xref: /linux/drivers/base/regmap/regmap.c (revision 37744feebc086908fd89760650f458ab19071750)
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // Register map access API
4 //
5 // Copyright 2011 Wolfson Microelectronics plc
6 //
7 // Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8 
9 #include <linux/device.h>
10 #include <linux/slab.h>
11 #include <linux/export.h>
12 #include <linux/mutex.h>
13 #include <linux/err.h>
14 #include <linux/of.h>
15 #include <linux/rbtree.h>
16 #include <linux/sched.h>
17 #include <linux/delay.h>
18 #include <linux/log2.h>
19 #include <linux/hwspinlock.h>
20 
21 #define CREATE_TRACE_POINTS
22 #include "trace.h"
23 
24 #include "internal.h"
25 
26 /*
27  * Sometimes for failures during very early init the trace
28  * infrastructure isn't available early enough to be used.  For this
29  * sort of problem defining LOG_DEVICE will add printks for basic
30  * register I/O on a specific device.
31  */
32 #undef LOG_DEVICE
33 
34 #ifdef LOG_DEVICE
35 static inline bool regmap_should_log(struct regmap *map)
36 {
37 	return (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0);
38 }
39 #else
40 static inline bool regmap_should_log(struct regmap *map) { return false; }
41 #endif
42 
43 
44 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
45 			       unsigned int mask, unsigned int val,
46 			       bool *change, bool force_write);
47 
48 static int _regmap_bus_reg_read(void *context, unsigned int reg,
49 				unsigned int *val);
50 static int _regmap_bus_read(void *context, unsigned int reg,
51 			    unsigned int *val);
52 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
53 				       unsigned int val);
54 static int _regmap_bus_reg_write(void *context, unsigned int reg,
55 				 unsigned int val);
56 static int _regmap_bus_raw_write(void *context, unsigned int reg,
57 				 unsigned int val);
58 
59 bool regmap_reg_in_ranges(unsigned int reg,
60 			  const struct regmap_range *ranges,
61 			  unsigned int nranges)
62 {
63 	const struct regmap_range *r;
64 	int i;
65 
66 	for (i = 0, r = ranges; i < nranges; i++, r++)
67 		if (regmap_reg_in_range(reg, r))
68 			return true;
69 	return false;
70 }
71 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
72 
73 bool regmap_check_range_table(struct regmap *map, unsigned int reg,
74 			      const struct regmap_access_table *table)
75 {
76 	/* Check "no ranges" first */
77 	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
78 		return false;
79 
80 	/* In case zero "yes ranges" are supplied, any reg is OK */
81 	if (!table->n_yes_ranges)
82 		return true;
83 
84 	return regmap_reg_in_ranges(reg, table->yes_ranges,
85 				    table->n_yes_ranges);
86 }
87 EXPORT_SYMBOL_GPL(regmap_check_range_table);
88 
89 bool regmap_writeable(struct regmap *map, unsigned int reg)
90 {
91 	if (map->max_register && reg > map->max_register)
92 		return false;
93 
94 	if (map->writeable_reg)
95 		return map->writeable_reg(map->dev, reg);
96 
97 	if (map->wr_table)
98 		return regmap_check_range_table(map, reg, map->wr_table);
99 
100 	return true;
101 }
102 
103 bool regmap_cached(struct regmap *map, unsigned int reg)
104 {
105 	int ret;
106 	unsigned int val;
107 
108 	if (map->cache_type == REGCACHE_NONE)
109 		return false;
110 
111 	if (!map->cache_ops)
112 		return false;
113 
114 	if (map->max_register && reg > map->max_register)
115 		return false;
116 
117 	map->lock(map->lock_arg);
118 	ret = regcache_read(map, reg, &val);
119 	map->unlock(map->lock_arg);
120 	if (ret)
121 		return false;
122 
123 	return true;
124 }
125 
126 bool regmap_readable(struct regmap *map, unsigned int reg)
127 {
128 	if (!map->reg_read)
129 		return false;
130 
131 	if (map->max_register && reg > map->max_register)
132 		return false;
133 
134 	if (map->format.format_write)
135 		return false;
136 
137 	if (map->readable_reg)
138 		return map->readable_reg(map->dev, reg);
139 
140 	if (map->rd_table)
141 		return regmap_check_range_table(map, reg, map->rd_table);
142 
143 	return true;
144 }
145 
146 bool regmap_volatile(struct regmap *map, unsigned int reg)
147 {
148 	if (!map->format.format_write && !regmap_readable(map, reg))
149 		return false;
150 
151 	if (map->volatile_reg)
152 		return map->volatile_reg(map->dev, reg);
153 
154 	if (map->volatile_table)
155 		return regmap_check_range_table(map, reg, map->volatile_table);
156 
157 	if (map->cache_ops)
158 		return false;
159 	else
160 		return true;
161 }
162 
163 bool regmap_precious(struct regmap *map, unsigned int reg)
164 {
165 	if (!regmap_readable(map, reg))
166 		return false;
167 
168 	if (map->precious_reg)
169 		return map->precious_reg(map->dev, reg);
170 
171 	if (map->precious_table)
172 		return regmap_check_range_table(map, reg, map->precious_table);
173 
174 	return false;
175 }
176 
177 bool regmap_writeable_noinc(struct regmap *map, unsigned int reg)
178 {
179 	if (map->writeable_noinc_reg)
180 		return map->writeable_noinc_reg(map->dev, reg);
181 
182 	if (map->wr_noinc_table)
183 		return regmap_check_range_table(map, reg, map->wr_noinc_table);
184 
185 	return true;
186 }
187 
188 bool regmap_readable_noinc(struct regmap *map, unsigned int reg)
189 {
190 	if (map->readable_noinc_reg)
191 		return map->readable_noinc_reg(map->dev, reg);
192 
193 	if (map->rd_noinc_table)
194 		return regmap_check_range_table(map, reg, map->rd_noinc_table);
195 
196 	return true;
197 }
198 
199 static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
200 	size_t num)
201 {
202 	unsigned int i;
203 
204 	for (i = 0; i < num; i++)
205 		if (!regmap_volatile(map, reg + regmap_get_offset(map, i)))
206 			return false;
207 
208 	return true;
209 }
210 
211 static void regmap_format_2_6_write(struct regmap *map,
212 				     unsigned int reg, unsigned int val)
213 {
214 	u8 *out = map->work_buf;
215 
216 	*out = (reg << 6) | val;
217 }
218 
219 static void regmap_format_4_12_write(struct regmap *map,
220 				     unsigned int reg, unsigned int val)
221 {
222 	__be16 *out = map->work_buf;
223 	*out = cpu_to_be16((reg << 12) | val);
224 }
225 
226 static void regmap_format_7_9_write(struct regmap *map,
227 				    unsigned int reg, unsigned int val)
228 {
229 	__be16 *out = map->work_buf;
230 	*out = cpu_to_be16((reg << 9) | val);
231 }
232 
233 static void regmap_format_10_14_write(struct regmap *map,
234 				    unsigned int reg, unsigned int val)
235 {
236 	u8 *out = map->work_buf;
237 
238 	out[2] = val;
239 	out[1] = (val >> 8) | (reg << 6);
240 	out[0] = reg >> 2;
241 }
242 
243 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
244 {
245 	u8 *b = buf;
246 
247 	b[0] = val << shift;
248 }
249 
250 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
251 {
252 	__be16 *b = buf;
253 
254 	b[0] = cpu_to_be16(val << shift);
255 }
256 
257 static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
258 {
259 	__le16 *b = buf;
260 
261 	b[0] = cpu_to_le16(val << shift);
262 }
263 
264 static void regmap_format_16_native(void *buf, unsigned int val,
265 				    unsigned int shift)
266 {
267 	*(u16 *)buf = val << shift;
268 }
269 
270 static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
271 {
272 	u8 *b = buf;
273 
274 	val <<= shift;
275 
276 	b[0] = val >> 16;
277 	b[1] = val >> 8;
278 	b[2] = val;
279 }
280 
281 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
282 {
283 	__be32 *b = buf;
284 
285 	b[0] = cpu_to_be32(val << shift);
286 }
287 
288 static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
289 {
290 	__le32 *b = buf;
291 
292 	b[0] = cpu_to_le32(val << shift);
293 }
294 
295 static void regmap_format_32_native(void *buf, unsigned int val,
296 				    unsigned int shift)
297 {
298 	*(u32 *)buf = val << shift;
299 }
300 
301 #ifdef CONFIG_64BIT
302 static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
303 {
304 	__be64 *b = buf;
305 
306 	b[0] = cpu_to_be64((u64)val << shift);
307 }
308 
309 static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
310 {
311 	__le64 *b = buf;
312 
313 	b[0] = cpu_to_le64((u64)val << shift);
314 }
315 
316 static void regmap_format_64_native(void *buf, unsigned int val,
317 				    unsigned int shift)
318 {
319 	*(u64 *)buf = (u64)val << shift;
320 }
321 #endif
322 
323 static void regmap_parse_inplace_noop(void *buf)
324 {
325 }
326 
327 static unsigned int regmap_parse_8(const void *buf)
328 {
329 	const u8 *b = buf;
330 
331 	return b[0];
332 }
333 
334 static unsigned int regmap_parse_16_be(const void *buf)
335 {
336 	const __be16 *b = buf;
337 
338 	return be16_to_cpu(b[0]);
339 }
340 
341 static unsigned int regmap_parse_16_le(const void *buf)
342 {
343 	const __le16 *b = buf;
344 
345 	return le16_to_cpu(b[0]);
346 }
347 
348 static void regmap_parse_16_be_inplace(void *buf)
349 {
350 	__be16 *b = buf;
351 
352 	b[0] = be16_to_cpu(b[0]);
353 }
354 
355 static void regmap_parse_16_le_inplace(void *buf)
356 {
357 	__le16 *b = buf;
358 
359 	b[0] = le16_to_cpu(b[0]);
360 }
361 
362 static unsigned int regmap_parse_16_native(const void *buf)
363 {
364 	return *(u16 *)buf;
365 }
366 
367 static unsigned int regmap_parse_24(const void *buf)
368 {
369 	const u8 *b = buf;
370 	unsigned int ret = b[2];
371 	ret |= ((unsigned int)b[1]) << 8;
372 	ret |= ((unsigned int)b[0]) << 16;
373 
374 	return ret;
375 }
376 
377 static unsigned int regmap_parse_32_be(const void *buf)
378 {
379 	const __be32 *b = buf;
380 
381 	return be32_to_cpu(b[0]);
382 }
383 
384 static unsigned int regmap_parse_32_le(const void *buf)
385 {
386 	const __le32 *b = buf;
387 
388 	return le32_to_cpu(b[0]);
389 }
390 
391 static void regmap_parse_32_be_inplace(void *buf)
392 {
393 	__be32 *b = buf;
394 
395 	b[0] = be32_to_cpu(b[0]);
396 }
397 
398 static void regmap_parse_32_le_inplace(void *buf)
399 {
400 	__le32 *b = buf;
401 
402 	b[0] = le32_to_cpu(b[0]);
403 }
404 
405 static unsigned int regmap_parse_32_native(const void *buf)
406 {
407 	return *(u32 *)buf;
408 }
409 
410 #ifdef CONFIG_64BIT
411 static unsigned int regmap_parse_64_be(const void *buf)
412 {
413 	const __be64 *b = buf;
414 
415 	return be64_to_cpu(b[0]);
416 }
417 
418 static unsigned int regmap_parse_64_le(const void *buf)
419 {
420 	const __le64 *b = buf;
421 
422 	return le64_to_cpu(b[0]);
423 }
424 
425 static void regmap_parse_64_be_inplace(void *buf)
426 {
427 	__be64 *b = buf;
428 
429 	b[0] = be64_to_cpu(b[0]);
430 }
431 
432 static void regmap_parse_64_le_inplace(void *buf)
433 {
434 	__le64 *b = buf;
435 
436 	b[0] = le64_to_cpu(b[0]);
437 }
438 
439 static unsigned int regmap_parse_64_native(const void *buf)
440 {
441 	return *(u64 *)buf;
442 }
443 #endif
444 
445 static void regmap_lock_hwlock(void *__map)
446 {
447 	struct regmap *map = __map;
448 
449 	hwspin_lock_timeout(map->hwlock, UINT_MAX);
450 }
451 
452 static void regmap_lock_hwlock_irq(void *__map)
453 {
454 	struct regmap *map = __map;
455 
456 	hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
457 }
458 
459 static void regmap_lock_hwlock_irqsave(void *__map)
460 {
461 	struct regmap *map = __map;
462 
463 	hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
464 				    &map->spinlock_flags);
465 }
466 
467 static void regmap_unlock_hwlock(void *__map)
468 {
469 	struct regmap *map = __map;
470 
471 	hwspin_unlock(map->hwlock);
472 }
473 
474 static void regmap_unlock_hwlock_irq(void *__map)
475 {
476 	struct regmap *map = __map;
477 
478 	hwspin_unlock_irq(map->hwlock);
479 }
480 
481 static void regmap_unlock_hwlock_irqrestore(void *__map)
482 {
483 	struct regmap *map = __map;
484 
485 	hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
486 }
487 
488 static void regmap_lock_unlock_none(void *__map)
489 {
490 
491 }
492 
493 static void regmap_lock_mutex(void *__map)
494 {
495 	struct regmap *map = __map;
496 	mutex_lock(&map->mutex);
497 }
498 
499 static void regmap_unlock_mutex(void *__map)
500 {
501 	struct regmap *map = __map;
502 	mutex_unlock(&map->mutex);
503 }
504 
505 static void regmap_lock_spinlock(void *__map)
506 __acquires(&map->spinlock)
507 {
508 	struct regmap *map = __map;
509 	unsigned long flags;
510 
511 	spin_lock_irqsave(&map->spinlock, flags);
512 	map->spinlock_flags = flags;
513 }
514 
515 static void regmap_unlock_spinlock(void *__map)
516 __releases(&map->spinlock)
517 {
518 	struct regmap *map = __map;
519 	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
520 }
521 
522 static void dev_get_regmap_release(struct device *dev, void *res)
523 {
524 	/*
525 	 * We don't actually have anything to do here; the goal here
526 	 * is not to manage the regmap but to provide a simple way to
527 	 * get the regmap back given a struct device.
