xref: /linux/drivers/base/regmap/regmap.c (revision 5afca7e996c42aed1b4a42d4712817601ba42aff)
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // Register map access API
4 //
5 // Copyright 2011 Wolfson Microelectronics plc
6 //
7 // Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8 
9 #include <linux/device.h>
10 #include <linux/slab.h>
11 #include <linux/export.h>
12 #include <linux/mutex.h>
13 #include <linux/err.h>
14 #include <linux/property.h>
15 #include <linux/rbtree.h>
16 #include <linux/sched.h>
17 #include <linux/delay.h>
18 #include <linux/log2.h>
19 #include <linux/hwspinlock.h>
20 #include <linux/unaligned.h>
21 
22 #define CREATE_TRACE_POINTS
23 #include "trace.h"
24 
25 #include "internal.h"
26 
27 /*
28  * Sometimes for failures during very early init the trace
29  * infrastructure isn't available early enough to be used.  For this
30  * sort of problem defining LOG_DEVICE will add printks for basic
31  * register I/O on a specific device.
32  */
33 #undef LOG_DEVICE
34 
35 #ifdef LOG_DEVICE
36 static inline bool regmap_should_log(struct regmap *map)
37 {
38 	return (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0);
39 }
40 #else
41 static inline bool regmap_should_log(struct regmap *map) { return false; }
42 #endif
43 
44 
45 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
46 			       unsigned int mask, unsigned int val,
47 			       bool *change, bool force_write);
48 
49 static int _regmap_bus_reg_read(void *context, unsigned int reg,
50 				unsigned int *val);
51 static int _regmap_bus_read(void *context, unsigned int reg,
52 			    unsigned int *val);
53 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
54 				       unsigned int val);
55 static int _regmap_bus_reg_write(void *context, unsigned int reg,
56 				 unsigned int val);
57 static int _regmap_bus_raw_write(void *context, unsigned int reg,
58 				 unsigned int val);
59 
60 bool regmap_reg_in_ranges(unsigned int reg,
61 			  const struct regmap_range *ranges,
62 			  unsigned int nranges)
63 {
64 	const struct regmap_range *r;
65 	int i;
66 
67 	for (i = 0, r = ranges; i < nranges; i++, r++)
68 		if (regmap_reg_in_range(reg, r))
69 			return true;
70 	return false;
71 }
72 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
73 
74 bool regmap_check_range_table(struct regmap *map, unsigned int reg,
75 			      const struct regmap_access_table *table)
76 {
77 	/* Check "no ranges" first */
78 	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
79 		return false;
80 
81 	/* In case zero "yes ranges" are supplied, any reg is OK */
82 	if (!table->n_yes_ranges)
83 		return true;
84 
85 	return regmap_reg_in_ranges(reg, table->yes_ranges,
86 				    table->n_yes_ranges);
87 }
88 EXPORT_SYMBOL_GPL(regmap_check_range_table);
89 
90 bool regmap_writeable(struct regmap *map, unsigned int reg)
91 {
92 	if (map->max_register_is_set && reg > map->max_register)
93 		return false;
94 
95 	if (map->writeable_reg)
96 		return map->writeable_reg(map->dev, reg);
97 
98 	if (map->wr_table)
99 		return regmap_check_range_table(map, reg, map->wr_table);
100 
101 	return true;
102 }
103 
104 bool regmap_cached(struct regmap *map, unsigned int reg)
105 {
106 	int ret;
107 	unsigned int val;
108 
109 	if (map->cache_type == REGCACHE_NONE)
110 		return false;
111 
112 	if (!map->cache_ops)
113 		return false;
114 
115 	if (map->max_register_is_set && reg > map->max_register)
116 		return false;
117 
118 	map->lock(map->lock_arg);
119 	ret = regcache_read(map, reg, &val);
120 	map->unlock(map->lock_arg);
121 	if (ret)
122 		return false;
123 
124 	return true;
125 }
126 
127 bool regmap_readable(struct regmap *map, unsigned int reg)
128 {
129 	if (!map->reg_read)
130 		return false;
131 
132 	if (map->max_register_is_set && reg > map->max_register)
133 		return false;
134 
135 	if (map->format.format_write)
136 		return false;
137 
138 	if (map->readable_reg)
139 		return map->readable_reg(map->dev, reg);
140 
141 	if (map->rd_table)
142 		return regmap_check_range_table(map, reg, map->rd_table);
143 
144 	return true;
145 }
146 
147 bool regmap_volatile(struct regmap *map, unsigned int reg)
148 {
149 	if (!map->format.format_write && !regmap_readable(map, reg))
150 		return false;
151 
152 	if (map->volatile_reg)
153 		return map->volatile_reg(map->dev, reg);
154 
155 	if (map->volatile_table)
156 		return regmap_check_range_table(map, reg, map->volatile_table);
157 
158 	if (map->cache_ops)
159 		return false;
160 	else
161 		return true;
162 }
163 
164 bool regmap_precious(struct regmap *map, unsigned int reg)
165 {
166 	if (!regmap_readable(map, reg))
167 		return false;
168 
169 	if (map->precious_reg)
170 		return map->precious_reg(map->dev, reg);
171 
172 	if (map->precious_table)
173 		return regmap_check_range_table(map, reg, map->precious_table);
174 
175 	return false;
176 }
177 
178 bool regmap_writeable_noinc(struct regmap *map, unsigned int reg)
179 {
180 	if (map->writeable_noinc_reg)
181 		return map->writeable_noinc_reg(map->dev, reg);
182 
183 	if (map->wr_noinc_table)
184 		return regmap_check_range_table(map, reg, map->wr_noinc_table);
185 
186 	return true;
187 }
188 
189 bool regmap_readable_noinc(struct regmap *map, unsigned int reg)
190 {
191 	if (map->readable_noinc_reg)
192 		return map->readable_noinc_reg(map->dev, reg);
193 
194 	if (map->rd_noinc_table)
195 		return regmap_check_range_table(map, reg, map->rd_noinc_table);
196 
197 	return true;
198 }
199 
200 static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
201 	size_t num)
202 {
203 	unsigned int i;
204 
205 	for (i = 0; i < num; i++)
206 		if (!regmap_volatile(map, reg + regmap_get_offset(map, i)))
207 			return false;
208 
209 	return true;
210 }
211 
212 static void regmap_format_12_20_write(struct regmap *map,
213 				     unsigned int reg, unsigned int val)
214 {
215 	u8 *out = map->work_buf;
216 
217 	out[0] = reg >> 4;
218 	out[1] = (reg << 4) | (val >> 16);
219 	out[2] = val >> 8;
220 	out[3] = val;
221 }
222 
223 
224 static void regmap_format_2_6_write(struct regmap *map,
225 				     unsigned int reg, unsigned int val)
226 {
227 	u8 *out = map->work_buf;
228 
229 	*out = (reg << 6) | val;
230 }
231 
232 static void regmap_format_4_12_write(struct regmap *map,
233 				     unsigned int reg, unsigned int val)
234 {
235 	__be16 *out = map->work_buf;
236 	*out = cpu_to_be16((reg << 12) | val);
237 }
238 
239 static void regmap_format_7_9_write(struct regmap *map,
240 				    unsigned int reg, unsigned int val)
241 {
242 	__be16 *out = map->work_buf;
243 	*out = cpu_to_be16((reg << 9) | val);
244 }
245 
246 static void regmap_format_7_17_write(struct regmap *map,
247 				    unsigned int reg, unsigned int val)
248 {
249 	u8 *out = map->work_buf;
250 
251 	out[2] = val;
252 	out[1] = val >> 8;
253 	out[0] = (val >> 16) | (reg << 1);
254 }
255 
256 static void regmap_format_10_14_write(struct regmap *map,
257 				    unsigned int reg, unsigned int val)
258 {
259 	u8 *out = map->work_buf;
260 
261 	out[2] = val;
262 	out[1] = (val >> 8) | (reg << 6);
263 	out[0] = reg >> 2;
264 }
265 
266 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
267 {
268 	u8 *b = buf;
269 
270 	b[0] = val << shift;
271 }
272 
273 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
274 {
275 	put_unaligned_be16(val << shift, buf);
276 }
277 
278 static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
279 {
280 	put_unaligned_le16(val << shift, buf);
281 }
282 
283 static void regmap_format_16_native(void *buf, unsigned int val,
284 				    unsigned int shift)
285 {
286 	u16 v = val << shift;
287 
288 	memcpy(buf, &v, sizeof(v));
289 }
290 
291 static void regmap_format_24_be(void *buf, unsigned int val, unsigned int shift)
292 {
293 	put_unaligned_be24(val << shift, buf);
294 }
295 
296 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
297 {
298 	put_unaligned_be32(val << shift, buf);
299 }
300 
301 static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
302 {
303 	put_unaligned_le32(val << shift, buf);
304 }
305 
306 static void regmap_format_32_native(void *buf, unsigned int val,
307 				    unsigned int shift)
308 {
309 	u32 v = val << shift;
310 
311 	memcpy(buf, &v, sizeof(v));
312 }
313 
314 static void regmap_parse_inplace_noop(void *buf)
315 {
316 }
317 
318 static unsigned int regmap_parse_8(const void *buf)
319 {
320 	const u8 *b = buf;
321 
322 	return b[0];
323 }
324 
325 static unsigned int regmap_parse_16_be(const void *buf)
326 {
327 	return get_unaligned_be16(buf);
328 }
329 
330 static unsigned int regmap_parse_16_le(const void *buf)
331 {
332 	return get_unaligned_le16(buf);
333 }
334 
335 static void regmap_parse_16_be_inplace(void *buf)
336 {
337 	u16 v = get_unaligned_be16(buf);
338 
339 	memcpy(buf, &v, sizeof(v));
340 }
341 
342 static void regmap_parse_16_le_inplace(void *buf)
343 {
344 	u16 v = get_unaligned_le16(buf);
345 
346 	memcpy(buf, &v, sizeof(v));
347 }
348 
349 static unsigned int regmap_parse_16_native(const void *buf)
350 {
351 	u16 v;
352 
353 	memcpy(&v, buf, sizeof(v));
354 	return v;
355 }
356 
357 static unsigned int regmap_parse_24_be(const void *buf)
358 {
359 	return get_unaligned_be24(buf);
360 }
361 
362 static unsigned int regmap_parse_32_be(const void *buf)
363 {
364 	return get_unaligned_be32(buf);
365 }
366 
367 static unsigned int regmap_parse_32_le(const void *buf)
368 {
369 	return get_unaligned_le32(buf);
370 }
371 
372 static void regmap_parse_32_be_inplace(void *buf)
373 {
374 	u32 v = get_unaligned_be32(buf);
375 
376 	memcpy(buf, &v, sizeof(v));
377 }
378 
379 static void regmap_parse_32_le_inplace(void *buf)
380 {
381 	u32 v = get_unaligned_le32(buf);
382 
383 	memcpy(buf, &v, sizeof(v));
384 }
385 
386 static unsigned int regmap_parse_32_native(const void *buf)
387 {
388 	u32 v;
389 
390 	memcpy(&v, buf, sizeof(v));
391 	return v;
392 }
393 
394 static void regmap_lock_hwlock(void *__map)
395 {
396 	struct regmap *map = __map;
397 
398 	hwspin_lock_timeout(map->hwlock, UINT_MAX);
399 }
400 
401 static void regmap_lock_hwlock_irq(void *__map)
402 {
403 	struct regmap *map = __map;
404 
405 	hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
406 }
407 
408 static void regmap_lock_hwlock_irqsave(void *__map)
409 {
410 	struct regmap *map = __map;
411 
412 	hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
413 				    &map->spinlock_flags);
414 }
415 
416 static void regmap_unlock_hwlock(void *__map)
417 {
418 	struct regmap *map = __map;
419 
420 	hwspin_unlock(map->hwlock);
421 }
422 
423 static void regmap_unlock_hwlock_irq(void *__map)
424 {
425 	struct regmap *map = __map;
426 
427 	hwspin_unlock_irq(map->hwlock);
428 }
429 
430 static void regmap_unlock_hwlock_irqrestore(void *__map)
431 {
432 	struct regmap *map = __map;
433 
434 	hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
435 }
436 
437 static void regmap_lock_unlock_none(void *__map)
438 {
439 
440 }
441 
442 static void regmap_lock_mutex(void *__map)
443 {
444 	struct regmap *map = __map;
445 	mutex_lock(&map->mutex);
446 }
447 
448 static void regmap_unlock_mutex(void *__map)
449 {
450 	struct regmap *map = __map;
451 	mutex_unlock(&map->mutex);
452 }
453 
454 static void regmap_lock_spinlock(void *__map)
455 __acquires(&map->spinlock)
456 {
457 	struct regmap *map = __map;
458 	unsigned long flags;
459 
460 	spin_lock_irqsave(&map->spinlock, flags);
461 	map->spinlock_flags = flags;
462 }
463 
464 static void regmap_unlock_spinlock(void *__map)
465 __releases(&map->spinlock)
466 {
467 	struct regmap *map = __map;
468 	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
469 }
470 
471 static void regmap_lock_raw_spinlock(void *__map)
472 __acquires(&map->raw_spinlock)
473 {
474 	struct regmap *map = __map;
475 	unsigned long flags;
476 
477 	raw_spin_lock_irqsave(&map->raw_spinlock, flags);
478 	map->raw_spinlock_flags = flags;
479 }
480 
481 static void regmap_unlock_raw_spinlock(void *__map)
482 __releases(&map->raw_spinlock)
483 {
484 	struct regmap *map = __map;
485 	raw_spin_unlock_irqrestore(&map->raw_spinlock, map->raw_spinlock_flags);
486 }
487 
488 static void dev_get_regmap_release(struct device *dev, void *res)
489 {
490 	/*
491 	 * We don't actually have anything to do here; the goal here
492 	 * is not to manage the regmap but to provide a simple way to
493 	 * get the regmap back given a struct device.
