308 
309 	case 10:
310 		switch (config->val_bits) {
311 		case 14:
312 			map->format.format_write = regmap_format_10_14_write;
313 			break;
314 		default:
315 			goto err_map;
316 		}
317 		break;
318 
319 	case 8:
320 		map->format.format_reg = regmap_format_8;
321 		break;
322 
323 	case 16:
324 		map->format.format_reg = regmap_format_16;
325 		break;
326 
327 	case 32:
328 		map->format.format_reg = regmap_format_32;
329 		break;
330 
331 	default:
332 		goto err_map;
333 	}
334 
335 	switch (config->val_bits) {
336 	case 8:
337 		map->format.format_val = regmap_format_8;
338 		map->format.parse_val = regmap_parse_8;
339 		break;
340 	case 16:
341 		map->format.format_val = regmap_format_16;
342 		map->format.parse_val = regmap_parse_16;
343 		break;
344 	case 24:
345 		map->format.format_val = regmap_format_24;
346 		map->format.parse_val = regmap_parse_24;
347 		break;
348 	case 32:
349 		map->format.format_val = regmap_format_32;
350 		map->format.parse_val = regmap_parse_32;
351 		break;
352 	}
353 
354 	if (map->format.format_write)
355 		map->use_single_rw = true;
356 
357 	if (!map->format.format_write &&
358 	    !(map->format.format_reg && map->format.format_val))
359 		goto err_map;
360 
361 	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
362 	if (map->work_buf == NULL) {
363 		ret = -ENOMEM;
364 		goto err_map;
365 	}
366 
367 	regmap_debugfs_init(map, config->name);
368 
369 	ret = regcache_init(map, config);
370 	if (ret < 0)
371 		goto err_free_workbuf;
372 
373 	/* Add a devres resource for dev_get_regmap() */
374 	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
375 	if (!m) {
376 		ret = -ENOMEM;
377 		goto err_cache;
378 	}
379 	*m = map;
380 	devres_add(dev, m);
381 
382 	return map;
383 
384 err_cache:
385 	regcache_exit(map);
386 err_free_workbuf:
387 	kfree(map->work_buf);
388 err_map:
389 	kfree(map);
390 err:
391 	return ERR_PTR(ret);
392 }
393 EXPORT_SYMBOL_GPL(regmap_init);
394 
395 static void devm_regmap_release(struct device *dev, void *res)
396 {
397 	regmap_exit(*(struct regmap **)res);
398 }
399 
400 /**
401  * devm_regmap_init(): Initialise managed register map
402  *
403  * @dev: Device that will be interacted with
404  * @bus: Bus-specific callbacks to use with device
405  * @bus_context: Data passed to bus-specific callbacks
406  * @config: Configuration for register map
407  *
408  * The return value will be an ERR_PTR() on error or a valid pointer
409  * to a struct regmap.  This function should generally not be called
410  * directly, it should be called by bus-specific init functions.  The
411  * map will be automatically freed by the device management code.
412  */
413 struct regmap *devm_regmap_init(struct device *dev,
414 				const struct regmap_bus *bus,
415 				void *bus_context,
416 				const struct regmap_config *config)
417 {
418 	struct regmap **ptr, *regmap;
419 
420 	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
421 	if (!ptr)
422 		return ERR_PTR(-ENOMEM);
423 
424 	regmap = regmap_init(dev, bus, bus_context, config);
425 	if (!IS_ERR(regmap)) {
426 		*ptr = regmap;
427 		devres_add(dev, ptr);
428 	} else {
429 		devres_free(ptr);
430 	}
431 
432 	return regmap;
433 }
434 EXPORT_SYMBOL_GPL(devm_regmap_init);
435 
436 /**
437  * regmap_reinit_cache(): Reinitialise the current register cache
438  *
439  * @map: Register map to operate on.
440  * @config: New configuration.  Only the cache data will be used.
441  *
442  * Discard any existing register cache for the map and initialize a
443  * new cache.  This can be used to restore the cache to defaults or to
444  * update the cache configuration to reflect runtime discovery of the
445  * hardware.
