xref: /linux/drivers/base/regmap/regmap.c (revision 4b132aacb0768ac1e652cf517097ea6f237214b9)
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // Register map access API
4 //
5 // Copyright 2011 Wolfson Microelectronics plc
6 //
7 // Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8 
9 #include <linux/device.h>
10 #include <linux/slab.h>
11 #include <linux/export.h>
12 #include <linux/mutex.h>
13 #include <linux/err.h>
14 #include <linux/property.h>
15 #include <linux/rbtree.h>
16 #include <linux/sched.h>
17 #include <linux/delay.h>
18 #include <linux/log2.h>
19 #include <linux/hwspinlock.h>
20 #include <asm/unaligned.h>
21 
22 #define CREATE_TRACE_POINTS
23 #include "trace.h"
24 
25 #include "internal.h"
26 
27 /*
28  * Sometimes for failures during very early init the trace
29  * infrastructure isn't available early enough to be used.  For this
30  * sort of problem defining LOG_DEVICE will add printks for basic
31  * register I/O on a specific device.
32  */
33 #undef LOG_DEVICE
34 
35 #ifdef LOG_DEVICE
36 static inline bool regmap_should_log(struct regmap *map)
37 {
38 	return (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0);
39 }
40 #else
41 static inline bool regmap_should_log(struct regmap *map) { return false; }
42 #endif
43 
44 
45 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
46 			       unsigned int mask, unsigned int val,
47 			       bool *change, bool force_write);
48 
49 static int _regmap_bus_reg_read(void *context, unsigned int reg,
50 				unsigned int *val);
51 static int _regmap_bus_read(void *context, unsigned int reg,
52 			    unsigned int *val);
53 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
54 				       unsigned int val);
55 static int _regmap_bus_reg_write(void *context, unsigned int reg,
56 				 unsigned int val);
57 static int _regmap_bus_raw_write(void *context, unsigned int reg,
58 				 unsigned int val);
59 
60 bool regmap_reg_in_ranges(unsigned int reg,
61 			  const struct regmap_range *ranges,
62 			  unsigned int nranges)
63 {
64 	const struct regmap_range *r;
65 	int i;
66 
67 	for (i = 0, r = ranges; i < nranges; i++, r++)
68 		if (regmap_reg_in_range(reg, r))
69 			return true;
70 	return false;
71 }
72 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
73 
74 bool regmap_check_range_table(struct regmap *map, unsigned int reg,
75 			      const struct regmap_access_table *table)
76 {
77 	/* Check "no ranges" first */
78 	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
79 		return false;
80 
81 	/* In case zero "yes ranges" are supplied, any reg is OK */
82 	if (!table->n_yes_ranges)
83 		return true;
84 
85 	return regmap_reg_in_ranges(reg, table->yes_ranges,
86 				    table->n_yes_ranges);
87 }
88 EXPORT_SYMBOL_GPL(regmap_check_range_table);
89 
90 bool regmap_writeable(struct regmap *map, unsigned int reg)
91 {
92 	if (map->max_register_is_set && reg > map->max_register)
93 		return false;
94 
95 	if (map->writeable_reg)
96 		return map->writeable_reg(map->dev, reg);
97 
98 	if (map->wr_table)
99 		return regmap_check_range_table(map, reg, map->wr_table);
100 
101 	return true;
102 }
103 
104 bool regmap_cached(struct regmap *map, unsigned int reg)
105 {
106 	int ret;
107 	unsigned int val;
108 
109 	if (map->cache_type == REGCACHE_NONE)
110 		return false;
111 
112 	if (!map->cache_ops)
113 		return false;
114 
115 	if (map->max_register_is_set && reg > map->max_register)
116 		return false;
117 
118 	map->lock(map->lock_arg);
119 	ret = regcache_read(map, reg, &val);
120 	map->unlock(map->lock_arg);
121 	if (ret)
122 		return false;
123 
124 	return true;
125 }
126 
127 bool regmap_readable(struct regmap *map, unsigned int reg)
128 {
129 	if (!map->reg_read)
130 		return false;
131 
132 	if (map->max_register_is_set && reg > map->max_register)
133 		return false;
134 
135 	if (map->format.format_write)
136 		return false;
137 
138 	if (map->readable_reg)
139 		return map->readable_reg(map->dev, reg);
140 
141 	if (map->rd_table)
142 		return regmap_check_range_table(map, reg, map->rd_table);
143 
144 	return true;
145 }
146 
147 bool regmap_volatile(struct regmap *map, unsigned int reg)
148 {
149 	if (!map->format.format_write && !regmap_readable(map, reg))
150 		return false;
151 
152 	if (map->volatile_reg)
153 		return map->volatile_reg(map->dev, reg);
154 
155 	if (map->volatile_table)
156 		return regmap_check_range_table(map, reg, map->volatile_table);
157 
158 	if (map->cache_ops)
159 		return false;
160 	else
161 		return true;
162 }
163 
164 bool regmap_precious(struct regmap *map, unsigned int reg)
165 {
166 	if (!regmap_readable(map, reg))
167 		return false;
168 
169 	if (map->precious_reg)
170 		return map->precious_reg(map->dev, reg);
171 
172 	if (map->precious_table)
173 		return regmap_check_range_table(map, reg, map->precious_table);
174 
175 	return false;
176 }
177 
178 bool regmap_writeable_noinc(struct regmap *map, unsigned int reg)
179 {
180 	if (map->writeable_noinc_reg)
181 		return map->writeable_noinc_reg(map->dev, reg);
182 
183 	if (map->wr_noinc_table)
184 		return regmap_check_range_table(map, reg, map->wr_noinc_table);
185 
186 	return true;
187 }
188 
189 bool regmap_readable_noinc(struct regmap *map, unsigned int reg)
190 {
191 	if (map->readable_noinc_reg)
192 		return map->readable_noinc_reg(map->dev, reg);
193 
194 	if (map->rd_noinc_table)
195 		return regmap_check_range_table(map, reg, map->rd_noinc_table);
196 
197 	return true;
198 }
199 
200 static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
201 	size_t num)
202 {
203 	unsigned int i;
204 
205 	for (i = 0; i < num; i++)
206 		if (!regmap_volatile(map, reg + regmap_get_offset(map, i)))
207 			return false;
208 
209 	return true;
210 }
211 
212 static void regmap_format_12_20_write(struct regmap *map,
213 				     unsigned int reg, unsigned int val)
214 {
215 	u8 *out = map->work_buf;
216 
217 	out[0] = reg >> 4;
218 	out[1] = (reg << 4) | (val >> 16);
219 	out[2] = val >> 8;
220 	out[3] = val;
221 }
222 
223 
224 static void regmap_format_2_6_write(struct regmap *map,
225 				     unsigned int reg, unsigned int val)
226 {
227 	u8 *out = map->work_buf;
228 
229 	*out = (reg << 6) | val;
230 }
231 
232 static void regmap_format_4_12_write(struct regmap *map,
233 				     unsigned int reg, unsigned int val)
234 {
235 	__be16 *out = map->work_buf;
236 	*out = cpu_to_be16((reg << 12) | val);
237 }
238 
239 static void regmap_format_7_9_write(struct regmap *map,
240 				    unsigned int reg, unsigned int val)
241 {
242 	__be16 *out = map->work_buf;
243 	*out = cpu_to_be16((reg << 9) | val);
244 }
245 
246 static void regmap_format_7_17_write(struct regmap *map,
247 				    unsigned int reg, unsigned int val)
248 {
249 	u8 *out = map->work_buf;
250 
251 	out[2] = val;
252 	out[1] = val >> 8;
253 	out[0] = (val >> 16) | (reg << 1);
254 }
255 
256 static void regmap_format_10_14_write(struct regmap *map,
257 				    unsigned int reg, unsigned int val)
258 {
259 	u8 *out = map->work_buf;
260 
261 	out[2] = val;
262 	out[1] = (val >> 8) | (reg << 6);
263 	out[0] = reg >> 2;
264 }
265 
266 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
267 {
268 	u8 *b = buf;
269 
270 	b[0] = val << shift;
271 }
272 
273 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
274 {
275 	put_unaligned_be16(val << shift, buf);
276 }
277 
278 static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
279 {
280 	put_unaligned_le16(val << shift, buf);
281 }
282 
283 static void regmap_format_16_native(void *buf, unsigned int val,
284 				    unsigned int shift)
285 {
286 	u16 v = val << shift;
287 
288 	memcpy(buf, &v, sizeof(v));
289 }
290 
291 static void regmap_format_24_be(void *buf, unsigned int val, unsigned int shift)
292 {
293 	put_unaligned_be24(val << shift, buf);
294 }
295 
296 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
297 {
298 	put_unaligned_be32(val << shift, buf);
299 }
300 
301 static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
302 {
303 	put_unaligned_le32(val << shift, buf);
304 }
305 
306 static void regmap_format_32_native(void *buf, unsigned int val,
307 				    unsigned int shift)
308 {
309 	u32 v = val << shift;
310 
311 	memcpy(buf, &v, sizeof(v));
312 }
313 
314 static void regmap_parse_inplace_noop(void *buf)
315 {
316 }
317 
318 static unsigned int regmap_parse_8(const void *buf)
319 {
320 	const u8 *b = buf;
321 
322 	return b[0];
323 }
324 
325 static unsigned int regmap_parse_16_be(const void *buf)
326 {
327 	return get_unaligned_be16(buf);
328 }
329 
330 static unsigned int regmap_parse_16_le(const void *buf)
331 {
332 	return get_unaligned_le16(buf);
333 }
334 
335 static void regmap_parse_16_be_inplace(void *buf)
336 {
337 	u16 v = get_unaligned_be16(buf);
338 
339 	memcpy(buf, &v, sizeof(v));
340 }
341 
342 static void regmap_parse_16_le_inplace(void *buf)
343 {
344 	u16 v = get_unaligned_le16(buf);
345 
346 	memcpy(buf, &v, sizeof(v));
347 }
348 
349 static unsigned int regmap_parse_16_native(const void *buf)
350 {
351 	u16 v;
352 
353 	memcpy(&v, buf, sizeof(v));
354 	return v;
355 }
356 
357 static unsigned int regmap_parse_24_be(const void *buf)
358 {
359 	return get_unaligned_be24(buf);
360 }
361 
362 static unsigned int regmap_parse_32_be(const void *buf)
363 {
364 	return get_unaligned_be32(buf);
365 }
366 
367 static unsigned int regmap_parse_32_le(const void *buf)
368 {
369 	return get_unaligned_le32(buf);
370 }
371 
372 static void regmap_parse_32_be_inplace(void *buf)
373 {
374 	u32 v = get_unaligned_be32(buf);
375 
376 	memcpy(buf, &v, sizeof(v));
377 }
378 
379 static void regmap_parse_32_le_inplace(void *buf)
380 {
381 	u32 v = get_unaligned_le32(buf);
382 
383 	memcpy(buf, &v, sizeof(v));
384 }
385 
386 static unsigned int regmap_parse_32_native(const void *buf)
387 {
388 	u32 v;
389 
390 	memcpy(&v, buf, sizeof(v));
391 	return v;
392 }
393 
394 static void regmap_lock_hwlock(void *__map)
395 {
396 	struct regmap *map = __map;
397 
398 	hwspin_lock_timeout(map->hwlock, UINT_MAX);
399 }
400 
401 static void regmap_lock_hwlock_irq(void *__map)
402 {
403 	struct regmap *map = __map;
404 
405 	hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
406 }
407 
408 static void regmap_lock_hwlock_irqsave(void *__map)
409 {
410 	struct regmap *map = __map;
411 
412 	hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
413 				    &map->spinlock_flags);
414 }
415 
416 static void regmap_unlock_hwlock(void *__map)
417 {
418 	struct regmap *map = __map;
419 
420 	hwspin_unlock(map->hwlock);
421 }
422 
423 static void regmap_unlock_hwlock_irq(void *__map)
424 {
425 	struct regmap *map = __map;
426 
427 	hwspin_unlock_irq(map->hwlock);
428 }
429 
430 static void regmap_unlock_hwlock_irqrestore(void *__map)
431 {
432 	struct regmap *map = __map;
433 
434 	hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
435 }
436 
437 static void regmap_lock_unlock_none(void *__map)
438 {
439 
440 }
441 
442 static void regmap_lock_mutex(void *__map)
443 {
444 	struct regmap *map = __map;
445 	mutex_lock(&map->mutex);
446 }
447 
448 static void regmap_unlock_mutex(void *__map)
449 {
450 	struct regmap *map = __map;
451 	mutex_unlock(&map->mutex);
452 }
453 
454 static void regmap_lock_spinlock(void *__map)
455 __acquires(&map->spinlock)
456 {
457 	struct regmap *map = __map;
458 	unsigned long flags;
459 
460 	spin_lock_irqsave(&map->spinlock, flags);
461 	map->spinlock_flags = flags;
462 }
463 
464 static void regmap_unlock_spinlock(void *__map)
465 __releases(&map->spinlock)
466 {
467 	struct regmap *map = __map;
468 	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
469 }
470 
471 static void regmap_lock_raw_spinlock(void *__map)
472 __acquires(&map->raw_spinlock)
473 {
474 	struct regmap *map = __map;
475 	unsigned long flags;
476 
477 	raw_spin_lock_irqsave(&map->raw_spinlock, flags);
478 	map->raw_spinlock_flags = flags;
479 }
480 
481 static void regmap_unlock_raw_spinlock(void *__map)
482 __releases(&map->raw_spinlock)
483 {
484 	struct regmap *map = __map;
485 	raw_spin_unlock_irqrestore(&map->raw_spinlock, map->raw_spinlock_flags);
486 }
487 
488 static void dev_get_regmap_release(struct device *dev, void *res)
489 {
490 	/*
491 	 * We don't actually have anything to do here; the goal here
492 	 * is not to manage the regmap but to provide a simple way to
493 	 * get the regmap back given a struct device.