528 	 */
529 }
530 
531 static bool _regmap_range_add(struct regmap *map,
532 			      struct regmap_range_node *data)
533 {
534 	struct rb_root *root = &map->range_tree;
535 	struct rb_node **new = &(root->rb_node), *parent = NULL;
536 
537 	while (*new) {
538 		struct regmap_range_node *this =
539 			rb_entry(*new, struct regmap_range_node, node);
540 
541 		parent = *new;
542 		if (data->range_max < this->range_min)
543 			new = &((*new)->rb_left);
544 		else if (data->range_min > this->range_max)
545 			new = &((*new)->rb_right);
546 		else
547 			return false;
548 	}
549 
550 	rb_link_node(&data->node, parent, new);
551 	rb_insert_color(&data->node, root);
552 
553 	return true;
554 }
555 
556 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
557 						      unsigned int reg)
558 {
559 	struct rb_node *node = map->range_tree.rb_node;
560 
561 	while (node) {
562 		struct regmap_range_node *this =
563 			rb_entry(node, struct regmap_range_node, node);
564 
565 		if (reg < this->range_min)
566 			node = node->rb_left;
567 		else if (reg > this->range_max)
568 			node = node->rb_right;
569 		else
570 			return this;
571 	}
572 
573 	return NULL;
574 }
575 
576 static void regmap_range_exit(struct regmap *map)
577 {
578 	struct rb_node *next;
579 	struct regmap_range_node *range_node;
580 
581 	next = rb_first(&map->range_tree);
582 	while (next) {
583 		range_node = rb_entry(next, struct regmap_range_node, node);
584 		next = rb_next(&range_node->node);
585 		rb_erase(&range_node->node, &map->range_tree);
586 		kfree(range_node);
587 	}
588 
589 	kfree(map->selector_work_buf);
590 }
591 
592 int regmap_attach_dev(struct device *dev, struct regmap *map,
593 		      const struct regmap_config *config)
594 {
595 	struct regmap **m;
596 
597 	map->dev = dev;
598 
599 	regmap_debugfs_init(map, config->name);
600 
601 	/* Add a devres resource for dev_get_regmap() */
602 	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
603 	if (!m) {
604 		regmap_debugfs_exit(map);
605 		return -ENOMEM;
606 	}
607 	*m = map;
608 	devres_add(dev, m);
609 
610 	return 0;
611 }
612 EXPORT_SYMBOL_GPL(regmap_attach_dev);
613 
614 static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
615 					const struct regmap_config *config)
616 {
617 	enum regmap_endian endian;
618 
619 	/* Retrieve the endianness specification from the regmap config */
620 	endian = config->reg_format_endian;
621 
622 	/* If the regmap config specified a non-default value, use that */
623 	if (endian != REGMAP_ENDIAN_DEFAULT)
624 		return endian;
625 
626 	/* Retrieve the endianness specification from the bus config */
627 	if (bus && bus->reg_format_endian_default)
628 		endian = bus->reg_format_endian_default;
629 
630 	/* If the bus specified a non-default value, use that */
631 	if (endian != REGMAP_ENDIAN_DEFAULT)
632 		return endian;
633 
634 	/* Use this if no other value was found */
635 	return REGMAP_ENDIAN_BIG;
636 }
637 
638 enum regmap_endian regmap_get_val_endian(struct device *dev,
639 					 const struct regmap_bus *bus,
640 					 const struct regmap_config *config)
641 {
642 	struct device_node *np;
643 	enum regmap_endian endian;
644 
645 	/* Retrieve the endianness specification from the regmap config */
646 	endian = config->val_format_endian;
647 
648 	/* If the regmap config specified a non-default value, use that */
649 	if (endian != REGMAP_ENDIAN_DEFAULT)
650 		return endian;
651 
652 	/* If the dev and dev->of_node exist try to get endianness from DT */
653 	if (dev && dev->of_node) {
654 		np = dev->of_node;
655 
656 		/* Parse the device's DT node for an endianness specification */
657 		if (of_property_read_bool(np, "big-endian"))
658 			endian = REGMAP_ENDIAN_BIG;
659 		else if (of_property_read_bool(np, "little-endian"))
660 			endian = REGMAP_ENDIAN_LITTLE;
661 		else if (of_property_read_bool(np, "native-endian"))
662 			endian = REGMAP_ENDIAN_NATIVE;
663 
664 		/* If the endianness was specified in DT, use that */
665 		if (endian != REGMAP_ENDIAN_DEFAULT)
666 			return endian;
667 	}
668 
669 	/* Retrieve the endianness specification from the bus config */
670 	if (bus && bus->val_format_endian_default)
671 		endian = bus->val_format_endian_default;
672 
673 	/* If the bus specified a non-default value, use that */
674 	if (endian != REGMAP_ENDIAN_DEFAULT)
675 		return endian;
676 
677 	/* Use this if no other value was found */
678 	return REGMAP_ENDIAN_BIG;
679 }
680 EXPORT_SYMBOL_GPL(regmap_get_val_endian);
681 
682 struct regmap *__regmap_init(struct device *dev,
683 			     const struct regmap_bus *bus,
684 			     void *bus_context,
685 			     const struct regmap_config *config,
686 			     struct lock_class_key *lock_key,
687 			     const char *lock_name)
688 {
689 	struct regmap *map;
690 	int ret = -EINVAL;
691 	enum regmap_endian reg_endian, val_endian;
692 	int i, j;
693 
694 	if (!config)
695 		goto err;
696 
697 	map = kzalloc(sizeof(*map), GFP_KERNEL);
698 	if (map == NULL) {
699 		ret = -ENOMEM;
700 		goto err;
701 	}
702 
703 	if (config->name) {
704 		map->name = kstrdup_const(config->name, GFP_KERNEL);
705 		if (!map->name) {
706 			ret = -ENOMEM;
707 			goto err_map;
708 		}
709 	}
710 
711 	if (config->disable_locking) {
712 		map->lock = map->unlock = regmap_lock_unlock_none;
713 		regmap_debugfs_disable(map);
714 	} else if (config->lock && config->unlock) {
715 		map->lock = config->lock;
716 		map->unlock = config->unlock;
717 		map->lock_arg = config->lock_arg;
718 	} else if (config->use_hwlock) {
719 		map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
720 		if (!map->hwlock) {
721 			ret = -ENXIO;
722 			goto err_name;
723 		}
724 
725 		switch (config->hwlock_mode) {
726 		case HWLOCK_IRQSTATE:
727 			map->lock = regmap_lock_hwlock_irqsave;
728 			map->unlock = regmap_unlock_hwlock_irqrestore;
729 			break;
730 		case HWLOCK_IRQ:
731 			map->lock = regmap_lock_hwlock_irq;
732 			map->unlock = regmap_unlock_hwlock_irq;
733 			break;
734 		default:
735 			map->lock = regmap_lock_hwlock;
736 			map->unlock = regmap_unlock_hwlock;
737 			break;
738 		}
739 
740 		map->lock_arg = map;
741 	} else {
742 		if ((bus && bus->fast_io) ||
743 		    config->fast_io) {
744 			spin_lock_init(&map->spinlock);
745 			map->lock = regmap_lock_spinlock;
746 			map->unlock = regmap_unlock_spinlock;
747 			lockdep_set_class_and_name(&map->spinlock,
748 						   lock_key, lock_name);
749 		} else {
750 			mutex_init(&map->mutex);
751 			map->lock = regmap_lock_mutex;
752 			map->unlock = regmap_unlock_mutex;
753 			lockdep_set_class_and_name(&map->mutex,
754 						   lock_key, lock_name);
755 		}
756 		map->lock_arg = map;
757 	}
758 
759 	/*
760 	 * When we write in fast-paths with regmap_bulk_write() don't allocate
761 	 * scratch buffers with sleeping allocations.