446  */
447 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
448 {
449 	int ret;
450 
451 	map->lock(map);
452 
453 	regcache_exit(map);
454 	regmap_debugfs_exit(map);
455 
456 	map->max_register = config->max_register;
457 	map->writeable_reg = config->writeable_reg;
458 	map->readable_reg = config->readable_reg;
459 	map->volatile_reg = config->volatile_reg;
460 	map->precious_reg = config->precious_reg;
461 	map->cache_type = config->cache_type;
462 
463 	regmap_debugfs_init(map, config->name);
464 
465 	map->cache_bypass = false;
466 	map->cache_only = false;
467 
468 	ret = regcache_init(map, config);
469 
470 	map->unlock(map);
471 
472 	return ret;
473 }
474 
475 /**
476  * regmap_exit(): Free a previously allocated register map
477  */
478 void regmap_exit(struct regmap *map)
479 {
480 	regcache_exit(map);
481 	regmap_debugfs_exit(map);
482 	if (map->bus->free_context)
483 		map->bus->free_context(map->bus_context);
484 	kfree(map->work_buf);
485 	kfree(map);
486 }
487 EXPORT_SYMBOL_GPL(regmap_exit);
488 
489 static int dev_get_regmap_match(struct device *dev, void *res, void *data)
490 {
491 	struct regmap **r = res;
492 	if (!r || !*r) {
493 		WARN_ON(!r || !*r);
494 		return 0;
495 	}
496 
497 	/* If the user didn't specify a name match any */
498 	if (data)
499 		return (*r)->name == data;
500 	else
501 		return 1;
502 }
503 
504 /**
505  * dev_get_regmap(): Obtain the regmap (if any) for a device
506  *
507  * @dev: Device to retrieve the map for
508  * @name: Optional name for the register map, usually NULL.
509  *
510  * Returns the regmap for the device if one is present, or NULL.  If
511  * name is specified then it must match the name specified when
512  * registering the device, if it is NULL then the first regmap found
513  * will be used.  Devices with multiple register maps are very rare,
514  * generic code should normally not need to specify a name.
515  */
516 struct regmap *dev_get_regmap(struct device *dev, const char *name)
517 {
518 	struct regmap **r = devres_find(dev, dev_get_regmap_release,
519 					dev_get_regmap_match, (void *)name);
520 
521 	if (!r)
522 		return NULL;
523 	return *r;
524 }
525 EXPORT_SYMBOL_GPL(dev_get_regmap);
526 
527 static int _regmap_raw_write(struct regmap *map, unsigned int reg,
528 			     const void *val, size_t val_len)
529 {
530 	u8 *u8 = map->work_buf;
531 	void *buf;
532 	int ret = -ENOTSUPP;
533 	size_t len;
534 	int i;
535 
536 	/* Check for unwritable registers before we start */
537 	if (map->writeable_reg)
538 		for (i = 0; i < val_len / map->format.val_bytes; i++)
539 			if (!map->writeable_reg(map->dev,
540 						reg + (i * map->reg_stride)))
541 				return -EINVAL;
542 
543 	if (!map->cache_bypass && map->format.parse_val) {
544 		unsigned int ival;
545 		int val_bytes = map->format.val_bytes;
546 		for (i = 0; i < val_len / val_bytes; i++) {
547 			memcpy(map->work_buf, val + (i * val_bytes), val_bytes);
548 			ival = map->format.parse_val(map->work_buf);
549 			ret = regcache_write(map, reg + (i * map->reg_stride),
550 					     ival);
551 			if (ret) {
552 				dev_err(map->dev,
553 				   "Error in caching of register: %u ret: %d\n",
554 					reg + i, ret);
555 				return ret;
556 			}
557 		}
558 		if (map->cache_only) {
559 			map->cache_dirty = true;
560 			return 0;
561 		}
562 	}
563 
564 	map->format.format_reg(map->work_buf, reg, map->reg_shift);
565 
566 	u8[0] |= map->write_flag_mask;
567 
568 	trace_regmap_hw_write_start(map->dev, reg,
569 				    val_len / map->format.val_bytes);
570 
571 	/* If we're doing a single register write we can probably just
572 	 * send the work_buf directly, otherwise try to do a gather
573 	 * write.