494 	 */
495 }
496 
497 static bool _regmap_range_add(struct regmap *map,
498 			      struct regmap_range_node *data)
499 {
500 	struct rb_root *root = &map->range_tree;
501 	struct rb_node **new = &(root->rb_node), *parent = NULL;
502 
503 	while (*new) {
504 		struct regmap_range_node *this =
505 			rb_entry(*new, struct regmap_range_node, node);
506 
507 		parent = *new;
508 		if (data->range_max < this->range_min)
509 			new = &((*new)->rb_left);
510 		else if (data->range_min > this->range_max)
511 			new = &((*new)->rb_right);
512 		else
513 			return false;
514 	}
515 
516 	rb_link_node(&data->node, parent, new);
517 	rb_insert_color(&data->node, root);
518 
519 	return true;
520 }
521 
522 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
523 						      unsigned int reg)
524 {
525 	struct rb_node *node = map->range_tree.rb_node;
526 
527 	while (node) {
528 		struct regmap_range_node *this =
529 			rb_entry(node, struct regmap_range_node, node);
530 
531 		if (reg < this->range_min)
532 			node = node->rb_left;
533 		else if (reg > this->range_max)
534 			node = node->rb_right;
535 		else
536 			return this;
537 	}
538 
539 	return NULL;
540 }
541 
542 static void regmap_range_exit(struct regmap *map)
543 {
544 	struct rb_node *next;
545 	struct regmap_range_node *range_node;
546 
547 	next = rb_first(&map->range_tree);
548 	while (next) {
549 		range_node = rb_entry(next, struct regmap_range_node, node);
550 		next = rb_next(&range_node->node);
551 		rb_erase(&range_node->node, &map->range_tree);
552 		kfree(range_node);
553 	}
554 
555 	kfree(map->selector_work_buf);
556 }
557 
558 static int regmap_set_name(struct regmap *map, const struct regmap_config *config)
559 {
560 	if (config->name) {
561 		const char *name = kstrdup_const(config->name, GFP_KERNEL);
562 
563 		if (!name)
564 			return -ENOMEM;
565 
566 		kfree_const(map->name);
567 		map->name = name;
568 	}
569 
570 	return 0;
571 }
572 
573 int regmap_attach_dev(struct device *dev, struct regmap *map,
574 		      const struct regmap_config *config)
575 {
576 	struct regmap **m;
577 	int ret;
578 
579 	map->dev = dev;
580 
581 	ret = regmap_set_name(map, config);
582 	if (ret)
583 		return ret;
584 
585 	regmap_debugfs_exit(map);
586 	regmap_debugfs_init(map);
587 
588 	/* Add a devres resource for dev_get_regmap() */
589 	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
590 	if (!m) {
591 		regmap_debugfs_exit(map);
592 		return -ENOMEM;
593 	}
594 	*m = map;
595 	devres_add(dev, m);
596 
597 	return 0;
598 }
599 EXPORT_SYMBOL_GPL(regmap_attach_dev);
600 
601 static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
602 					const struct regmap_config *config)
603 {
604 	enum regmap_endian endian;
605 
606 	/* Retrieve the endianness specification from the regmap config */
607 	endian = config->reg_format_endian;
608 
609 	/* If the regmap config specified a non-default value, use that */
610 	if (endian != REGMAP_ENDIAN_DEFAULT)
611 		return endian;
612 
613 	/* Retrieve the endianness specification from the bus config */
614 	if (bus && bus->reg_format_endian_default)
615 		endian = bus->reg_format_endian_default;
616 
617 	/* If the bus specified a non-default value, use that */
618 	if (endian != REGMAP_ENDIAN_DEFAULT)
619 		return endian;
620 
621 	/* Use this if no other value was found */
622 	return REGMAP_ENDIAN_BIG;
623 }
624 
625 enum regmap_endian regmap_get_val_endian(struct device *dev,
626 					 const struct regmap_bus *bus,
627 					 const struct regmap_config *config)
628 {
629 	struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
630 	enum regmap_endian endian;
631 
632 	/* Retrieve the endianness specification from the regmap config */
633 	endian = config->val_format_endian;
634 
635 	/* If the regmap config specified a non-default value, use that */
636 	if (endian != REGMAP_ENDIAN_DEFAULT)
637 		return endian;
638 
639 	/* If the firmware node exist try to get endianness from it */
640 	if (fwnode_property_read_bool(fwnode, "big-endian"))
641 		endian = REGMAP_ENDIAN_BIG;
642 	else if (fwnode_property_read_bool(fwnode, "little-endian"))
643 		endian = REGMAP_ENDIAN_LITTLE;
644 	else if (fwnode_property_read_bool(fwnode, "native-endian"))
645 		endian = REGMAP_ENDIAN_NATIVE;
646 
647 	/* If the endianness was specified in fwnode, use that */
648 	if (endian != REGMAP_ENDIAN_DEFAULT)
649 		return endian;
650 
651 	/* Retrieve the endianness specification from the bus config */
652 	if (bus && bus->val_format_endian_default)
653 		endian = bus->val_format_endian_default;
654 
655 	/* If the bus specified a non-default value, use that */
656 	if (endian != REGMAP_ENDIAN_DEFAULT)
657 		return endian;
658 
659 	/* Use this if no other value was found */
660 	return REGMAP_ENDIAN_BIG;
661 }
662 EXPORT_SYMBOL_GPL(regmap_get_val_endian);
663 
664 struct regmap *__regmap_init(struct device *dev,
665 			     const struct regmap_bus *bus,
666 			     void *bus_context,
667 			     const struct regmap_config *config,
668 			     struct lock_class_key *lock_key,
669 			     const char *lock_name)
670 {
671 	struct regmap *map;
672 	int ret = -EINVAL;
673 	enum regmap_endian reg_endian, val_endian;
674 	int i, j;
675 
676 	if (!config)
677 		goto err;
678 
679 	map = kzalloc(sizeof(*map), GFP_KERNEL);
680 	if (map == NULL) {
681 		ret = -ENOMEM;
682 		goto err;
683 	}
684 
685 	ret = regmap_set_name(map, config);
686 	if (ret)
687 		goto err_map;
688 
689 	ret = -EINVAL; /* Later error paths rely on this */
690 
691 	if (config->disable_locking) {
692 		map->lock = map->unlock = regmap_lock_unlock_none;
693 		map->can_sleep = config->can_sleep;
694 		regmap_debugfs_disable(map);
695 	} else if (config->lock && config->unlock) {
696 		map->lock = config->lock;
697 		map->unlock = config->unlock;
698 		map->lock_arg = config->lock_arg;
699 		map->can_sleep = config->can_sleep;
700 	} else if (config->use_hwlock) {
701 		map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
702 		if (!map->hwlock) {
703 			ret = -ENXIO;
704 			goto err_name;
705 		}
706 
707 		switch (config->hwlock_mode) {
708 		case HWLOCK_IRQSTATE:
709 			map->lock = regmap_lock_hwlock_irqsave;
710 			map->unlock = regmap_unlock_hwlock_irqrestore;
711 			break;
712 		case HWLOCK_IRQ:
713 			map->lock = regmap_lock_hwlock_irq;
714 			map->unlock = regmap_unlock_hwlock_irq;
715 			break;
716 		default:
717 			map->lock = regmap_lock_hwlock;
718 			map->unlock = regmap_unlock_hwlock;
719 			break;
720 		}
721 
722 		map->lock_arg = map;
723 	} else {
724 		if ((bus && bus->fast_io) ||
725 		    config->fast_io) {
726 			if (config->use_raw_spinlock) {
727 				raw_spin_lock_init(&map->raw_spinlock);
728 				map->lock = regmap_lock_raw_spinlock;
729 				map->unlock = regmap_unlock_raw_spinlock;
730 				lockdep_set_class_and_name(&map->raw_spinlock,
731 							   lock_key, lock_name);
732 			} else {
733 				spin_lock_init(&map->spinlock);
734 				map->lock = regmap_lock_spinlock;
735 				map->unlock = regmap_unlock_spinlock;
736 				lockdep_set_class_and_name(&map->spinlock,
737 							   lock_key, lock_name);
738 			}
739 		} else {
740 			mutex_init(&map->mutex);
741 			map->lock = regmap_lock_mutex;
742 			map->unlock = regmap_unlock_mutex;
743 			map->can_sleep = true;
744 			lockdep_set_class_and_name(&map->mutex,
745 						   lock_key, lock_name);
746 		}
747 		map->lock_arg = map;
748 	}
749 
750 	/*
751 	 * When we write in fast-paths with regmap_bulk_write() don't allocate
752 	 * scratch buffers with sleeping allocations.
753 	 */
754 	if ((bus && bus->fast_io) || config->fast_io)
755 		map->alloc_flags = GFP_ATOMIC;
756 	else
757 		map->alloc_flags = GFP_KERNEL;
758 
759 	map->reg_base = config->reg_base;
760 
761 	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
762 	map->format.pad_bytes = config->pad_bits / 8;
763 	map->format.reg_shift = config->reg_shift;
764 	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
765 	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
766 			config->val_bits + config->pad_bits, 8);
767 	map->reg_shift = config->pad_bits % 8;
768 	if (config->reg_stride)
769 		map->reg_stride = config->reg_stride;
770 	else
771 		map->reg_stride = 1;
772 	if (is_power_of_2(map->reg_stride))
773 		map->reg_stride_order = ilog2(map->reg_stride);
774 	else
775 		map->reg_stride_order = -1;
776 	map->use_single_read = config->use_single_read || !(config->read || (bus && bus->read));
777 	map->use_single_write = config->use_single_write || !(config->write || (bus && bus->write));
778 	map->can_multi_write = config->can_multi_write && (config->write || (bus && bus->write));
779 	if (bus) {
780 		map->max_raw_read = bus->max_raw_read;
781 		map->max_raw_write = bus->max_raw_write;
782 	} else if (config->max_raw_read && config->max_raw_write) {
783 		map->max_raw_read = config->max_raw_read;
784 		map->max_raw_write = config->max_raw_write;
785 	}
786 	map->dev = dev;
787 	map->bus = bus;
788 	map->bus_context = bus_context;
789 	map->max_register = config->max_register;
790 	map->max_register_is_set = map->max_register ?: config->max_register_is_0;
791 	map->wr_table = config->wr_table;
792 	map->rd_table = config->rd_table;
793 	map->volatile_table = config->volatile_table;
794 	map->precious_table = config->precious_table;
795 	map->wr_noinc_table = config->wr_noinc_table;
796 	map->rd_noinc_table = config->rd_noinc_table;
797 	map->writeable_reg = config->writeable_reg;
798 	map->readable_reg = config->readable_reg;
799 	map->volatile_reg = config->volatile_reg;
800 	map->precious_reg = config->precious_reg;
801 	map->writeable_noinc_reg = config->writeable_noinc_reg;
802 	map->readable_noinc_reg = config->readable_noinc_reg;
803 	map->cache_type = config->cache_type;
804 
805 	spin_lock_init(&map->async_lock);
806 	INIT_LIST_HEAD(&map->async_list);
807 	INIT_LIST_HEAD(&map->async_free);
808 	init_waitqueue_head(&map->async_waitq);
809 
810 	if (config->read_flag_mask ||
811 	    config->write_flag_mask ||
812 	    config->zero_flag_mask) {
813 		map->read_flag_mask = config->read_flag_mask;
814 		map->write_flag_mask = config->write_flag_mask;
815 	} else if (bus) {
816 		map->read_flag_mask = bus->read_flag_mask;
817 	}
818 
819 	if (config && config->read && config->write) {
820 		map->reg_read  = _regmap_bus_read;
821 		if (config->reg_update_bits)
822 			map->reg_update_bits = config->reg_update_bits;
823 
824 		/* Bulk read/write */
825 		map->read = config->read;
826 		map->write = config->write;
827 
828 		reg_endian = REGMAP_ENDIAN_NATIVE;
829 		val_endian = REGMAP_ENDIAN_NATIVE;
830 	} else if (!bus) {
831 		map->reg_read  = config->reg_read;
832 		map->reg_write = config->reg_write;
833 		map->reg_update_bits = config->reg_update_bits;
834 
835 		map->defer_caching = false;
836 		goto skip_format_initialization;
837 	} else if (!bus->read || !bus->write) {
838 		map->reg_read = _regmap_bus_reg_read;
839 		map->reg_write = _regmap_bus_reg_write;
840 		map->reg_update_bits = bus->reg_update_bits;
841 
842 		map->defer_caching = false;
843 		goto skip_format_initialization;
844 	} else {
845 		map->reg_read  = _regmap_bus_read;
846 		map->reg_update_bits = bus->reg_update_bits;
847 		/* Bulk read/write */
848 		map->read = bus->read;
849 		map->write = bus->write;
850 
851 		reg_endian = regmap_get_reg_endian(bus, config);
852 		val_endian = regmap_get_val_endian(dev, bus, config);
853 	}
854 
855 	switch (config->reg_bits + map->reg_shift) {
856 	case 2:
857 		switch (config->val_bits) {
858 		case 6:
859 			map->format.format_write = regmap_format_2_6_write;
860 			break;
861 		default:
862 			goto err_hwlock;
863 		}
864 		break;
865 
866 	case 4:
867 		switch (config->val_bits) {
868 		case 12:
869 			map->format.format_write = regmap_format_4_12_write;
870 			break;
871 		default:
872 			goto err_hwlock;
873 		}
874 		break;
875 
876 	case 7:
877 		switch (config->val_bits) {
878 		case 9:
879 			map->format.format_write = regmap_format_7_9_write;
880 			break;
881 		case 17:
882 			map->format.format_write = regmap_format_7_17_write;
883 			break;
884 		default:
885 			goto err_hwlock;
886 		}
887 		break;
888 
889 	case 10:
890 		switch (config->val_bits) {
891 		case 14:
892 			map->format.format_write = regmap_format_10_14_write;
893 			break;
894 		default:
895 			goto err_hwlock;
896 		}
897 		break;
898 
899 	case 12:
900 		switch (config->val_bits) {
901 		case 20:
902 			map->format.format_write = regmap_format_12_20_write;
903 			break;
904 		default:
905 			goto err_hwlock;
906 		}
907 		break;
908 
909 	case 8:
910 		map->format.format_reg = regmap_format_8;
911 		break;
912 
913 	case 16:
914 		switch (reg_endian) {
915 		case REGMAP_ENDIAN_BIG:
916 			map->format.format_reg = regmap_format_16_be;
917 			break;
918 		case REGMAP_ENDIAN_LITTLE:
919 			map->format.format_reg = regmap_format_16_le;
920 			break;
921 		case REGMAP_ENDIAN_NATIVE:
922 			map->format.format_reg = regmap_format_16_native;
923 			break;
924 		default:
925 			goto err_hwlock;
926 		}
927 		break;
928 
929 	case 24:
930 		switch (reg_endian) {
931 		case REGMAP_ENDIAN_BIG:
932 			map->format.format_reg = regmap_format_24_be;
933 			break;
934 		default:
935 			goto err_hwlock;
936 		}
937 		break;
938 
939 	case 32:
940 		switch (reg_endian) {
941 		case REGMAP_ENDIAN_BIG:
942 			map->format.format_reg = regmap_format_32_be;
943 			break;
944 		case REGMAP_ENDIAN_LITTLE:
945 			map->format.format_reg = regmap_format_32_le;
946 			break;
947 		case REGMAP_ENDIAN_NATIVE:
948 			map->format.format_reg = regmap_format_32_native;
949 			break;
950 		default:
951 			goto err_hwlock;
952 		}
953 		break;
954 
955 	default:
956 		goto err_hwlock;
957 	}
958 
959 	if (val_endian == REGMAP_ENDIAN_NATIVE)
960 		map->format.parse_inplace = regmap_parse_inplace_noop;
961 
962 	switch (config->val_bits) {
963 	case 8:
964 		map->format.format_val = regmap_format_8;
965 		map->format.parse_val = regmap_parse_8;
966 		map->format.parse_inplace = regmap_parse_inplace_noop;
967 		break;
968 	case 16:
969 		switch (val_endian) {
970 		case REGMAP_ENDIAN_BIG:
971 			map->format.format_val = regmap_format_16_be;
972 			map->format.parse_val = regmap_parse_16_be;
973 			map->format.parse_inplace = regmap_parse_16_be_inplace;
974 			break;
975 		case REGMAP_ENDIAN_LITTLE:
976 			map->format.format_val = regmap_format_16_le;
977 			map->format.parse_val = regmap_parse_16_le;
978 			map->format.parse_inplace = regmap_parse_16_le_inplace;
979 			break;
980 		case REGMAP_ENDIAN_NATIVE:
981 			map->format.format_val = regmap_format_16_native;
982 			map->format.parse_val = regmap_parse_16_native;
983 			break;
984 		default:
985 			goto err_hwlock;
986 		}
987 		break;
988 	case 24:
989 		switch (val_endian) {
990 		case REGMAP_ENDIAN_BIG:
991 			map->format.format_val = regmap_format_24_be;
992 			map->format.parse_val = regmap_parse_24_be;
993 			break;
994 		default:
995 			goto err_hwlock;
996 		}
997 		break;
998 	case 32:
999 		switch (val_endian) {
1000 		case REGMAP_ENDIAN_BIG:
1001 			map->format.format_val = regmap_format_32_be;
1002 			map->format.parse_val = regmap_parse_32_be;
1003 			map->format.parse_inplace = regmap_parse_32_be_inplace;
1004 			break;
1005 		case REGMAP_ENDIAN_LITTLE:
1006 			map->format.format_val = regmap_format_32_le;
1007 			map->format.parse_val = regmap_parse_32_le;
1008 			map->format.parse_inplace = regmap_parse_32_le_inplace;
1009 			break;
1010 		case REGMAP_ENDIAN_NATIVE:
1011 			map->format.format_val = regmap_format_32_native;
1012 			map->format.parse_val = regmap_parse_32_native;
1013 			break;
1014 		default:
1015 			goto err_hwlock;
1016 		}
1017 		break;
1018 	}
1019 
1020 	if (map->format.format_write) {
1021 		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
1022 		    (val_endian != REGMAP_ENDIAN_BIG))
1023 			goto err_hwlock;
1024 		map->use_single_write = true;
1025 	}
1026 
1027 	if (!map->format.format_write &&
1028 	    !(map->format.format_reg && map->format.format_val))
1029 		goto err_hwlock;
1030 
1031 	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1032 	if (map->work_buf == NULL) {
1033 		ret = -ENOMEM;
1034 		goto err_hwlock;
1035 	}
1036 
1037 	if (map->format.format_write) {
1038 		map->defer_caching = false;
1039 		map->reg_write = _regmap_bus_formatted_write;
1040 	} else if (map->format.format_val) {
1041 		map->defer_caching = true;
1042 		map->reg_write = _regmap_bus_raw_write;
1043 	}
1044 
1045 skip_format_initialization:
1046 
1047 	map->range_tree = RB_ROOT;
1048 	for (i = 0; i < config->num_ranges; i++) {
1049 		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
1050 		struct regmap_range_node *new;
1051 
1052 		/* Sanity check */
1053 		if (range_cfg->range_max < range_cfg->range_min) {
1054 			dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
1055 				range_cfg->range_max, range_cfg->range_min);
1056 			goto err_range;
1057 		}
1058 
1059 		if (range_cfg->range_max > map->max_register) {
1060 			dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
1061 				range_cfg->range_max, map->max_register);
1062 			goto err_range;
1063 		}
1064 
1065 		if (range_cfg->selector_reg > map->max_register) {
1066 			dev_err(map->dev,
1067 				"Invalid range %d: selector out of map\n", i);
1068 			goto err_range;
1069 		}
1070 
1071 		if (range_cfg->window_len == 0) {
1072 			dev_err(map->dev, "Invalid range %d: window_len 0\n",
1073 				i);
1074 			goto err_range;
1075 		}
1076 
1077 		/* Make sure, that this register range has no selector
1078 		   or data window within its boundary */
1079 		for (j = 0; j < config->num_ranges; j++) {
1080 			unsigned int sel_reg = config->ranges[j].selector_reg;
1081 			unsigned int win_min = config->ranges[j].window_start;
1082 			unsigned int win_max = win_min +
1083 					       config->ranges[j].window_len - 1;
1084 
1085 			/* Allow data window inside its own virtual range */
1086 			if (j == i)
1087 				continue;
1088 
1089 			if (range_cfg->range_min <= sel_reg &&
1090 			    sel_reg <= range_cfg->range_max) {
1091 				dev_err(map->dev,
1092 					"Range %d: selector for %d in window\n",
1093 					i, j);
1094 				goto err_range;
1095 			}
1096 
1097 			if (!(win_max < range_cfg->range_min ||
1098 			      win_min > range_cfg->range_max)) {
1099 				dev_err(map->dev,
1100 					"Range %d: window for %d in window\n",
1101 					i, j);
1102 				goto err_range;
1103 			}
1104 		}
1105 
1106 		new = kzalloc(sizeof(*new), GFP_KERNEL);
1107 		if (new == NULL) {
1108 			ret = -ENOMEM;
1109 			goto err_range;
1110 		}
1111 
1112 		new->map = map;
1113 		new->name = range_cfg->name;
1114 		new->range_min = range_cfg->range_min;
1115 		new->range_max = range_cfg->range_max;
1116 		new->selector_reg = range_cfg->selector_reg;
1117 		new->selector_mask = range_cfg->selector_mask;
1118 		new->selector_shift = range_cfg->selector_shift;
1119 		new->window_start = range_cfg->window_start;
1120 		new->window_len = range_cfg->window_len;
1121 
1122 		if (!_regmap_range_add(map, new)) {
1123 			dev_err(map->dev, "Failed to add range %d\n", i);
1124 			kfree(new);
1125 			goto err_range;
1126 		}
1127 
1128 		if (map->selector_work_buf == NULL) {
1129 			map->selector_work_buf =
1130 				kzalloc(map->format.buf_size, GFP_KERNEL);
1131 			if (map->selector_work_buf == NULL) {
1132 				ret = -ENOMEM;
1133 				goto err_range;
1134 			}
1135 		}
1136 	}
1137 
1138 	ret = regcache_init(map, config);
1139 	if (ret != 0)
1140 		goto err_range;
1141 
1142 	if (dev) {
1143 		ret = regmap_attach_dev(dev, map, config);
1144 		if (ret != 0)
1145 			goto err_regcache;
1146 	} else {
1147 		regmap_debugfs_init(map);
1148 	}
1149 
1150 	return map;
1151 
1152 err_regcache:
1153 	regcache_exit(map);
1154 err_range:
1155 	regmap_range_exit(map);
1156 	kfree(map->work_buf);
1157 err_hwlock:
1158 	if (map->hwlock)
1159 		hwspin_lock_free(map->hwlock);
1160 err_name:
1161 	kfree_const(map->name);
1162 err_map:
1163 	kfree(map);
1164 err:
1165 	return ERR_PTR(ret);
1166 }
1167 EXPORT_SYMBOL_GPL(__regmap_init);
1168 
1169 static void devm_regmap_release(struct device *dev, void *res)
1170 {
1171 	regmap_exit(*(struct regmap **)res);
1172 }
1173 
1174 struct regmap *__devm_regmap_init(struct device *dev,
1175 				  const struct regmap_bus *bus,
1176 				  void *bus_context,
1177 				  const struct regmap_config *config,
1178 				  struct lock_class_key *lock_key,
1179 				  const char *lock_name)
1180 {
1181 	struct regmap **ptr, *regmap;
1182 
1183 	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1184 	if (!ptr)
1185 		return ERR_PTR(-ENOMEM);
1186 
1187 	regmap = __regmap_init(dev, bus, bus_context, config,
1188 			       lock_key, lock_name);
1189 	if (!IS_ERR(regmap)) {
1190 		*ptr = regmap;
1191 		devres_add(dev, ptr);
1192 	} else {
1193 		devres_free(ptr);
1194 	}
1195 
1196 	return regmap;
1197 }
1198 EXPORT_SYMBOL_GPL(__devm_regmap_init);
1199 
1200 static void regmap_field_init(struct regmap_field *rm_field,
1201 	struct regmap *regmap, struct reg_field reg_field)
1202 {
1203 	rm_field->regmap = regmap;
1204 	rm_field->reg = reg_field.reg;
1205 	rm_field->shift = reg_field.lsb;
1206 	rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1207 
1208 	WARN_ONCE(rm_field->mask == 0, "invalid empty mask defined\n");
1209 
1210 	rm_field->id_size = reg_field.id_size;
1211 	rm_field->id_offset = reg_field.id_offset;
1212 }
1213 
1214 /**
1215  * devm_regmap_field_alloc() - Allocate and initialise a register field.
1216  *
1217  * @dev: Device that will be interacted with
1218  * @regmap: regmap bank in which this register field is located.
1219  * @reg_field: Register field with in the bank.
1220  *
1221  * The return value will be an ERR_PTR() on error or a valid pointer
1222  * to a struct regmap_field. The regmap_field will be automatically freed
1223  * by the device management code.
1224  */
1225 struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1226 		struct regmap *regmap, struct reg_field reg_field)
1227 {
1228 	struct regmap_field *rm_field = devm_kzalloc(dev,
1229 					sizeof(*rm_field), GFP_KERNEL);
1230 	if (!rm_field)
1231 		return ERR_PTR(-ENOMEM);
1232 
1233 	regmap_field_init(rm_field, regmap, reg_field);
1234 
1235 	return rm_field;
1236 
1237 }
1238 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1239 
1240 
1241 /**
1242  * regmap_field_bulk_alloc() - Allocate and initialise a bulk register field.
1243  *
1244  * @regmap: regmap bank in which this register field is located.
1245  * @rm_field: regmap register fields within the bank.
1246  * @reg_field: Register fields within the bank.
1247  * @num_fields: Number of register fields.
1248  *
1249  * The return value will be an -ENOMEM on error or zero for success.
1250  * Newly allocated regmap_fields should be freed by calling
1251  * regmap_field_bulk_free()
1252  */
1253 int regmap_field_bulk_alloc(struct regmap *regmap,
1254 			    struct regmap_field **rm_field,
1255 			    const struct reg_field *reg_field,
1256 			    int num_fields)
1257 {
1258 	struct regmap_field *rf;
1259 	int i;
1260 
1261 	rf = kcalloc(num_fields, sizeof(*rf), GFP_KERNEL);
1262 	if (!rf)
1263 		return -ENOMEM;
1264 
1265 	for (i = 0; i < num_fields; i++) {
1266 		regmap_field_init(&rf[i], regmap, reg_field[i]);
1267 		rm_field[i] = &rf[i];
1268 	}
1269 
1270 	return 0;
1271 }
1272 EXPORT_SYMBOL_GPL(regmap_field_bulk_alloc);
1273 
1274 /**
1275  * devm_regmap_field_bulk_alloc() - Allocate and initialise a bulk register
1276  * fields.
1277  *
1278  * @dev: Device that will be interacted with
1279  * @regmap: regmap bank in which this register field is located.
1280  * @rm_field: regmap register fields within the bank.
1281  * @reg_field: Register fields within the bank.
1282  * @num_fields: Number of register fields.
1283  *
1284  * The return value will be an -ENOMEM on error or zero for success.
1285  * Newly allocated regmap_fields will be automatically freed by the
1286  * device management code.
1287  */
1288 int devm_regmap_field_bulk_alloc(struct device *dev,
1289 				 struct regmap *regmap,
1290 				 struct regmap_field **rm_field,
1291 				 const struct reg_field *reg_field,
1292 				 int num_fields)
1293 {
1294 	struct regmap_field *rf;
1295 	int i;
1296 
1297 	rf = devm_kcalloc(dev, num_fields, sizeof(*rf), GFP_KERNEL);
1298 	if (!rf)
1299 		return -ENOMEM;
1300 
1301 	for (i = 0; i < num_fields; i++) {
1302 		regmap_field_init(&rf[i], regmap, reg_field[i]);
1303 		rm_field[i] = &rf[i];
1304 	}
1305 
1306 	return 0;
1307 }
1308 EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_alloc);
1309 
1310 /**
1311  * regmap_field_bulk_free() - Free register field allocated using
1312  *                       regmap_field_bulk_alloc.
1313  *
1314  * @field: regmap fields which should be freed.
1315  */
1316 void regmap_field_bulk_free(struct regmap_field *field)
1317 {
1318 	kfree(field);
1319 }
1320 EXPORT_SYMBOL_GPL(regmap_field_bulk_free);
1321 
1322 /**
1323  * devm_regmap_field_bulk_free() - Free a bulk register field allocated using
1324  *                            devm_regmap_field_bulk_alloc.
1325  *
1326  * @dev: Device that will be interacted with
1327  * @field: regmap field which should be freed.
1328  *
1329  * Free register field allocated using devm_regmap_field_bulk_alloc(). Usually
1330  * drivers need not call this function, as the memory allocated via devm
1331  * will be freed as per device-driver life-cycle.