494 	 */
495 }
496 
497 static bool _regmap_range_add(struct regmap *map,
498 			      struct regmap_range_node *data)
499 {
500 	struct rb_root *root = &map->range_tree;
501 	struct rb_node **new = &(root->rb_node), *parent = NULL;
502 
503 	while (*new) {
504 		struct regmap_range_node *this =
505 			rb_entry(*new, struct regmap_range_node, node);
506 
507 		parent = *new;
508 		if (data->range_max < this->range_min)
509 			new = &((*new)->rb_left);
510 		else if (data->range_min > this->range_max)
511 			new = &((*new)->rb_right);
512 		else
513 			return false;
514 	}
515 
516 	rb_link_node(&data->node, parent, new);
517 	rb_insert_color(&data->node, root);
518 
519 	return true;
520 }
521 
522 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
523 						      unsigned int reg)
524 {
525 	struct rb_node *node = map->range_tree.rb_node;
526 
527 	while (node) {
528 		struct regmap_range_node *this =
529 			rb_entry(node, struct regmap_range_node, node);
530 
531 		if (reg < this->range_min)
532 			node = node->rb_left;
533 		else if (reg > this->range_max)
534 			node = node->rb_right;
535 		else
536 			return this;
537 	}
538 
539 	return NULL;
540 }
541 
542 static void regmap_range_exit(struct regmap *map)
543 {
544 	struct rb_node *next;
545 	struct regmap_range_node *range_node;
546 
547 	next = rb_first(&map->range_tree);
548 	while (next) {
549 		range_node = rb_entry(next, struct regmap_range_node, node);
550 		next = rb_next(&range_node->node);
551 		rb_erase(&range_node->node, &map->range_tree);
552 		kfree(range_node);
553 	}
554 
555 	kfree(map->selector_work_buf);
556 }
557 
558 static int regmap_set_name(struct regmap *map, const struct regmap_config *config)
559 {
560 	if (config->name) {
561 		const char *name = kstrdup_const(config->name, GFP_KERNEL);
562 
563 		if (!name)
564 			return -ENOMEM;
565 
566 		kfree_const(map->name);
567 		map->name = name;
568 	}
569 
570 	return 0;
571 }
572 
573 int regmap_attach_dev(struct device *dev, struct regmap *map,
574 		      const struct regmap_config *config)
575 {
576 	struct regmap **m;
577 	int ret;
578 
579 	map->dev = dev;
580 
581 	ret = regmap_set_name(map, config);
582 	if (ret)
583 		return ret;
584 
585 	regmap_debugfs_exit(map);
586 	regmap_debugfs_init(map);
587 
588 	/* Add a devres resource for dev_get_regmap() */
589 	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
590 	if (!m) {
591 		regmap_debugfs_exit(map);
592 		return -ENOMEM;
593 	}
594 	*m = map;
595 	devres_add(dev, m);
596 
597 	return 0;
598 }
599 EXPORT_SYMBOL_GPL(regmap_attach_dev);
600 
601 static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
602 					const struct regmap_config *config)
603 {
604 	enum regmap_endian endian;
605 
606 	/* Retrieve the endianness specification from the regmap config */
607 	endian = config->reg_format_endian;
608 
609 	/* If the regmap config specified a non-default value, use that */
610 	if (endian != REGMAP_ENDIAN_DEFAULT)
611 		return endian;
612 
613 	/* Retrieve the endianness specification from the bus config */
614 	if (bus && bus->reg_format_endian_default)
615 		endian = bus->reg_format_endian_default;
616 
617 	/* If the bus specified a non-default value, use that */
618 	if (endian != REGMAP_ENDIAN_DEFAULT)
619 		return endian;
620 
621 	/* Use this if no other value was found */
622 	return REGMAP_ENDIAN_BIG;
623 }
624 
625 enum regmap_endian regmap_get_val_endian(struct device *dev,
626 					 const struct regmap_bus *bus,
627 					 const struct regmap_config *config)
628 {
629 	struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
630 	enum regmap_endian endian;
631 
632 	/* Retrieve the endianness specification from the regmap config */
633 	endian = config->val_format_endian;
634 
635 	/* If the regmap config specified a non-default value, use that */
636 	if (endian != REGMAP_ENDIAN_DEFAULT)
637 		return endian;
638 
639 	/* If the firmware node exist try to get endianness from it */
640 	if (fwnode_property_read_bool(fwnode, "big-endian"))
641 		endian = REGMAP_ENDIAN_BIG;
642 	else if (fwnode_property_read_bool(fwnode, "little-endian"))
643 		endian = REGMAP_ENDIAN_LITTLE;
644 	else if (fwnode_property_read_bool(fwnode, "native-endian"))
645 		endian = REGMAP_ENDIAN_NATIVE;
646 
647 	/* If the endianness was specified in fwnode, use that */
648 	if (endian != REGMAP_ENDIAN_DEFAULT)
649 		return endian;
650 
651 	/* Retrieve the endianness specification from the bus config */
652 	if (bus && bus->val_format_endian_default)
653 		endian = bus->val_format_endian_default;
654 
655 	/* If the bus specified a non-default value, use that */
656 	if (endian != REGMAP_ENDIAN_DEFAULT)
657 		return endian;
658 
659 	/* Use this if no other value was found */
660 	return REGMAP_ENDIAN_BIG;
661 }
662 EXPORT_SYMBOL_GPL(regmap_get_val_endian);
663 
664 struct regmap *__regmap_init(struct device *dev,
665 			     const struct regmap_bus *bus,
666 			     void *bus_context,
667 			     const struct regmap_config *config,
668 			     struct lock_class_key *lock_key,
669 			     const char *lock_name)
670 {
671 	struct regmap *map;
672 	int ret = -EINVAL;
673 	enum regmap_endian reg_endian, val_endian;
674 	int i, j;
675 
676 	if (!config)
677 		goto err;
678 
679 	map = kzalloc(sizeof(*map), GFP_KERNEL);
680 	if (map == NULL) {
681 		ret = -ENOMEM;
682 		goto err;
683 	}
684 
685 	ret = regmap_set_name(map, config);
686 	if (ret)
687 		goto err_map;
688 
689 	ret = -EINVAL; /* Later error paths rely on this */
690 
691 	if (config->disable_locking) {
692 		map->lock = map->unlock = regmap_lock_unlock_none;
693 		map->can_sleep = config->can_sleep;
694 		regmap_debugfs_disable(map);
695 	} else if (config->lock && config->unlock) {
696 		map->lock = config->lock;
697 		map->unlock = config->unlock;
698 		map->lock_arg = config->lock_arg;
699 		map->can_sleep = config->can_sleep;
700 	} else if (config->use_hwlock) {
701 		map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
702 		if (!map->hwlock) {
703 			ret = -ENXIO;
704 			goto err_name;
705 		}
706 
707 		switch (config->hwlock_mode) {
708 		case HWLOCK_IRQSTATE:
709 			map->lock = regmap_lock_hwlock_irqsave;
710 			map->unlock = regmap_unlock_hwlock_irqrestore;
711 			break;
712 		case HWLOCK_IRQ:
713 			map->lock = regmap_lock_hwlock_irq;
714 			map->unlock = regmap_unlock_hwlock_irq;
715 			break;
716 		default:
717 			map->lock = regmap_lock_hwlock;
718 			map->unlock = regmap_unlock_hwlock;
719 			break;
720 		}
721 
722 		map->lock_arg = map;
723 	} else {
724 		if ((bus && bus->fast_io) ||
725 		    config->fast_io) {
726 			if (config->use_raw_spinlock) {
727 				raw_spin_lock_init(&map->raw_spinlock);
728 				map->lock = regmap_lock_raw_spinlock;
729 				map->unlock = regmap_unlock_raw_spinlock;
730 				lockdep_set_class_and_name(&map->raw_spinlock,
731 							   lock_key, lock_name);
732 			} else {
733 				spin_lock_init(&map->spinlock);
734 				map->lock = regmap_lock_spinlock;
735 				map->unlock = regmap_unlock_spinlock;
736 				lockdep_set_class_and_name(&map->spinlock,
737 							   lock_key, lock_name);
738 			}
739 		} else {
740 			mutex_init(&map->mutex);
741 			map->lock = regmap_lock_mutex;
742 			map->unlock = regmap_unlock_mutex;
743 			map->can_sleep = true;
744 			lockdep_set_class_and_name(&map->mutex,
745 						   lock_key, lock_name);
746 		}
747 		map->lock_arg = map;
748 	}
749 
750 	/*
751 	 * When we write in fast-paths with regmap_bulk_write() don't allocate
752 	 * scratch buffers with sleeping allocations.
753 	 */
754 	if ((bus && bus->fast_io) || config->fast_io)
755 		map->alloc_flags = GFP_ATOMIC;
756 	else
757 		map->alloc_flags = GFP_KERNEL;
758 
759 	map->reg_base = config->reg_base;
760 
761 	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
762 	map->format.pad_bytes = config->pad_bits / 8;
763 	map->format.reg_shift = config->reg_shift;
764 	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
765 	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
766 			config->val_bits + config->pad_bits, 8);
767 	map->reg_shift = config->pad_bits % 8;
768 	if (config->reg_stride)
769 		map->reg_stride = config->reg_stride;
770 	else
771 		map->reg_stride = 1;
772 	if (is_power_of_2(map->reg_stride))
773 		map->reg_stride_order = ilog2(map->reg_stride);
774 	else
775 		map->reg_stride_order = -1;
776 	map->use_single_read = config->use_single_read || !(config->read || (bus && bus->read));
777 	map->use_single_write = config->use_single_write || !(config->write || (bus && bus->write));
778 	map->can_multi_write = config->can_multi_write && (config->write || (bus && bus->write));
779 	if (bus) {
780 		map->max_raw_read = bus->max_raw_read;
781 		map->max_raw_write = bus->max_raw_write;
782 	} else if (config->max_raw_read && config->max_raw_write) {
783 		map->max_raw_read = config->max_raw_read;
784 		map->max_raw_write = config->max_raw_write;
785 	}
786 	map->dev = dev;
787 	map->bus = bus;
788 	map->bus_context = bus_context;
789 	map->max_register = config->max_register;
790 	map->max_register_is_set = map->max_register ?: config->max_register_is_0;
791 	map->wr_table = config->wr_table;
792 	map->rd_table = config->rd_table;
793 	map->volatile_table = config->volatile_table;
794 	map->precious_table = config->precious_table;
795 	map->wr_noinc_table = config->wr_noinc_table;
796 	map->rd_noinc_table = config->rd_noinc_table;
797 	map->writeable_reg = config->writeable_reg;
798 	map->readable_reg = config->readable_reg;
799 	map->volatile_reg = config->volatile_reg;
800 	map->precious_reg = config->precious_reg;
801 	map->writeable_noinc_reg = config->writeable_noinc_reg;
802 	map->readable_noinc_reg = config->readable_noinc_reg;
803 	map->cache_type = config->cache_type;
804 
805 	spin_lock_init(&map->async_lock);
806 	INIT_LIST_HEAD(&map->async_list);
807 	INIT_LIST_HEAD(&map->async_free);
808 	init_waitqueue_head(&map->async_waitq);
809 
810 	if (config->read_flag_mask ||
811 	    config->write_flag_mask ||
812 	    config->zero_flag_mask) {
813 		map->read_flag_mask = config->read_flag_mask;
814 		map->write_flag_mask = config->write_flag_mask;
815 	} else if (bus) {
816 		map->read_flag_mask = bus->read_flag_mask;
817 	}
818 
819 	if (config && config->read && config->write) {
820 		map->reg_read  = _regmap_bus_read;
821 		if (config->reg_update_bits)
822 			map->reg_update_bits = config->reg_update_bits;
823 
824 		/* Bulk read/write */
825 		map->read = config->read;
826 		map->write = config->write;
827 
828 		reg_endian = REGMAP_ENDIAN_NATIVE;
829 		val_endian = REGMAP_ENDIAN_NATIVE;
830 	} else if (!bus) {
831 		map->reg_read  = config->reg_read;
832 		map->reg_write = config->reg_write;
833 		map->reg_update_bits = config->reg_update_bits;
834 
835 		map->defer_caching = false;
836 		goto skip_format_initialization;
837 	} else if (!bus->read || !bus->write) {
838 		map->reg_read = _regmap_bus_reg_read;
839 		map->reg_write = _regmap_bus_reg_write;
840 		map->reg_update_bits = bus->reg_update_bits;
841 
842 		map->defer_caching = false;
843 		goto skip_format_initialization;
844 	} else {
845 		map->reg_read  = _regmap_bus_read;
846 		map->reg_update_bits = bus->reg_update_bits;
847 		/* Bulk read/write */
848 		map->read = bus->read;
849 		map->write = bus->write;
850 
851 		reg_endian = regmap_get_reg_endian(bus, config);
852 		val_endian = regmap_get_val_endian(dev, bus, config);
853 	}
854 
855 	switch (config->reg_bits + map->reg_shift) {
856 	case 2:
857 		switch (config->val_bits) {
858 		case 6:
859 			map->format.format_write = regmap_format_2_6_write;
860 			break;
861 		default:
862 			goto err_hwlock;
863 		}
864 		break;
865 
866 	case 4:
867 		switch (config->val_bits) {
868 		case 12:
869 			map->format.format_write = regmap_format_4_12_write;
870 			break;
871 		default:
872 			goto err_hwlock;
873 		}
874 		break;
875 
876 	case 7:
877 		switch (config->val_bits) {
878 		case 9:
879 			map->format.format_write = regmap_format_7_9_write;
880 			break;
881 		case 17:
882 			map->format.format_write = regmap_format_7_17_write;
883 			break;
884 		default:
885 			goto err_hwlock;
886 		}
887 		break;
888 
889 	case 10:
890 		switch (config->val_bits) {
891 		case 14:
892 			map->format.format_write = regmap_format_10_14_write;
893 			break;
894 		default:
895 			goto err_hwlock;
896 		}
897 		break;
898 
899 	case 12:
900 		switch (config->val_bits) {
901 		case 20:
902 			map->format.format_write = regmap_format_12_20_write;
903 			break;
904 		default:
905 			goto err_hwlock;
906 		}
907 		break;
908 
909 	case 8:
910 		map->format.format_reg = regmap_format_8;
911 		break;
912 
913 	case 16:
914 		switch (reg_endian) {
915 		case REGMAP_ENDIAN_BIG:
916 			map->format.format_reg = regmap_format_16_be;
917 			break;
918 		case REGMAP_ENDIAN_LITTLE:
919 			map->format.format_reg = regmap_format_16_le;
920 			break;
921 		case REGMAP_ENDIAN_NATIVE:
922 			map->format.format_reg = regmap_format_16_native;
923 			break;
924 		default:
925 			goto err_hwlock;
926 		}
927 		break;
928 
929 	case 24:
930 		switch (reg_endian) {
931 		case REGMAP_ENDIAN_BIG:
932 			map->format.format_reg = regmap_format_24_be;
933 			break;
934 		default:
935 			goto err_hwlock;
936 		}
937 		break;
938 
939 	case 32:
940 		switch (reg_endian) {
941 		case REGMAP_ENDIAN_BIG:
942 			map->format.format_reg = regmap_format_32_be;
943 			break;
944 		case REGMAP_ENDIAN_LITTLE:
945 			map->format.format_reg = regmap_format_32_le;
946 			break;
947 		case REGMAP_ENDIAN_NATIVE:
948 			map->format.format_reg = regmap_format_32_native;
949 			break;
950 		default:
951 			goto err_hwlock;
952 		}
953 		break;
954 
955 	default:
956 		goto err_hwlock;
957 	}
958 
959 	if (val_endian == REGMAP_ENDIAN_NATIVE)
960 		map->format.parse_inplace = regmap_parse_inplace_noop;
961 
962 	switch (config->val_bits) {
963 	case 8:
964 		map->format.format_val = regmap_format_8;
965 		map->format.parse_val = regmap_parse_8;
966 		map->format.parse_inplace = regmap_parse_inplace_noop;
967 		break;
968 	case 16:
969 		switch (val_endian) {
970 		case REGMAP_ENDIAN_BIG:
971 			map->format.format_val = regmap_format_16_be;
972 			map->format.parse_val = regmap_parse_16_be;
973 			map->format.parse_inplace = regmap_parse_16_be_inplace;
974 			break;
975 		case REGMAP_ENDIAN_LITTLE:
976 			map->format.format_val = regmap_format_16_le;
977 			map->format.parse_val = regmap_parse_16_le;
978 			map->format.parse_inplace = regmap_parse_16_le_inplace;
979 			break;
980 		case REGMAP_ENDIAN_NATIVE:
981 			map->format.format_val = regmap_format_16_native;
982 			map->format.parse_val = regmap_parse_16_native;
983 			break;
984 		default:
985 			goto err_hwlock;
986 		}
987 		break;
988 	case 24:
989 		switch (val_endian) {
990 		case REGMAP_ENDIAN_BIG:
991 			map->format.format_val = regmap_format_24_be;
992 			map->format.parse_val = regmap_parse_24_be;
993 			break;
994 		default:
995 			goto err_hwlock;
996 		}
997 		break;
998 	case 32:
999 		switch (val_endian) {
1000 		case REGMAP_ENDIAN_BIG:
1001 			map->format.format_val = regmap_format_32_be;
1002 			map->format.parse_val = regmap_parse_32_be;
1003 			map->format.parse_inplace = regmap_parse_32_be_inplace;
1004 			break;
1005 		case REGMAP_ENDIAN_LITTLE:
1006 			map->format.format_val = regmap_format_32_le;
1007 			map->format.parse_val = regmap_parse_32_le;
1008 			map->format.parse_inplace = regmap_parse_32_le_inplace;
1009 			break;
1010 		case REGMAP_ENDIAN_NATIVE:
1011 			map->format.format_val = regmap_format_32_native;
1012 			map->format.parse_val = regmap_parse_32_native;
1013 			break;
1014 		default:
1015 			goto err_hwlock;
1016 		}
1017 		break;
1018 	}
1019 
1020 	if (map->format.format_write) {
1021 		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
1022 		    (val_endian != REGMAP_ENDIAN_BIG))
1023 			goto err_hwlock;
1024 		map->use_single_write = true;
1025 	}
1026 
1027 	if (!map->format.format_write &&
1028 	    !(map->format.format_reg && map->format.format_val))
1029 		goto err_hwlock;
1030 
1031 	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1032 	if (map->work_buf == NULL) {
1033 		ret = -ENOMEM;
1034 		goto err_hwlock;
1035 	}
1036 
1037 	if (map->format.format_write) {
1038 		map->defer_caching = false;
1039 		map->reg_write = _regmap_bus_formatted_write;
1040 	} else if (map->format.format_val) {
1041 		map->defer_caching = true;
1042 		map->reg_write = _regmap_bus_raw_write;
1043 	}
1044 
1045 skip_format_initialization:
1046 
1047 	map->range_tree = RB_ROOT;
1048 	for (i = 0; i < config->num_ranges; i++) {
1049 		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
1050 		struct regmap_range_node *new;
1051 
1052 		/* Sanity check */
1053 		if (range_cfg->range_max < range_cfg->range_min) {
1054 			dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
1055 				range_cfg->range_max, range_cfg->range_min);
1056 			goto err_range;
1057 		}
1058 
1059 		if (range_cfg->range_max > map->max_register) {
1060 			dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
1061 				range_cfg->range_max, map->max_register);
1062 			goto err_range;
1063 		}
1064 
1065 		if (range_cfg->selector_reg > map->max_register) {
1066 			dev_err(map->dev,
1067 				"Invalid range %d: selector out of map\n", i);
1068 			goto err_range;
1069 		}
1070 
1071 		if (range_cfg->window_len == 0) {
1072 			dev_err(map->dev, "Invalid range %d: window_len 0\n",
1073 				i);
1074 			goto err_range;
1075 		}
1076 
1077 		/* Make sure, that this register range has no selector
1078 		   or data window within its boundary */
1079 		for (j = 0; j < config->num_ranges; j++) {
1080 			unsigned int sel_reg = config->ranges[j].selector_reg;
1081 			unsigned int win_min = config->ranges[j].window_start;
1082 			unsigned int win_max = win_min +
1083 					       config->ranges[j].window_len - 1;
1084 
1085 			/* Allow data window inside its own virtual range */
1086 			if (j == i)
1087 				continue;
1088 
1089 			if (range_cfg->range_min <= sel_reg &&
1090 			    sel_reg <= range_cfg->range_max) {
1091 				dev_err(map->dev,
1092 					"Range %d: selector for %d in window\n",
1093 					i, j);
1094 				goto err_range;
1095 			}
1096 
1097 			if (!(win_max < range_cfg->range_min ||
1098 			      win_min > range_cfg->range_max)) {
1099 				dev_err(map->dev,
1100 					"Range %d: window for %d in window\n",
1101 					i, j);
1102 				goto err_range;
1103 			}
1104 		}
1105 
1106 		new = kzalloc(sizeof(*new), GFP_KERNEL);
1107 		if (new == NULL) {
1108 			ret = -ENOMEM;
1109 			goto err_range;
1110 		}
1111 
1112 		new->map = map;
1113 		new->name = range_cfg->name;
1114 		new->range_min = range_cfg->range_min;
1115 		new->range_max = range_cfg->range_max;
1116 		new->selector_reg = range_cfg->selector_reg;
1117 		new->selector_mask = range_cfg->selector_mask;
1118 		new->selector_shift = range_cfg->selector_shift;
1119 		new->window_start = range_cfg->window_start;
1120 		new->window_len = range_cfg->window_len;
1121 
1122 		if (!_regmap_range_add(map, new)) {
1123 			dev_err(map->dev, "Failed to add range %d\n", i);
1124 			kfree(new);
1125 			goto err_range;
1126 		}
1127 
1128 		if (map->selector_work_buf == NULL) {
1129 			map->selector_work_buf =
1130 				kzalloc(map->format.buf_size, GFP_KERNEL);
1131 			if (map->selector_work_buf == NULL) {
1132 				ret = -ENOMEM;
1133 				goto err_range;
1134 			}
1135 		}
1136 	}
1137 
1138 	ret = regcache_init(map, config);
1139 	if (ret != 0)
1140 		goto err_range;
1141 
1142 	if (dev) {
1143 		ret = regmap_attach_dev(dev, map, config);
1144 		if (ret != 0)
1145 			goto err_regcache;
1146 	} else {
1147 		regmap_debugfs_init(map);
1148 	}
1149 
1150 	return map;
1151 
1152 err_regcache:
1153 	regcache_exit(map);
1154 err_range:
1155 	regmap_range_exit(map);
1156 	kfree(map->work_buf);
1157 err_hwlock:
1158 	if (map->hwlock)
1159 		hwspin_lock_free(map->hwlock);
1160 err_name:
1161 	kfree_const(map->name);
1162 err_map:
1163 	kfree(map);
1164 err:
1165 	return ERR_PTR(ret);
1166 }
1167 EXPORT_SYMBOL_GPL(__regmap_init);
1168 
1169 static void devm_regmap_release(struct device *dev, void *res)
1170 {
1171 	regmap_exit(*(struct regmap **)res);
1172 }
1173 
1174 struct regmap *__devm_regmap_init(struct device *dev,
1175 				  const struct regmap_bus *bus,
1176 				  void *bus_context,
1177 				  const struct regmap_config *config,
1178 				  struct lock_class_key *lock_key,
1179 				  const char *lock_name)
1180 {
1181 	struct regmap **ptr, *regmap;
1182 
1183 	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1184 	if (!ptr)
1185 		return ERR_PTR(-ENOMEM);
1186 
1187 	regmap = __regmap_init(dev, bus, bus_context, config,
1188 			       lock_key, lock_name);
1189 	if (!IS_ERR(regmap)) {
1190 		*ptr = regmap;
1191 		devres_add(dev, ptr);
1192 	} else {
1193 		devres_free(ptr);
1194 	}
1195 
1196 	return regmap;
1197 }
1198 EXPORT_SYMBOL_GPL(__devm_regmap_init);
1199 
1200 static void regmap_field_init(struct regmap_field *rm_field,
1201 	struct regmap *regmap, struct reg_field reg_field)
1202 {
1203 	rm_field->regmap = regmap;
1204 	rm_field->reg = reg_field.reg;
1205 	rm_field->shift = reg_field.lsb;
1206 	rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1207 
1208 	WARN_ONCE(rm_field->mask == 0, "invalid empty mask defined\n");
1209 
1210 	rm_field->id_size = reg_field.id_size;
1211 	rm_field->id_offset = reg_field.id_offset;
1212 }
1213 
1214 /**
1215  * devm_regmap_field_alloc() - Allocate and initialise a register field.
1216  *
1217  * @dev: Device that will be interacted with
1218  * @regmap: regmap bank in which this register field is located.
1219  * @reg_field: Register field with in the bank.
1220  *
1221  * The return value will be an ERR_PTR() on error or a valid pointer
1222  * to a struct regmap_field. The regmap_field will be automatically freed
1223  * by the device management code.
1224  */
1225 struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1226 		struct regmap *regmap, struct reg_field reg_field)
1227 {
1228 	struct regmap_field *rm_field = devm_kzalloc(dev,
1229 					sizeof(*rm_field), GFP_KERNEL);
1230 	if (!rm_field)
1231 		return ERR_PTR(-ENOMEM);
1232 
1233 	regmap_field_init(rm_field, regmap, reg_field);
1234 
1235 	return rm_field;
1236 
1237 }
1238 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1239 
1240 
1241 /**
1242  * regmap_field_bulk_alloc() - Allocate and initialise a bulk register field.
1243  *
1244  * @regmap: regmap bank in which this register field is located.
1245  * @rm_field: regmap register fields within the bank.
1246  * @reg_field: Register fields within the bank.
1247  * @num_fields: Number of register fields.
1248  *
1249  * The return value will be an -ENOMEM on error or zero for success.
1250  * Newly allocated regmap_fields should be freed by calling
1251  * regmap_field_bulk_free()
1252  */
1253 int regmap_field_bulk_alloc(struct regmap *regmap,
1254 			    struct regmap_field **rm_field,
1255 			    const struct reg_field *reg_field,
1256 			    int num_fields)
1257 {
1258 	struct regmap_field *rf;
1259 	int i;
1260 
1261 	rf = kcalloc(num_fields, sizeof(*rf), GFP_KERNEL);
1262 	if (!rf)
1263 		return -ENOMEM;
1264 
1265 	for (i = 0; i < num_fields; i++) {
1266 		regmap_field_init(&rf[i], regmap, reg_field[i]);
1267 		rm_field[i] = &rf[i];
1268 	}
1269 
1270 	return 0;
1271 }
1272 EXPORT_SYMBOL_GPL(regmap_field_bulk_alloc);
1273 
1274 /**
1275  * devm_regmap_field_bulk_alloc() - Allocate and initialise a bulk register
1276  * fields.
1277  *
1278  * @dev: Device that will be interacted with
1279  * @regmap: regmap bank in which this register field is located.
1280  * @rm_field: regmap register fields within the bank.
1281  * @reg_field: Register fields within the bank.
1282  * @num_fields: Number of register fields.
1283  *
1284  * The return value will be an -ENOMEM on error or zero for success.
1285  * Newly allocated regmap_fields will be automatically freed by the
1286  * device management code.
1287  */
1288 int devm_regmap_field_bulk_alloc(struct device *dev,
1289 				 struct regmap *regmap,
1290 				 struct regmap_field **rm_field,
1291 				 const struct reg_field *reg_field,
1292 				 int num_fields)
1293 {
1294 	struct regmap_field *rf;
1295 	int i;
1296 
1297 	rf = devm_kcalloc(dev, num_fields, sizeof(*rf), GFP_KERNEL);
1298 	if (!rf)
1299 		return -ENOMEM;
1300 
1301 	for (i = 0; i < num_fields; i++) {
1302 		regmap_field_init(&rf[i], regmap, reg_field[i]);
1303 		rm_field[i] = &rf[i];
1304 	}
1305 
1306 	return 0;
1307 }
1308 EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_alloc);
1309 
1310 /**
1311  * regmap_field_bulk_free() - Free register field allocated using
1312  *                       regmap_field_bulk_alloc.
1313  *
1314  * @field: regmap fields which should be freed.
1315  */
1316 void regmap_field_bulk_free(struct regmap_field *field)
1317 {
1318 	kfree(field);
1319 }
1320 EXPORT_SYMBOL_GPL(regmap_field_bulk_free);
1321 
1322 /**
1323  * devm_regmap_field_bulk_free() - Free a bulk register field allocated using
1324  *                            devm_regmap_field_bulk_alloc.
1325  *
1326  * @dev: Device that will be interacted with
1327  * @field: regmap field which should be freed.
1328  *
1329  * Free register field allocated using devm_regmap_field_bulk_alloc(). Usually
1330  * drivers need not call this function, as the memory allocated via devm
1331  * will be freed as per device-driver life-cycle.