762 	 */
763 	if ((bus && bus->fast_io) || config->fast_io)
764 		map->alloc_flags = GFP_ATOMIC;
765 	else
766 		map->alloc_flags = GFP_KERNEL;
767 
768 	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
769 	map->format.pad_bytes = config->pad_bits / 8;
770 	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
771 	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
772 			config->val_bits + config->pad_bits, 8);
773 	map->reg_shift = config->pad_bits % 8;
774 	if (config->reg_stride)
775 		map->reg_stride = config->reg_stride;
776 	else
777 		map->reg_stride = 1;
778 	if (is_power_of_2(map->reg_stride))
779 		map->reg_stride_order = ilog2(map->reg_stride);
780 	else
781 		map->reg_stride_order = -1;
782 	map->use_single_read = config->use_single_read || !bus || !bus->read;
783 	map->use_single_write = config->use_single_write || !bus || !bus->write;
784 	map->can_multi_write = config->can_multi_write && bus && bus->write;
785 	if (bus) {
786 		map->max_raw_read = bus->max_raw_read;
787 		map->max_raw_write = bus->max_raw_write;
788 	}
789 	map->dev = dev;
790 	map->bus = bus;
791 	map->bus_context = bus_context;
792 	map->max_register = config->max_register;
793 	map->wr_table = config->wr_table;
794 	map->rd_table = config->rd_table;
795 	map->volatile_table = config->volatile_table;
796 	map->precious_table = config->precious_table;
797 	map->wr_noinc_table = config->wr_noinc_table;
798 	map->rd_noinc_table = config->rd_noinc_table;
799 	map->writeable_reg = config->writeable_reg;
800 	map->readable_reg = config->readable_reg;
801 	map->volatile_reg = config->volatile_reg;
802 	map->precious_reg = config->precious_reg;
803 	map->writeable_noinc_reg = config->writeable_noinc_reg;
804 	map->readable_noinc_reg = config->readable_noinc_reg;
805 	map->cache_type = config->cache_type;
806 
807 	spin_lock_init(&map->async_lock);
808 	INIT_LIST_HEAD(&map->async_list);
809 	INIT_LIST_HEAD(&map->async_free);
810 	init_waitqueue_head(&map->async_waitq);
811 
812 	if (config->read_flag_mask ||
813 	    config->write_flag_mask ||
814 	    config->zero_flag_mask) {
815 		map->read_flag_mask = config->read_flag_mask;
816 		map->write_flag_mask = config->write_flag_mask;
817 	} else if (bus) {
818 		map->read_flag_mask = bus->read_flag_mask;
819 	}
820 
821 	if (!bus) {
822 		map->reg_read  = config->reg_read;
823 		map->reg_write = config->reg_write;
824 
825 		map->defer_caching = false;
826 		goto skip_format_initialization;
827 	} else if (!bus->read || !bus->write) {
828 		map->reg_read = _regmap_bus_reg_read;
829 		map->reg_write = _regmap_bus_reg_write;
830 
831 		map->defer_caching = false;
832 		goto skip_format_initialization;
833 	} else {
834 		map->reg_read  = _regmap_bus_read;
835 		map->reg_update_bits = bus->reg_update_bits;
836 	}
837 
838 	reg_endian = regmap_get_reg_endian(bus, config);
839 	val_endian = regmap_get_val_endian(dev, bus, config);
840 
841 	switch (config->reg_bits + map->reg_shift) {
842 	case 2:
843 		switch (config->val_bits) {
844 		case 6:
845 			map->format.format_write = regmap_format_2_6_write;
846 			break;
847 		default:
848 			goto err_hwlock;
849 		}
850 		break;
851 
852 	case 4:
853 		switch (config->val_bits) {
854 		case 12:
855 			map->format.format_write = regmap_format_4_12_write;
856 			break;
857 		default:
858 			goto err_hwlock;
859 		}
860 		break;
861 
862 	case 7:
863 		switch (config->val_bits) {
864 		case 9:
865 			map->format.format_write = regmap_format_7_9_write;
866 			break;
867 		default:
868 			goto err_hwlock;
869 		}
870 		break;
871 
872 	case 10:
873 		switch (config->val_bits) {
874 		case 14:
875 			map->format.format_write = regmap_format_10_14_write;
876 			break;
877 		default:
878 			goto err_hwlock;
879 		}
880 		break;
881 
882 	case 8:
883 		map->format.format_reg = regmap_format_8;
884 		break;
885 
886 	case 16:
887 		switch (reg_endian) {
888 		case REGMAP_ENDIAN_BIG:
889 			map->format.format_reg = regmap_format_16_be;
890 			break;
891 		case REGMAP_ENDIAN_LITTLE:
892 			map->format.format_reg = regmap_format_16_le;
893 			break;
894 		case REGMAP_ENDIAN_NATIVE:
895 			map->format.format_reg = regmap_format_16_native;
896 			break;
897 		default:
898 			goto err_hwlock;
899 		}
900 		break;
901 
902 	case 24:
903 		if (reg_endian != REGMAP_ENDIAN_BIG)
904 			goto err_hwlock;
905 		map->format.format_reg = regmap_format_24;
906 		break;
907 
908 	case 32:
909 		switch (reg_endian) {
910 		case REGMAP_ENDIAN_BIG:
911 			map->format.format_reg = regmap_format_32_be;
912 			break;
913 		case REGMAP_ENDIAN_LITTLE:
914 			map->format.format_reg = regmap_format_32_le;
915 			break;
916 		case REGMAP_ENDIAN_NATIVE:
917 			map->format.format_reg = regmap_format_32_native;
918 			break;
919 		default:
920 			goto err_hwlock;
921 		}
922 		break;
923 
924 #ifdef CONFIG_64BIT
925 	case 64:
926 		switch (reg_endian) {
927 		case REGMAP_ENDIAN_BIG:
928 			map->format.format_reg = regmap_format_64_be;
929 			break;
930 		case REGMAP_ENDIAN_LITTLE:
931 			map->format.format_reg = regmap_format_64_le;
932 			break;
933 		case REGMAP_ENDIAN_NATIVE:
934 			map->format.format_reg = regmap_format_64_native;
935 			break;
936 		default:
937 			goto err_hwlock;
938 		}
939 		break;
940 #endif
941 
942 	default:
943 		goto err_hwlock;
944 	}
945 
946 	if (val_endian == REGMAP_ENDIAN_NATIVE)
947 		map->format.parse_inplace = regmap_parse_inplace_noop;
948 
949 	switch (config->val_bits) {
950 	case 8:
951 		map->format.format_val = regmap_format_8;
952 		map->format.parse_val = regmap_parse_8;
953 		map->format.parse_inplace = regmap_parse_inplace_noop;
954 		break;
955 	case 16:
956 		switch (val_endian) {
957 		case REGMAP_ENDIAN_BIG:
958 			map->format.format_val = regmap_format_16_be;
959 			map->format.parse_val = regmap_parse_16_be;
960 			map->format.parse_inplace = regmap_parse_16_be_inplace;
961 			break;
962 		case REGMAP_ENDIAN_LITTLE:
963 			map->format.format_val = regmap_format_16_le;
964 			map->format.parse_val = regmap_parse_16_le;
965 			map->format.parse_inplace = regmap_parse_16_le_inplace;
966 			break;
967 		case REGMAP_ENDIAN_NATIVE:
968 			map->format.format_val = regmap_format_16_native;
969 			map->format.parse_val = regmap_parse_16_native;
970 			break;
971 		default:
972 			goto err_hwlock;
973 		}
974 		break;
975 	case 24:
976 		if (val_endian != REGMAP_ENDIAN_BIG)
977 			goto err_hwlock;
978 		map->format.format_val = regmap_format_24;
979 		map->format.parse_val = regmap_parse_24;
980 		break;
981 	case 32:
982 		switch (val_endian) {
983 		case REGMAP_ENDIAN_BIG:
984 			map->format.format_val = regmap_format_32_be;
985 			map->format.parse_val = regmap_parse_32_be;
986 			map->format.parse_inplace = regmap_parse_32_be_inplace;
987 			break;
988 		case REGMAP_ENDIAN_LITTLE:
989 			map->format.format_val = regmap_format_32_le;
990 			map->format.parse_val = regmap_parse_32_le;
991 			map->format.parse_inplace = regmap_parse_32_le_inplace;
992 			break;
993 		case REGMAP_ENDIAN_NATIVE:
994 			map->format.format_val = regmap_format_32_native;
995 			map->format.parse_val = regmap_parse_32_native;
996 			break;
997 		default:
998 			goto err_hwlock;
999 		}
1000 		break;
1001 #ifdef CONFIG_64BIT
1002 	case 64:
1003 		switch (val_endian) {
1004 		case REGMAP_ENDIAN_BIG:
1005 			map->format.format_val = regmap_format_64_be;
1006 			map->format.parse_val = regmap_parse_64_be;
1007 			map->format.parse_inplace = regmap_parse_64_be_inplace;
1008 			break;
1009 		case REGMAP_ENDIAN_LITTLE:
1010 			map->format.format_val = regmap_format_64_le;
1011 			map->format.parse_val = regmap_parse_64_le;
1012 			map->format.parse_inplace = regmap_parse_64_le_inplace;
1013 			break;
1014 		case REGMAP_ENDIAN_NATIVE:
1015 			map->format.format_val = regmap_format_64_native;
1016 			map->format.parse_val = regmap_parse_64_native;
1017 			break;
1018 		default:
1019 			goto err_hwlock;
1020 		}
1021 		break;
1022 #endif
1023 	}
1024 
1025 	if (map->format.format_write) {
1026 		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
1027 		    (val_endian != REGMAP_ENDIAN_BIG))
1028 			goto err_hwlock;
1029 		map->use_single_write = true;
1030 	}
1031 
1032 	if (!map->format.format_write &&
1033 	    !(map->format.format_reg && map->format.format_val))
1034 		goto err_hwlock;
1035 
1036 	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1037 	if (map->work_buf == NULL) {
1038 		ret = -ENOMEM;
1039 		goto err_hwlock;
1040 	}
1041 
1042 	if (map->format.format_write) {
1043 		map->defer_caching = false;
1044 		map->reg_write = _regmap_bus_formatted_write;
1045 	} else if (map->format.format_val) {
1046 		map->defer_caching = true;
1047 		map->reg_write = _regmap_bus_raw_write;
1048 	}
1049 
1050 skip_format_initialization:
1051 
1052 	map->range_tree = RB_ROOT;
1053 	for (i = 0; i < config->num_ranges; i++) {
1054 		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
1055 		struct regmap_range_node *new;
1056 
1057 		/* Sanity check */
1058 		if (range_cfg->range_max < range_cfg->range_min) {
1059 			dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
1060 				range_cfg->range_max, range_cfg->range_min);
1061 			goto err_range;
1062 		}
1063 
1064 		if (range_cfg->range_max > map->max_register) {
1065 			dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
1066 				range_cfg->range_max, map->max_register);
1067 			goto err_range;
1068 		}
1069 
1070 		if (range_cfg->selector_reg > map->max_register) {
1071 			dev_err(map->dev,
1072 				"Invalid range %d: selector out of map\n", i);
1073 			goto err_range;
1074 		}
1075 
1076 		if (range_cfg->window_len == 0) {
1077 			dev_err(map->dev, "Invalid range %d: window_len 0\n",
1078 				i);
1079 			goto err_range;
1080 		}
1081 
1082 		/* Make sure, that this register range has no selector
1083 		   or data window within its boundary */
1084 		for (j = 0; j < config->num_ranges; j++) {
1085 			unsigned sel_reg = config->ranges[j].selector_reg;
1086 			unsigned win_min = config->ranges[j].window_start;
1087 			unsigned win_max = win_min +
1088 					   config->ranges[j].window_len - 1;
1089 
1090 			/* Allow data window inside its own virtual range */
1091 			if (j == i)
1092 				continue;
1093 
1094 			if (range_cfg->range_min <= sel_reg &&
1095 			    sel_reg <= range_cfg->range_max) {
1096 				dev_err(map->dev,
1097 					"Range %d: selector for %d in window\n",
1098 					i, j);
1099 				goto err_range;
1100 			}
1101 
1102 			if (!(win_max < range_cfg->range_min ||
1103 			      win_min > range_cfg->range_max)) {
1104 				dev_err(map->dev,
1105 					"Range %d: window for %d in window\n",
1106 					i, j);
1107 				goto err_range;
1108 			}
1109 		}
1110 
1111 		new = kzalloc(sizeof(*new), GFP_KERNEL);
1112 		if (new == NULL) {
1113 			ret = -ENOMEM;
1114 			goto err_range;
1115 		}
1116 
1117 		new->map = map;
1118 		new->name = range_cfg->name;
1119 		new->range_min = range_cfg->range_min;
1120 		new->range_max = range_cfg->range_max;
1121 		new->selector_reg = range_cfg->selector_reg;
1122 		new->selector_mask = range_cfg->selector_mask;
1123 		new->selector_shift = range_cfg->selector_shift;
1124 		new->window_start = range_cfg->window_start;
1125 		new->window_len = range_cfg->window_len;
1126 
1127 		if (!_regmap_range_add(map, new)) {
1128 			dev_err(map->dev, "Failed to add range %d\n", i);
1129 			kfree(new);
1130 			goto err_range;
1131 		}
1132 
1133 		if (map->selector_work_buf == NULL) {
1134 			map->selector_work_buf =
1135 				kzalloc(map->format.buf_size, GFP_KERNEL);
1136 			if (map->selector_work_buf == NULL) {
1137 				ret = -ENOMEM;
1138 				goto err_range;
1139 			}
1140 		}
1141 	}
1142 
1143 	ret = regcache_init(map, config);
1144 	if (ret != 0)
1145 		goto err_range;
1146 
1147 	if (dev) {
1148 		ret = regmap_attach_dev(dev, map, config);
1149 		if (ret != 0)
1150 			goto err_regcache;
1151 	} else {
1152 		regmap_debugfs_init(map, config->name);
1153 	}
1154 
1155 	return map;
1156 
1157 err_regcache:
1158 	regcache_exit(map);
1159 err_range:
1160 	regmap_range_exit(map);
1161 	kfree(map->work_buf);
1162 err_hwlock:
1163 	if (map->hwlock)
1164 		hwspin_lock_free(map->hwlock);
1165 err_name:
1166 	kfree_const(map->name);
1167 err_map:
1168 	kfree(map);
1169 err:
1170 	return ERR_PTR(ret);
1171 }
1172 EXPORT_SYMBOL_GPL(__regmap_init);
1173 
1174 static void devm_regmap_release(struct device *dev, void *res)
1175 {
1176 	regmap_exit(*(struct regmap **)res);
1177 }
1178 
1179 struct regmap *__devm_regmap_init(struct device *dev,
1180 				  const struct regmap_bus *bus,
1181 				  void *bus_context,
1182 				  const struct regmap_config *config,
1183 				  struct lock_class_key *lock_key,
1184 				  const char *lock_name)
1185 {
1186 	struct regmap **ptr, *regmap;
1187 
1188 	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1189 	if (!ptr)
1190 		return ERR_PTR(-ENOMEM);
1191 
1192 	regmap = __regmap_init(dev, bus, bus_context, config,
1193 			       lock_key, lock_name);
1194 	if (!IS_ERR(regmap)) {
1195 		*ptr = regmap;
1196 		devres_add(dev, ptr);
1197 	} else {
1198 		devres_free(ptr);
1199 	}
1200 
1201 	return regmap;
1202 }
1203 EXPORT_SYMBOL_GPL(__devm_regmap_init);
1204 
1205 static void regmap_field_init(struct regmap_field *rm_field,
1206 	struct regmap *regmap, struct reg_field reg_field)
1207 {
1208 	rm_field->regmap = regmap;
1209 	rm_field->reg = reg_field.reg;
1210 	rm_field->shift = reg_field.lsb;
1211 	rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1212 	rm_field->id_size = reg_field.id_size;
1213 	rm_field->id_offset = reg_field.id_offset;
1214 }
1215 
1216 /**
1217  * devm_regmap_field_alloc() - Allocate and initialise a register field.