1332  */
1333 void devm_regmap_field_bulk_free(struct device *dev,
1334 				 struct regmap_field *field)
1335 {
1336 	devm_kfree(dev, field);
1337 }
1338 EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_free);
1339 
1340 /**
1341  * devm_regmap_field_free() - Free a register field allocated using
1342  *                            devm_regmap_field_alloc.
1343  *
1344  * @dev: Device that will be interacted with
1345  * @field: regmap field which should be freed.
1346  *
1347  * Free register field allocated using devm_regmap_field_alloc(). Usually
1348  * drivers need not call this function, as the memory allocated via devm
1349  * will be freed as per device-driver life-cyle.
1350  */
1351 void devm_regmap_field_free(struct device *dev,
1352 	struct regmap_field *field)
1353 {
1354 	devm_kfree(dev, field);
1355 }
1356 EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1357 
1358 /**
1359  * regmap_field_alloc() - Allocate and initialise a register field.
1360  *
1361  * @regmap: regmap bank in which this register field is located.
1362  * @reg_field: Register field with in the bank.
1363  *
1364  * The return value will be an ERR_PTR() on error or a valid pointer
1365  * to a struct regmap_field. The regmap_field should be freed by the
1366  * user once its finished working with it using regmap_field_free().
1367  */
1368 struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1369 		struct reg_field reg_field)
1370 {
1371 	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1372 
1373 	if (!rm_field)
1374 		return ERR_PTR(-ENOMEM);
1375 
1376 	regmap_field_init(rm_field, regmap, reg_field);
1377 
1378 	return rm_field;
1379 }
1380 EXPORT_SYMBOL_GPL(regmap_field_alloc);
1381 
1382 /**
1383  * regmap_field_free() - Free register field allocated using
1384  *                       regmap_field_alloc.
1385  *
1386  * @field: regmap field which should be freed.
1387  */
1388 void regmap_field_free(struct regmap_field *field)
1389 {
1390 	kfree(field);
1391 }
1392 EXPORT_SYMBOL_GPL(regmap_field_free);
1393 
1394 /**
1395  * regmap_reinit_cache() - Reinitialise the current register cache
1396  *
1397  * @map: Register map to operate on.
1398  * @config: New configuration.  Only the cache data will be used.
1399  *
1400  * Discard any existing register cache for the map and initialize a
1401  * new cache.  This can be used to restore the cache to defaults or to
1402  * update the cache configuration to reflect runtime discovery of the
1403  * hardware.
1404  *
1405  * No explicit locking is done here, the user needs to ensure that
1406  * this function will not race with other calls to regmap.
1407  */
1408 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1409 {
1410 	int ret;
1411 
1412 	regcache_exit(map);
1413 	regmap_debugfs_exit(map);
1414 
1415 	map->max_register = config->max_register;
1416 	map->max_register_is_set = map->max_register ?: config->max_register_is_0;
1417 	map->writeable_reg = config->writeable_reg;
1418 	map->readable_reg = config->readable_reg;
1419 	map->volatile_reg = config->volatile_reg;
1420 	map->precious_reg = config->precious_reg;
1421 	map->writeable_noinc_reg = config->writeable_noinc_reg;
1422 	map->readable_noinc_reg = config->readable_noinc_reg;
1423 	map->cache_type = config->cache_type;
1424 
1425 	ret = regmap_set_name(map, config);
1426 	if (ret)
1427 		return ret;
1428 
1429 	regmap_debugfs_init(map);
1430 
1431 	map->cache_bypass = false;
1432 	map->cache_only = false;
1433 
1434 	return regcache_init(map, config);
1435 }
1436 EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1437 
1438 /**
1439  * regmap_exit() - Free a previously allocated register map
1440  *
1441  * @map: Register map to operate on.
1442  */
1443 void regmap_exit(struct regmap *map)
1444 {
1445 	struct regmap_async *async;
1446 
1447 	regcache_exit(map);
1448 
1449 	regmap_debugfs_exit(map);
1450 	regmap_range_exit(map);
1451 	if (map->bus && map->bus->free_context)
1452 		map->bus->free_context(map->bus_context);
1453 	kfree(map->work_buf);
1454 	while (!list_empty(&map->async_free)) {
1455 		async = list_first_entry_or_null(&map->async_free,
1456 						 struct regmap_async,
1457 						 list);
1458 		list_del(&async->list);
1459 		kfree(async->work_buf);
1460 		kfree(async);
1461 	}
1462 	if (map->hwlock)
1463 		hwspin_lock_free(map->hwlock);
1464 	if (map->lock == regmap_lock_mutex)
1465 		mutex_destroy(&map->mutex);
1466 	kfree_const(map->name);
1467 	kfree(map->patch);
1468 	if (map->bus && map->bus->free_on_exit)
1469 		kfree(map->bus);
1470 	kfree(map);
1471 }
1472 EXPORT_SYMBOL_GPL(regmap_exit);
1473 
1474 static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1475 {
1476 	struct regmap **r = res;
1477 	if (!r || !*r) {
1478 		WARN_ON(!r || !*r);
1479 		return 0;
1480 	}
1481 
1482 	/* If the user didn't specify a name match any */
1483 	if (data)
1484 		return (*r)->name && !strcmp((*r)->name, data);
1485 	else
1486 		return 1;
1487 }
1488 
1489 /**
1490  * dev_get_regmap() - Obtain the regmap (if any) for a device
1491  *
1492  * @dev: Device to retrieve the map for
1493  * @name: Optional name for the register map, usually NULL.
1494  *
1495  * Returns the regmap for the device if one is present, or NULL.  If
1496  * name is specified then it must match the name specified when
1497  * registering the device, if it is NULL then the first regmap found
1498  * will be used.  Devices with multiple register maps are very rare,
1499  * generic code should normally not need to specify a name.
1500  */
1501 struct regmap *dev_get_regmap(struct device *dev, const char *name)
1502 {
1503 	struct regmap **r = devres_find(dev, dev_get_regmap_release,
1504 					dev_get_regmap_match, (void *)name);
1505 
1506 	if (!r)
1507 		return NULL;
1508 	return *r;
1509 }
1510 EXPORT_SYMBOL_GPL(dev_get_regmap);
1511 
1512 /**
1513  * regmap_get_device() - Obtain the device from a regmap
1514  *
1515  * @map: Register map to operate on.
1516  *
1517  * Returns the underlying device that the regmap has been created for.
1518  */
1519 struct device *regmap_get_device(struct regmap *map)
1520 {
1521 	return map->dev;
1522 }
1523 EXPORT_SYMBOL_GPL(regmap_get_device);
1524 
1525 static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1526 			       struct regmap_range_node *range,
1527 			       unsigned int val_num)
1528 {
1529 	void *orig_work_buf;
1530 	unsigned int win_offset;
1531 	unsigned int win_page;
1532 	bool page_chg;
1533 	int ret;
1534 
1535 	win_offset = (*reg - range->range_min) % range->window_len;
1536 	win_page = (*reg - range->range_min) / range->window_len;
1537 
1538 	if (val_num > 1) {
1539 		/* Bulk write shouldn't cross range boundary */
1540 		if (*reg + val_num - 1 > range->range_max)
1541 			return -EINVAL;
1542 
1543 		/* ... or single page boundary */
1544 		if (val_num > range->window_len - win_offset)
1545 			return -EINVAL;
1546 	}
1547 
1548 	/* It is possible to have selector register inside data window.
1549 	   In that case, selector register is located on every page and
1550 	   it needs no page switching, when accessed alone. */
1551 	if (val_num > 1 ||
1552 	    range->window_start + win_offset != range->selector_reg) {
1553 		/* Use separate work_buf during page switching */
1554 		orig_work_buf = map->work_buf;
1555 		map->work_buf = map->selector_work_buf;
1556 
1557 		ret = _regmap_update_bits(map, range->selector_reg,
1558 					  range->selector_mask,
1559 					  win_page << range->selector_shift,
1560 					  &page_chg, false);
1561 
1562 		map->work_buf = orig_work_buf;
1563 
1564 		if (ret != 0)
1565 			return ret;
1566 	}
1567 
1568 	*reg = range->window_start + win_offset;
1569 
1570 	return 0;
1571 }
1572 
1573 static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1574 					  unsigned long mask)
1575 {
1576 	u8 *buf;
1577 	int i;
1578 
1579 	if (!mask || !map->work_buf)
1580 		return;
1581 
1582 	buf = map->work_buf;
1583 
1584 	for (i = 0; i < max_bytes; i++)
1585 		buf[i] |= (mask >> (8 * i)) & 0xff;
1586 }
1587 
1588 static unsigned int regmap_reg_addr(struct regmap *map, unsigned int reg)
1589 {
1590 	reg += map->reg_base;
1591 
1592 	if (map->format.reg_shift > 0)
1593 		reg >>= map->format.reg_shift;
1594 	else if (map->format.reg_shift < 0)
1595 		reg <<= -(map->format.reg_shift);
1596 
1597 	return reg;
1598 }
1599 
1600 static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg,
1601 				  const void *val, size_t val_len, bool noinc)
1602 {
1603 	struct regmap_range_node *range;
1604 	unsigned long flags;
1605 	void *work_val = map->work_buf + map->format.reg_bytes +
1606 		map->format.pad_bytes;
1607 	void *buf;
1608 	int ret = -ENOTSUPP;
1609 	size_t len;
1610 	int i;
1611 
1612 	/* Check for unwritable or noinc registers in range
1613 	 * before we start
1614 	 */
1615 	if (!regmap_writeable_noinc(map, reg)) {
1616 		for (i = 0; i < val_len / map->format.val_bytes; i++) {
1617 			unsigned int element =
1618 				reg + regmap_get_offset(map, i);
1619 			if (!regmap_writeable(map, element) ||
1620 				regmap_writeable_noinc(map, element))
1621 				return -EINVAL;
1622 		}
1623 	}
1624 
1625 	if (!map->cache_bypass && map->format.parse_val) {
1626 		unsigned int ival, offset;
1627 		int val_bytes = map->format.val_bytes;
1628 
1629 		/* Cache the last written value for noinc writes */
1630 		i = noinc ? val_len - val_bytes : 0;
1631 		for (; i < val_len; i += val_bytes) {
1632 			ival = map->format.parse_val(val + i);
1633 			offset = noinc ? 0 : regmap_get_offset(map, i / val_bytes);
1634 			ret = regcache_write(map, reg + offset, ival);
1635 			if (ret) {
1636 				dev_err(map->dev,
1637 					"Error in caching of register: %x ret: %d\n",
1638 					reg + offset, ret);
1639 				return ret;
1640 			}
1641 		}
1642 		if (map->cache_only) {
1643 			map->cache_dirty = true;
1644 			return 0;
1645 		}
1646 	}
1647 
1648 	range = _regmap_range_lookup(map, reg);
1649 	if (range) {
1650 		int val_num = val_len / map->format.val_bytes;
1651 		int win_offset = (reg - range->range_min) % range->window_len;
1652 		int win_residue = range->window_len - win_offset;
1653 
1654 		/* If the write goes beyond the end of the window split it */
1655 		while (val_num > win_residue) {
1656 			dev_dbg(map->dev, "Writing window %d/%zu\n",
1657 				win_residue, val_len / map->format.val_bytes);
1658 			ret = _regmap_raw_write_impl(map, reg, val,
1659 						     win_residue *
1660 						     map->format.val_bytes, noinc);
1661 			if (ret != 0)
1662 				return ret;
1663 
1664 			reg += win_residue;
1665 			val_num -= win_residue;
1666 			val += win_residue * map->format.val_bytes;
1667 			val_len -= win_residue * map->format.val_bytes;
1668 
1669 			win_offset = (reg - range->range_min) %
1670 				range->window_len;
1671 			win_residue = range->window_len - win_offset;
1672 		}
1673 
1674 		ret = _regmap_select_page(map, &reg, range, noinc ? 1 : val_num);
1675 		if (ret != 0)
1676 			return ret;
1677 	}
1678 
1679 	reg = regmap_reg_addr(map, reg);
1680 	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1681 	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1682 				      map->write_flag_mask);
1683 
1684 	/*
1685 	 * Essentially all I/O mechanisms will be faster with a single
1686 	 * buffer to write.  Since register syncs often generate raw
1687 	 * writes of single registers optimise that case.
1688 	 */
1689 	if (val != work_val && val_len == map->format.val_bytes) {
1690 		memcpy(work_val, val, map->format.val_bytes);
1691 		val = work_val;
1692 	}
1693 
1694 	if (map->async && map->bus && map->bus->async_write) {
1695 		struct regmap_async *async;
1696 
1697 		trace_regmap_async_write_start(map, reg, val_len);
1698 
1699 		spin_lock_irqsave(&map->async_lock, flags);
1700 		async = list_first_entry_or_null(&map->async_free,
1701 						 struct regmap_async,
1702 						 list);
1703 		if (async)
1704 			list_del(&async->list);
1705 		spin_unlock_irqrestore(&map->async_lock, flags);
1706 
1707 		if (!async) {
1708 			async = map->bus->async_alloc();
1709 			if (!async)
1710 				return -ENOMEM;
1711 
1712 			async->work_buf = kzalloc(map->format.buf_size,
1713 						  GFP_KERNEL | GFP_DMA);
1714 			if (!async->work_buf) {
1715 				kfree(async);
1716 				return -ENOMEM;
1717 			}
1718 		}
1719 
1720 		async->map = map;
1721 
1722 		/* If the caller supplied the value we can use it safely. */
1723 		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1724 		       map->format.reg_bytes + map->format.val_bytes);
1725 
1726 		spin_lock_irqsave(&map->async_lock, flags);
1727 		list_add_tail(&async->list, &map->async_list);
1728 		spin_unlock_irqrestore(&map->async_lock, flags);
1729 
1730 		if (val != work_val)
1731 			ret = map->bus->async_write(map->bus_context,
1732 						    async->work_buf,
1733 						    map->format.reg_bytes +
1734 						    map->format.pad_bytes,
1735 						    val, val_len, async);
1736 		else
1737 			ret = map->bus->async_write(map->bus_context,
1738 						    async->work_buf,
1739 						    map->format.reg_bytes +
1740 						    map->format.pad_bytes +
1741 						    val_len, NULL, 0, async);
1742 
1743 		if (ret != 0) {
1744 			dev_err(map->dev, "Failed to schedule write: %d\n",
1745 				ret);
1746 
1747 			spin_lock_irqsave(&map->async_lock, flags);
1748 			list_move(&async->list, &map->async_free);
1749 			spin_unlock_irqrestore(&map->async_lock, flags);
1750 		}
1751 
1752 		return ret;
1753 	}
1754 
1755 	trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1756 
1757 	/* If we're doing a single register write we can probably just
1758 	 * send the work_buf directly, otherwise try to do a gather
1759 	 * write.