574 	 */
575 	if (val == (map->work_buf + map->format.pad_bytes +
576 		    map->format.reg_bytes))
577 		ret = map->bus->write(map->bus_context, map->work_buf,
578 				      map->format.reg_bytes +
579 				      map->format.pad_bytes +
580 				      val_len);
581 	else if (map->bus->gather_write)
582 		ret = map->bus->gather_write(map->bus_context, map->work_buf,
583 					     map->format.reg_bytes +
584 					     map->format.pad_bytes,
585 					     val, val_len);
586 
587 	/* If that didn't work fall back on linearising by hand. */
588 	if (ret == -ENOTSUPP) {
589 		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
590 		buf = kzalloc(len, GFP_KERNEL);
591 		if (!buf)
592 			return -ENOMEM;
593 
594 		memcpy(buf, map->work_buf, map->format.reg_bytes);
595 		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
596 		       val, val_len);
597 		ret = map->bus->write(map->bus_context, buf, len);
598 
599 		kfree(buf);
600 	}
601 
602 	trace_regmap_hw_write_done(map->dev, reg,
603 				   val_len / map->format.val_bytes);
604 
605 	return ret;
606 }
607 
608 int _regmap_write(struct regmap *map, unsigned int reg,
609 		  unsigned int val)
610 {
611 	int ret;
612 	BUG_ON(!map->format.format_write && !map->format.format_val);
613 
614 	if (!map->cache_bypass && map->format.format_write) {
615 		ret = regcache_write(map, reg, val);
616 		if (ret != 0)
617 			return ret;
618 		if (map->cache_only) {
619 			map->cache_dirty = true;
620 			return 0;
621 		}
622 	}
623 
624 	trace_regmap_reg_write(map->dev, reg, val);
625 
626 	if (map->format.format_write) {
627 		map->format.format_write(map, reg, val);
628 
629 		trace_regmap_hw_write_start(map->dev, reg, 1);
630 
631 		ret = map->bus->write(map->bus_context, map->work_buf,
632 				      map->format.buf_size);
633 
634 		trace_regmap_hw_write_done(map->dev, reg, 1);
635 
636 		return ret;
637 	} else {
638 		map->format.format_val(map->work_buf + map->format.reg_bytes
639 				       + map->format.pad_bytes, val, 0);
640 		return _regmap_raw_write(map, reg,
641 					 map->work_buf +
642 					 map->format.reg_bytes +
643 					 map->format.pad_bytes,
644 					 map->format.val_bytes);
645 	}
646 }
647 
648 /**
649  * regmap_write(): Write a value to a single register
650  *
651  * @map: Register map to write to
652  * @reg: Register to write to
653  * @val: Value to be written
654  *
655  * A value of zero will be returned on success, a negative errno will
656  * be returned in error cases.
657  */
658 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
659 {
660 	int ret;
661 
662 	if (reg % map->reg_stride)
663 		return -EINVAL;
664 
665 	map->lock(map);
666 
667 	ret = _regmap_write(map, reg, val);
668 
669 	map->unlock(map);
670 
671 	return ret;
672 }
673 EXPORT_SYMBOL_GPL(regmap_write);
674 
675 /**
676  * regmap_raw_write(): Write raw values to one or more registers
677  *
678  * @map: Register map to write to
679  * @reg: Initial register to write to
680  * @val: Block of data to be written, laid out for direct transmission to the
681  *       device
682  * @val_len: Length of data pointed to by val.
683  *
684  * This function is intended to be used for things like firmware
685  * download where a large block of data needs to be transferred to the
686  * device.  No formatting will be done on the data provided.
687  *
688  * A value of zero will be returned on success, a negative errno will
689  * be returned in error cases.
690  */
691 int regmap_raw_write(struct regmap *map, unsigned int reg,
692 		     const void *val, size_t val_len)
693 {
694 	int ret;
695 
696 	if (val_len % map->format.val_bytes)
697 		return -EINVAL;
698 	if (reg % map->reg_stride)
699 		return -EINVAL;
700 
701 	map->lock(map);
702 
703 	ret = _regmap_raw_write(map, reg, val, val_len);
704 
705 	map->unlock(map);
706 
707 	return ret;
708 }
709 EXPORT_SYMBOL_GPL(regmap_raw_write);
710 
711 /*
712  * regmap_bulk_write(): Write multiple registers to the device
713  *
714  * @map: Register map to write to
715  * @reg: First register to be write from
716  * @val: Block of data to be written, in native register size for device
717  * @val_count: Number of registers to write
718  *
719  * This function is intended to be used for writing a large block of
720  * data to be device either in single transfer or multiple transfer.