1218  *
1219  * @dev: Device that will be interacted with
1220  * @regmap: regmap bank in which this register field is located.
1221  * @reg_field: Register field with in the bank.
1222  *
1223  * The return value will be an ERR_PTR() on error or a valid pointer
1224  * to a struct regmap_field. The regmap_field will be automatically freed
1225  * by the device management code.
1226  */
1227 struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1228 		struct regmap *regmap, struct reg_field reg_field)
1229 {
1230 	struct regmap_field *rm_field = devm_kzalloc(dev,
1231 					sizeof(*rm_field), GFP_KERNEL);
1232 	if (!rm_field)
1233 		return ERR_PTR(-ENOMEM);
1234 
1235 	regmap_field_init(rm_field, regmap, reg_field);
1236 
1237 	return rm_field;
1238 
1239 }
1240 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1241 
1242 /**
1243  * devm_regmap_field_free() - Free a register field allocated using
1244  *                            devm_regmap_field_alloc.
1245  *
1246  * @dev: Device that will be interacted with
1247  * @field: regmap field which should be freed.
1248  *
1249  * Free register field allocated using devm_regmap_field_alloc(). Usually
1250  * drivers need not call this function, as the memory allocated via devm
1251  * will be freed as per device-driver life-cyle.
1252  */
1253 void devm_regmap_field_free(struct device *dev,
1254 	struct regmap_field *field)
1255 {
1256 	devm_kfree(dev, field);
1257 }
1258 EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1259 
1260 /**
1261  * regmap_field_alloc() - Allocate and initialise a register field.
1262  *
1263  * @regmap: regmap bank in which this register field is located.
1264  * @reg_field: Register field with in the bank.
1265  *
1266  * The return value will be an ERR_PTR() on error or a valid pointer
1267  * to a struct regmap_field. The regmap_field should be freed by the
1268  * user once its finished working with it using regmap_field_free().
1269  */
1270 struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1271 		struct reg_field reg_field)
1272 {
1273 	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1274 
1275 	if (!rm_field)
1276 		return ERR_PTR(-ENOMEM);
1277 
1278 	regmap_field_init(rm_field, regmap, reg_field);
1279 
1280 	return rm_field;
1281 }
1282 EXPORT_SYMBOL_GPL(regmap_field_alloc);
1283 
1284 /**
1285  * regmap_field_free() - Free register field allocated using
1286  *                       regmap_field_alloc.
1287  *
1288  * @field: regmap field which should be freed.
1289  */
1290 void regmap_field_free(struct regmap_field *field)
1291 {
1292 	kfree(field);
1293 }
1294 EXPORT_SYMBOL_GPL(regmap_field_free);
1295 
1296 /**
1297  * regmap_reinit_cache() - Reinitialise the current register cache
1298  *
1299  * @map: Register map to operate on.
1300  * @config: New configuration.  Only the cache data will be used.
1301  *
1302  * Discard any existing register cache for the map and initialize a
1303  * new cache.  This can be used to restore the cache to defaults or to
1304  * update the cache configuration to reflect runtime discovery of the
1305  * hardware.
1306  *
1307  * No explicit locking is done here, the user needs to ensure that
1308  * this function will not race with other calls to regmap.
1309  */
1310 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1311 {
1312 	regcache_exit(map);
1313 	regmap_debugfs_exit(map);
1314 
1315 	map->max_register = config->max_register;
1316 	map->writeable_reg = config->writeable_reg;
1317 	map->readable_reg = config->readable_reg;
1318 	map->volatile_reg = config->volatile_reg;
1319 	map->precious_reg = config->precious_reg;
1320 	map->writeable_noinc_reg = config->writeable_noinc_reg;
1321 	map->readable_noinc_reg = config->readable_noinc_reg;
1322 	map->cache_type = config->cache_type;
1323 
1324 	regmap_debugfs_init(map, config->name);
1325 
1326 	map->cache_bypass = false;
1327 	map->cache_only = false;
1328 
1329 	return regcache_init(map, config);
1330 }
1331 EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1332 
1333 /**
1334  * regmap_exit() - Free a previously allocated register map
1335  *
1336  * @map: Register map to operate on.
1337  */
1338 void regmap_exit(struct regmap *map)
1339 {
1340 	struct regmap_async *async;
1341 
1342 	regcache_exit(map);
1343 	regmap_debugfs_exit(map);
1344 	regmap_range_exit(map);
1345 	if (map->bus && map->bus->free_context)
1346 		map->bus->free_context(map->bus_context);
1347 	kfree(map->work_buf);
1348 	while (!list_empty(&map->async_free)) {
1349 		async = list_first_entry_or_null(&map->async_free,
1350 						 struct regmap_async,
1351 						 list);
1352 		list_del(&async->list);
1353 		kfree(async->work_buf);
1354 		kfree(async);
1355 	}
1356 	if (map->hwlock)
1357 		hwspin_lock_free(map->hwlock);
1358 	kfree_const(map->name);
1359 	kfree(map);
1360 }
1361 EXPORT_SYMBOL_GPL(regmap_exit);
1362 
1363 static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1364 {
1365 	struct regmap **r = res;
1366 	if (!r || !*r) {
1367 		WARN_ON(!r || !*r);
1368 		return 0;
1369 	}
1370 
1371 	/* If the user didn't specify a name match any */
1372 	if (data)
1373 		return (*r)->name == data;
1374 	else
1375 		return 1;
1376 }
1377 
1378 /**
1379  * dev_get_regmap() - Obtain the regmap (if any) for a device
1380  *
1381  * @dev: Device to retrieve the map for
1382  * @name: Optional name for the register map, usually NULL.
1383  *
1384  * Returns the regmap for the device if one is present, or NULL.  If
1385  * name is specified then it must match the name specified when
1386  * registering the device, if it is NULL then the first regmap found
1387  * will be used.  Devices with multiple register maps are very rare,
1388  * generic code should normally not need to specify a name.
1389  */
1390 struct regmap *dev_get_regmap(struct device *dev, const char *name)
1391 {
1392 	struct regmap **r = devres_find(dev, dev_get_regmap_release,
1393 					dev_get_regmap_match, (void *)name);
1394 
1395 	if (!r)
1396 		return NULL;
1397 	return *r;
1398 }
1399 EXPORT_SYMBOL_GPL(dev_get_regmap);
1400 
1401 /**
1402  * regmap_get_device() - Obtain the device from a regmap
1403  *
1404  * @map: Register map to operate on.
1405  *
1406  * Returns the underlying device that the regmap has been created for.
1407  */
1408 struct device *regmap_get_device(struct regmap *map)
1409 {
1410 	return map->dev;
1411 }
1412 EXPORT_SYMBOL_GPL(regmap_get_device);
1413 
1414 static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1415 			       struct regmap_range_node *range,
1416 			       unsigned int val_num)
1417 {
1418 	void *orig_work_buf;
1419 	unsigned int win_offset;
1420 	unsigned int win_page;
1421 	bool page_chg;
1422 	int ret;
1423 
1424 	win_offset = (*reg - range->range_min) % range->window_len;
1425 	win_page = (*reg - range->range_min) / range->window_len;
1426 
1427 	if (val_num > 1) {
1428 		/* Bulk write shouldn't cross range boundary */
1429 		if (*reg + val_num - 1 > range->range_max)
1430 			return -EINVAL;
1431 
1432 		/* ... or single page boundary */
1433 		if (val_num > range->window_len - win_offset)
1434 			return -EINVAL;
1435 	}
1436 
1437 	/* It is possible to have selector register inside data window.
1438 	   In that case, selector register is located on every page and
1439 	   it needs no page switching, when accessed alone. */
1440 	if (val_num > 1 ||
1441 	    range->window_start + win_offset != range->selector_reg) {
1442 		/* Use separate work_buf during page switching */
1443 		orig_work_buf = map->work_buf;
1444 		map->work_buf = map->selector_work_buf;
1445 
1446 		ret = _regmap_update_bits(map, range->selector_reg,
1447 					  range->selector_mask,
1448 					  win_page << range->selector_shift,
1449 					  &page_chg, false);
1450 
1451 		map->work_buf = orig_work_buf;
1452 
1453 		if (ret != 0)
1454 			return ret;
1455 	}
1456 
1457 	*reg = range->window_start + win_offset;
1458 
1459 	return 0;
1460 }
1461 
1462 static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1463 					  unsigned long mask)
1464 {
1465 	u8 *buf;
1466 	int i;
1467 
1468 	if (!mask || !map->work_buf)
1469 		return;
1470 
1471 	buf = map->work_buf;
1472 
1473 	for (i = 0; i < max_bytes; i++)
1474 		buf[i] |= (mask >> (8 * i)) & 0xff;
1475 }
1476 
1477 static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg,
1478 				  const void *val, size_t val_len)
1479 {
1480 	struct regmap_range_node *range;
1481 	unsigned long flags;
1482 	void *work_val = map->work_buf + map->format.reg_bytes +
1483 		map->format.pad_bytes;
1484 	void *buf;
1485 	int ret = -ENOTSUPP;
1486 	size_t len;
1487 	int i;
1488 
1489 	WARN_ON(!map->bus);
1490 
1491 	/* Check for unwritable or noinc registers in range
1492 	 * before we start
1493 	 */
1494 	if (!regmap_writeable_noinc(map, reg)) {
1495 		for (i = 0; i < val_len / map->format.val_bytes; i++) {
1496 			unsigned int element =
1497 				reg + regmap_get_offset(map, i);
1498 			if (!regmap_writeable(map, element) ||
1499 				regmap_writeable_noinc(map, element))
1500 				return -EINVAL;
1501 		}
1502 	}
1503 
1504 	if (!map->cache_bypass && map->format.parse_val) {
1505 		unsigned int ival;
1506 		int val_bytes = map->format.val_bytes;
1507 		for (i = 0; i < val_len / val_bytes; i++) {
1508 			ival = map->format.parse_val(val + (i * val_bytes));
1509 			ret = regcache_write(map,
1510 					     reg + regmap_get_offset(map, i),
1511 					     ival);
1512 			if (ret) {
1513 				dev_err(map->dev,
1514 					"Error in caching of register: %x ret: %d\n",
1515 					reg + i, ret);
1516 				return ret;
1517 			}
1518 		}
1519 		if (map->cache_only) {
1520 			map->cache_dirty = true;
1521 			return 0;
1522 		}
1523 	}
1524 
1525 	range = _regmap_range_lookup(map, reg);
1526 	if (range) {
1527 		int val_num = val_len / map->format.val_bytes;
1528 		int win_offset = (reg - range->range_min) % range->window_len;
1529 		int win_residue = range->window_len - win_offset;
1530 
1531 		/* If the write goes beyond the end of the window split it */
1532 		while (val_num > win_residue) {
1533 			dev_dbg(map->dev, "Writing window %d/%zu\n",
1534 				win_residue, val_len / map->format.val_bytes);
1535 			ret = _regmap_raw_write_impl(map, reg, val,
1536 						     win_residue *
1537 						     map->format.val_bytes);
1538 			if (ret != 0)
1539 				return ret;
1540 
1541 			reg += win_residue;
1542 			val_num -= win_residue;
1543 			val += win_residue * map->format.val_bytes;
1544 			val_len -= win_residue * map->format.val_bytes;
1545 
1546 			win_offset = (reg - range->range_min) %
1547 				range->window_len;
1548 			win_residue = range->window_len - win_offset;
1549 		}
1550 
1551 		ret = _regmap_select_page(map, &reg, range, val_num);
1552 		if (ret != 0)
1553 			return ret;
1554 	}
1555 
1556 	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1557 	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1558 				      map->write_flag_mask);
1559 
1560 	/*
1561 	 * Essentially all I/O mechanisms will be faster with a single
1562 	 * buffer to write.  Since register syncs often generate raw
1563 	 * writes of single registers optimise that case.