1332  */
1333 void devm_regmap_field_bulk_free(struct device *dev,
1334 				 struct regmap_field *field)
1335 {
1336 	devm_kfree(dev, field);
1337 }
1338 EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_free);
1339 
1340 /**
1341  * devm_regmap_field_free() - Free a register field allocated using
1342  *                            devm_regmap_field_alloc.
1343  *
1344  * @dev: Device that will be interacted with
1345  * @field: regmap field which should be freed.
1346  *
1347  * Free register field allocated using devm_regmap_field_alloc(). Usually
1348  * drivers need not call this function, as the memory allocated via devm
1349  * will be freed as per device-driver life-cyle.
1350  */
1351 void devm_regmap_field_free(struct device *dev,
1352 	struct regmap_field *field)
1353 {
1354 	devm_kfree(dev, field);
1355 }
1356 EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1357 
1358 /**
1359  * regmap_field_alloc() - Allocate and initialise a register field.
1360  *
1361  * @regmap: regmap bank in which this register field is located.
1362  * @reg_field: Register field with in the bank.
1363  *
1364  * The return value will be an ERR_PTR() on error or a valid pointer
1365  * to a struct regmap_field. The regmap_field should be freed by the
1366  * user once its finished working with it using regmap_field_free().
1367  */
1368 struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1369 		struct reg_field reg_field)
1370 {
1371 	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1372 
1373 	if (!rm_field)
1374 		return ERR_PTR(-ENOMEM);
1375 
1376 	regmap_field_init(rm_field, regmap, reg_field);
1377 
1378 	return rm_field;
1379 }
1380 EXPORT_SYMBOL_GPL(regmap_field_alloc);
1381 
1382 /**
1383  * regmap_field_free() - Free register field allocated using
1384  *                       regmap_field_alloc.
1385  *
1386  * @field: regmap field which should be freed.
1387  */
1388 void regmap_field_free(struct regmap_field *field)
1389 {
1390 	kfree(field);
1391 }
1392 EXPORT_SYMBOL_GPL(regmap_field_free);
1393 
1394 /**
1395  * regmap_reinit_cache() - Reinitialise the current register cache
1396  *
1397  * @map: Register map to operate on.
1398  * @config: New configuration.  Only the cache data will be used.
1399  *
1400  * Discard any existing register cache for the map and initialize a
1401  * new cache.  This can be used to restore the cache to defaults or to
1402  * update the cache configuration to reflect runtime discovery of the
1403  * hardware.
1404  *
1405  * No explicit locking is done here, the user needs to ensure that
1406  * this function will not race with other calls to regmap.
1407  */
1408 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1409 {
1410 	int ret;
1411 
1412 	regcache_exit(map);
1413 	regmap_debugfs_exit(map);
1414 
1415 	map->max_register = config->max_register;
1416 	map->max_register_is_set = map->max_register ?: config->max_register_is_0;
1417 	map->writeable_reg = config->writeable_reg;
1418 	map->readable_reg = config->readable_reg;
1419 	map->volatile_reg = config->volatile_reg;
1420 	map->precious_reg = config->precious_reg;
1421 	map->writeable_noinc_reg = config->writeable_noinc_reg;
1422 	map->readable_noinc_reg = config->readable_noinc_reg;
1423 	map->cache_type = config->cache_type;
1424 
1425 	ret = regmap_set_name(map, config);
1426 	if (ret)
1427 		return ret;
1428 
1429 	regmap_debugfs_init(map);
1430 
1431 	map->cache_bypass = false;
1432 	map->cache_only = false;
1433 
1434 	return regcache_init(map, config);
1435 }
1436 EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1437 
1438 /**
1439  * regmap_exit() - Free a previously allocated register map
1440  *
1441  * @map: Register map to operate on.
1442  */
1443 void regmap_exit(struct regmap *map)
1444 {
1445 	struct regmap_async *async;
1446 
1447 	regcache_exit(map);
1448 	regmap_debugfs_exit(map);
1449 	regmap_range_exit(map);
1450 	if (map->bus && map->bus->free_context)
1451 		map->bus->free_context(map->bus_context);
1452 	kfree(map->work_buf);
1453 	while (!list_empty(&map->async_free)) {
1454 		async = list_first_entry_or_null(&map->async_free,
1455 						 struct regmap_async,
1456 						 list);
1457 		list_del(&async->list);
1458 		kfree(async->work_buf);
1459 		kfree(async);
1460 	}
1461 	if (map->hwlock)
1462 		hwspin_lock_free(map->hwlock);
1463 	if (map->lock == regmap_lock_mutex)
1464 		mutex_destroy(&map->mutex);
1465 	kfree_const(map->name);
1466 	kfree(map->patch);
1467 	if (map->bus && map->bus->free_on_exit)
1468 		kfree(map->bus);
1469 	kfree(map);
1470 }
1471 EXPORT_SYMBOL_GPL(regmap_exit);
1472 
1473 static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1474 {
1475 	struct regmap **r = res;
1476 	if (!r || !*r) {
1477 		WARN_ON(!r || !*r);
1478 		return 0;
1479 	}
1480 
1481 	/* If the user didn't specify a name match any */
1482 	if (data)
1483 		return (*r)->name && !strcmp((*r)->name, data);
1484 	else
1485 		return 1;
1486 }
1487 
1488 /**
1489  * dev_get_regmap() - Obtain the regmap (if any) for a device
1490  *
1491  * @dev: Device to retrieve the map for
1492  * @name: Optional name for the register map, usually NULL.
1493  *
1494  * Returns the regmap for the device if one is present, or NULL.  If
1495  * name is specified then it must match the name specified when
1496  * registering the device, if it is NULL then the first regmap found
1497  * will be used.  Devices with multiple register maps are very rare,
1498  * generic code should normally not need to specify a name.
1499  */
1500 struct regmap *dev_get_regmap(struct device *dev, const char *name)
1501 {
1502 	struct regmap **r = devres_find(dev, dev_get_regmap_release,
1503 					dev_get_regmap_match, (void *)name);
1504 
1505 	if (!r)
1506 		return NULL;
1507 	return *r;
1508 }
1509 EXPORT_SYMBOL_GPL(dev_get_regmap);
1510 
1511 /**
1512  * regmap_get_device() - Obtain the device from a regmap
1513  *
1514  * @map: Register map to operate on.
1515  *
1516  * Returns the underlying device that the regmap has been created for.
1517  */
1518 struct device *regmap_get_device(struct regmap *map)
1519 {
1520 	return map->dev;
1521 }
1522 EXPORT_SYMBOL_GPL(regmap_get_device);
1523 
1524 static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1525 			       struct regmap_range_node *range,
1526 			       unsigned int val_num)
1527 {
1528 	void *orig_work_buf;
1529 	unsigned int win_offset;
1530 	unsigned int win_page;
1531 	bool page_chg;
1532 	int ret;
1533 
1534 	win_offset = (*reg - range->range_min) % range->window_len;
1535 	win_page = (*reg - range->range_min) / range->window_len;
1536 
1537 	if (val_num > 1) {
1538 		/* Bulk write shouldn't cross range boundary */
1539 		if (*reg + val_num - 1 > range->range_max)
1540 			return -EINVAL;
1541 
1542 		/* ... or single page boundary */
1543 		if (val_num > range->window_len - win_offset)
1544 			return -EINVAL;
1545 	}
1546 
1547 	/* It is possible to have selector register inside data window.
1548 	   In that case, selector register is located on every page and
1549 	   it needs no page switching, when accessed alone. */
1550 	if (val_num > 1 ||
1551 	    range->window_start + win_offset != range->selector_reg) {
1552 		/* Use separate work_buf during page switching */
1553 		orig_work_buf = map->work_buf;
1554 		map->work_buf = map->selector_work_buf;
1555 
1556 		ret = _regmap_update_bits(map, range->selector_reg,
1557 					  range->selector_mask,
1558 					  win_page << range->selector_shift,
1559 					  &page_chg, false);
1560 
1561 		map->work_buf = orig_work_buf;
1562 
1563 		if (ret != 0)
1564 			return ret;
1565 	}
1566 
1567 	*reg = range->window_start + win_offset;
1568 
1569 	return 0;
1570 }
1571 
1572 static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1573 					  unsigned long mask)
1574 {
1575 	u8 *buf;
1576 	int i;
1577 
1578 	if (!mask || !map->work_buf)
1579 		return;
1580 
1581 	buf = map->work_buf;
1582 
1583 	for (i = 0; i < max_bytes; i++)
1584 		buf[i] |= (mask >> (8 * i)) & 0xff;
1585 }
1586 
1587 static unsigned int regmap_reg_addr(struct regmap *map, unsigned int reg)
1588 {
1589 	reg += map->reg_base;
1590 
1591 	if (map->format.reg_shift > 0)
1592 		reg >>= map->format.reg_shift;
1593 	else if (map->format.reg_shift < 0)
1594 		reg <<= -(map->format.reg_shift);
1595 
1596 	return reg;
1597 }
1598 
1599 static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg,
1600 				  const void *val, size_t val_len, bool noinc)
1601 {
1602 	struct regmap_range_node *range;
1603 	unsigned long flags;
1604 	void *work_val = map->work_buf + map->format.reg_bytes +
1605 		map->format.pad_bytes;
1606 	void *buf;
1607 	int ret = -ENOTSUPP;
1608 	size_t len;
1609 	int i;
1610 
1611 	/* Check for unwritable or noinc registers in range
1612 	 * before we start
1613 	 */
1614 	if (!regmap_writeable_noinc(map, reg)) {
1615 		for (i = 0; i < val_len / map->format.val_bytes; i++) {
1616 			unsigned int element =
1617 				reg + regmap_get_offset(map, i);
1618 			if (!regmap_writeable(map, element) ||
1619 				regmap_writeable_noinc(map, element))
1620 				return -EINVAL;
1621 		}
1622 	}
1623 
1624 	if (!map->cache_bypass && map->format.parse_val) {
1625 		unsigned int ival, offset;
1626 		int val_bytes = map->format.val_bytes;
1627 
1628 		/* Cache the last written value for noinc writes */
1629 		i = noinc ? val_len - val_bytes : 0;
1630 		for (; i < val_len; i += val_bytes) {
1631 			ival = map->format.parse_val(val + i);
1632 			offset = noinc ? 0 : regmap_get_offset(map, i / val_bytes);
1633 			ret = regcache_write(map, reg + offset, ival);
1634 			if (ret) {
1635 				dev_err(map->dev,
1636 					"Error in caching of register: %x ret: %d\n",
1637 					reg + offset, ret);
1638 				return ret;
1639 			}
1640 		}
1641 		if (map->cache_only) {
1642 			map->cache_dirty = true;
1643 			return 0;
1644 		}
1645 	}
1646 
1647 	range = _regmap_range_lookup(map, reg);
1648 	if (range) {
1649 		int val_num = val_len / map->format.val_bytes;
1650 		int win_offset = (reg - range->range_min) % range->window_len;
1651 		int win_residue = range->window_len - win_offset;
1652 
1653 		/* If the write goes beyond the end of the window split it */
1654 		while (val_num > win_residue) {
1655 			dev_dbg(map->dev, "Writing window %d/%zu\n",
1656 				win_residue, val_len / map->format.val_bytes);
1657 			ret = _regmap_raw_write_impl(map, reg, val,
1658 						     win_residue *
1659 						     map->format.val_bytes, noinc);
1660 			if (ret != 0)
1661 				return ret;
1662 
1663 			reg += win_residue;
1664 			val_num -= win_residue;
1665 			val += win_residue * map->format.val_bytes;
1666 			val_len -= win_residue * map->format.val_bytes;
1667 
1668 			win_offset = (reg - range->range_min) %
1669 				range->window_len;
1670 			win_residue = range->window_len - win_offset;
1671 		}
1672 
1673 		ret = _regmap_select_page(map, &reg, range, noinc ? 1 : val_num);
1674 		if (ret != 0)
1675 			return ret;
1676 	}
1677 
1678 	reg = regmap_reg_addr(map, reg);
1679 	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1680 	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1681 				      map->write_flag_mask);
1682 
1683 	/*
1684 	 * Essentially all I/O mechanisms will be faster with a single
1685 	 * buffer to write.  Since register syncs often generate raw
1686 	 * writes of single registers optimise that case.
1687 	 */
1688 	if (val != work_val && val_len == map->format.val_bytes) {
1689 		memcpy(work_val, val, map->format.val_bytes);
1690 		val = work_val;
1691 	}
1692 
1693 	if (map->async && map->bus && map->bus->async_write) {
1694 		struct regmap_async *async;
1695 
1696 		trace_regmap_async_write_start(map, reg, val_len);
1697 
1698 		spin_lock_irqsave(&map->async_lock, flags);
1699 		async = list_first_entry_or_null(&map->async_free,
1700 						 struct regmap_async,
1701 						 list);
1702 		if (async)
1703 			list_del(&async->list);
1704 		spin_unlock_irqrestore(&map->async_lock, flags);
1705 
1706 		if (!async) {
1707 			async = map->bus->async_alloc();
1708 			if (!async)
1709 				return -ENOMEM;
1710 
1711 			async->work_buf = kzalloc(map->format.buf_size,
1712 						  GFP_KERNEL | GFP_DMA);
1713 			if (!async->work_buf) {
1714 				kfree(async);
1715 				return -ENOMEM;
1716 			}
1717 		}
1718 
1719 		async->map = map;
1720 
1721 		/* If the caller supplied the value we can use it safely. */
1722 		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1723 		       map->format.reg_bytes + map->format.val_bytes);
1724 
1725 		spin_lock_irqsave(&map->async_lock, flags);
1726 		list_add_tail(&async->list, &map->async_list);
1727 		spin_unlock_irqrestore(&map->async_lock, flags);
1728 
1729 		if (val != work_val)
1730 			ret = map->bus->async_write(map->bus_context,
1731 						    async->work_buf,
1732 						    map->format.reg_bytes +
1733 						    map->format.pad_bytes,
1734 						    val, val_len, async);
1735 		else
1736 			ret = map->bus->async_write(map->bus_context,
1737 						    async->work_buf,
1738 						    map->format.reg_bytes +
1739 						    map->format.pad_bytes +
1740 						    val_len, NULL, 0, async);
1741 
1742 		if (ret != 0) {
1743 			dev_err(map->dev, "Failed to schedule write: %d\n",
1744 				ret);
1745 
1746 			spin_lock_irqsave(&map->async_lock, flags);
1747 			list_move(&async->list, &map->async_free);
1748 			spin_unlock_irqrestore(&map->async_lock, flags);
1749 		}
1750 
1751 		return ret;
1752 	}
1753 
1754 	trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1755 
1756 	/* If we're doing a single register write we can probably just
1757 	 * send the work_buf directly, otherwise try to do a gather
1758 	 * write.