721  *
722  * A value of zero will be returned on success, a negative errno will
723  * be returned in error cases.
724  */
725 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
726 		     size_t val_count)
727 {
728 	int ret = 0, i;
729 	size_t val_bytes = map->format.val_bytes;
730 	void *wval;
731 
732 	if (!map->format.parse_val)
733 		return -EINVAL;
734 	if (reg % map->reg_stride)
735 		return -EINVAL;
736 
737 	map->lock(map);
738 
739 	/* No formatting is require if val_byte is 1 */
740 	if (val_bytes == 1) {
741 		wval = (void *)val;
742 	} else {
743 		wval = kmemdup(val, val_count * val_bytes, GFP_KERNEL);
744 		if (!wval) {
745 			ret = -ENOMEM;
746 			dev_err(map->dev, "Error in memory allocation\n");
747 			goto out;
748 		}
749 		for (i = 0; i < val_count * val_bytes; i += val_bytes)
750 			map->format.parse_val(wval + i);
751 	}
752 	/*
753 	 * Some devices does not support bulk write, for
754 	 * them we have a series of single write operations.
755 	 */
756 	if (map->use_single_rw) {
757 		for (i = 0; i < val_count; i++) {
758 			ret = regmap_raw_write(map,
759 						reg + (i * map->reg_stride),
760 						val + (i * val_bytes),
761 						val_bytes);
762 			if (ret != 0)
763 				return ret;
764 		}
765 	} else {
766 		ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count);
767 	}
768 
769 	if (val_bytes != 1)
770 		kfree(wval);
771 
772 out:
773 	map->unlock(map);
774 	return ret;
775 }
776 EXPORT_SYMBOL_GPL(regmap_bulk_write);
777 
778 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
779 			    unsigned int val_len)
780 {
781 	u8 *u8 = map->work_buf;
782 	int ret;
783 
784 	map->format.format_reg(map->work_buf, reg, map->reg_shift);
785 
786 	/*
787 	 * Some buses or devices flag reads by setting the high bits in the
788 	 * register addresss; since it's always the high bits for all
789 	 * current formats we can do this here rather than in
790 	 * formatting.  This may break if we get interesting formats.
791 	 */
792 	u8[0] |= map->read_flag_mask;
793 
794 	trace_regmap_hw_read_start(map->dev, reg,
795 				   val_len / map->format.val_bytes);
796 
797 	ret = map->bus->read(map->bus_context, map->work_buf,
798 			     map->format.reg_bytes + map->format.pad_bytes,
799 			     val, val_len);
800 
801 	trace_regmap_hw_read_done(map->dev, reg,
802 				  val_len / map->format.val_bytes);
803 
804 	return ret;
805 }
806 
807 static int _regmap_read(struct regmap *map, unsigned int reg,
808 			unsigned int *val)
809 {
810 	int ret;
811 
812 	if (!map->cache_bypass) {
813 		ret = regcache_read(map, reg, val);
814 		if (ret == 0)
815 			return 0;
816 	}
817 
818 	if (!map->format.parse_val)
819 		return -EINVAL;
820 
821 	if (map->cache_only)
822 		return -EBUSY;
823 
824 	ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes);
825 	if (ret == 0) {
826 		*val = map->format.parse_val(map->work_buf);
827 		trace_regmap_reg_read(map->dev, reg, *val);
828 	}
829 
830 	if (ret == 0 && !map->cache_bypass)
831 		regcache_write(map, reg, *val);
832 
833 	return ret;
834 }
835 
836 /**
837  * regmap_read(): Read a value from a single register
838  *
839  * @map: Register map to write to
840  * @reg: Register to be read from
841  * @val: Pointer to store read value
842  *
843  * A value of zero will be returned on success, a negative errno will
844  * be returned in error cases.