1564 	 */
1565 	if (val != work_val && val_len == map->format.val_bytes) {
1566 		memcpy(work_val, val, map->format.val_bytes);
1567 		val = work_val;
1568 	}
1569 
1570 	if (map->async && map->bus->async_write) {
1571 		struct regmap_async *async;
1572 
1573 		trace_regmap_async_write_start(map, reg, val_len);
1574 
1575 		spin_lock_irqsave(&map->async_lock, flags);
1576 		async = list_first_entry_or_null(&map->async_free,
1577 						 struct regmap_async,
1578 						 list);
1579 		if (async)
1580 			list_del(&async->list);
1581 		spin_unlock_irqrestore(&map->async_lock, flags);
1582 
1583 		if (!async) {
1584 			async = map->bus->async_alloc();
1585 			if (!async)
1586 				return -ENOMEM;
1587 
1588 			async->work_buf = kzalloc(map->format.buf_size,
1589 						  GFP_KERNEL | GFP_DMA);
1590 			if (!async->work_buf) {
1591 				kfree(async);
1592 				return -ENOMEM;
1593 			}
1594 		}
1595 
1596 		async->map = map;
1597 
1598 		/* If the caller supplied the value we can use it safely. */
1599 		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1600 		       map->format.reg_bytes + map->format.val_bytes);
1601 
1602 		spin_lock_irqsave(&map->async_lock, flags);
1603 		list_add_tail(&async->list, &map->async_list);
1604 		spin_unlock_irqrestore(&map->async_lock, flags);
1605 
1606 		if (val != work_val)
1607 			ret = map->bus->async_write(map->bus_context,
1608 						    async->work_buf,
1609 						    map->format.reg_bytes +
1610 						    map->format.pad_bytes,
1611 						    val, val_len, async);
1612 		else
1613 			ret = map->bus->async_write(map->bus_context,
1614 						    async->work_buf,
1615 						    map->format.reg_bytes +
1616 						    map->format.pad_bytes +
1617 						    val_len, NULL, 0, async);
1618 
1619 		if (ret != 0) {
1620 			dev_err(map->dev, "Failed to schedule write: %d\n",
1621 				ret);
1622 
1623 			spin_lock_irqsave(&map->async_lock, flags);
1624 			list_move(&async->list, &map->async_free);
1625 			spin_unlock_irqrestore(&map->async_lock, flags);
1626 		}
1627 
1628 		return ret;
1629 	}
1630 
1631 	trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1632 
1633 	/* If we're doing a single register write we can probably just
1634 	 * send the work_buf directly, otherwise try to do a gather
1635 	 * write.
1636 	 */
1637 	if (val == work_val)
1638 		ret = map->bus->write(map->bus_context, map->work_buf,
1639 				      map->format.reg_bytes +
1640 				      map->format.pad_bytes +
1641 				      val_len);
1642 	else if (map->bus->gather_write)
1643 		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1644 					     map->format.reg_bytes +
1645 					     map->format.pad_bytes,
1646 					     val, val_len);
1647 	else
1648 		ret = -ENOTSUPP;
1649 
1650 	/* If that didn't work fall back on linearising by hand. */
1651 	if (ret == -ENOTSUPP) {
1652 		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1653 		buf = kzalloc(len, GFP_KERNEL);
1654 		if (!buf)
1655 			return -ENOMEM;
1656 
1657 		memcpy(buf, map->work_buf, map->format.reg_bytes);
1658 		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1659 		       val, val_len);
1660 		ret = map->bus->write(map->bus_context, buf, len);
1661 
1662 		kfree(buf);
1663 	} else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1664 		/* regcache_drop_region() takes lock that we already have,
1665 		 * thus call map->cache_ops->drop() directly
1666 		 */
1667 		if (map->cache_ops && map->cache_ops->drop)
1668 			map->cache_ops->drop(map, reg, reg + 1);
1669 	}
1670 
1671 	trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1672 
1673 	return ret;
1674 }
1675 
1676 /**
1677  * regmap_can_raw_write - Test if regmap_raw_write() is supported
1678  *
1679  * @map: Map to check.
1680  */
1681 bool regmap_can_raw_write(struct regmap *map)
1682 {
1683 	return map->bus && map->bus->write && map->format.format_val &&
1684 		map->format.format_reg;
1685 }
1686 EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1687 
1688 /**
1689  * regmap_get_raw_read_max - Get the maximum size we can read
1690  *
1691  * @map: Map to check.
1692  */
1693 size_t regmap_get_raw_read_max(struct regmap *map)
1694 {
1695 	return map->max_raw_read;
1696 }
1697 EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1698 
1699 /**
1700  * regmap_get_raw_write_max - Get the maximum size we can read
1701  *
1702  * @map: Map to check.
1703  */
1704 size_t regmap_get_raw_write_max(struct regmap *map)
1705 {
1706 	return map->max_raw_write;
1707 }
1708 EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1709 
1710 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1711 				       unsigned int val)
1712 {
1713 	int ret;
1714 	struct regmap_range_node *range;
1715 	struct regmap *map = context;
1716 
1717 	WARN_ON(!map->bus || !map->format.format_write);
1718 
1719 	range = _regmap_range_lookup(map, reg);
1720 	if (range) {
1721 		ret = _regmap_select_page(map, &reg, range, 1);
1722 		if (ret != 0)
1723 			return ret;
1724 	}
1725 
1726 	map->format.format_write(map, reg, val);
1727 
1728 	trace_regmap_hw_write_start(map, reg, 1);
1729 
1730 	ret = map->bus->write(map->bus_context, map->work_buf,
1731 			      map->format.buf_size);
1732 
1733 	trace_regmap_hw_write_done(map, reg, 1);
1734 
1735 	return ret;
1736 }
1737 
1738 static int _regmap_bus_reg_write(void *context, unsigned int reg,
1739 				 unsigned int val)
1740 {
1741 	struct regmap *map = context;
1742 
1743 	return map->bus->reg_write(map->bus_context, reg, val);
1744 }
1745 
1746 static int _regmap_bus_raw_write(void *context, unsigned int reg,
1747 				 unsigned int val)
1748 {
1749 	struct regmap *map = context;
1750 
1751 	WARN_ON(!map->bus || !map->format.format_val);
1752 
1753 	map->format.format_val(map->work_buf + map->format.reg_bytes
1754 			       + map->format.pad_bytes, val, 0);
1755 	return _regmap_raw_write_impl(map, reg,
1756 				      map->work_buf +
1757 				      map->format.reg_bytes +
1758 				      map->format.pad_bytes,
1759 				      map->format.val_bytes);
1760 }
1761 
1762 static inline void *_regmap_map_get_context(struct regmap *map)
1763 {
1764 	return (map->bus) ? map : map->bus_context;
1765 }
1766 
1767 int _regmap_write(struct regmap *map, unsigned int reg,
1768 		  unsigned int val)
1769 {
1770 	int ret;
1771 	void *context = _regmap_map_get_context(map);
1772 
1773 	if (!regmap_writeable(map, reg))
1774 		return -EIO;
1775 
1776 	if (!map->cache_bypass && !map->defer_caching) {
1777 		ret = regcache_write(map, reg, val);
1778 		if (ret != 0)
1779 			return ret;
1780 		if (map->cache_only) {
1781 			map->cache_dirty = true;
1782 			return 0;
1783 		}
1784 	}
1785 
1786 	if (regmap_should_log(map))
1787 		dev_info(map->dev, "%x <= %x\n", reg, val);
1788 
1789 	trace_regmap_reg_write(map, reg, val);
1790 
1791 	return map->reg_write(context, reg, val);
1792 }
1793 
1794 /**
1795  * regmap_write() - Write a value to a single register
1796  *
1797  * @map: Register map to write to
1798  * @reg: Register to write to
1799  * @val: Value to be written
1800  *
1801  * A value of zero will be returned on success, a negative errno will
1802  * be returned in error cases.
1803  */
1804 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1805 {
1806 	int ret;
1807 
1808 	if (!IS_ALIGNED(reg, map->reg_stride))
1809 		return -EINVAL;
1810 
1811 	map->lock(map->lock_arg);
1812 
1813 	ret = _regmap_write(map, reg, val);
1814 
1815 	map->unlock(map->lock_arg);
1816 
1817 	return ret;
1818 }
1819 EXPORT_SYMBOL_GPL(regmap_write);
1820 
1821 /**
1822  * regmap_write_async() - Write a value to a single register asynchronously
1823  *
1824  * @map: Register map to write to
1825  * @reg: Register to write to
1826  * @val: Value to be written
1827  *
1828  * A value of zero will be returned on success, a negative errno will
1829  * be returned in error cases.
1830  */
1831 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1832 {
1833 	int ret;
1834 
1835 	if (!IS_ALIGNED(reg, map->reg_stride))
1836 		return -EINVAL;
1837 
1838 	map->lock(map->lock_arg);
1839 
1840 	map->async = true;
1841 
1842 	ret = _regmap_write(map, reg, val);
1843 
1844 	map->async = false;
1845 
1846 	map->unlock(map->lock_arg);
1847 
1848 	return ret;
1849 }
1850 EXPORT_SYMBOL_GPL(regmap_write_async);
1851 
1852 int _regmap_raw_write(struct regmap *map, unsigned int reg,
1853 		      const void *val, size_t val_len)
1854 {
1855 	size_t val_bytes = map->format.val_bytes;
1856 	size_t val_count = val_len / val_bytes;
1857 	size_t chunk_count, chunk_bytes;
1858 	size_t chunk_regs = val_count;
1859 	int ret, i;
1860 
1861 	if (!val_count)
1862 		return -EINVAL;
1863 
1864 	if (map->use_single_write)
1865 		chunk_regs = 1;
1866 	else if (map->max_raw_write && val_len > map->max_raw_write)
1867 		chunk_regs = map->max_raw_write / val_bytes;
1868 
1869 	chunk_count = val_count / chunk_regs;
1870 	chunk_bytes = chunk_regs * val_bytes;
1871 
1872 	/* Write as many bytes as possible with chunk_size */
1873 	for (i = 0; i < chunk_count; i++) {
1874 		ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes);
1875 		if (ret)
1876 			return ret;
1877 
1878 		reg += regmap_get_offset(map, chunk_regs);
1879 		val += chunk_bytes;
1880 		val_len -= chunk_bytes;
1881 	}
1882 
1883 	/* Write remaining bytes */
1884 	if (val_len)
1885 		ret = _regmap_raw_write_impl(map, reg, val, val_len);
1886 
1887 	return ret;
1888 }
1889 
1890 /**
1891  * regmap_raw_write() - Write raw values to one or more registers
1892  *
1893  * @map: Register map to write to
1894  * @reg: Initial register to write to
1895  * @val: Block of data to be written, laid out for direct transmission to the
1896  *       device
1897  * @val_len: Length of data pointed to by val.
1898  *
1899  * This function is intended to be used for things like firmware
1900  * download where a large block of data needs to be transferred to the
1901  * device.  No formatting will be done on the data provided.
1902  *
1903  * A value of zero will be returned on success, a negative errno will
1904  * be returned in error cases.