1760 	 */
1761 	if (val == work_val)
1762 		ret = map->write(map->bus_context, map->work_buf,
1763 				 map->format.reg_bytes +
1764 				 map->format.pad_bytes +
1765 				 val_len);
1766 	else if (map->bus && map->bus->gather_write)
1767 		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1768 					     map->format.reg_bytes +
1769 					     map->format.pad_bytes,
1770 					     val, val_len);
1771 	else
1772 		ret = -ENOTSUPP;
1773 
1774 	/* If that didn't work fall back on linearising by hand. */
1775 	if (ret == -ENOTSUPP) {
1776 		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1777 		buf = kzalloc(len, GFP_KERNEL);
1778 		if (!buf)
1779 			return -ENOMEM;
1780 
1781 		memcpy(buf, map->work_buf, map->format.reg_bytes);
1782 		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1783 		       val, val_len);
1784 		ret = map->write(map->bus_context, buf, len);
1785 
1786 		kfree(buf);
1787 	} else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1788 		/* regcache_drop_region() takes lock that we already have,
1789 		 * thus call map->cache_ops->drop() directly
1790 		 */
1791 		if (map->cache_ops && map->cache_ops->drop)
1792 			map->cache_ops->drop(map, reg, reg + 1);
1793 	}
1794 
1795 	trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1796 
1797 	return ret;
1798 }
1799 
1800 /**
1801  * regmap_can_raw_write - Test if regmap_raw_write() is supported
1802  *
1803  * @map: Map to check.
1804  */
1805 bool regmap_can_raw_write(struct regmap *map)
1806 {
1807 	return map->write && map->format.format_val && map->format.format_reg;
1808 }
1809 EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1810 
1811 /**
1812  * regmap_get_raw_read_max - Get the maximum size we can read
1813  *
1814  * @map: Map to check.
1815  */
1816 size_t regmap_get_raw_read_max(struct regmap *map)
1817 {
1818 	return map->max_raw_read;
1819 }
1820 EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1821 
1822 /**
1823  * regmap_get_raw_write_max - Get the maximum size we can read
1824  *
1825  * @map: Map to check.
1826  */
1827 size_t regmap_get_raw_write_max(struct regmap *map)
1828 {
1829 	return map->max_raw_write;
1830 }
1831 EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1832 
1833 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1834 				       unsigned int val)
1835 {
1836 	int ret;
1837 	struct regmap_range_node *range;
1838 	struct regmap *map = context;
1839 
1840 	WARN_ON(!map->format.format_write);
1841 
1842 	range = _regmap_range_lookup(map, reg);
1843 	if (range) {
1844 		ret = _regmap_select_page(map, &reg, range, 1);
1845 		if (ret != 0)
1846 			return ret;
1847 	}
1848 
1849 	reg = regmap_reg_addr(map, reg);
1850 	map->format.format_write(map, reg, val);
1851 
1852 	trace_regmap_hw_write_start(map, reg, 1);
1853 
1854 	ret = map->write(map->bus_context, map->work_buf, map->format.buf_size);
1855 
1856 	trace_regmap_hw_write_done(map, reg, 1);
1857 
1858 	return ret;
1859 }
1860 
1861 static int _regmap_bus_reg_write(void *context, unsigned int reg,
1862 				 unsigned int val)
1863 {
1864 	struct regmap *map = context;
1865 	struct regmap_range_node *range;
1866 	int ret;
1867 
1868 	range = _regmap_range_lookup(map, reg);
1869 	if (range) {
1870 		ret = _regmap_select_page(map, &reg, range, 1);
1871 		if (ret != 0)
1872 			return ret;
1873 	}
1874 
1875 	reg = regmap_reg_addr(map, reg);
1876 	return map->bus->reg_write(map->bus_context, reg, val);
1877 }
1878 
1879 static int _regmap_bus_raw_write(void *context, unsigned int reg,
1880 				 unsigned int val)
1881 {
1882 	struct regmap *map = context;
1883 
1884 	WARN_ON(!map->format.format_val);
1885 
1886 	map->format.format_val(map->work_buf + map->format.reg_bytes
1887 			       + map->format.pad_bytes, val, 0);
1888 	return _regmap_raw_write_impl(map, reg,
1889 				      map->work_buf +
1890 				      map->format.reg_bytes +
1891 				      map->format.pad_bytes,
1892 				      map->format.val_bytes,
1893 				      false);
1894 }
1895 
1896 static inline void *_regmap_map_get_context(struct regmap *map)
1897 {
1898 	return (map->bus || (!map->bus && map->read)) ? map : map->bus_context;
1899 }
1900 
1901 int _regmap_write(struct regmap *map, unsigned int reg,
1902 		  unsigned int val)
1903 {
1904 	int ret;
1905 	void *context = _regmap_map_get_context(map);
1906 
1907 	if (!regmap_writeable(map, reg))
1908 		return -EIO;
1909 
1910 	if (!map->cache_bypass && !map->defer_caching) {
1911 		ret = regcache_write(map, reg, val);
1912 		if (ret != 0)
1913 			return ret;
1914 		if (map->cache_only) {
1915 			map->cache_dirty = true;
1916 			return 0;
1917 		}
1918 	}
1919 
1920 	ret = map->reg_write(context, reg, val);
1921 	if (ret == 0) {
1922 		if (regmap_should_log(map))
1923 			dev_info(map->dev, "%x <= %x\n", reg, val);
1924 
1925 		trace_regmap_reg_write(map, reg, val);
1926 	}
1927 
1928 	return ret;
1929 }
1930 
1931 /**
1932  * regmap_write() - Write a value to a single register
1933  *
1934  * @map: Register map to write to
1935  * @reg: Register to write to
1936  * @val: Value to be written
1937  *
1938  * A value of zero will be returned on success, a negative errno will
1939  * be returned in error cases.
1940  */
1941 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1942 {
1943 	int ret;
1944 
1945 	if (!IS_ALIGNED(reg, map->reg_stride))
1946 		return -EINVAL;
1947 
1948 	map->lock(map->lock_arg);
1949 
1950 	ret = _regmap_write(map, reg, val);
1951 
1952 	map->unlock(map->lock_arg);
1953 
1954 	return ret;
1955 }
1956 EXPORT_SYMBOL_GPL(regmap_write);
1957 
1958 /**
1959  * regmap_write_async() - Write a value to a single register asynchronously
1960  *
1961  * @map: Register map to write to
1962  * @reg: Register to write to
1963  * @val: Value to be written
1964  *
1965  * A value of zero will be returned on success, a negative errno will
1966  * be returned in error cases.
1967  */
1968 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1969 {
1970 	int ret;
1971 
1972 	if (!IS_ALIGNED(reg, map->reg_stride))
1973 		return -EINVAL;
1974 
1975 	map->lock(map->lock_arg);
1976 
1977 	map->async = true;
1978 
1979 	ret = _regmap_write(map, reg, val);
1980 
1981 	map->async = false;
1982 
1983 	map->unlock(map->lock_arg);
1984 
1985 	return ret;
1986 }
1987 EXPORT_SYMBOL_GPL(regmap_write_async);
1988 
1989 int _regmap_raw_write(struct regmap *map, unsigned int reg,
1990 		      const void *val, size_t val_len, bool noinc)
1991 {
1992 	size_t val_bytes = map->format.val_bytes;
1993 	size_t val_count = val_len / val_bytes;
1994 	size_t chunk_count, chunk_bytes;
1995 	size_t chunk_regs = val_count;
1996 	int ret, i;
1997 
1998 	if (!val_count)
1999 		return -EINVAL;
2000 
2001 	if (map->use_single_write)
2002 		chunk_regs = 1;
2003 	else if (map->max_raw_write && val_len > map->max_raw_write)
2004 		chunk_regs = map->max_raw_write / val_bytes;
2005 
2006 	chunk_count = val_count / chunk_regs;
2007 	chunk_bytes = chunk_regs * val_bytes;
2008 
2009 	/* Write as many bytes as possible with chunk_size */
2010 	for (i = 0; i < chunk_count; i++) {
2011 		ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes, noinc);
2012 		if (ret)
2013 			return ret;
2014 
2015 		reg += regmap_get_offset(map, chunk_regs);
2016 		val += chunk_bytes;
2017 		val_len -= chunk_bytes;
2018 	}
2019 
2020 	/* Write remaining bytes */
2021 	if (val_len)
2022 		ret = _regmap_raw_write_impl(map, reg, val, val_len, noinc);
2023 
2024 	return ret;
2025 }
2026 
2027 /**
2028  * regmap_raw_write() - Write raw values to one or more registers
2029  *
2030  * @map: Register map to write to
2031  * @reg: Initial register to write to
2032  * @val: Block of data to be written, laid out for direct transmission to the
2033  *       device
2034  * @val_len: Length of data pointed to by val.
2035  *
2036  * This function is intended to be used for things like firmware
2037  * download where a large block of data needs to be transferred to the
2038  * device.  No formatting will be done on the data provided.
2039  *
2040  * A value of zero will be returned on success, a negative errno will
2041  * be returned in error cases.
2042  */
2043 int regmap_raw_write(struct regmap *map, unsigned int reg,
2044 		     const void *val, size_t val_len)
2045 {
2046 	int ret;
2047 
2048 	if (!regmap_can_raw_write(map))
2049 		return -EINVAL;
2050 	if (val_len % map->format.val_bytes)
2051 		return -EINVAL;
2052 
2053 	map->lock(map->lock_arg);
2054 
2055 	ret = _regmap_raw_write(map, reg, val, val_len, false);
2056 
2057 	map->unlock(map->lock_arg);
2058 
2059 	return ret;
2060 }
2061 EXPORT_SYMBOL_GPL(regmap_raw_write);
2062 
2063 static int regmap_noinc_readwrite(struct regmap *map, unsigned int reg,
2064 				  void *val, unsigned int val_len, bool write)
2065 {
2066 	size_t val_bytes = map->format.val_bytes;
2067 	size_t val_count = val_len / val_bytes;
2068 	unsigned int lastval;
2069 	u8 *u8p;
2070 	u16 *u16p;
2071 	u32 *u32p;
2072 	int ret;
2073 	int i;
2074 
2075 	switch (val_bytes) {
2076 	case 1:
2077 		u8p = val;
2078 		if (write)
2079 			lastval = (unsigned int)u8p[val_count - 1];
2080 		break;
2081 	case 2:
2082 		u16p = val;
2083 		if (write)
2084 			lastval = (unsigned int)u16p[val_count - 1];
2085 		break;
2086 	case 4:
2087 		u32p = val;
2088 		if (write)
2089 			lastval = (unsigned int)u32p[val_count - 1];
2090 		break;
2091 	default:
2092 		return -EINVAL;
2093 	}
2094 
2095 	/*
2096 	 * Update the cache with the last value we write, the rest is just
2097 	 * gone down in the hardware FIFO. We can't cache FIFOs. This makes
2098 	 * sure a single read from the cache will work.
2099 	 */
2100 	if (write) {
2101 		if (!map->cache_bypass && !map->defer_caching) {
2102 			ret = regcache_write(map, reg, lastval);
2103 			if (ret != 0)
2104 				return ret;
2105 			if (map->cache_only) {
2106 				map->cache_dirty = true;
2107 				return 0;
2108 			}
2109 		}
2110 		ret = map->bus->reg_noinc_write(map->bus_context, reg, val, val_count);
2111 	} else {
2112 		ret = map->bus->reg_noinc_read(map->bus_context, reg, val, val_count);
2113 	}
2114 
2115 	if (!ret && regmap_should_log(map)) {
2116 		dev_info(map->dev, "%x %s [", reg, write ? "<=" : "=>");
2117 		for (i = 0; i < val_count; i++) {
2118 			switch (val_bytes) {
2119 			case 1:
2120 				pr_cont("%x", u8p[i]);
2121 				break;
2122 			case 2:
2123 				pr_cont("%x", u16p[i]);
2124 				break;
2125 			case 4:
2126 				pr_cont("%x", u32p[i]);
2127 				break;
2128 			default:
2129 				break;
2130 			}
2131 			if (i == (val_count - 1))
2132 				pr_cont("]\n");
2133 			else
2134 				pr_cont(",");
2135 		}
2136 	}
2137 
2138 	return 0;
2139 }
2140 
2141 /**
2142  * regmap_noinc_write(): Write data to a register without incrementing the
2143  *			register number
2144  *
2145  * @map: Register map to write to
2146  * @reg: Register to write to
2147  * @val: Pointer to data buffer
2148  * @val_len: Length of output buffer in bytes.
2149  *
2150  * The regmap API usually assumes that bulk bus write operations will write a
2151  * range of registers. Some devices have certain registers for which a write
2152  * operation can write to an internal FIFO.
2153  *
2154  * The target register must be volatile but registers after it can be
2155  * completely unrelated cacheable registers.
2156  *
2157  * This will attempt multiple writes as required to write val_len bytes.
2158  *
2159  * A value of zero will be returned on success, a negative errno will be
2160  * returned in error cases.
2161  */
2162 int regmap_noinc_write(struct regmap *map, unsigned int reg,
2163 		      const void *val, size_t val_len)
2164 {
2165 	size_t write_len;
2166 	int ret;
2167 
2168 	if (!map->write && !(map->bus && map->bus->reg_noinc_write))
2169 		return -EINVAL;
2170 	if (val_len % map->format.val_bytes)
2171 		return -EINVAL;
2172 	if (!IS_ALIGNED(reg, map->reg_stride))
2173 		return -EINVAL;
2174 	if (val_len == 0)
2175 		return -EINVAL;
2176 
2177 	map->lock(map->lock_arg);
2178 
2179 	if (!regmap_volatile(map, reg) || !regmap_writeable_noinc(map, reg)) {
2180 		ret = -EINVAL;
2181 		goto out_unlock;
2182 	}
2183 
2184 	/*
2185 	 * Use the accelerated operation if we can. The val drops the const
2186 	 * typing in order to facilitate code reuse in regmap_noinc_readwrite().