845  */
846 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
847 {
848 	int ret;
849 
850 	if (reg % map->reg_stride)
851 		return -EINVAL;
852 
853 	map->lock(map);
854 
855 	ret = _regmap_read(map, reg, val);
856 
857 	map->unlock(map);
858 
859 	return ret;
860 }
861 EXPORT_SYMBOL_GPL(regmap_read);
862 
863 /**
864  * regmap_raw_read(): Read raw data from the device
865  *
866  * @map: Register map to write to
867  * @reg: First register to be read from
868  * @val: Pointer to store read value
869  * @val_len: Size of data to read
870  *
871  * A value of zero will be returned on success, a negative errno will
872  * be returned in error cases.
873  */
874 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
875 		    size_t val_len)
876 {
877 	size_t val_bytes = map->format.val_bytes;
878 	size_t val_count = val_len / val_bytes;
879 	unsigned int v;
880 	int ret, i;
881 
882 	if (val_len % map->format.val_bytes)
883 		return -EINVAL;
884 	if (reg % map->reg_stride)
885 		return -EINVAL;
886 
887 	map->lock(map);
888 
889 	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
890 	    map->cache_type == REGCACHE_NONE) {
891 		/* Physical block read if there's no cache involved */
892 		ret = _regmap_raw_read(map, reg, val, val_len);
893 
894 	} else {
895 		/* Otherwise go word by word for the cache; should be low
896 		 * cost as we expect to hit the cache.
897 		 */
898 		for (i = 0; i < val_count; i++) {
899 			ret = _regmap_read(map, reg + (i * map->reg_stride),
900 					   &v);
901 			if (ret != 0)
902 				goto out;
903 
904 			map->format.format_val(val + (i * val_bytes), v, 0);
905 		}
906 	}
907 
908  out:
909 	map->unlock(map);
910 
911 	return ret;
912 }
913 EXPORT_SYMBOL_GPL(regmap_raw_read);
914 
915 /**
916  * regmap_bulk_read(): Read multiple registers from the device
917  *
918  * @map: Register map to write to
919  * @reg: First register to be read from
920  * @val: Pointer to store read value, in native register size for device
921  * @val_count: Number of registers to read
922  *
923  * A value of zero will be returned on success, a negative errno will
924  * be returned in error cases.
925  */
926 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
927 		     size_t val_count)
928 {
929 	int ret, i;
930 	size_t val_bytes = map->format.val_bytes;
931 	bool vol = regmap_volatile_range(map, reg, val_count);
932 
933 	if (!map->format.parse_val)
934 		return -EINVAL;
935 	if (reg % map->reg_stride)
936 		return -EINVAL;
937 
938 	if (vol || map->cache_type == REGCACHE_NONE) {
939 		/*
940 		 * Some devices does not support bulk read, for
941 		 * them we have a series of single read operations.
942 		 */
943 		if (map->use_single_rw) {
944 			for (i = 0; i < val_count; i++) {
945 				ret = regmap_raw_read(map,
946 						reg + (i * map->reg_stride),
947 						val + (i * val_bytes),
948 						val_bytes);
949 				if (ret != 0)
950 					return ret;
951 			}
952 		} else {
953 			ret = regmap_raw_read(map, reg, val,
954 					      val_bytes * val_count);
955 			if (ret != 0)
956 				return ret;
957 		}
958 
959 		for (i = 0; i < val_count * val_bytes; i += val_bytes)
960 			map->format.parse_val(val + i);
961 	} else {
962 		for (i = 0; i < val_count; i++) {
963 			unsigned int ival;
964 			ret = regmap_read(map, reg + (i * map->reg_stride),
965 					  &ival);
966 			if (ret != 0)
967 				return ret;
968 			memcpy(val + (i * val_bytes), &ival, val_bytes);
969 		}
970 	}
971 
972 	return 0;
973 }
974 EXPORT_SYMBOL_GPL(regmap_bulk_read);
975 
976 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
977 			       unsigned int mask, unsigned int val,
978 			       bool *change)
979 {
980 	int ret;
981 	unsigned int tmp, orig;
982 
983 	map->lock(map);
984 
985 	ret = _regmap_read(map, reg, &orig);
986 	if (ret != 0)
987 		goto out;
988 
989 	tmp = orig & ~mask;
990 	tmp |= val & mask;
991 
992 	if (tmp != orig) {
993 		ret = _regmap_write(map, reg, tmp);
994 		*change = true;
995 	} else {
996 		*change = false;
997 	}
998 
999 out:
1000 	map->unlock(map);
1001 
1002 	return ret;
1003 }
1004 
1005 /**
1006  * regmap_update_bits: Perform a read/modify/write cycle on the register map
1007  *
1008  * @map: Register map to update
1009  * @reg: Register to update
1010  * @mask: Bitmask to change
1011  * @val: New value for bitmask
1012  *
1013  * Returns zero for success, a negative number on error.