1905  */
1906 int regmap_raw_write(struct regmap *map, unsigned int reg,
1907 		     const void *val, size_t val_len)
1908 {
1909 	int ret;
1910 
1911 	if (!regmap_can_raw_write(map))
1912 		return -EINVAL;
1913 	if (val_len % map->format.val_bytes)
1914 		return -EINVAL;
1915 
1916 	map->lock(map->lock_arg);
1917 
1918 	ret = _regmap_raw_write(map, reg, val, val_len);
1919 
1920 	map->unlock(map->lock_arg);
1921 
1922 	return ret;
1923 }
1924 EXPORT_SYMBOL_GPL(regmap_raw_write);
1925 
1926 /**
1927  * regmap_noinc_write(): Write data from a register without incrementing the
1928  *			register number
1929  *
1930  * @map: Register map to write to
1931  * @reg: Register to write to
1932  * @val: Pointer to data buffer
1933  * @val_len: Length of output buffer in bytes.
1934  *
1935  * The regmap API usually assumes that bulk bus write operations will write a
1936  * range of registers. Some devices have certain registers for which a write
1937  * operation can write to an internal FIFO.
1938  *
1939  * The target register must be volatile but registers after it can be
1940  * completely unrelated cacheable registers.
1941  *
1942  * This will attempt multiple writes as required to write val_len bytes.
1943  *
1944  * A value of zero will be returned on success, a negative errno will be
1945  * returned in error cases.
1946  */
1947 int regmap_noinc_write(struct regmap *map, unsigned int reg,
1948 		      const void *val, size_t val_len)
1949 {
1950 	size_t write_len;
1951 	int ret;
1952 
1953 	if (!map->bus)
1954 		return -EINVAL;
1955 	if (!map->bus->write)
1956 		return -ENOTSUPP;
1957 	if (val_len % map->format.val_bytes)
1958 		return -EINVAL;
1959 	if (!IS_ALIGNED(reg, map->reg_stride))
1960 		return -EINVAL;
1961 	if (val_len == 0)
1962 		return -EINVAL;
1963 
1964 	map->lock(map->lock_arg);
1965 
1966 	if (!regmap_volatile(map, reg) || !regmap_writeable_noinc(map, reg)) {
1967 		ret = -EINVAL;
1968 		goto out_unlock;
1969 	}
1970 
1971 	while (val_len) {
1972 		if (map->max_raw_write && map->max_raw_write < val_len)
1973 			write_len = map->max_raw_write;
1974 		else
1975 			write_len = val_len;
1976 		ret = _regmap_raw_write(map, reg, val, write_len);
1977 		if (ret)
1978 			goto out_unlock;
1979 		val = ((u8 *)val) + write_len;
1980 		val_len -= write_len;
1981 	}
1982 
1983 out_unlock:
1984 	map->unlock(map->lock_arg);
1985 	return ret;
1986 }
1987 EXPORT_SYMBOL_GPL(regmap_noinc_write);
1988 
1989 /**
1990  * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
1991  *                                   register field.
1992  *
1993  * @field: Register field to write to
1994  * @mask: Bitmask to change
1995  * @val: Value to be written
1996  * @change: Boolean indicating if a write was done
1997  * @async: Boolean indicating asynchronously
1998  * @force: Boolean indicating use force update
1999  *
2000  * Perform a read/modify/write cycle on the register field with change,
2001  * async, force option.
2002  *
2003  * A value of zero will be returned on success, a negative errno will
2004  * be returned in error cases.
2005  */
2006 int regmap_field_update_bits_base(struct regmap_field *field,
2007 				  unsigned int mask, unsigned int val,
2008 				  bool *change, bool async, bool force)
2009 {
2010 	mask = (mask << field->shift) & field->mask;
2011 
2012 	return regmap_update_bits_base(field->regmap, field->reg,
2013 				       mask, val << field->shift,
2014 				       change, async, force);
2015 }
2016 EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
2017 
2018 /**
2019  * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
2020  *                                    register field with port ID
2021  *
2022  * @field: Register field to write to
2023  * @id: port ID
2024  * @mask: Bitmask to change
2025  * @val: Value to be written
2026  * @change: Boolean indicating if a write was done
2027  * @async: Boolean indicating asynchronously
2028  * @force: Boolean indicating use force update
2029  *
2030  * A value of zero will be returned on success, a negative errno will
2031  * be returned in error cases.
2032  */
2033 int regmap_fields_update_bits_base(struct regmap_field *field,  unsigned int id,
2034 				   unsigned int mask, unsigned int val,
2035 				   bool *change, bool async, bool force)
2036 {
2037 	if (id >= field->id_size)
2038 		return -EINVAL;
2039 
2040 	mask = (mask << field->shift) & field->mask;
2041 
2042 	return regmap_update_bits_base(field->regmap,
2043 				       field->reg + (field->id_offset * id),
2044 				       mask, val << field->shift,
2045 				       change, async, force);
2046 }
2047 EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
2048 
2049 /**
2050  * regmap_bulk_write() - Write multiple registers to the device
2051  *
2052  * @map: Register map to write to
2053  * @reg: First register to be write from
2054  * @val: Block of data to be written, in native register size for device
2055  * @val_count: Number of registers to write
2056  *
2057  * This function is intended to be used for writing a large block of
2058  * data to the device either in single transfer or multiple transfer.
2059  *
2060  * A value of zero will be returned on success, a negative errno will
2061  * be returned in error cases.
2062  */
2063 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
2064 		     size_t val_count)
2065 {
2066 	int ret = 0, i;
2067 	size_t val_bytes = map->format.val_bytes;
2068 
2069 	if (!IS_ALIGNED(reg, map->reg_stride))
2070 		return -EINVAL;
2071 
2072 	/*
2073 	 * Some devices don't support bulk write, for them we have a series of
2074 	 * single write operations.
2075 	 */
2076 	if (!map->bus || !map->format.parse_inplace) {
2077 		map->lock(map->lock_arg);
2078 		for (i = 0; i < val_count; i++) {
2079 			unsigned int ival;
2080 
2081 			switch (val_bytes) {
2082 			case 1:
2083 				ival = *(u8 *)(val + (i * val_bytes));
2084 				break;
2085 			case 2:
2086 				ival = *(u16 *)(val + (i * val_bytes));
2087 				break;
2088 			case 4:
2089 				ival = *(u32 *)(val + (i * val_bytes));
2090 				break;
2091 #ifdef CONFIG_64BIT
2092 			case 8:
2093 				ival = *(u64 *)(val + (i * val_bytes));
2094 				break;
2095 #endif
2096 			default:
2097 				ret = -EINVAL;
2098 				goto out;
2099 			}
2100 
2101 			ret = _regmap_write(map,
2102 					    reg + regmap_get_offset(map, i),
2103 					    ival);
2104 			if (ret != 0)
2105 				goto out;
2106 		}
2107 out:
2108 		map->unlock(map->lock_arg);
2109 	} else {
2110 		void *wval;
2111 
2112 		wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
2113 		if (!wval)
2114 			return -ENOMEM;
2115 
2116 		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2117 			map->format.parse_inplace(wval + i);
2118 
2119 		ret = regmap_raw_write(map, reg, wval, val_bytes * val_count);
2120 
2121 		kfree(wval);
2122 	}
2123 	return ret;
2124 }
2125 EXPORT_SYMBOL_GPL(regmap_bulk_write);
2126 
2127 /*
2128  * _regmap_raw_multi_reg_write()
2129  *
2130  * the (register,newvalue) pairs in regs have not been formatted, but
2131  * they are all in the same page and have been changed to being page
2132  * relative. The page register has been written if that was necessary.
2133  */
2134 static int _regmap_raw_multi_reg_write(struct regmap *map,
2135 				       const struct reg_sequence *regs,
2136 				       size_t num_regs)
2137 {
2138 	int ret;
2139 	void *buf;
2140 	int i;
2141 	u8 *u8;
2142 	size_t val_bytes = map->format.val_bytes;
2143 	size_t reg_bytes = map->format.reg_bytes;
2144 	size_t pad_bytes = map->format.pad_bytes;
2145 	size_t pair_size = reg_bytes + pad_bytes + val_bytes;
2146 	size_t len = pair_size * num_regs;
2147 
2148 	if (!len)
2149 		return -EINVAL;
2150 
2151 	buf = kzalloc(len, GFP_KERNEL);
2152 	if (!buf)
2153 		return -ENOMEM;
2154 
2155 	/* We have to linearise by hand. */
2156 
2157 	u8 = buf;
2158 
2159 	for (i = 0; i < num_regs; i++) {
2160 		unsigned int reg = regs[i].reg;
2161 		unsigned int val = regs[i].def;
2162 		trace_regmap_hw_write_start(map, reg, 1);
2163 		map->format.format_reg(u8, reg, map->reg_shift);
2164 		u8 += reg_bytes + pad_bytes;
2165 		map->format.format_val(u8, val, 0);
2166 		u8 += val_bytes;
2167 	}
2168 	u8 = buf;
2169 	*u8 |= map->write_flag_mask;
2170 
2171 	ret = map->bus->write(map->bus_context, buf, len);
2172 
2173 	kfree(buf);
2174 
2175 	for (i = 0; i < num_regs; i++) {
2176 		int reg = regs[i].reg;
2177 		trace_regmap_hw_write_done(map, reg, 1);
2178 	}
2179 	return ret;
2180 }
2181 
2182 static unsigned int _regmap_register_page(struct regmap *map,
2183 					  unsigned int reg,
2184 					  struct regmap_range_node *range)
2185 {
2186 	unsigned int win_page = (reg - range->range_min) / range->window_len;
2187 
2188 	return win_page;
2189 }
2190 
2191 static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2192 					       struct reg_sequence *regs,
2193 					       size_t num_regs)
2194 {
2195 	int ret;
2196 	int i, n;
2197 	struct reg_sequence *base;
2198 	unsigned int this_page = 0;
2199 	unsigned int page_change = 0;
2200 	/*
2201 	 * the set of registers are not neccessarily in order, but
2202 	 * since the order of write must be preserved this algorithm
2203 	 * chops the set each time the page changes. This also applies
2204 	 * if there is a delay required at any point in the sequence.
2205 	 */
2206 	base = regs;
2207 	for (i = 0, n = 0; i < num_regs; i++, n++) {
2208 		unsigned int reg = regs[i].reg;
2209 		struct regmap_range_node *range;
2210 
2211 		range = _regmap_range_lookup(map, reg);
2212 		if (range) {
2213 			unsigned int win_page = _regmap_register_page(map, reg,
2214 								      range);
2215 
2216 			if (i == 0)
2217 				this_page = win_page;
2218 			if (win_page != this_page) {
2219 				this_page = win_page;
2220 				page_change = 1;
2221 			}
2222 		}
2223 
2224 		/* If we have both a page change and a delay make sure to
2225 		 * write the regs and apply the delay before we change the
2226 		 * page.