1759 	 */
1760 	if (val == work_val)
1761 		ret = map->write(map->bus_context, map->work_buf,
1762 				 map->format.reg_bytes +
1763 				 map->format.pad_bytes +
1764 				 val_len);
1765 	else if (map->bus && map->bus->gather_write)
1766 		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1767 					     map->format.reg_bytes +
1768 					     map->format.pad_bytes,
1769 					     val, val_len);
1770 	else
1771 		ret = -ENOTSUPP;
1772 
1773 	/* If that didn't work fall back on linearising by hand. */
1774 	if (ret == -ENOTSUPP) {
1775 		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1776 		buf = kzalloc(len, GFP_KERNEL);
1777 		if (!buf)
1778 			return -ENOMEM;
1779 
1780 		memcpy(buf, map->work_buf, map->format.reg_bytes);
1781 		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1782 		       val, val_len);
1783 		ret = map->write(map->bus_context, buf, len);
1784 
1785 		kfree(buf);
1786 	} else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1787 		/* regcache_drop_region() takes lock that we already have,
1788 		 * thus call map->cache_ops->drop() directly
1789 		 */
1790 		if (map->cache_ops && map->cache_ops->drop)
1791 			map->cache_ops->drop(map, reg, reg + 1);
1792 	}
1793 
1794 	trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1795 
1796 	return ret;
1797 }
1798 
1799 /**
1800  * regmap_can_raw_write - Test if regmap_raw_write() is supported
1801  *
1802  * @map: Map to check.
1803  */
1804 bool regmap_can_raw_write(struct regmap *map)
1805 {
1806 	return map->write && map->format.format_val && map->format.format_reg;
1807 }
1808 EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1809 
1810 /**
1811  * regmap_get_raw_read_max - Get the maximum size we can read
1812  *
1813  * @map: Map to check.
1814  */
1815 size_t regmap_get_raw_read_max(struct regmap *map)
1816 {
1817 	return map->max_raw_read;
1818 }
1819 EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1820 
1821 /**
1822  * regmap_get_raw_write_max - Get the maximum size we can read
1823  *
1824  * @map: Map to check.
1825  */
1826 size_t regmap_get_raw_write_max(struct regmap *map)
1827 {
1828 	return map->max_raw_write;
1829 }
1830 EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1831 
1832 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1833 				       unsigned int val)
1834 {
1835 	int ret;
1836 	struct regmap_range_node *range;
1837 	struct regmap *map = context;
1838 
1839 	WARN_ON(!map->format.format_write);
1840 
1841 	range = _regmap_range_lookup(map, reg);
1842 	if (range) {
1843 		ret = _regmap_select_page(map, &reg, range, 1);
1844 		if (ret != 0)
1845 			return ret;
1846 	}
1847 
1848 	reg = regmap_reg_addr(map, reg);
1849 	map->format.format_write(map, reg, val);
1850 
1851 	trace_regmap_hw_write_start(map, reg, 1);
1852 
1853 	ret = map->write(map->bus_context, map->work_buf, map->format.buf_size);
1854 
1855 	trace_regmap_hw_write_done(map, reg, 1);
1856 
1857 	return ret;
1858 }
1859 
1860 static int _regmap_bus_reg_write(void *context, unsigned int reg,
1861 				 unsigned int val)
1862 {
1863 	struct regmap *map = context;
1864 	struct regmap_range_node *range;
1865 	int ret;
1866 
1867 	range = _regmap_range_lookup(map, reg);
1868 	if (range) {
1869 		ret = _regmap_select_page(map, &reg, range, 1);
1870 		if (ret != 0)
1871 			return ret;
1872 	}
1873 
1874 	reg = regmap_reg_addr(map, reg);
1875 	return map->bus->reg_write(map->bus_context, reg, val);
1876 }
1877 
1878 static int _regmap_bus_raw_write(void *context, unsigned int reg,
1879 				 unsigned int val)
1880 {
1881 	struct regmap *map = context;
1882 
1883 	WARN_ON(!map->format.format_val);
1884 
1885 	map->format.format_val(map->work_buf + map->format.reg_bytes
1886 			       + map->format.pad_bytes, val, 0);
1887 	return _regmap_raw_write_impl(map, reg,
1888 				      map->work_buf +
1889 				      map->format.reg_bytes +
1890 				      map->format.pad_bytes,
1891 				      map->format.val_bytes,
1892 				      false);
1893 }
1894 
1895 static inline void *_regmap_map_get_context(struct regmap *map)
1896 {
1897 	return (map->bus || (!map->bus && map->read)) ? map : map->bus_context;
1898 }
1899 
1900 int _regmap_write(struct regmap *map, unsigned int reg,
1901 		  unsigned int val)
1902 {
1903 	int ret;
1904 	void *context = _regmap_map_get_context(map);
1905 
1906 	if (!regmap_writeable(map, reg))
1907 		return -EIO;
1908 
1909 	if (!map->cache_bypass && !map->defer_caching) {
1910 		ret = regcache_write(map, reg, val);
1911 		if (ret != 0)
1912 			return ret;
1913 		if (map->cache_only) {
1914 			map->cache_dirty = true;
1915 			return 0;
1916 		}
1917 	}
1918 
1919 	ret = map->reg_write(context, reg, val);
1920 	if (ret == 0) {
1921 		if (regmap_should_log(map))
1922 			dev_info(map->dev, "%x <= %x\n", reg, val);
1923 
1924 		trace_regmap_reg_write(map, reg, val);
1925 	}
1926 
1927 	return ret;
1928 }
1929 
1930 /**
1931  * regmap_write() - Write a value to a single register
1932  *
1933  * @map: Register map to write to
1934  * @reg: Register to write to
1935  * @val: Value to be written
1936  *
1937  * A value of zero will be returned on success, a negative errno will
1938  * be returned in error cases.
1939  */
1940 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1941 {
1942 	int ret;
1943 
1944 	if (!IS_ALIGNED(reg, map->reg_stride))
1945 		return -EINVAL;
1946 
1947 	map->lock(map->lock_arg);
1948 
1949 	ret = _regmap_write(map, reg, val);
1950 
1951 	map->unlock(map->lock_arg);
1952 
1953 	return ret;
1954 }
1955 EXPORT_SYMBOL_GPL(regmap_write);
1956 
1957 /**
1958  * regmap_write_async() - Write a value to a single register asynchronously
1959  *
1960  * @map: Register map to write to
1961  * @reg: Register to write to
1962  * @val: Value to be written
1963  *
1964  * A value of zero will be returned on success, a negative errno will
1965  * be returned in error cases.
1966  */
1967 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1968 {
1969 	int ret;
1970 
1971 	if (!IS_ALIGNED(reg, map->reg_stride))
1972 		return -EINVAL;
1973 
1974 	map->lock(map->lock_arg);
1975 
1976 	map->async = true;
1977 
1978 	ret = _regmap_write(map, reg, val);
1979 
1980 	map->async = false;
1981 
1982 	map->unlock(map->lock_arg);
1983 
1984 	return ret;
1985 }
1986 EXPORT_SYMBOL_GPL(regmap_write_async);
1987 
1988 int _regmap_raw_write(struct regmap *map, unsigned int reg,
1989 		      const void *val, size_t val_len, bool noinc)
1990 {
1991 	size_t val_bytes = map->format.val_bytes;
1992 	size_t val_count = val_len / val_bytes;
1993 	size_t chunk_count, chunk_bytes;
1994 	size_t chunk_regs = val_count;
1995 	int ret, i;
1996 
1997 	if (!val_count)
1998 		return -EINVAL;
1999 
2000 	if (map->use_single_write)
2001 		chunk_regs = 1;
2002 	else if (map->max_raw_write && val_len > map->max_raw_write)
2003 		chunk_regs = map->max_raw_write / val_bytes;
2004 
2005 	chunk_count = val_count / chunk_regs;
2006 	chunk_bytes = chunk_regs * val_bytes;
2007 
2008 	/* Write as many bytes as possible with chunk_size */
2009 	for (i = 0; i < chunk_count; i++) {
2010 		ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes, noinc);
2011 		if (ret)
2012 			return ret;
2013 
2014 		reg += regmap_get_offset(map, chunk_regs);
2015 		val += chunk_bytes;
2016 		val_len -= chunk_bytes;
2017 	}
2018 
2019 	/* Write remaining bytes */
2020 	if (val_len)
2021 		ret = _regmap_raw_write_impl(map, reg, val, val_len, noinc);
2022 
2023 	return ret;
2024 }
2025 
2026 /**
2027  * regmap_raw_write() - Write raw values to one or more registers
2028  *
2029  * @map: Register map to write to
2030  * @reg: Initial register to write to
2031  * @val: Block of data to be written, laid out for direct transmission to the
2032  *       device
2033  * @val_len: Length of data pointed to by val.
2034  *
2035  * This function is intended to be used for things like firmware
2036  * download where a large block of data needs to be transferred to the
2037  * device.  No formatting will be done on the data provided.
2038  *
2039  * A value of zero will be returned on success, a negative errno will
2040  * be returned in error cases.
2041  */
2042 int regmap_raw_write(struct regmap *map, unsigned int reg,
2043 		     const void *val, size_t val_len)
2044 {
2045 	int ret;
2046 
2047 	if (!regmap_can_raw_write(map))
2048 		return -EINVAL;
2049 	if (val_len % map->format.val_bytes)
2050 		return -EINVAL;
2051 
2052 	map->lock(map->lock_arg);
2053 
2054 	ret = _regmap_raw_write(map, reg, val, val_len, false);
2055 
2056 	map->unlock(map->lock_arg);
2057 
2058 	return ret;
2059 }
2060 EXPORT_SYMBOL_GPL(regmap_raw_write);
2061 
2062 static int regmap_noinc_readwrite(struct regmap *map, unsigned int reg,
2063 				  void *val, unsigned int val_len, bool write)
2064 {
2065 	size_t val_bytes = map->format.val_bytes;
2066 	size_t val_count = val_len / val_bytes;
2067 	unsigned int lastval;
2068 	u8 *u8p;
2069 	u16 *u16p;
2070 	u32 *u32p;
2071 	int ret;
2072 	int i;
2073 
2074 	switch (val_bytes) {
2075 	case 1:
2076 		u8p = val;
2077 		if (write)
2078 			lastval = (unsigned int)u8p[val_count - 1];
2079 		break;
2080 	case 2:
2081 		u16p = val;
2082 		if (write)
2083 			lastval = (unsigned int)u16p[val_count - 1];
2084 		break;
2085 	case 4:
2086 		u32p = val;
2087 		if (write)
2088 			lastval = (unsigned int)u32p[val_count - 1];
2089 		break;
2090 	default:
2091 		return -EINVAL;
2092 	}
2093 
2094 	/*
2095 	 * Update the cache with the last value we write, the rest is just
2096 	 * gone down in the hardware FIFO. We can't cache FIFOs. This makes
2097 	 * sure a single read from the cache will work.
2098 	 */
2099 	if (write) {
2100 		if (!map->cache_bypass && !map->defer_caching) {
2101 			ret = regcache_write(map, reg, lastval);
2102 			if (ret != 0)
2103 				return ret;
2104 			if (map->cache_only) {
2105 				map->cache_dirty = true;
2106 				return 0;
2107 			}
2108 		}
2109 		ret = map->bus->reg_noinc_write(map->bus_context, reg, val, val_count);
2110 	} else {
2111 		ret = map->bus->reg_noinc_read(map->bus_context, reg, val, val_count);
2112 	}
2113 
2114 	if (!ret && regmap_should_log(map)) {
2115 		dev_info(map->dev, "%x %s [", reg, write ? "<=" : "=>");
2116 		for (i = 0; i < val_count; i++) {
2117 			switch (val_bytes) {
2118 			case 1:
2119 				pr_cont("%x", u8p[i]);
2120 				break;
2121 			case 2:
2122 				pr_cont("%x", u16p[i]);
2123 				break;
2124 			case 4:
2125 				pr_cont("%x", u32p[i]);
2126 				break;
2127 			default:
2128 				break;
2129 			}
2130 			if (i == (val_count - 1))
2131 				pr_cont("]\n");
2132 			else
2133 				pr_cont(",");
2134 		}
2135 	}
2136 
2137 	return 0;
2138 }
2139 
2140 /**
2141  * regmap_noinc_write(): Write data to a register without incrementing the
2142  *			register number
2143  *
2144  * @map: Register map to write to
2145  * @reg: Register to write to
2146  * @val: Pointer to data buffer
2147  * @val_len: Length of output buffer in bytes.
2148  *
2149  * The regmap API usually assumes that bulk bus write operations will write a
2150  * range of registers. Some devices have certain registers for which a write
2151  * operation can write to an internal FIFO.
2152  *
2153  * The target register must be volatile but registers after it can be
2154  * completely unrelated cacheable registers.
2155  *
2156  * This will attempt multiple writes as required to write val_len bytes.
2157  *
2158  * A value of zero will be returned on success, a negative errno will be
2159  * returned in error cases.
2160  */
2161 int regmap_noinc_write(struct regmap *map, unsigned int reg,
2162 		      const void *val, size_t val_len)
2163 {
2164 	size_t write_len;
2165 	int ret;
2166 
2167 	if (!map->write && !(map->bus && map->bus->reg_noinc_write))
2168 		return -EINVAL;
2169 	if (val_len % map->format.val_bytes)
2170 		return -EINVAL;
2171 	if (!IS_ALIGNED(reg, map->reg_stride))
2172 		return -EINVAL;
2173 	if (val_len == 0)
2174 		return -EINVAL;
2175 
2176 	map->lock(map->lock_arg);
2177 
2178 	if (!regmap_volatile(map, reg) || !regmap_writeable_noinc(map, reg)) {
2179 		ret = -EINVAL;
2180 		goto out_unlock;
2181 	}
2182 
2183 	/*
2184 	 * Use the accelerated operation if we can. The val drops the const
2185 	 * typing in order to facilitate code reuse in regmap_noinc_readwrite().