2187 	 */
2188 	if (map->bus->reg_noinc_write) {
2189 		ret = regmap_noinc_readwrite(map, reg, (void *)val, val_len, true);
2190 		goto out_unlock;
2191 	}
2192 
2193 	while (val_len) {
2194 		if (map->max_raw_write && map->max_raw_write < val_len)
2195 			write_len = map->max_raw_write;
2196 		else
2197 			write_len = val_len;
2198 		ret = _regmap_raw_write(map, reg, val, write_len, true);
2199 		if (ret)
2200 			goto out_unlock;
2201 		val = ((u8 *)val) + write_len;
2202 		val_len -= write_len;
2203 	}
2204 
2205 out_unlock:
2206 	map->unlock(map->lock_arg);
2207 	return ret;
2208 }
2209 EXPORT_SYMBOL_GPL(regmap_noinc_write);
2210 
2211 /**
2212  * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
2213  *                                   register field.
2214  *
2215  * @field: Register field to write to
2216  * @mask: Bitmask to change
2217  * @val: Value to be written
2218  * @change: Boolean indicating if a write was done
2219  * @async: Boolean indicating asynchronously
2220  * @force: Boolean indicating use force update
2221  *
2222  * Perform a read/modify/write cycle on the register field with change,
2223  * async, force option.
2224  *
2225  * A value of zero will be returned on success, a negative errno will
2226  * be returned in error cases.
2227  */
2228 int regmap_field_update_bits_base(struct regmap_field *field,
2229 				  unsigned int mask, unsigned int val,
2230 				  bool *change, bool async, bool force)
2231 {
2232 	mask = (mask << field->shift) & field->mask;
2233 
2234 	return regmap_update_bits_base(field->regmap, field->reg,
2235 				       mask, val << field->shift,
2236 				       change, async, force);
2237 }
2238 EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
2239 
2240 /**
2241  * regmap_field_test_bits() - Check if all specified bits are set in a
2242  *                            register field.
2243  *
2244  * @field: Register field to operate on
2245  * @bits: Bits to test
2246  *
2247  * Returns -1 if the underlying regmap_field_read() fails, 0 if at least one of the
2248  * tested bits is not set and 1 if all tested bits are set.
2249  */
2250 int regmap_field_test_bits(struct regmap_field *field, unsigned int bits)
2251 {
2252 	unsigned int val, ret;
2253 
2254 	ret = regmap_field_read(field, &val);
2255 	if (ret)
2256 		return ret;
2257 
2258 	return (val & bits) == bits;
2259 }
2260 EXPORT_SYMBOL_GPL(regmap_field_test_bits);
2261 
2262 /**
2263  * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
2264  *                                    register field with port ID
2265  *
2266  * @field: Register field to write to
2267  * @id: port ID
2268  * @mask: Bitmask to change
2269  * @val: Value to be written
2270  * @change: Boolean indicating if a write was done
2271  * @async: Boolean indicating asynchronously
2272  * @force: Boolean indicating use force update
2273  *
2274  * A value of zero will be returned on success, a negative errno will
2275  * be returned in error cases.
2276  */
2277 int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id,
2278 				   unsigned int mask, unsigned int val,
2279 				   bool *change, bool async, bool force)
2280 {
2281 	if (id >= field->id_size)
2282 		return -EINVAL;
2283 
2284 	mask = (mask << field->shift) & field->mask;
2285 
2286 	return regmap_update_bits_base(field->regmap,
2287 				       field->reg + (field->id_offset * id),
2288 				       mask, val << field->shift,
2289 				       change, async, force);
2290 }
2291 EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
2292 
2293 /**
2294  * regmap_bulk_write() - Write multiple registers to the device
2295  *
2296  * @map: Register map to write to
2297  * @reg: First register to be write from
2298  * @val: Block of data to be written, in native register size for device
2299  * @val_count: Number of registers to write
2300  *
2301  * This function is intended to be used for writing a large block of
2302  * data to the device either in single transfer or multiple transfer.
2303  *
2304  * A value of zero will be returned on success, a negative errno will
2305  * be returned in error cases.
2306  */
2307 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
2308 		     size_t val_count)
2309 {
2310 	int ret = 0, i;
2311 	size_t val_bytes = map->format.val_bytes;
2312 
2313 	if (!IS_ALIGNED(reg, map->reg_stride))
2314 		return -EINVAL;
2315 
2316 	/*
2317 	 * Some devices don't support bulk write, for them we have a series of
2318 	 * single write operations.
2319 	 */
2320 	if (!map->write || !map->format.parse_inplace) {
2321 		map->lock(map->lock_arg);
2322 		for (i = 0; i < val_count; i++) {
2323 			unsigned int ival;
2324 
2325 			switch (val_bytes) {
2326 			case 1:
2327 				ival = *(u8 *)(val + (i * val_bytes));
2328 				break;
2329 			case 2:
2330 				ival = *(u16 *)(val + (i * val_bytes));
2331 				break;
2332 			case 4:
2333 				ival = *(u32 *)(val + (i * val_bytes));
2334 				break;
2335 			default:
2336 				ret = -EINVAL;
2337 				goto out;
2338 			}
2339 
2340 			ret = _regmap_write(map,
2341 					    reg + regmap_get_offset(map, i),
2342 					    ival);
2343 			if (ret != 0)
2344 				goto out;
2345 		}
2346 out:
2347 		map->unlock(map->lock_arg);
2348 	} else {
2349 		void *wval;
2350 
2351 		wval = kmemdup_array(val, val_count, val_bytes, map->alloc_flags);
2352 		if (!wval)
2353 			return -ENOMEM;
2354 
2355 		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2356 			map->format.parse_inplace(wval + i);
2357 
2358 		ret = regmap_raw_write(map, reg, wval, val_bytes * val_count);
2359 
2360 		kfree(wval);
2361 	}
2362 
2363 	if (!ret)
2364 		trace_regmap_bulk_write(map, reg, val, val_bytes * val_count);
2365 
2366 	return ret;
2367 }
2368 EXPORT_SYMBOL_GPL(regmap_bulk_write);
2369 
2370 /*
2371  * _regmap_raw_multi_reg_write()
2372  *
2373  * the (register,newvalue) pairs in regs have not been formatted, but
2374  * they are all in the same page and have been changed to being page
2375  * relative. The page register has been written if that was necessary.
2376  */
2377 static int _regmap_raw_multi_reg_write(struct regmap *map,
2378 				       const struct reg_sequence *regs,
2379 				       size_t num_regs)
2380 {
2381 	int ret;
2382 	void *buf;
2383 	int i;
2384 	u8 *u8;
2385 	size_t val_bytes = map->format.val_bytes;
2386 	size_t reg_bytes = map->format.reg_bytes;
2387 	size_t pad_bytes = map->format.pad_bytes;
2388 	size_t pair_size = reg_bytes + pad_bytes + val_bytes;
2389 	size_t len = pair_size * num_regs;
2390 
2391 	if (!len)
2392 		return -EINVAL;
2393 
2394 	buf = kzalloc(len, GFP_KERNEL);
2395 	if (!buf)
2396 		return -ENOMEM;
2397 
2398 	/* We have to linearise by hand. */
2399 
2400 	u8 = buf;
2401 
2402 	for (i = 0; i < num_regs; i++) {
2403 		unsigned int reg = regs[i].reg;
2404 		unsigned int val = regs[i].def;
2405 		trace_regmap_hw_write_start(map, reg, 1);
2406 		reg = regmap_reg_addr(map, reg);
2407 		map->format.format_reg(u8, reg, map->reg_shift);
2408 		u8 += reg_bytes + pad_bytes;
2409 		map->format.format_val(u8, val, 0);
2410 		u8 += val_bytes;
2411 	}
2412 	u8 = buf;
2413 	*u8 |= map->write_flag_mask;
2414 
2415 	ret = map->write(map->bus_context, buf, len);
2416 
2417 	kfree(buf);
2418 
2419 	for (i = 0; i < num_regs; i++) {
2420 		int reg = regs[i].reg;
2421 		trace_regmap_hw_write_done(map, reg, 1);
2422 	}
2423 	return ret;
2424 }
2425 
2426 static unsigned int _regmap_register_page(struct regmap *map,
2427 					  unsigned int reg,
2428 					  struct regmap_range_node *range)
2429 {
2430 	unsigned int win_page = (reg - range->range_min) / range->window_len;
2431 
2432 	return win_page;
2433 }
2434 
2435 static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2436 					       struct reg_sequence *regs,
2437 					       size_t num_regs)
2438 {
2439 	int ret;
2440 	int i, n;
2441 	struct reg_sequence *base;
2442 	unsigned int this_page = 0;
2443 	unsigned int page_change = 0;
2444 	/*
2445 	 * the set of registers are not neccessarily in order, but
2446 	 * since the order of write must be preserved this algorithm
2447 	 * chops the set each time the page changes. This also applies
2448 	 * if there is a delay required at any point in the sequence.
2449 	 */
2450 	base = regs;
2451 	for (i = 0, n = 0; i < num_regs; i++, n++) {
2452 		unsigned int reg = regs[i].reg;
2453 		struct regmap_range_node *range;
2454 
2455 		range = _regmap_range_lookup(map, reg);
2456 		if (range) {
2457 			unsigned int win_page = _regmap_register_page(map, reg,
2458 								      range);
2459 
2460 			if (i == 0)
2461 				this_page = win_page;
2462 			if (win_page != this_page) {
2463 				this_page = win_page;
2464 				page_change = 1;
2465 			}
2466 		}
2467 
2468 		/* If we have both a page change and a delay make sure to
2469 		 * write the regs and apply the delay before we change the
2470 		 * page.
2471 		 */
2472 
2473 		if (page_change || regs[i].delay_us) {
2474 
2475 				/* For situations where the first write requires
2476 				 * a delay we need to make sure we don't call
2477 				 * raw_multi_reg_write with n=0
2478 				 * This can't occur with page breaks as we
2479 				 * never write on the first iteration
2480 				 */
2481 				if (regs[i].delay_us && i == 0)
2482 					n = 1;
2483 
2484 				ret = _regmap_raw_multi_reg_write(map, base, n);
2485 				if (ret != 0)
2486 					return ret;
2487 
2488 				if (regs[i].delay_us) {
2489 					if (map->can_sleep)
2490 						fsleep(regs[i].delay_us);
2491 					else
2492 						udelay(regs[i].delay_us);
2493 				}
2494 
2495 				base += n;
2496 				n = 0;
2497 
2498 				if (page_change) {
2499 					ret = _regmap_select_page(map,
2500 								  &base[n].reg,
2501 								  range, 1);
2502 					if (ret != 0)
2503 						return ret;
2504 
2505 					page_change = 0;
2506 				}
2507 
2508 		}
2509 
2510 	}
2511 	if (n > 0)
2512 		return _regmap_raw_multi_reg_write(map, base, n);
2513 	return 0;
2514 }
2515 
2516 static int _regmap_multi_reg_write(struct regmap *map,
2517 				   const struct reg_sequence *regs,
2518 				   size_t num_regs)
2519 {
2520 	int i;
2521 	int ret;
2522 
2523 	if (!map->can_multi_write) {
2524 		for (i = 0; i < num_regs; i++) {
2525 			ret = _regmap_write(map, regs[i].reg, regs[i].def);
2526 			if (ret != 0)
2527 				return ret;
2528 
2529 			if (regs[i].delay_us) {
2530 				if (map->can_sleep)
2531 					fsleep(regs[i].delay_us);
2532 				else
2533 					udelay(regs[i].delay_us);
2534 			}
2535 		}
2536 		return 0;
2537 	}
2538 
2539 	if (!map->format.parse_inplace)
2540 		return -EINVAL;
2541 
2542 	if (map->writeable_reg)
2543 		for (i = 0; i < num_regs; i++) {
2544 			int reg = regs[i].reg;
2545 			if (!map->writeable_reg(map->dev, reg))
2546 				return -EINVAL;
2547 			if (!IS_ALIGNED(reg, map->reg_stride))
2548 				return -EINVAL;
2549 		}
2550 
2551 	if (!map->cache_bypass) {
2552 		for (i = 0; i < num_regs; i++) {
2553 			unsigned int val = regs[i].def;
2554 			unsigned int reg = regs[i].reg;
2555 			ret = regcache_write(map, reg, val);
2556 			if (ret) {
2557 				dev_err(map->dev,
2558 				"Error in caching of register: %x ret: %d\n",
2559 								reg, ret);
2560 				return ret;
2561 			}
2562 		}
2563 		if (map->cache_only) {
2564 			map->cache_dirty = true;
2565 			return 0;
2566 		}
2567 	}
2568 
2569 	WARN_ON(!map->bus);
2570 
2571 	for (i = 0; i < num_regs; i++) {
2572 		unsigned int reg = regs[i].reg;
2573 		struct regmap_range_node *range;
2574 
2575 		/* Coalesce all the writes between a page break or a delay
2576 		 * in a sequence
2577 		 */
2578 		range = _regmap_range_lookup(map, reg);
2579 		if (range || regs[i].delay_us) {
2580 			size_t len = sizeof(struct reg_sequence)*num_regs;
2581 			struct reg_sequence *base = kmemdup(regs, len,
2582 							   GFP_KERNEL);
2583 			if (!base)
2584 				return -ENOMEM;
2585 			ret = _regmap_range_multi_paged_reg_write(map, base,
2586 								  num_regs);
2587 			kfree(base);
2588 
2589 			return ret;
2590 		}
2591 	}
2592 	return _regmap_raw_multi_reg_write(map, regs, num_regs);
2593 }
2594 
2595 /**
2596  * regmap_multi_reg_write() - Write multiple registers to the device
2597  *
2598  * @map: Register map to write to
2599  * @regs: Array of structures containing register,value to be written
2600  * @num_regs: Number of registers to write
2601  *
2602  * Write multiple registers to the device where the set of register, value
2603  * pairs are supplied in any order, possibly not all in a single range.
2604  *
2605  * The 'normal' block write mode will send ultimately send data on the
2606  * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2607  * addressed. However, this alternative block multi write mode will send
2608  * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2609  * must of course support the mode.