2227 		 */
2228 
2229 		if (page_change || regs[i].delay_us) {
2230 
2231 				/* For situations where the first write requires
2232 				 * a delay we need to make sure we don't call
2233 				 * raw_multi_reg_write with n=0
2234 				 * This can't occur with page breaks as we
2235 				 * never write on the first iteration
2236 				 */
2237 				if (regs[i].delay_us && i == 0)
2238 					n = 1;
2239 
2240 				ret = _regmap_raw_multi_reg_write(map, base, n);
2241 				if (ret != 0)
2242 					return ret;
2243 
2244 				if (regs[i].delay_us)
2245 					udelay(regs[i].delay_us);
2246 
2247 				base += n;
2248 				n = 0;
2249 
2250 				if (page_change) {
2251 					ret = _regmap_select_page(map,
2252 								  &base[n].reg,
2253 								  range, 1);
2254 					if (ret != 0)
2255 						return ret;
2256 
2257 					page_change = 0;
2258 				}
2259 
2260 		}
2261 
2262 	}
2263 	if (n > 0)
2264 		return _regmap_raw_multi_reg_write(map, base, n);
2265 	return 0;
2266 }
2267 
2268 static int _regmap_multi_reg_write(struct regmap *map,
2269 				   const struct reg_sequence *regs,
2270 				   size_t num_regs)
2271 {
2272 	int i;
2273 	int ret;
2274 
2275 	if (!map->can_multi_write) {
2276 		for (i = 0; i < num_regs; i++) {
2277 			ret = _regmap_write(map, regs[i].reg, regs[i].def);
2278 			if (ret != 0)
2279 				return ret;
2280 
2281 			if (regs[i].delay_us)
2282 				udelay(regs[i].delay_us);
2283 		}
2284 		return 0;
2285 	}
2286 
2287 	if (!map->format.parse_inplace)
2288 		return -EINVAL;
2289 
2290 	if (map->writeable_reg)
2291 		for (i = 0; i < num_regs; i++) {
2292 			int reg = regs[i].reg;
2293 			if (!map->writeable_reg(map->dev, reg))
2294 				return -EINVAL;
2295 			if (!IS_ALIGNED(reg, map->reg_stride))
2296 				return -EINVAL;
2297 		}
2298 
2299 	if (!map->cache_bypass) {
2300 		for (i = 0; i < num_regs; i++) {
2301 			unsigned int val = regs[i].def;
2302 			unsigned int reg = regs[i].reg;
2303 			ret = regcache_write(map, reg, val);
2304 			if (ret) {
2305 				dev_err(map->dev,
2306 				"Error in caching of register: %x ret: %d\n",
2307 								reg, ret);
2308 				return ret;
2309 			}
2310 		}
2311 		if (map->cache_only) {
2312 			map->cache_dirty = true;
2313 			return 0;
2314 		}
2315 	}
2316 
2317 	WARN_ON(!map->bus);
2318 
2319 	for (i = 0; i < num_regs; i++) {
2320 		unsigned int reg = regs[i].reg;
2321 		struct regmap_range_node *range;
2322 
2323 		/* Coalesce all the writes between a page break or a delay
2324 		 * in a sequence
2325 		 */
2326 		range = _regmap_range_lookup(map, reg);
2327 		if (range || regs[i].delay_us) {
2328 			size_t len = sizeof(struct reg_sequence)*num_regs;
2329 			struct reg_sequence *base = kmemdup(regs, len,
2330 							   GFP_KERNEL);
2331 			if (!base)
2332 				return -ENOMEM;
2333 			ret = _regmap_range_multi_paged_reg_write(map, base,
2334 								  num_regs);
2335 			kfree(base);
2336 
2337 			return ret;
2338 		}
2339 	}
2340 	return _regmap_raw_multi_reg_write(map, regs, num_regs);
2341 }
2342 
2343 /**
2344  * regmap_multi_reg_write() - Write multiple registers to the device
2345  *
2346  * @map: Register map to write to
2347  * @regs: Array of structures containing register,value to be written
2348  * @num_regs: Number of registers to write
2349  *
2350  * Write multiple registers to the device where the set of register, value
2351  * pairs are supplied in any order, possibly not all in a single range.
2352  *
2353  * The 'normal' block write mode will send ultimately send data on the
2354  * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2355  * addressed. However, this alternative block multi write mode will send
2356  * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2357  * must of course support the mode.
2358  *
2359  * A value of zero will be returned on success, a negative errno will be
2360  * returned in error cases.
2361  */
2362 int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2363 			   int num_regs)
2364 {
2365 	int ret;
2366 
2367 	map->lock(map->lock_arg);
2368 
2369 	ret = _regmap_multi_reg_write(map, regs, num_regs);
2370 
2371 	map->unlock(map->lock_arg);
2372 
2373 	return ret;
2374 }
2375 EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2376 
2377 /**
2378  * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2379  *                                     device but not the cache
2380  *
2381  * @map: Register map to write to
2382  * @regs: Array of structures containing register,value to be written
2383  * @num_regs: Number of registers to write
2384  *
2385  * Write multiple registers to the device but not the cache where the set
2386  * of register are supplied in any order.
2387  *
2388  * This function is intended to be used for writing a large block of data
2389  * atomically to the device in single transfer for those I2C client devices
2390  * that implement this alternative block write mode.
2391  *
2392  * A value of zero will be returned on success, a negative errno will
2393  * be returned in error cases.
2394  */
2395 int regmap_multi_reg_write_bypassed(struct regmap *map,
2396 				    const struct reg_sequence *regs,
2397 				    int num_regs)
2398 {
2399 	int ret;
2400 	bool bypass;
2401 
2402 	map->lock(map->lock_arg);
2403 
2404 	bypass = map->cache_bypass;
2405 	map->cache_bypass = true;
2406 
2407 	ret = _regmap_multi_reg_write(map, regs, num_regs);
2408 
2409 	map->cache_bypass = bypass;
2410 
2411 	map->unlock(map->lock_arg);
2412 
2413 	return ret;
2414 }
2415 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2416 
2417 /**
2418  * regmap_raw_write_async() - Write raw values to one or more registers
2419  *                            asynchronously
2420  *
2421  * @map: Register map to write to
2422  * @reg: Initial register to write to
2423  * @val: Block of data to be written, laid out for direct transmission to the
2424  *       device.  Must be valid until regmap_async_complete() is called.
2425  * @val_len: Length of data pointed to by val.
2426  *
2427  * This function is intended to be used for things like firmware
2428  * download where a large block of data needs to be transferred to the
2429  * device.  No formatting will be done on the data provided.
2430  *
2431  * If supported by the underlying bus the write will be scheduled
2432  * asynchronously, helping maximise I/O speed on higher speed buses
2433  * like SPI.  regmap_async_complete() can be called to ensure that all
2434  * asynchrnous writes have been completed.
2435  *
2436  * A value of zero will be returned on success, a negative errno will
2437  * be returned in error cases.
2438  */
2439 int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2440 			   const void *val, size_t val_len)
2441 {
2442 	int ret;
2443 
2444 	if (val_len % map->format.val_bytes)
2445 		return -EINVAL;
2446 	if (!IS_ALIGNED(reg, map->reg_stride))
2447 		return -EINVAL;
2448 
2449 	map->lock(map->lock_arg);
2450 
2451 	map->async = true;
2452 
2453 	ret = _regmap_raw_write(map, reg, val, val_len);
2454 
2455 	map->async = false;
2456 
2457 	map->unlock(map->lock_arg);
2458 
2459 	return ret;
2460 }
2461 EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2462 
2463 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2464 			    unsigned int val_len)
2465 {
2466 	struct regmap_range_node *range;
2467 	int ret;
2468 
2469 	WARN_ON(!map->bus);
2470 
2471 	if (!map->bus || !map->bus->read)
2472 		return -EINVAL;
2473 
2474 	range = _regmap_range_lookup(map, reg);
2475 	if (range) {
2476 		ret = _regmap_select_page(map, &reg, range,
2477 					  val_len / map->format.val_bytes);
2478 		if (ret != 0)
2479 			return ret;
2480 	}
2481 
2482 	map->format.format_reg(map->work_buf, reg, map->reg_shift);
2483 	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2484 				      map->read_flag_mask);
2485 	trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2486 
2487 	ret = map->bus->read(map->bus_context, map->work_buf,
2488 			     map->format.reg_bytes + map->format.pad_bytes,
2489 			     val, val_len);
2490 
2491 	trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2492 
2493 	return ret;
2494 }
2495 
2496 static int _regmap_bus_reg_read(void *context, unsigned int reg,
2497 				unsigned int *val)
2498 {
2499 	struct regmap *map = context;
2500 
2501 	return map->bus->reg_read(map->bus_context, reg, val);
2502 }
2503 
2504 static int _regmap_bus_read(void *context, unsigned int reg,
2505 			    unsigned int *val)
2506 {
2507 	int ret;
2508 	struct regmap *map = context;
2509 	void *work_val = map->work_buf + map->format.reg_bytes +
2510 		map->format.pad_bytes;
2511 
2512 	if (!map->format.parse_val)
2513 		return -EINVAL;
2514 
2515 	ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes);
2516 	if (ret == 0)
2517 		*val = map->format.parse_val(work_val);
2518 
2519 	return ret;
2520 }
2521 
2522 static int _regmap_read(struct regmap *map, unsigned int reg,
2523 			unsigned int *val)
2524 {
2525 	int ret;
2526 	void *context = _regmap_map_get_context(map);
2527 
2528 	if (!map->cache_bypass) {
2529 		ret = regcache_read(map, reg, val);
2530 		if (ret == 0)
2531 			return 0;
2532 	}
2533 
2534 	if (map->cache_only)
2535 		return -EBUSY;
2536 
2537 	if (!regmap_readable(map, reg))
2538 		return -EIO;
2539 
2540 	ret = map->reg_read(context, reg, val);
2541 	if (ret == 0) {
2542 		if (regmap_should_log(map))
2543 			dev_info(map->dev, "%x => %x\n", reg, *val);
2544 
2545 		trace_regmap_reg_read(map, reg, *val);
2546 
2547 		if (!map->cache_bypass)
2548 			regcache_write(map, reg, *val);
2549 	}
2550 
2551 	return ret;
2552 }
2553 
2554 /**
2555  * regmap_read() - Read a value from a single register
2556  *
2557  * @map: Register map to read from
2558  * @reg: Register to be read from
2559  * @val: Pointer to store read value
2560  *
2561  * A value of zero will be returned on success, a negative errno will
2562  * be returned in error cases.
2563  */
2564 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2565 {
2566 	int ret;
2567 
2568 	if (!IS_ALIGNED(reg, map->reg_stride))
2569 		return -EINVAL;
2570 
2571 	map->lock(map->lock_arg);
2572 
2573 	ret = _regmap_read(map, reg, val);
2574 
2575 	map->unlock(map->lock_arg);
2576 
2577 	return ret;
2578 }
2579 EXPORT_SYMBOL_GPL(regmap_read);
2580 
2581 /**
2582  * regmap_raw_read() - Read raw data from the device
2583  *
2584  * @map: Register map to read from
2585  * @reg: First register to be read from
2586  * @val: Pointer to store read value
2587  * @val_len: Size of data to read
2588  *
2589  * A value of zero will be returned on success, a negative errno will
2590  * be returned in error cases.
2591  */
2592 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2593 		    size_t val_len)
2594 {
2595 	size_t val_bytes = map->format.val_bytes;
2596 	size_t val_count = val_len / val_bytes;
2597 	unsigned int v;
2598 	int ret, i;
2599 
2600 	if (!map->bus)
2601 		return -EINVAL;
2602 	if (val_len % map->format.val_bytes)
2603 		return -EINVAL;
2604 	if (!IS_ALIGNED(reg, map->reg_stride))
2605 		return -EINVAL;
2606 	if (val_count == 0)
2607 		return -EINVAL;
2608 
2609 	map->lock(map->lock_arg);
2610 
2611 	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2612 	    map->cache_type == REGCACHE_NONE) {
2613 		size_t chunk_count, chunk_bytes;
2614 		size_t chunk_regs = val_count;
2615 
2616 		if (!map->bus->read) {
2617 			ret = -ENOTSUPP;
2618 			goto out;
2619 		}
2620 
2621 		if (map->use_single_read)
2622 			chunk_regs = 1;
2623 		else if (map->max_raw_read && val_len > map->max_raw_read)
2624 			chunk_regs = map->max_raw_read / val_bytes;
2625 
2626 		chunk_count = val_count / chunk_regs;
2627 		chunk_bytes = chunk_regs * val_bytes;
2628 
2629 		/* Read bytes that fit into whole chunks */
2630 		for (i = 0; i < chunk_count; i++) {
2631 			ret = _regmap_raw_read(map, reg, val, chunk_bytes);
2632 			if (ret != 0)
2633 				goto out;
2634 
2635 			reg += regmap_get_offset(map, chunk_regs);
2636 			val += chunk_bytes;
2637 			val_len -= chunk_bytes;
2638 		}
2639 
2640 		/* Read remaining bytes */
2641 		if (val_len) {
2642 			ret = _regmap_raw_read(map, reg, val, val_len);
2643 			if (ret != 0)
2644 				goto out;
2645 		}
2646 	} else {
2647 		/* Otherwise go word by word for the cache; should be low
2648 		 * cost as we expect to hit the cache.
2649 		 */
2650 		for (i = 0; i < val_count; i++) {
2651 			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2652 					   &v);
2653 			if (ret != 0)
2654 				goto out;
2655 
2656 			map->format.format_val(val + (i * val_bytes), v, 0);
2657 		}
2658 	}
2659 
2660  out:
2661 	map->unlock(map->lock_arg);
2662 
2663 	return ret;
2664 }
2665 EXPORT_SYMBOL_GPL(regmap_raw_read);
2666 
2667 /**
2668  * regmap_noinc_read(): Read data from a register without incrementing the
2669  *			register number
2670  *
2671  * @map: Register map to read from
2672  * @reg: Register to read from
2673  * @val: Pointer to data buffer
2674  * @val_len: Length of output buffer in bytes.
2675  *
2676  * The regmap API usually assumes that bulk bus read operations will read a
2677  * range of registers. Some devices have certain registers for which a read
2678  * operation read will read from an internal FIFO.