2186 	 */
2187 	if (map->bus->reg_noinc_write) {
2188 		ret = regmap_noinc_readwrite(map, reg, (void *)val, val_len, true);
2189 		goto out_unlock;
2190 	}
2191 
2192 	while (val_len) {
2193 		if (map->max_raw_write && map->max_raw_write < val_len)
2194 			write_len = map->max_raw_write;
2195 		else
2196 			write_len = val_len;
2197 		ret = _regmap_raw_write(map, reg, val, write_len, true);
2198 		if (ret)
2199 			goto out_unlock;
2200 		val = ((u8 *)val) + write_len;
2201 		val_len -= write_len;
2202 	}
2203 
2204 out_unlock:
2205 	map->unlock(map->lock_arg);
2206 	return ret;
2207 }
2208 EXPORT_SYMBOL_GPL(regmap_noinc_write);
2209 
2210 /**
2211  * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
2212  *                                   register field.
2213  *
2214  * @field: Register field to write to
2215  * @mask: Bitmask to change
2216  * @val: Value to be written
2217  * @change: Boolean indicating if a write was done
2218  * @async: Boolean indicating asynchronously
2219  * @force: Boolean indicating use force update
2220  *
2221  * Perform a read/modify/write cycle on the register field with change,
2222  * async, force option.
2223  *
2224  * A value of zero will be returned on success, a negative errno will
2225  * be returned in error cases.
2226  */
2227 int regmap_field_update_bits_base(struct regmap_field *field,
2228 				  unsigned int mask, unsigned int val,
2229 				  bool *change, bool async, bool force)
2230 {
2231 	mask = (mask << field->shift) & field->mask;
2232 
2233 	return regmap_update_bits_base(field->regmap, field->reg,
2234 				       mask, val << field->shift,
2235 				       change, async, force);
2236 }
2237 EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
2238 
2239 /**
2240  * regmap_field_test_bits() - Check if all specified bits are set in a
2241  *                            register field.
2242  *
2243  * @field: Register field to operate on
2244  * @bits: Bits to test
2245  *
2246  * Returns -1 if the underlying regmap_field_read() fails, 0 if at least one of the
2247  * tested bits is not set and 1 if all tested bits are set.
2248  */
2249 int regmap_field_test_bits(struct regmap_field *field, unsigned int bits)
2250 {
2251 	unsigned int val, ret;
2252 
2253 	ret = regmap_field_read(field, &val);
2254 	if (ret)
2255 		return ret;
2256 
2257 	return (val & bits) == bits;
2258 }
2259 EXPORT_SYMBOL_GPL(regmap_field_test_bits);
2260 
2261 /**
2262  * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
2263  *                                    register field with port ID
2264  *
2265  * @field: Register field to write to
2266  * @id: port ID
2267  * @mask: Bitmask to change
2268  * @val: Value to be written
2269  * @change: Boolean indicating if a write was done
2270  * @async: Boolean indicating asynchronously
2271  * @force: Boolean indicating use force update
2272  *
2273  * A value of zero will be returned on success, a negative errno will
2274  * be returned in error cases.
2275  */
2276 int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id,
2277 				   unsigned int mask, unsigned int val,
2278 				   bool *change, bool async, bool force)
2279 {
2280 	if (id >= field->id_size)
2281 		return -EINVAL;
2282 
2283 	mask = (mask << field->shift) & field->mask;
2284 
2285 	return regmap_update_bits_base(field->regmap,
2286 				       field->reg + (field->id_offset * id),
2287 				       mask, val << field->shift,
2288 				       change, async, force);
2289 }
2290 EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
2291 
2292 /**
2293  * regmap_bulk_write() - Write multiple registers to the device
2294  *
2295  * @map: Register map to write to
2296  * @reg: First register to be write from
2297  * @val: Block of data to be written, in native register size for device
2298  * @val_count: Number of registers to write
2299  *
2300  * This function is intended to be used for writing a large block of
2301  * data to the device either in single transfer or multiple transfer.
2302  *
2303  * A value of zero will be returned on success, a negative errno will
2304  * be returned in error cases.
2305  */
2306 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
2307 		     size_t val_count)
2308 {
2309 	int ret = 0, i;
2310 	size_t val_bytes = map->format.val_bytes;
2311 
2312 	if (!IS_ALIGNED(reg, map->reg_stride))
2313 		return -EINVAL;
2314 
2315 	/*
2316 	 * Some devices don't support bulk write, for them we have a series of
2317 	 * single write operations.
2318 	 */
2319 	if (!map->write || !map->format.parse_inplace) {
2320 		map->lock(map->lock_arg);
2321 		for (i = 0; i < val_count; i++) {
2322 			unsigned int ival;
2323 
2324 			switch (val_bytes) {
2325 			case 1:
2326 				ival = *(u8 *)(val + (i * val_bytes));
2327 				break;
2328 			case 2:
2329 				ival = *(u16 *)(val + (i * val_bytes));
2330 				break;
2331 			case 4:
2332 				ival = *(u32 *)(val + (i * val_bytes));
2333 				break;
2334 			default:
2335 				ret = -EINVAL;
2336 				goto out;
2337 			}
2338 
2339 			ret = _regmap_write(map,
2340 					    reg + regmap_get_offset(map, i),
2341 					    ival);
2342 			if (ret != 0)
2343 				goto out;
2344 		}
2345 out:
2346 		map->unlock(map->lock_arg);
2347 	} else {
2348 		void *wval;
2349 
2350 		wval = kmemdup_array(val, val_count, val_bytes, map->alloc_flags);
2351 		if (!wval)
2352 			return -ENOMEM;
2353 
2354 		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2355 			map->format.parse_inplace(wval + i);
2356 
2357 		ret = regmap_raw_write(map, reg, wval, val_bytes * val_count);
2358 
2359 		kfree(wval);
2360 	}
2361 
2362 	if (!ret)
2363 		trace_regmap_bulk_write(map, reg, val, val_bytes * val_count);
2364 
2365 	return ret;
2366 }
2367 EXPORT_SYMBOL_GPL(regmap_bulk_write);
2368 
2369 /*
2370  * _regmap_raw_multi_reg_write()
2371  *
2372  * the (register,newvalue) pairs in regs have not been formatted, but
2373  * they are all in the same page and have been changed to being page
2374  * relative. The page register has been written if that was necessary.
2375  */
2376 static int _regmap_raw_multi_reg_write(struct regmap *map,
2377 				       const struct reg_sequence *regs,
2378 				       size_t num_regs)
2379 {
2380 	int ret;
2381 	void *buf;
2382 	int i;
2383 	u8 *u8;
2384 	size_t val_bytes = map->format.val_bytes;
2385 	size_t reg_bytes = map->format.reg_bytes;
2386 	size_t pad_bytes = map->format.pad_bytes;
2387 	size_t pair_size = reg_bytes + pad_bytes + val_bytes;
2388 	size_t len = pair_size * num_regs;
2389 
2390 	if (!len)
2391 		return -EINVAL;
2392 
2393 	buf = kzalloc(len, GFP_KERNEL);
2394 	if (!buf)
2395 		return -ENOMEM;
2396 
2397 	/* We have to linearise by hand. */
2398 
2399 	u8 = buf;
2400 
2401 	for (i = 0; i < num_regs; i++) {
2402 		unsigned int reg = regs[i].reg;
2403 		unsigned int val = regs[i].def;
2404 		trace_regmap_hw_write_start(map, reg, 1);
2405 		reg = regmap_reg_addr(map, reg);
2406 		map->format.format_reg(u8, reg, map->reg_shift);
2407 		u8 += reg_bytes + pad_bytes;
2408 		map->format.format_val(u8, val, 0);
2409 		u8 += val_bytes;
2410 	}
2411 	u8 = buf;
2412 	*u8 |= map->write_flag_mask;
2413 
2414 	ret = map->write(map->bus_context, buf, len);
2415 
2416 	kfree(buf);
2417 
2418 	for (i = 0; i < num_regs; i++) {
2419 		int reg = regs[i].reg;
2420 		trace_regmap_hw_write_done(map, reg, 1);
2421 	}
2422 	return ret;
2423 }
2424 
2425 static unsigned int _regmap_register_page(struct regmap *map,
2426 					  unsigned int reg,
2427 					  struct regmap_range_node *range)
2428 {
2429 	unsigned int win_page = (reg - range->range_min) / range->window_len;
2430 
2431 	return win_page;
2432 }
2433 
2434 static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2435 					       struct reg_sequence *regs,
2436 					       size_t num_regs)
2437 {
2438 	int ret;
2439 	int i, n;
2440 	struct reg_sequence *base;
2441 	unsigned int this_page = 0;
2442 	unsigned int page_change = 0;
2443 	/*
2444 	 * the set of registers are not neccessarily in order, but
2445 	 * since the order of write must be preserved this algorithm
2446 	 * chops the set each time the page changes. This also applies
2447 	 * if there is a delay required at any point in the sequence.
2448 	 */
2449 	base = regs;
2450 	for (i = 0, n = 0; i < num_regs; i++, n++) {
2451 		unsigned int reg = regs[i].reg;
2452 		struct regmap_range_node *range;
2453 
2454 		range = _regmap_range_lookup(map, reg);
2455 		if (range) {
2456 			unsigned int win_page = _regmap_register_page(map, reg,
2457 								      range);
2458 
2459 			if (i == 0)
2460 				this_page = win_page;
2461 			if (win_page != this_page) {
2462 				this_page = win_page;
2463 				page_change = 1;
2464 			}
2465 		}
2466 
2467 		/* If we have both a page change and a delay make sure to
2468 		 * write the regs and apply the delay before we change the
2469 		 * page.
2470 		 */
2471 
2472 		if (page_change || regs[i].delay_us) {
2473 
2474 				/* For situations where the first write requires
2475 				 * a delay we need to make sure we don't call
2476 				 * raw_multi_reg_write with n=0
2477 				 * This can't occur with page breaks as we
2478 				 * never write on the first iteration
2479 				 */
2480 				if (regs[i].delay_us && i == 0)
2481 					n = 1;
2482 
2483 				ret = _regmap_raw_multi_reg_write(map, base, n);
2484 				if (ret != 0)
2485 					return ret;
2486 
2487 				if (regs[i].delay_us) {
2488 					if (map->can_sleep)
2489 						fsleep(regs[i].delay_us);
2490 					else
2491 						udelay(regs[i].delay_us);
2492 				}
2493 
2494 				base += n;
2495 				n = 0;
2496 
2497 				if (page_change) {
2498 					ret = _regmap_select_page(map,
2499 								  &base[n].reg,
2500 								  range, 1);
2501 					if (ret != 0)
2502 						return ret;
2503 
2504 					page_change = 0;
2505 				}
2506 
2507 		}
2508 
2509 	}
2510 	if (n > 0)
2511 		return _regmap_raw_multi_reg_write(map, base, n);
2512 	return 0;
2513 }
2514 
2515 static int _regmap_multi_reg_write(struct regmap *map,
2516 				   const struct reg_sequence *regs,
2517 				   size_t num_regs)
2518 {
2519 	int i;
2520 	int ret;
2521 
2522 	if (!map->can_multi_write) {
2523 		for (i = 0; i < num_regs; i++) {
2524 			ret = _regmap_write(map, regs[i].reg, regs[i].def);
2525 			if (ret != 0)
2526 				return ret;
2527 
2528 			if (regs[i].delay_us) {
2529 				if (map->can_sleep)
2530 					fsleep(regs[i].delay_us);
2531 				else
2532 					udelay(regs[i].delay_us);
2533 			}
2534 		}
2535 		return 0;
2536 	}
2537 
2538 	if (!map->format.parse_inplace)
2539 		return -EINVAL;
2540 
2541 	if (map->writeable_reg)
2542 		for (i = 0; i < num_regs; i++) {
2543 			int reg = regs[i].reg;
2544 			if (!map->writeable_reg(map->dev, reg))
2545 				return -EINVAL;
2546 			if (!IS_ALIGNED(reg, map->reg_stride))
2547 				return -EINVAL;
2548 		}
2549 
2550 	if (!map->cache_bypass) {
2551 		for (i = 0; i < num_regs; i++) {
2552 			unsigned int val = regs[i].def;
2553 			unsigned int reg = regs[i].reg;
2554 			ret = regcache_write(map, reg, val);
2555 			if (ret) {
2556 				dev_err(map->dev,
2557 				"Error in caching of register: %x ret: %d\n",
2558 								reg, ret);
2559 				return ret;
2560 			}
2561 		}
2562 		if (map->cache_only) {
2563 			map->cache_dirty = true;
2564 			return 0;
2565 		}
2566 	}
2567 
2568 	WARN_ON(!map->bus);
2569 
2570 	for (i = 0; i < num_regs; i++) {
2571 		unsigned int reg = regs[i].reg;
2572 		struct regmap_range_node *range;
2573 
2574 		/* Coalesce all the writes between a page break or a delay
2575 		 * in a sequence
2576 		 */
2577 		range = _regmap_range_lookup(map, reg);
2578 		if (range || regs[i].delay_us) {
2579 			size_t len = sizeof(struct reg_sequence)*num_regs;
2580 			struct reg_sequence *base = kmemdup(regs, len,
2581 							   GFP_KERNEL);
2582 			if (!base)
2583 				return -ENOMEM;
2584 			ret = _regmap_range_multi_paged_reg_write(map, base,
2585 								  num_regs);
2586 			kfree(base);
2587 
2588 			return ret;
2589 		}
2590 	}
2591 	return _regmap_raw_multi_reg_write(map, regs, num_regs);
2592 }
2593 
2594 /**
2595  * regmap_multi_reg_write() - Write multiple registers to the device
2596  *
2597  * @map: Register map to write to
2598  * @regs: Array of structures containing register,value to be written
2599  * @num_regs: Number of registers to write
2600  *
2601  * Write multiple registers to the device where the set of register, value
2602  * pairs are supplied in any order, possibly not all in a single range.
2603  *
2604  * The 'normal' block write mode will send ultimately send data on the
2605  * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2606  * addressed. However, this alternative block multi write mode will send
2607  * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2608  * must of course support the mode.