2610  *
2611  * A value of zero will be returned on success, a negative errno will be
2612  * returned in error cases.
2613  */
2614 int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2615 			   int num_regs)
2616 {
2617 	int ret;
2618 
2619 	map->lock(map->lock_arg);
2620 
2621 	ret = _regmap_multi_reg_write(map, regs, num_regs);
2622 
2623 	map->unlock(map->lock_arg);
2624 
2625 	return ret;
2626 }
2627 EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2628 
2629 /**
2630  * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2631  *                                     device but not the cache
2632  *
2633  * @map: Register map to write to
2634  * @regs: Array of structures containing register,value to be written
2635  * @num_regs: Number of registers to write
2636  *
2637  * Write multiple registers to the device but not the cache where the set
2638  * of register are supplied in any order.
2639  *
2640  * This function is intended to be used for writing a large block of data
2641  * atomically to the device in single transfer for those I2C client devices
2642  * that implement this alternative block write mode.
2643  *
2644  * A value of zero will be returned on success, a negative errno will
2645  * be returned in error cases.
2646  */
2647 int regmap_multi_reg_write_bypassed(struct regmap *map,
2648 				    const struct reg_sequence *regs,
2649 				    int num_regs)
2650 {
2651 	int ret;
2652 	bool bypass;
2653 
2654 	map->lock(map->lock_arg);
2655 
2656 	bypass = map->cache_bypass;
2657 	map->cache_bypass = true;
2658 
2659 	ret = _regmap_multi_reg_write(map, regs, num_regs);
2660 
2661 	map->cache_bypass = bypass;
2662 
2663 	map->unlock(map->lock_arg);
2664 
2665 	return ret;
2666 }
2667 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2668 
2669 /**
2670  * regmap_raw_write_async() - Write raw values to one or more registers
2671  *                            asynchronously
2672  *
2673  * @map: Register map to write to
2674  * @reg: Initial register to write to
2675  * @val: Block of data to be written, laid out for direct transmission to the
2676  *       device.  Must be valid until regmap_async_complete() is called.
2677  * @val_len: Length of data pointed to by val.
2678  *
2679  * This function is intended to be used for things like firmware
2680  * download where a large block of data needs to be transferred to the
2681  * device.  No formatting will be done on the data provided.
2682  *
2683  * If supported by the underlying bus the write will be scheduled
2684  * asynchronously, helping maximise I/O speed on higher speed buses
2685  * like SPI.  regmap_async_complete() can be called to ensure that all
2686  * asynchrnous writes have been completed.
2687  *
2688  * A value of zero will be returned on success, a negative errno will
2689  * be returned in error cases.
2690  */
2691 int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2692 			   const void *val, size_t val_len)
2693 {
2694 	int ret;
2695 
2696 	if (val_len % map->format.val_bytes)
2697 		return -EINVAL;
2698 	if (!IS_ALIGNED(reg, map->reg_stride))
2699 		return -EINVAL;
2700 
2701 	map->lock(map->lock_arg);
2702 
2703 	map->async = true;
2704 
2705 	ret = _regmap_raw_write(map, reg, val, val_len, false);
2706 
2707 	map->async = false;
2708 
2709 	map->unlock(map->lock_arg);
2710 
2711 	return ret;
2712 }
2713 EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2714 
2715 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2716 			    unsigned int val_len, bool noinc)
2717 {
2718 	struct regmap_range_node *range;
2719 	int ret;
2720 
2721 	if (!map->read)
2722 		return -EINVAL;
2723 
2724 	range = _regmap_range_lookup(map, reg);
2725 	if (range) {
2726 		ret = _regmap_select_page(map, &reg, range,
2727 					  noinc ? 1 : val_len / map->format.val_bytes);
2728 		if (ret != 0)
2729 			return ret;
2730 	}
2731 
2732 	reg = regmap_reg_addr(map, reg);
2733 	map->format.format_reg(map->work_buf, reg, map->reg_shift);
2734 	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2735 				      map->read_flag_mask);
2736 	trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2737 
2738 	ret = map->read(map->bus_context, map->work_buf,
2739 			map->format.reg_bytes + map->format.pad_bytes,
2740 			val, val_len);
2741 
2742 	trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2743 
2744 	return ret;
2745 }
2746 
2747 static int _regmap_bus_reg_read(void *context, unsigned int reg,
2748 				unsigned int *val)
2749 {
2750 	struct regmap *map = context;
2751 	struct regmap_range_node *range;
2752 	int ret;
2753 
2754 	range = _regmap_range_lookup(map, reg);
2755 	if (range) {
2756 		ret = _regmap_select_page(map, &reg, range, 1);
2757 		if (ret != 0)
2758 			return ret;
2759 	}
2760 
2761 	reg = regmap_reg_addr(map, reg);
2762 	return map->bus->reg_read(map->bus_context, reg, val);
2763 }
2764 
2765 static int _regmap_bus_read(void *context, unsigned int reg,
2766 			    unsigned int *val)
2767 {
2768 	int ret;
2769 	struct regmap *map = context;
2770 	void *work_val = map->work_buf + map->format.reg_bytes +
2771 		map->format.pad_bytes;
2772 
2773 	if (!map->format.parse_val)
2774 		return -EINVAL;
2775 
2776 	ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes, false);
2777 	if (ret == 0)
2778 		*val = map->format.parse_val(work_val);
2779 
2780 	return ret;
2781 }
2782 
2783 static int _regmap_read(struct regmap *map, unsigned int reg,
2784 			unsigned int *val)
2785 {
2786 	int ret;
2787 	void *context = _regmap_map_get_context(map);
2788 
2789 	if (!map->cache_bypass) {
2790 		ret = regcache_read(map, reg, val);
2791 		if (ret == 0)
2792 			return 0;
2793 	}
2794 
2795 	if (map->cache_only)
2796 		return -EBUSY;
2797 
2798 	if (!regmap_readable(map, reg))
2799 		return -EIO;
2800 
2801 	ret = map->reg_read(context, reg, val);
2802 	if (ret == 0) {
2803 		if (regmap_should_log(map))
2804 			dev_info(map->dev, "%x => %x\n", reg, *val);
2805 
2806 		trace_regmap_reg_read(map, reg, *val);
2807 
2808 		if (!map->cache_bypass)
2809 			regcache_write(map, reg, *val);
2810 	}
2811 
2812 	return ret;
2813 }
2814 
2815 /**
2816  * regmap_read() - Read a value from a single register
2817  *
2818  * @map: Register map to read from
2819  * @reg: Register to be read from
2820  * @val: Pointer to store read value
2821  *
2822  * A value of zero will be returned on success, a negative errno will
2823  * be returned in error cases.
2824  */
2825 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2826 {
2827 	int ret;
2828 
2829 	if (!IS_ALIGNED(reg, map->reg_stride))
2830 		return -EINVAL;
2831 
2832 	map->lock(map->lock_arg);
2833 
2834 	ret = _regmap_read(map, reg, val);
2835 
2836 	map->unlock(map->lock_arg);
2837 
2838 	return ret;
2839 }
2840 EXPORT_SYMBOL_GPL(regmap_read);
2841 
2842 /**
2843  * regmap_read_bypassed() - Read a value from a single register direct
2844  *			    from the device, bypassing the cache
2845  *
2846  * @map: Register map to read from
2847  * @reg: Register to be read from
2848  * @val: Pointer to store read value
2849  *
2850  * A value of zero will be returned on success, a negative errno will
2851  * be returned in error cases.
2852  */
2853 int regmap_read_bypassed(struct regmap *map, unsigned int reg, unsigned int *val)
2854 {
2855 	int ret;
2856 	bool bypass, cache_only;
2857 
2858 	if (!IS_ALIGNED(reg, map->reg_stride))
2859 		return -EINVAL;
2860 
2861 	map->lock(map->lock_arg);
2862 
2863 	bypass = map->cache_bypass;
2864 	cache_only = map->cache_only;
2865 	map->cache_bypass = true;
2866 	map->cache_only = false;
2867 
2868 	ret = _regmap_read(map, reg, val);
2869 
2870 	map->cache_bypass = bypass;
2871 	map->cache_only = cache_only;
2872 
2873 	map->unlock(map->lock_arg);
2874 
2875 	return ret;
2876 }
2877 EXPORT_SYMBOL_GPL(regmap_read_bypassed);
2878 
2879 /**
2880  * regmap_raw_read() - Read raw data from the device
2881  *
2882  * @map: Register map to read from
2883  * @reg: First register to be read from
2884  * @val: Pointer to store read value
2885  * @val_len: Size of data to read
2886  *
2887  * A value of zero will be returned on success, a negative errno will
2888  * be returned in error cases.
2889  */
2890 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2891 		    size_t val_len)
2892 {
2893 	size_t val_bytes = map->format.val_bytes;
2894 	size_t val_count = val_len / val_bytes;
2895 	unsigned int v;
2896 	int ret, i;
2897 
2898 	if (val_len % map->format.val_bytes)
2899 		return -EINVAL;
2900 	if (!IS_ALIGNED(reg, map->reg_stride))
2901 		return -EINVAL;
2902 	if (val_count == 0)
2903 		return -EINVAL;
2904 
2905 	map->lock(map->lock_arg);
2906 
2907 	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2908 	    map->cache_type == REGCACHE_NONE) {
2909 		size_t chunk_count, chunk_bytes;
2910 		size_t chunk_regs = val_count;
2911 
2912 		if (!map->cache_bypass && map->cache_only) {
2913 			ret = -EBUSY;
2914 			goto out;
2915 		}
2916 
2917 		if (!map->read) {
2918 			ret = -ENOTSUPP;
2919 			goto out;
2920 		}
2921 
2922 		if (map->use_single_read)
2923 			chunk_regs = 1;
2924 		else if (map->max_raw_read && val_len > map->max_raw_read)
2925 			chunk_regs = map->max_raw_read / val_bytes;
2926 
2927 		chunk_count = val_count / chunk_regs;
2928 		chunk_bytes = chunk_regs * val_bytes;
2929 
2930 		/* Read bytes that fit into whole chunks */
2931 		for (i = 0; i < chunk_count; i++) {
2932 			ret = _regmap_raw_read(map, reg, val, chunk_bytes, false);
2933 			if (ret != 0)
2934 				goto out;
2935 
2936 			reg += regmap_get_offset(map, chunk_regs);
2937 			val += chunk_bytes;
2938 			val_len -= chunk_bytes;
2939 		}
2940 
2941 		/* Read remaining bytes */
2942 		if (val_len) {
2943 			ret = _regmap_raw_read(map, reg, val, val_len, false);
2944 			if (ret != 0)
2945 				goto out;
2946 		}
2947 	} else {
2948 		/* Otherwise go word by word for the cache; should be low
2949 		 * cost as we expect to hit the cache.
2950 		 */
2951 		for (i = 0; i < val_count; i++) {
2952 			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2953 					   &v);
2954 			if (ret != 0)
2955 				goto out;
2956 
2957 			map->format.format_val(val + (i * val_bytes), v, 0);
2958 		}
2959 	}
2960 
2961  out:
2962 	map->unlock(map->lock_arg);
2963 
2964 	return ret;
2965 }
2966 EXPORT_SYMBOL_GPL(regmap_raw_read);
2967 
2968 /**
2969  * regmap_noinc_read(): Read data from a register without incrementing the
2970  *			register number
2971  *
2972  * @map: Register map to read from
2973  * @reg: Register to read from
2974  * @val: Pointer to data buffer
2975  * @val_len: Length of output buffer in bytes.
2976  *
2977  * The regmap API usually assumes that bulk read operations will read a
2978  * range of registers. Some devices have certain registers for which a read
2979  * operation read will read from an internal FIFO.
2980  *
2981  * The target register must be volatile but registers after it can be
2982  * completely unrelated cacheable registers.
2983  *
2984  * This will attempt multiple reads as required to read val_len bytes.
2985  *
2986  * A value of zero will be returned on success, a negative errno will be
2987  * returned in error cases.
2988  */
2989 int regmap_noinc_read(struct regmap *map, unsigned int reg,
2990 		      void *val, size_t val_len)
2991 {
2992 	size_t read_len;
2993 	int ret;
2994 
2995 	if (!map->read)
2996 		return -ENOTSUPP;
2997 
2998 	if (val_len % map->format.val_bytes)
2999 		return -EINVAL;
3000 	if (!IS_ALIGNED(reg, map->reg_stride))
3001 		return -EINVAL;
3002 	if (val_len == 0)
3003 		return -EINVAL;
3004 
3005 	map->lock(map->lock_arg);
3006 
3007 	if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) {
3008 		ret = -EINVAL;
3009 		goto out_unlock;
3010 	}
3011 
3012 	/*
3013 	 * We have not defined the FIFO semantics for cache, as the
3014 	 * cache is just one value deep. Should we return the last
3015 	 * written value? Just avoid this by always reading the FIFO
3016 	 * even when using cache. Cache only will not work.
3017 	 */
3018 	if (!map->cache_bypass && map->cache_only) {
3019 		ret = -EBUSY;
3020 		goto out_unlock;
3021 	}
3022 
3023 	/* Use the accelerated operation if we can */
3024 	if (map->bus->reg_noinc_read) {
3025 		ret = regmap_noinc_readwrite(map, reg, val, val_len, false);
3026 		goto out_unlock;
3027 	}
3028 
3029 	while (val_len) {
3030 		if (map->max_raw_read && map->max_raw_read < val_len)
3031 			read_len = map->max_raw_read;
3032 		else
3033 			read_len = val_len;
3034 		ret = _regmap_raw_read(map, reg, val, read_len, true);
3035 		if (ret)
3036 			goto out_unlock;
3037 		val = ((u8 *)val) + read_len;
3038 		val_len -= read_len;
3039 	}
3040 
3041 out_unlock:
3042 	map->unlock(map->lock_arg);
3043 	return ret;
3044 }
3045 EXPORT_SYMBOL_GPL(regmap_noinc_read);
3046 
3047 /**
3048  * regmap_field_read(): Read a value to a single register field
3049  *
3050  * @field: Register field to read from
3051  * @val: Pointer to store read value
3052  *
3053  * A value of zero will be returned on success, a negative errno will
3054  * be returned in error cases.