1014  */
1015 int regmap_update_bits(struct regmap *map, unsigned int reg,
1016 		       unsigned int mask, unsigned int val)
1017 {
1018 	bool change;
1019 	return _regmap_update_bits(map, reg, mask, val, &change);
1020 }
1021 EXPORT_SYMBOL_GPL(regmap_update_bits);
1022 
1023 /**
1024  * regmap_update_bits_check: Perform a read/modify/write cycle on the
1025  *                           register map and report if updated
1026  *
1027  * @map: Register map to update
1028  * @reg: Register to update
1029  * @mask: Bitmask to change
1030  * @val: New value for bitmask
1031  * @change: Boolean indicating if a write was done
1032  *
1033  * Returns zero for success, a negative number on error.
1034  */
1035 int regmap_update_bits_check(struct regmap *map, unsigned int reg,
1036 			     unsigned int mask, unsigned int val,
1037 			     bool *change)
1038 {
1039 	return _regmap_update_bits(map, reg, mask, val, change);
1040 }
1041 EXPORT_SYMBOL_GPL(regmap_update_bits_check);
1042 
1043 /**
1044  * regmap_register_patch: Register and apply register updates to be applied
1045  *                        on device initialistion
1046  *
1047  * @map: Register map to apply updates to.
1048  * @regs: Values to update.
1049  * @num_regs: Number of entries in regs.
1050  *
1051  * Register a set of register updates to be applied to the device
1052  * whenever the device registers are synchronised with the cache and
1053  * apply them immediately.  Typically this is used to apply
1054  * corrections to be applied to the device defaults on startup, such
1055  * as the updates some vendors provide to undocumented registers.
1056  */
1057 int regmap_register_patch(struct regmap *map, const struct reg_default *regs,
1058 			  int num_regs)
1059 {
1060 	int i, ret;
1061 	bool bypass;
1062 
1063 	/* If needed the implementation can be extended to support this */
1064 	if (map->patch)
1065 		return -EBUSY;
1066 
1067 	map->lock(map);
1068 
1069 	bypass = map->cache_bypass;
1070 
1071 	map->cache_bypass = true;
1072 
1073 	/* Write out first; it's useful to apply even if we fail later. */
1074 	for (i = 0; i < num_regs; i++) {
1075 		ret = _regmap_write(map, regs[i].reg, regs[i].def);
1076 		if (ret != 0) {
1077 			dev_err(map->dev, "Failed to write %x = %x: %d\n",
1078 				regs[i].reg, regs[i].def, ret);
1079 			goto out;
1080 		}
1081 	}
1082 
1083 	map->patch = kcalloc(num_regs, sizeof(struct reg_default), GFP_KERNEL);
1084 	if (map->patch != NULL) {
1085 		memcpy(map->patch, regs,
1086 		       num_regs * sizeof(struct reg_default));
1087 		map->patch_regs = num_regs;
1088 	} else {
1089 		ret = -ENOMEM;
1090 	}
1091 
1092 out:
1093 	map->cache_bypass = bypass;
1094 
1095 	map->unlock(map);
1096 
1097 	return ret;
1098 }
1099 EXPORT_SYMBOL_GPL(regmap_register_patch);
1100 
1101 /*
1102  * regmap_get_val_bytes(): Report the size of a register value
1103  *
1104  * Report the size of a register value, mainly intended to for use by
1105  * generic infrastructure built on top of regmap.
1106  */
1107 int regmap_get_val_bytes(struct regmap *map)
1108 {
1109 	if (map->format.format_write)
1110 		return -EINVAL;
1111 
1112 	return map->format.val_bytes;
1113 }
1114 EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
1115 
1116 static int __init regmap_initcall(void)
1117 {
1118 	regmap_debugfs_initcall();
1119 
1120 	return 0;
1121 }
1122 postcore_initcall(regmap_initcall);
1123