2609  *
2610  * A value of zero will be returned on success, a negative errno will be
2611  * returned in error cases.
2612  */
2613 int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2614 			   int num_regs)
2615 {
2616 	int ret;
2617 
2618 	map->lock(map->lock_arg);
2619 
2620 	ret = _regmap_multi_reg_write(map, regs, num_regs);
2621 
2622 	map->unlock(map->lock_arg);
2623 
2624 	return ret;
2625 }
2626 EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2627 
2628 /**
2629  * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2630  *                                     device but not the cache
2631  *
2632  * @map: Register map to write to
2633  * @regs: Array of structures containing register,value to be written
2634  * @num_regs: Number of registers to write
2635  *
2636  * Write multiple registers to the device but not the cache where the set
2637  * of register are supplied in any order.
2638  *
2639  * This function is intended to be used for writing a large block of data
2640  * atomically to the device in single transfer for those I2C client devices
2641  * that implement this alternative block write mode.
2642  *
2643  * A value of zero will be returned on success, a negative errno will
2644  * be returned in error cases.
2645  */
2646 int regmap_multi_reg_write_bypassed(struct regmap *map,
2647 				    const struct reg_sequence *regs,
2648 				    int num_regs)
2649 {
2650 	int ret;
2651 	bool bypass;
2652 
2653 	map->lock(map->lock_arg);
2654 
2655 	bypass = map->cache_bypass;
2656 	map->cache_bypass = true;
2657 
2658 	ret = _regmap_multi_reg_write(map, regs, num_regs);
2659 
2660 	map->cache_bypass = bypass;
2661 
2662 	map->unlock(map->lock_arg);
2663 
2664 	return ret;
2665 }
2666 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2667 
2668 /**
2669  * regmap_raw_write_async() - Write raw values to one or more registers
2670  *                            asynchronously
2671  *
2672  * @map: Register map to write to
2673  * @reg: Initial register to write to
2674  * @val: Block of data to be written, laid out for direct transmission to the
2675  *       device.  Must be valid until regmap_async_complete() is called.
2676  * @val_len: Length of data pointed to by val.
2677  *
2678  * This function is intended to be used for things like firmware
2679  * download where a large block of data needs to be transferred to the
2680  * device.  No formatting will be done on the data provided.
2681  *
2682  * If supported by the underlying bus the write will be scheduled
2683  * asynchronously, helping maximise I/O speed on higher speed buses
2684  * like SPI.  regmap_async_complete() can be called to ensure that all
2685  * asynchrnous writes have been completed.
2686  *
2687  * A value of zero will be returned on success, a negative errno will
2688  * be returned in error cases.
2689  */
2690 int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2691 			   const void *val, size_t val_len)
2692 {
2693 	int ret;
2694 
2695 	if (val_len % map->format.val_bytes)
2696 		return -EINVAL;
2697 	if (!IS_ALIGNED(reg, map->reg_stride))
2698 		return -EINVAL;
2699 
2700 	map->lock(map->lock_arg);
2701 
2702 	map->async = true;
2703 
2704 	ret = _regmap_raw_write(map, reg, val, val_len, false);
2705 
2706 	map->async = false;
2707 
2708 	map->unlock(map->lock_arg);
2709 
2710 	return ret;
2711 }
2712 EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2713 
2714 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2715 			    unsigned int val_len, bool noinc)
2716 {
2717 	struct regmap_range_node *range;
2718 	int ret;
2719 
2720 	if (!map->read)
2721 		return -EINVAL;
2722 
2723 	range = _regmap_range_lookup(map, reg);
2724 	if (range) {
2725 		ret = _regmap_select_page(map, &reg, range,
2726 					  noinc ? 1 : val_len / map->format.val_bytes);
2727 		if (ret != 0)
2728 			return ret;
2729 	}
2730 
2731 	reg = regmap_reg_addr(map, reg);
2732 	map->format.format_reg(map->work_buf, reg, map->reg_shift);
2733 	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2734 				      map->read_flag_mask);
2735 	trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2736 
2737 	ret = map->read(map->bus_context, map->work_buf,
2738 			map->format.reg_bytes + map->format.pad_bytes,
2739 			val, val_len);
2740 
2741 	trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2742 
2743 	return ret;
2744 }
2745 
2746 static int _regmap_bus_reg_read(void *context, unsigned int reg,
2747 				unsigned int *val)
2748 {
2749 	struct regmap *map = context;
2750 	struct regmap_range_node *range;
2751 	int ret;
2752 
2753 	range = _regmap_range_lookup(map, reg);
2754 	if (range) {
2755 		ret = _regmap_select_page(map, &reg, range, 1);
2756 		if (ret != 0)
2757 			return ret;
2758 	}
2759 
2760 	reg = regmap_reg_addr(map, reg);
2761 	return map->bus->reg_read(map->bus_context, reg, val);
2762 }
2763 
2764 static int _regmap_bus_read(void *context, unsigned int reg,
2765 			    unsigned int *val)
2766 {
2767 	int ret;
2768 	struct regmap *map = context;
2769 	void *work_val = map->work_buf + map->format.reg_bytes +
2770 		map->format.pad_bytes;
2771 
2772 	if (!map->format.parse_val)
2773 		return -EINVAL;
2774 
2775 	ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes, false);
2776 	if (ret == 0)
2777 		*val = map->format.parse_val(work_val);
2778 
2779 	return ret;
2780 }
2781 
2782 static int _regmap_read(struct regmap *map, unsigned int reg,
2783 			unsigned int *val)
2784 {
2785 	int ret;
2786 	void *context = _regmap_map_get_context(map);
2787 
2788 	if (!map->cache_bypass) {
2789 		ret = regcache_read(map, reg, val);
2790 		if (ret == 0)
2791 			return 0;
2792 	}
2793 
2794 	if (map->cache_only)
2795 		return -EBUSY;
2796 
2797 	if (!regmap_readable(map, reg))
2798 		return -EIO;
2799 
2800 	ret = map->reg_read(context, reg, val);
2801 	if (ret == 0) {
2802 		if (regmap_should_log(map))
2803 			dev_info(map->dev, "%x => %x\n", reg, *val);
2804 
2805 		trace_regmap_reg_read(map, reg, *val);
2806 
2807 		if (!map->cache_bypass)
2808 			regcache_write(map, reg, *val);
2809 	}
2810 
2811 	return ret;
2812 }
2813 
2814 /**
2815  * regmap_read() - Read a value from a single register
2816  *
2817  * @map: Register map to read from
2818  * @reg: Register to be read from
2819  * @val: Pointer to store read value
2820  *
2821  * A value of zero will be returned on success, a negative errno will
2822  * be returned in error cases.
2823  */
2824 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2825 {
2826 	int ret;
2827 
2828 	if (!IS_ALIGNED(reg, map->reg_stride))
2829 		return -EINVAL;
2830 
2831 	map->lock(map->lock_arg);
2832 
2833 	ret = _regmap_read(map, reg, val);
2834 
2835 	map->unlock(map->lock_arg);
2836 
2837 	return ret;
2838 }
2839 EXPORT_SYMBOL_GPL(regmap_read);
2840 
2841 /**
2842  * regmap_read_bypassed() - Read a value from a single register direct
2843  *			    from the device, bypassing the cache
2844  *
2845  * @map: Register map to read from
2846  * @reg: Register to be read from
2847  * @val: Pointer to store read value
2848  *
2849  * A value of zero will be returned on success, a negative errno will
2850  * be returned in error cases.
2851  */
2852 int regmap_read_bypassed(struct regmap *map, unsigned int reg, unsigned int *val)
2853 {
2854 	int ret;
2855 	bool bypass, cache_only;
2856 
2857 	if (!IS_ALIGNED(reg, map->reg_stride))
2858 		return -EINVAL;
2859 
2860 	map->lock(map->lock_arg);
2861 
2862 	bypass = map->cache_bypass;
2863 	cache_only = map->cache_only;
2864 	map->cache_bypass = true;
2865 	map->cache_only = false;
2866 
2867 	ret = _regmap_read(map, reg, val);
2868 
2869 	map->cache_bypass = bypass;
2870 	map->cache_only = cache_only;
2871 
2872 	map->unlock(map->lock_arg);
2873 
2874 	return ret;
2875 }
2876 EXPORT_SYMBOL_GPL(regmap_read_bypassed);
2877 
2878 /**
2879  * regmap_raw_read() - Read raw data from the device
2880  *
2881  * @map: Register map to read from
2882  * @reg: First register to be read from
2883  * @val: Pointer to store read value
2884  * @val_len: Size of data to read
2885  *
2886  * A value of zero will be returned on success, a negative errno will
2887  * be returned in error cases.
2888  */
2889 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2890 		    size_t val_len)
2891 {
2892 	size_t val_bytes = map->format.val_bytes;
2893 	size_t val_count = val_len / val_bytes;
2894 	unsigned int v;
2895 	int ret, i;
2896 
2897 	if (val_len % map->format.val_bytes)
2898 		return -EINVAL;
2899 	if (!IS_ALIGNED(reg, map->reg_stride))
2900 		return -EINVAL;
2901 	if (val_count == 0)
2902 		return -EINVAL;
2903 
2904 	map->lock(map->lock_arg);
2905 
2906 	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2907 	    map->cache_type == REGCACHE_NONE) {
2908 		size_t chunk_count, chunk_bytes;
2909 		size_t chunk_regs = val_count;
2910 
2911 		if (!map->cache_bypass && map->cache_only) {
2912 			ret = -EBUSY;
2913 			goto out;
2914 		}
2915 
2916 		if (!map->read) {
2917 			ret = -ENOTSUPP;
2918 			goto out;
2919 		}
2920 
2921 		if (map->use_single_read)
2922 			chunk_regs = 1;
2923 		else if (map->max_raw_read && val_len > map->max_raw_read)
2924 			chunk_regs = map->max_raw_read / val_bytes;
2925 
2926 		chunk_count = val_count / chunk_regs;
2927 		chunk_bytes = chunk_regs * val_bytes;
2928 
2929 		/* Read bytes that fit into whole chunks */
2930 		for (i = 0; i < chunk_count; i++) {
2931 			ret = _regmap_raw_read(map, reg, val, chunk_bytes, false);
2932 			if (ret != 0)
2933 				goto out;
2934 
2935 			reg += regmap_get_offset(map, chunk_regs);
2936 			val += chunk_bytes;
2937 			val_len -= chunk_bytes;
2938 		}
2939 
2940 		/* Read remaining bytes */
2941 		if (val_len) {
2942 			ret = _regmap_raw_read(map, reg, val, val_len, false);
2943 			if (ret != 0)
2944 				goto out;
2945 		}
2946 	} else {
2947 		/* Otherwise go word by word for the cache; should be low
2948 		 * cost as we expect to hit the cache.
2949 		 */
2950 		for (i = 0; i < val_count; i++) {
2951 			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2952 					   &v);
2953 			if (ret != 0)
2954 				goto out;
2955 
2956 			map->format.format_val(val + (i * val_bytes), v, 0);
2957 		}
2958 	}
2959 
2960  out:
2961 	map->unlock(map->lock_arg);
2962 
2963 	return ret;
2964 }
2965 EXPORT_SYMBOL_GPL(regmap_raw_read);
2966 
2967 /**
2968  * regmap_noinc_read(): Read data from a register without incrementing the
2969  *			register number
2970  *
2971  * @map: Register map to read from
2972  * @reg: Register to read from
2973  * @val: Pointer to data buffer
2974  * @val_len: Length of output buffer in bytes.
2975  *
2976  * The regmap API usually assumes that bulk read operations will read a
2977  * range of registers. Some devices have certain registers for which a read
2978  * operation read will read from an internal FIFO.
2979  *
2980  * The target register must be volatile but registers after it can be
2981  * completely unrelated cacheable registers.
2982  *
2983  * This will attempt multiple reads as required to read val_len bytes.
2984  *
2985  * A value of zero will be returned on success, a negative errno will be
2986  * returned in error cases.
2987  */
2988 int regmap_noinc_read(struct regmap *map, unsigned int reg,
2989 		      void *val, size_t val_len)
2990 {
2991 	size_t read_len;
2992 	int ret;
2993 
2994 	if (!map->read)
2995 		return -ENOTSUPP;
2996 
2997 	if (val_len % map->format.val_bytes)
2998 		return -EINVAL;
2999 	if (!IS_ALIGNED(reg, map->reg_stride))
3000 		return -EINVAL;
3001 	if (val_len == 0)
3002 		return -EINVAL;
3003 
3004 	map->lock(map->lock_arg);
3005 
3006 	if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) {
3007 		ret = -EINVAL;
3008 		goto out_unlock;
3009 	}
3010 
3011 	/*
3012 	 * We have not defined the FIFO semantics for cache, as the
3013 	 * cache is just one value deep. Should we return the last
3014 	 * written value? Just avoid this by always reading the FIFO
3015 	 * even when using cache. Cache only will not work.
3016 	 */
3017 	if (!map->cache_bypass && map->cache_only) {
3018 		ret = -EBUSY;
3019 		goto out_unlock;
3020 	}
3021 
3022 	/* Use the accelerated operation if we can */
3023 	if (map->bus->reg_noinc_read) {
3024 		ret = regmap_noinc_readwrite(map, reg, val, val_len, false);
3025 		goto out_unlock;
3026 	}
3027 
3028 	while (val_len) {
3029 		if (map->max_raw_read && map->max_raw_read < val_len)
3030 			read_len = map->max_raw_read;
3031 		else
3032 			read_len = val_len;
3033 		ret = _regmap_raw_read(map, reg, val, read_len, true);
3034 		if (ret)
3035 			goto out_unlock;
3036 		val = ((u8 *)val) + read_len;
3037 		val_len -= read_len;
3038 	}
3039 
3040 out_unlock:
3041 	map->unlock(map->lock_arg);
3042 	return ret;
3043 }
3044 EXPORT_SYMBOL_GPL(regmap_noinc_read);
3045 
3046 /**
3047  * regmap_field_read(): Read a value to a single register field
3048  *
3049  * @field: Register field to read from
3050  * @val: Pointer to store read value
3051  *
3052  * A value of zero will be returned on success, a negative errno will
3053  * be returned in error cases.