3055  */
3056 int regmap_field_read(struct regmap_field *field, unsigned int *val)
3057 {
3058 	int ret;
3059 	unsigned int reg_val;
3060 	ret = regmap_read(field->regmap, field->reg, &reg_val);
3061 	if (ret != 0)
3062 		return ret;
3063 
3064 	reg_val &= field->mask;
3065 	reg_val >>= field->shift;
3066 	*val = reg_val;
3067 
3068 	return ret;
3069 }
3070 EXPORT_SYMBOL_GPL(regmap_field_read);
3071 
3072 /**
3073  * regmap_fields_read() - Read a value to a single register field with port ID
3074  *
3075  * @field: Register field to read from
3076  * @id: port ID
3077  * @val: Pointer to store read value
3078  *
3079  * A value of zero will be returned on success, a negative errno will
3080  * be returned in error cases.
3081  */
3082 int regmap_fields_read(struct regmap_field *field, unsigned int id,
3083 		       unsigned int *val)
3084 {
3085 	int ret;
3086 	unsigned int reg_val;
3087 
3088 	if (id >= field->id_size)
3089 		return -EINVAL;
3090 
3091 	ret = regmap_read(field->regmap,
3092 			  field->reg + (field->id_offset * id),
3093 			  &reg_val);
3094 	if (ret != 0)
3095 		return ret;
3096 
3097 	reg_val &= field->mask;
3098 	reg_val >>= field->shift;
3099 	*val = reg_val;
3100 
3101 	return ret;
3102 }
3103 EXPORT_SYMBOL_GPL(regmap_fields_read);
3104 
3105 static int _regmap_bulk_read(struct regmap *map, unsigned int reg,
3106 			     unsigned int *regs, void *val, size_t val_count)
3107 {
3108 	u32 *u32 = val;
3109 	u16 *u16 = val;
3110 	u8 *u8 = val;
3111 	int ret, i;
3112 
3113 	map->lock(map->lock_arg);
3114 
3115 	for (i = 0; i < val_count; i++) {
3116 		unsigned int ival;
3117 
3118 		if (regs) {
3119 			if (!IS_ALIGNED(regs[i], map->reg_stride)) {
3120 				ret = -EINVAL;
3121 				goto out;
3122 			}
3123 			ret = _regmap_read(map, regs[i], &ival);
3124 		} else {
3125 			ret = _regmap_read(map, reg + regmap_get_offset(map, i), &ival);
3126 		}
3127 		if (ret != 0)
3128 			goto out;
3129 
3130 		switch (map->format.val_bytes) {
3131 		case 4:
3132 			u32[i] = ival;
3133 			break;
3134 		case 2:
3135 			u16[i] = ival;
3136 			break;
3137 		case 1:
3138 			u8[i] = ival;
3139 			break;
3140 		default:
3141 			ret = -EINVAL;
3142 			goto out;
3143 		}
3144 	}
3145 out:
3146 	map->unlock(map->lock_arg);
3147 	return ret;
3148 }
3149 
3150 /**
3151  * regmap_bulk_read() - Read multiple sequential registers from the device
3152  *
3153  * @map: Register map to read from
3154  * @reg: First register to be read from
3155  * @val: Pointer to store read value, in native register size for device
3156  * @val_count: Number of registers to read
3157  *
3158  * A value of zero will be returned on success, a negative errno will
3159  * be returned in error cases.
3160  */
3161 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
3162 		     size_t val_count)
3163 {
3164 	int ret, i;
3165 	size_t val_bytes = map->format.val_bytes;
3166 	bool vol = regmap_volatile_range(map, reg, val_count);
3167 
3168 	if (!IS_ALIGNED(reg, map->reg_stride))
3169 		return -EINVAL;
3170 	if (val_count == 0)
3171 		return -EINVAL;
3172 
3173 	if (map->read && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
3174 		ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
3175 		if (ret != 0)
3176 			return ret;
3177 
3178 		for (i = 0; i < val_count * val_bytes; i += val_bytes)
3179 			map->format.parse_inplace(val + i);
3180 	} else {
3181 		ret = _regmap_bulk_read(map, reg, NULL, val, val_count);
3182 	}
3183 	if (!ret)
3184 		trace_regmap_bulk_read(map, reg, val, val_bytes * val_count);
3185 	return ret;
3186 }
3187 EXPORT_SYMBOL_GPL(regmap_bulk_read);
3188 
3189 /**
3190  * regmap_multi_reg_read() - Read multiple non-sequential registers from the device
3191  *
3192  * @map: Register map to read from
3193  * @regs: Array of registers to read from
3194  * @val: Pointer to store read value, in native register size for device
3195  * @val_count: Number of registers to read
3196  *
3197  * A value of zero will be returned on success, a negative errno will
3198  * be returned in error cases.
3199  */
3200 int regmap_multi_reg_read(struct regmap *map, unsigned int *regs, void *val,
3201 			  size_t val_count)
3202 {
3203 	if (val_count == 0)
3204 		return -EINVAL;
3205 
3206 	return _regmap_bulk_read(map, 0, regs, val, val_count);
3207 }
3208 EXPORT_SYMBOL_GPL(regmap_multi_reg_read);
3209 
3210 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
3211 			       unsigned int mask, unsigned int val,
3212 			       bool *change, bool force_write)
3213 {
3214 	int ret;
3215 	unsigned int tmp, orig;
3216 
3217 	if (change)
3218 		*change = false;
3219 
3220 	if (regmap_volatile(map, reg) && map->reg_update_bits) {
3221 		reg = regmap_reg_addr(map, reg);
3222 		ret = map->reg_update_bits(map->bus_context, reg, mask, val);
3223 		if (ret == 0 && change)
3224 			*change = true;
3225 	} else {
3226 		ret = _regmap_read(map, reg, &orig);
3227 		if (ret != 0)
3228 			return ret;
3229 
3230 		tmp = orig & ~mask;
3231 		tmp |= val & mask;
3232 
3233 		if (force_write || (tmp != orig) || map->force_write_field) {
3234 			ret = _regmap_write(map, reg, tmp);
3235 			if (ret == 0 && change)
3236 				*change = true;
3237 		}
3238 	}
3239 
3240 	return ret;
3241 }
3242 
3243 /**
3244  * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
3245  *
3246  * @map: Register map to update
3247  * @reg: Register to update
3248  * @mask: Bitmask to change
3249  * @val: New value for bitmask
3250  * @change: Boolean indicating if a write was done
3251  * @async: Boolean indicating asynchronously
3252  * @force: Boolean indicating use force update
3253  *
3254  * Perform a read/modify/write cycle on a register map with change, async, force
3255  * options.
3256  *
3257  * If async is true:
3258  *
3259  * With most buses the read must be done synchronously so this is most useful
3260  * for devices with a cache which do not need to interact with the hardware to
3261  * determine the current register value.
3262  *
3263  * Returns zero for success, a negative number on error.
3264  */
3265 int regmap_update_bits_base(struct regmap *map, unsigned int reg,
3266 			    unsigned int mask, unsigned int val,
3267 			    bool *change, bool async, bool force)
3268 {
3269 	int ret;
3270 
3271 	map->lock(map->lock_arg);
3272 
3273 	map->async = async;
3274 
3275 	ret = _regmap_update_bits(map, reg, mask, val, change, force);
3276 
3277 	map->async = false;
3278 
3279 	map->unlock(map->lock_arg);
3280 
3281 	return ret;
3282 }
3283 EXPORT_SYMBOL_GPL(regmap_update_bits_base);
3284 
3285 /**
3286  * regmap_test_bits() - Check if all specified bits are set in a register.
3287  *
3288  * @map: Register map to operate on
3289  * @reg: Register to read from
3290  * @bits: Bits to test
3291  *
3292  * Returns 0 if at least one of the tested bits is not set, 1 if all tested
3293  * bits are set and a negative error number if the underlying regmap_read()
3294  * fails.
3295  */
3296 int regmap_test_bits(struct regmap *map, unsigned int reg, unsigned int bits)
3297 {
3298 	unsigned int val, ret;
3299 
3300 	ret = regmap_read(map, reg, &val);
3301 	if (ret)
3302 		return ret;
3303 
3304 	return (val & bits) == bits;
3305 }
3306 EXPORT_SYMBOL_GPL(regmap_test_bits);
3307 
3308 void regmap_async_complete_cb(struct regmap_async *async, int ret)
3309 {
3310 	struct regmap *map = async->map;
3311 	bool wake;
3312 
3313 	trace_regmap_async_io_complete(map);
3314 
3315 	spin_lock(&map->async_lock);
3316 	list_move(&async->list, &map->async_free);
3317 	wake = list_empty(&map->async_list);
3318 
3319 	if (ret != 0)
3320 		map->async_ret = ret;
3321 
3322 	spin_unlock(&map->async_lock);
3323 
3324 	if (wake)
3325 		wake_up(&map->async_waitq);
3326 }
3327 EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
3328 
3329 static int regmap_async_is_done(struct regmap *map)
3330 {
3331 	unsigned long flags;
3332 	int ret;
3333 
3334 	spin_lock_irqsave(&map->async_lock, flags);
3335 	ret = list_empty(&map->async_list);
3336 	spin_unlock_irqrestore(&map->async_lock, flags);
3337 
3338 	return ret;
3339 }
3340 
3341 /**
3342  * regmap_async_complete - Ensure all asynchronous I/O has completed.
3343  *
3344  * @map: Map to operate on.
3345  *
3346  * Blocks until any pending asynchronous I/O has completed.  Returns
3347  * an error code for any failed I/O operations.
3348  */
3349 int regmap_async_complete(struct regmap *map)
3350 {
3351 	unsigned long flags;
3352 	int ret;
3353 
3354 	/* Nothing to do with no async support */
3355 	if (!map->bus || !map->bus->async_write)
3356 		return 0;
3357 
3358 	trace_regmap_async_complete_start(map);
3359 
3360 	wait_event(map->async_waitq, regmap_async_is_done(map));
3361 
3362 	spin_lock_irqsave(&map->async_lock, flags);
3363 	ret = map->async_ret;
3364 	map->async_ret = 0;
3365 	spin_unlock_irqrestore(&map->async_lock, flags);
3366 
3367 	trace_regmap_async_complete_done(map);
3368 
3369 	return ret;
3370 }
3371 EXPORT_SYMBOL_GPL(regmap_async_complete);
3372 
3373 /**
3374  * regmap_register_patch - Register and apply register updates to be applied
3375  *                         on device initialistion
3376  *
3377  * @map: Register map to apply updates to.
3378  * @regs: Values to update.
3379  * @num_regs: Number of entries in regs.
3380  *
3381  * Register a set of register updates to be applied to the device
3382  * whenever the device registers are synchronised with the cache and
3383  * apply them immediately.  Typically this is used to apply
3384  * corrections to be applied to the device defaults on startup, such
3385  * as the updates some vendors provide to undocumented registers.
3386  *
3387  * The caller must ensure that this function cannot be called
3388  * concurrently with either itself or regcache_sync().
3389  */
3390 int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
3391 			  int num_regs)
3392 {
3393 	struct reg_sequence *p;
3394 	int ret;
3395 	bool bypass;
3396 
3397 	if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
3398 	    num_regs))
3399 		return 0;
3400 
3401 	p = krealloc(map->patch,
3402 		     sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
3403 		     GFP_KERNEL);
3404 	if (p) {
3405 		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
3406 		map->patch = p;
3407 		map->patch_regs += num_regs;
3408 	} else {
3409 		return -ENOMEM;
3410 	}
3411 
3412 	map->lock(map->lock_arg);
3413 
3414 	bypass = map->cache_bypass;
3415 
3416 	map->cache_bypass = true;
3417 	map->async = true;
3418 
3419 	ret = _regmap_multi_reg_write(map, regs, num_regs);
3420 
3421 	map->async = false;
3422 	map->cache_bypass = bypass;
3423 
3424 	map->unlock(map->lock_arg);
3425 
3426 	regmap_async_complete(map);
3427 
3428 	return ret;
3429 }
3430 EXPORT_SYMBOL_GPL(regmap_register_patch);
3431 
3432 /**
3433  * regmap_get_val_bytes() - Report the size of a register value
3434  *
3435  * @map: Register map to operate on.
3436  *
3437  * Report the size of a register value, mainly intended to for use by
3438  * generic infrastructure built on top of regmap.
3439  */
3440 int regmap_get_val_bytes(struct regmap *map)
3441 {
3442 	if (map->format.format_write)
3443 		return -EINVAL;
3444 
3445 	return map->format.val_bytes;
3446 }
3447 EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
3448 
3449 /**
3450  * regmap_get_max_register() - Report the max register value
3451  *
3452  * @map: Register map to operate on.
3453  *
3454  * Report the max register value, mainly intended to for use by
3455  * generic infrastructure built on top of regmap.
3456  */
3457 int regmap_get_max_register(struct regmap *map)
3458 {
3459 	return map->max_register_is_set ? map->max_register : -EINVAL;
3460 }
3461 EXPORT_SYMBOL_GPL(regmap_get_max_register);
3462 
3463 /**
3464  * regmap_get_reg_stride() - Report the register address stride
3465  *
3466  * @map: Register map to operate on.
3467  *
3468  * Report the register address stride, mainly intended to for use by
3469  * generic infrastructure built on top of regmap.
3470  */
3471 int regmap_get_reg_stride(struct regmap *map)
3472 {
3473 	return map->reg_stride;
3474 }
3475 EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
3476 
3477 /**
3478  * regmap_might_sleep() - Returns whether a regmap access might sleep.
3479  *
3480  * @map: Register map to operate on.
3481  *
3482  * Returns true if an access to the register might sleep, else false.
3483  */
3484 bool regmap_might_sleep(struct regmap *map)
3485 {
3486 	return map->can_sleep;
3487 }
3488 EXPORT_SYMBOL_GPL(regmap_might_sleep);
3489 
3490 int regmap_parse_val(struct regmap *map, const void *buf,
3491 			unsigned int *val)
3492 {
3493 	if (!map->format.parse_val)
3494 		return -EINVAL;
3495 
3496 	*val = map->format.parse_val(buf);
3497 
3498 	return 0;
3499 }
3500 EXPORT_SYMBOL_GPL(regmap_parse_val);
3501 
3502 static int __init regmap_initcall(void)
3503 {
3504 	regmap_debugfs_initcall();
3505 
3506 	return 0;
3507 }
3508 postcore_initcall(regmap_initcall);
3509