3054  */
3055 int regmap_field_read(struct regmap_field *field, unsigned int *val)
3056 {
3057 	int ret;
3058 	unsigned int reg_val;
3059 	ret = regmap_read(field->regmap, field->reg, &reg_val);
3060 	if (ret != 0)
3061 		return ret;
3062 
3063 	reg_val &= field->mask;
3064 	reg_val >>= field->shift;
3065 	*val = reg_val;
3066 
3067 	return ret;
3068 }
3069 EXPORT_SYMBOL_GPL(regmap_field_read);
3070 
3071 /**
3072  * regmap_fields_read() - Read a value to a single register field with port ID
3073  *
3074  * @field: Register field to read from
3075  * @id: port ID
3076  * @val: Pointer to store read value
3077  *
3078  * A value of zero will be returned on success, a negative errno will
3079  * be returned in error cases.
3080  */
3081 int regmap_fields_read(struct regmap_field *field, unsigned int id,
3082 		       unsigned int *val)
3083 {
3084 	int ret;
3085 	unsigned int reg_val;
3086 
3087 	if (id >= field->id_size)
3088 		return -EINVAL;
3089 
3090 	ret = regmap_read(field->regmap,
3091 			  field->reg + (field->id_offset * id),
3092 			  &reg_val);
3093 	if (ret != 0)
3094 		return ret;
3095 
3096 	reg_val &= field->mask;
3097 	reg_val >>= field->shift;
3098 	*val = reg_val;
3099 
3100 	return ret;
3101 }
3102 EXPORT_SYMBOL_GPL(regmap_fields_read);
3103 
3104 static int _regmap_bulk_read(struct regmap *map, unsigned int reg,
3105 			     unsigned int *regs, void *val, size_t val_count)
3106 {
3107 	u32 *u32 = val;
3108 	u16 *u16 = val;
3109 	u8 *u8 = val;
3110 	int ret, i;
3111 
3112 	map->lock(map->lock_arg);
3113 
3114 	for (i = 0; i < val_count; i++) {
3115 		unsigned int ival;
3116 
3117 		if (regs) {
3118 			if (!IS_ALIGNED(regs[i], map->reg_stride)) {
3119 				ret = -EINVAL;
3120 				goto out;
3121 			}
3122 			ret = _regmap_read(map, regs[i], &ival);
3123 		} else {
3124 			ret = _regmap_read(map, reg + regmap_get_offset(map, i), &ival);
3125 		}
3126 		if (ret != 0)
3127 			goto out;
3128 
3129 		switch (map->format.val_bytes) {
3130 		case 4:
3131 			u32[i] = ival;
3132 			break;
3133 		case 2:
3134 			u16[i] = ival;
3135 			break;
3136 		case 1:
3137 			u8[i] = ival;
3138 			break;
3139 		default:
3140 			ret = -EINVAL;
3141 			goto out;
3142 		}
3143 	}
3144 out:
3145 	map->unlock(map->lock_arg);
3146 	return ret;
3147 }
3148 
3149 /**
3150  * regmap_bulk_read() - Read multiple sequential registers from the device
3151  *
3152  * @map: Register map to read from
3153  * @reg: First register to be read from
3154  * @val: Pointer to store read value, in native register size for device
3155  * @val_count: Number of registers to read
3156  *
3157  * A value of zero will be returned on success, a negative errno will
3158  * be returned in error cases.
3159  */
3160 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
3161 		     size_t val_count)
3162 {
3163 	int ret, i;
3164 	size_t val_bytes = map->format.val_bytes;
3165 	bool vol = regmap_volatile_range(map, reg, val_count);
3166 
3167 	if (!IS_ALIGNED(reg, map->reg_stride))
3168 		return -EINVAL;
3169 	if (val_count == 0)
3170 		return -EINVAL;
3171 
3172 	if (map->read && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
3173 		ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
3174 		if (ret != 0)
3175 			return ret;
3176 
3177 		for (i = 0; i < val_count * val_bytes; i += val_bytes)
3178 			map->format.parse_inplace(val + i);
3179 	} else {
3180 		ret = _regmap_bulk_read(map, reg, NULL, val, val_count);
3181 	}
3182 	if (!ret)
3183 		trace_regmap_bulk_read(map, reg, val, val_bytes * val_count);
3184 	return ret;
3185 }
3186 EXPORT_SYMBOL_GPL(regmap_bulk_read);
3187 
3188 /**
3189  * regmap_multi_reg_read() - Read multiple non-sequential registers from the device
3190  *
3191  * @map: Register map to read from
3192  * @regs: Array of registers to read from
3193  * @val: Pointer to store read value, in native register size for device
3194  * @val_count: Number of registers to read
3195  *
3196  * A value of zero will be returned on success, a negative errno will
3197  * be returned in error cases.
3198  */
3199 int regmap_multi_reg_read(struct regmap *map, unsigned int *regs, void *val,
3200 			  size_t val_count)
3201 {
3202 	if (val_count == 0)
3203 		return -EINVAL;
3204 
3205 	return _regmap_bulk_read(map, 0, regs, val, val_count);
3206 }
3207 EXPORT_SYMBOL_GPL(regmap_multi_reg_read);
3208 
3209 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
3210 			       unsigned int mask, unsigned int val,
3211 			       bool *change, bool force_write)
3212 {
3213 	int ret;
3214 	unsigned int tmp, orig;
3215 
3216 	if (change)
3217 		*change = false;
3218 
3219 	if (regmap_volatile(map, reg) && map->reg_update_bits) {
3220 		reg = regmap_reg_addr(map, reg);
3221 		ret = map->reg_update_bits(map->bus_context, reg, mask, val);
3222 		if (ret == 0 && change)
3223 			*change = true;
3224 	} else {
3225 		ret = _regmap_read(map, reg, &orig);
3226 		if (ret != 0)
3227 			return ret;
3228 
3229 		tmp = orig & ~mask;
3230 		tmp |= val & mask;
3231 
3232 		if (force_write || (tmp != orig) || map->force_write_field) {
3233 			ret = _regmap_write(map, reg, tmp);
3234 			if (ret == 0 && change)
3235 				*change = true;
3236 		}
3237 	}
3238 
3239 	return ret;
3240 }
3241 
3242 /**
3243  * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
3244  *
3245  * @map: Register map to update
3246  * @reg: Register to update
3247  * @mask: Bitmask to change
3248  * @val: New value for bitmask
3249  * @change: Boolean indicating if a write was done
3250  * @async: Boolean indicating asynchronously
3251  * @force: Boolean indicating use force update
3252  *
3253  * Perform a read/modify/write cycle on a register map with change, async, force
3254  * options.
3255  *
3256  * If async is true:
3257  *
3258  * With most buses the read must be done synchronously so this is most useful
3259  * for devices with a cache which do not need to interact with the hardware to
3260  * determine the current register value.
3261  *
3262  * Returns zero for success, a negative number on error.
3263  */
3264 int regmap_update_bits_base(struct regmap *map, unsigned int reg,
3265 			    unsigned int mask, unsigned int val,
3266 			    bool *change, bool async, bool force)
3267 {
3268 	int ret;
3269 
3270 	map->lock(map->lock_arg);
3271 
3272 	map->async = async;
3273 
3274 	ret = _regmap_update_bits(map, reg, mask, val, change, force);
3275 
3276 	map->async = false;
3277 
3278 	map->unlock(map->lock_arg);
3279 
3280 	return ret;
3281 }
3282 EXPORT_SYMBOL_GPL(regmap_update_bits_base);
3283 
3284 /**
3285  * regmap_test_bits() - Check if all specified bits are set in a register.
3286  *
3287  * @map: Register map to operate on
3288  * @reg: Register to read from
3289  * @bits: Bits to test
3290  *
3291  * Returns 0 if at least one of the tested bits is not set, 1 if all tested
3292  * bits are set and a negative error number if the underlying regmap_read()
3293  * fails.
3294  */
3295 int regmap_test_bits(struct regmap *map, unsigned int reg, unsigned int bits)
3296 {
3297 	unsigned int val, ret;
3298 
3299 	ret = regmap_read(map, reg, &val);
3300 	if (ret)
3301 		return ret;
3302 
3303 	return (val & bits) == bits;
3304 }
3305 EXPORT_SYMBOL_GPL(regmap_test_bits);
3306 
3307 void regmap_async_complete_cb(struct regmap_async *async, int ret)
3308 {
3309 	struct regmap *map = async->map;
3310 	bool wake;
3311 
3312 	trace_regmap_async_io_complete(map);
3313 
3314 	spin_lock(&map->async_lock);
3315 	list_move(&async->list, &map->async_free);
3316 	wake = list_empty(&map->async_list);
3317 
3318 	if (ret != 0)
3319 		map->async_ret = ret;
3320 
3321 	spin_unlock(&map->async_lock);
3322 
3323 	if (wake)
3324 		wake_up(&map->async_waitq);
3325 }
3326 EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
3327 
3328 static int regmap_async_is_done(struct regmap *map)
3329 {
3330 	unsigned long flags;
3331 	int ret;
3332 
3333 	spin_lock_irqsave(&map->async_lock, flags);
3334 	ret = list_empty(&map->async_list);
3335 	spin_unlock_irqrestore(&map->async_lock, flags);
3336 
3337 	return ret;
3338 }
3339 
3340 /**
3341  * regmap_async_complete - Ensure all asynchronous I/O has completed.
3342  *
3343  * @map: Map to operate on.
3344  *
3345  * Blocks until any pending asynchronous I/O has completed.  Returns
3346  * an error code for any failed I/O operations.
3347  */
3348 int regmap_async_complete(struct regmap *map)
3349 {
3350 	unsigned long flags;
3351 	int ret;
3352 
3353 	/* Nothing to do with no async support */
3354 	if (!map->bus || !map->bus->async_write)
3355 		return 0;
3356 
3357 	trace_regmap_async_complete_start(map);
3358 
3359 	wait_event(map->async_waitq, regmap_async_is_done(map));
3360 
3361 	spin_lock_irqsave(&map->async_lock, flags);
3362 	ret = map->async_ret;
3363 	map->async_ret = 0;
3364 	spin_unlock_irqrestore(&map->async_lock, flags);
3365 
3366 	trace_regmap_async_complete_done(map);
3367 
3368 	return ret;
3369 }
3370 EXPORT_SYMBOL_GPL(regmap_async_complete);
3371 
3372 /**
3373  * regmap_register_patch - Register and apply register updates to be applied
3374  *                         on device initialistion
3375  *
3376  * @map: Register map to apply updates to.
3377  * @regs: Values to update.
3378  * @num_regs: Number of entries in regs.
3379  *
3380  * Register a set of register updates to be applied to the device
3381  * whenever the device registers are synchronised with the cache and
3382  * apply them immediately.  Typically this is used to apply
3383  * corrections to be applied to the device defaults on startup, such
3384  * as the updates some vendors provide to undocumented registers.
3385  *
3386  * The caller must ensure that this function cannot be called
3387  * concurrently with either itself or regcache_sync().
3388  */
3389 int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
3390 			  int num_regs)
3391 {
3392 	struct reg_sequence *p;
3393 	int ret;
3394 	bool bypass;
3395 
3396 	if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
3397 	    num_regs))
3398 		return 0;
3399 
3400 	p = krealloc(map->patch,
3401 		     sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
3402 		     GFP_KERNEL);
3403 	if (p) {
3404 		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
3405 		map->patch = p;
3406 		map->patch_regs += num_regs;
3407 	} else {
3408 		return -ENOMEM;
3409 	}
3410 
3411 	map->lock(map->lock_arg);
3412 
3413 	bypass = map->cache_bypass;
3414 
3415 	map->cache_bypass = true;
3416 	map->async = true;
3417 
3418 	ret = _regmap_multi_reg_write(map, regs, num_regs);
3419 
3420 	map->async = false;
3421 	map->cache_bypass = bypass;
3422 
3423 	map->unlock(map->lock_arg);
3424 
3425 	regmap_async_complete(map);
3426 
3427 	return ret;
3428 }
3429 EXPORT_SYMBOL_GPL(regmap_register_patch);
3430 
3431 /**
3432  * regmap_get_val_bytes() - Report the size of a register value
3433  *
3434  * @map: Register map to operate on.
3435  *
3436  * Report the size of a register value, mainly intended to for use by
3437  * generic infrastructure built on top of regmap.
3438  */
3439 int regmap_get_val_bytes(struct regmap *map)
3440 {
3441 	if (map->format.format_write)
3442 		return -EINVAL;
3443 
3444 	return map->format.val_bytes;
3445 }
3446 EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
3447 
3448 /**
3449  * regmap_get_max_register() - Report the max register value
3450  *
3451  * @map: Register map to operate on.
3452  *
3453  * Report the max register value, mainly intended to for use by
3454  * generic infrastructure built on top of regmap.
3455  */
3456 int regmap_get_max_register(struct regmap *map)
3457 {
3458 	return map->max_register_is_set ? map->max_register : -EINVAL;
3459 }
3460 EXPORT_SYMBOL_GPL(regmap_get_max_register);
3461 
3462 /**
3463  * regmap_get_reg_stride() - Report the register address stride
3464  *
3465  * @map: Register map to operate on.
3466  *
3467  * Report the register address stride, mainly intended to for use by
3468  * generic infrastructure built on top of regmap.
3469  */
3470 int regmap_get_reg_stride(struct regmap *map)
3471 {
3472 	return map->reg_stride;
3473 }
3474 EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
3475 
3476 /**
3477  * regmap_might_sleep() - Returns whether a regmap access might sleep.
3478  *
3479  * @map: Register map to operate on.
3480  *
3481  * Returns true if an access to the register might sleep, else false.
3482  */
3483 bool regmap_might_sleep(struct regmap *map)
3484 {
3485 	return map->can_sleep;
3486 }
3487 EXPORT_SYMBOL_GPL(regmap_might_sleep);
3488 
3489 int regmap_parse_val(struct regmap *map, const void *buf,
3490 			unsigned int *val)
3491 {
3492 	if (!map->format.parse_val)
3493 		return -EINVAL;
3494 
3495 	*val = map->format.parse_val(buf);
3496 
3497 	return 0;
3498 }
3499 EXPORT_SYMBOL_GPL(regmap_parse_val);
3500 
3501 static int __init regmap_initcall(void)
3502 {
3503 	regmap_debugfs_initcall();
3504 
3505 	return 0;
3506 }
3507 postcore_initcall(regmap_initcall);
3508