2679  *
2680  * The target register must be volatile but registers after it can be
2681  * completely unrelated cacheable registers.
2682  *
2683  * This will attempt multiple reads as required to read val_len bytes.
2684  *
2685  * A value of zero will be returned on success, a negative errno will be
2686  * returned in error cases.
2687  */
2688 int regmap_noinc_read(struct regmap *map, unsigned int reg,
2689 		      void *val, size_t val_len)
2690 {
2691 	size_t read_len;
2692 	int ret;
2693 
2694 	if (!map->bus)
2695 		return -EINVAL;
2696 	if (!map->bus->read)
2697 		return -ENOTSUPP;
2698 	if (val_len % map->format.val_bytes)
2699 		return -EINVAL;
2700 	if (!IS_ALIGNED(reg, map->reg_stride))
2701 		return -EINVAL;
2702 	if (val_len == 0)
2703 		return -EINVAL;
2704 
2705 	map->lock(map->lock_arg);
2706 
2707 	if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) {
2708 		ret = -EINVAL;
2709 		goto out_unlock;
2710 	}
2711 
2712 	while (val_len) {
2713 		if (map->max_raw_read && map->max_raw_read < val_len)
2714 			read_len = map->max_raw_read;
2715 		else
2716 			read_len = val_len;
2717 		ret = _regmap_raw_read(map, reg, val, read_len);
2718 		if (ret)
2719 			goto out_unlock;
2720 		val = ((u8 *)val) + read_len;
2721 		val_len -= read_len;
2722 	}
2723 
2724 out_unlock:
2725 	map->unlock(map->lock_arg);
2726 	return ret;
2727 }
2728 EXPORT_SYMBOL_GPL(regmap_noinc_read);
2729 
2730 /**
2731  * regmap_field_read(): Read a value to a single register field
2732  *
2733  * @field: Register field to read from
2734  * @val: Pointer to store read value
2735  *
2736  * A value of zero will be returned on success, a negative errno will
2737  * be returned in error cases.
2738  */
2739 int regmap_field_read(struct regmap_field *field, unsigned int *val)
2740 {
2741 	int ret;
2742 	unsigned int reg_val;
2743 	ret = regmap_read(field->regmap, field->reg, &reg_val);
2744 	if (ret != 0)
2745 		return ret;
2746 
2747 	reg_val &= field->mask;
2748 	reg_val >>= field->shift;
2749 	*val = reg_val;
2750 
2751 	return ret;
2752 }
2753 EXPORT_SYMBOL_GPL(regmap_field_read);
2754 
2755 /**
2756  * regmap_fields_read() - Read a value to a single register field with port ID
2757  *
2758  * @field: Register field to read from
2759  * @id: port ID
2760  * @val: Pointer to store read value
2761  *
2762  * A value of zero will be returned on success, a negative errno will
2763  * be returned in error cases.
2764  */
2765 int regmap_fields_read(struct regmap_field *field, unsigned int id,
2766 		       unsigned int *val)
2767 {
2768 	int ret;
2769 	unsigned int reg_val;
2770 
2771 	if (id >= field->id_size)
2772 		return -EINVAL;
2773 
2774 	ret = regmap_read(field->regmap,
2775 			  field->reg + (field->id_offset * id),
2776 			  &reg_val);
2777 	if (ret != 0)
2778 		return ret;
2779 
2780 	reg_val &= field->mask;
2781 	reg_val >>= field->shift;
2782 	*val = reg_val;
2783 
2784 	return ret;
2785 }
2786 EXPORT_SYMBOL_GPL(regmap_fields_read);
2787 
2788 /**
2789  * regmap_bulk_read() - Read multiple registers from the device
2790  *
2791  * @map: Register map to read from
2792  * @reg: First register to be read from
2793  * @val: Pointer to store read value, in native register size for device
2794  * @val_count: Number of registers to read
2795  *
2796  * A value of zero will be returned on success, a negative errno will
2797  * be returned in error cases.
2798  */
2799 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2800 		     size_t val_count)
2801 {
2802 	int ret, i;
2803 	size_t val_bytes = map->format.val_bytes;
2804 	bool vol = regmap_volatile_range(map, reg, val_count);
2805 
2806 	if (!IS_ALIGNED(reg, map->reg_stride))
2807 		return -EINVAL;
2808 	if (val_count == 0)
2809 		return -EINVAL;
2810 
2811 	if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2812 		ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
2813 		if (ret != 0)
2814 			return ret;
2815 
2816 		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2817 			map->format.parse_inplace(val + i);
2818 	} else {
2819 #ifdef CONFIG_64BIT
2820 		u64 *u64 = val;
2821 #endif
2822 		u32 *u32 = val;
2823 		u16 *u16 = val;
2824 		u8 *u8 = val;
2825 
2826 		map->lock(map->lock_arg);
2827 
2828 		for (i = 0; i < val_count; i++) {
2829 			unsigned int ival;
2830 
2831 			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2832 					   &ival);
2833 			if (ret != 0)
2834 				goto out;
2835 
2836 			switch (map->format.val_bytes) {
2837 #ifdef CONFIG_64BIT
2838 			case 8:
2839 				u64[i] = ival;
2840 				break;
2841 #endif
2842 			case 4:
2843 				u32[i] = ival;
2844 				break;
2845 			case 2:
2846 				u16[i] = ival;
2847 				break;
2848 			case 1:
2849 				u8[i] = ival;
2850 				break;
2851 			default:
2852 				ret = -EINVAL;
2853 				goto out;
2854 			}
2855 		}
2856 
2857 out:
2858 		map->unlock(map->lock_arg);
2859 	}
2860 
2861 	return ret;
2862 }
2863 EXPORT_SYMBOL_GPL(regmap_bulk_read);
2864 
2865 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
2866 			       unsigned int mask, unsigned int val,
2867 			       bool *change, bool force_write)
2868 {
2869 	int ret;
2870 	unsigned int tmp, orig;
2871 
2872 	if (change)
2873 		*change = false;
2874 
2875 	if (regmap_volatile(map, reg) && map->reg_update_bits) {
2876 		ret = map->reg_update_bits(map->bus_context, reg, mask, val);
2877 		if (ret == 0 && change)
2878 			*change = true;
2879 	} else {
2880 		ret = _regmap_read(map, reg, &orig);
2881 		if (ret != 0)
2882 			return ret;
2883 
2884 		tmp = orig & ~mask;
2885 		tmp |= val & mask;
2886 
2887 		if (force_write || (tmp != orig)) {
2888 			ret = _regmap_write(map, reg, tmp);
2889 			if (ret == 0 && change)
2890 				*change = true;
2891 		}
2892 	}
2893 
2894 	return ret;
2895 }
2896 
2897 /**
2898  * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
2899  *
2900  * @map: Register map to update
2901  * @reg: Register to update
2902  * @mask: Bitmask to change
2903  * @val: New value for bitmask
2904  * @change: Boolean indicating if a write was done
2905  * @async: Boolean indicating asynchronously
2906  * @force: Boolean indicating use force update
2907  *
2908  * Perform a read/modify/write cycle on a register map with change, async, force
2909  * options.
2910  *
2911  * If async is true:
2912  *
2913  * With most buses the read must be done synchronously so this is most useful
2914  * for devices with a cache which do not need to interact with the hardware to
2915  * determine the current register value.
2916  *
2917  * Returns zero for success, a negative number on error.
2918  */
2919 int regmap_update_bits_base(struct regmap *map, unsigned int reg,
2920 			    unsigned int mask, unsigned int val,
2921 			    bool *change, bool async, bool force)
2922 {
2923 	int ret;
2924 
2925 	map->lock(map->lock_arg);
2926 
2927 	map->async = async;
2928 
2929 	ret = _regmap_update_bits(map, reg, mask, val, change, force);
2930 
2931 	map->async = false;
2932 
2933 	map->unlock(map->lock_arg);
2934 
2935 	return ret;
2936 }
2937 EXPORT_SYMBOL_GPL(regmap_update_bits_base);
2938 
2939 void regmap_async_complete_cb(struct regmap_async *async, int ret)
2940 {
2941 	struct regmap *map = async->map;
2942 	bool wake;
2943 
2944 	trace_regmap_async_io_complete(map);
2945 
2946 	spin_lock(&map->async_lock);
2947 	list_move(&async->list, &map->async_free);
2948 	wake = list_empty(&map->async_list);
2949 
2950 	if (ret != 0)
2951 		map->async_ret = ret;
2952 
2953 	spin_unlock(&map->async_lock);
2954 
2955 	if (wake)
2956 		wake_up(&map->async_waitq);
2957 }
2958 EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2959 
2960 static int regmap_async_is_done(struct regmap *map)
2961 {
2962 	unsigned long flags;
2963 	int ret;
2964 
2965 	spin_lock_irqsave(&map->async_lock, flags);
2966 	ret = list_empty(&map->async_list);
2967 	spin_unlock_irqrestore(&map->async_lock, flags);
2968 
2969 	return ret;
2970 }
2971 
2972 /**
2973  * regmap_async_complete - Ensure all asynchronous I/O has completed.
2974  *
2975  * @map: Map to operate on.
2976  *
2977  * Blocks until any pending asynchronous I/O has completed.  Returns
2978  * an error code for any failed I/O operations.
2979  */
2980 int regmap_async_complete(struct regmap *map)
2981 {
2982 	unsigned long flags;
2983 	int ret;
2984 
2985 	/* Nothing to do with no async support */
2986 	if (!map->bus || !map->bus->async_write)
2987 		return 0;
2988 
2989 	trace_regmap_async_complete_start(map);
2990 
2991 	wait_event(map->async_waitq, regmap_async_is_done(map));
2992 
2993 	spin_lock_irqsave(&map->async_lock, flags);
2994 	ret = map->async_ret;
2995 	map->async_ret = 0;
2996 	spin_unlock_irqrestore(&map->async_lock, flags);
2997 
2998 	trace_regmap_async_complete_done(map);
2999 
3000 	return ret;
3001 }
3002 EXPORT_SYMBOL_GPL(regmap_async_complete);
3003 
3004 /**
3005  * regmap_register_patch - Register and apply register updates to be applied
3006  *                         on device initialistion
3007  *
3008  * @map: Register map to apply updates to.
3009  * @regs: Values to update.
3010  * @num_regs: Number of entries in regs.
3011  *
3012  * Register a set of register updates to be applied to the device
3013  * whenever the device registers are synchronised with the cache and
3014  * apply them immediately.  Typically this is used to apply
3015  * corrections to be applied to the device defaults on startup, such
3016  * as the updates some vendors provide to undocumented registers.
3017  *
3018  * The caller must ensure that this function cannot be called
3019  * concurrently with either itself or regcache_sync().
3020  */
3021 int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
3022 			  int num_regs)
3023 {
3024 	struct reg_sequence *p;
3025 	int ret;
3026 	bool bypass;
3027 
3028 	if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
3029 	    num_regs))
3030 		return 0;
3031 
3032 	p = krealloc(map->patch,
3033 		     sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
3034 		     GFP_KERNEL);
3035 	if (p) {
3036 		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
3037 		map->patch = p;
3038 		map->patch_regs += num_regs;
3039 	} else {
3040 		return -ENOMEM;
3041 	}
3042 
3043 	map->lock(map->lock_arg);
3044 
3045 	bypass = map->cache_bypass;
3046 
3047 	map->cache_bypass = true;
3048 	map->async = true;
3049 
3050 	ret = _regmap_multi_reg_write(map, regs, num_regs);
3051 
3052 	map->async = false;
3053 	map->cache_bypass = bypass;
3054 
3055 	map->unlock(map->lock_arg);
3056 
3057 	regmap_async_complete(map);
3058 
3059 	return ret;
3060 }
3061 EXPORT_SYMBOL_GPL(regmap_register_patch);
3062 
3063 /**
3064  * regmap_get_val_bytes() - Report the size of a register value
3065  *
3066  * @map: Register map to operate on.
3067  *
3068  * Report the size of a register value, mainly intended to for use by
3069  * generic infrastructure built on top of regmap.
3070  */
3071 int regmap_get_val_bytes(struct regmap *map)
3072 {
3073 	if (map->format.format_write)
3074 		return -EINVAL;
3075 
3076 	return map->format.val_bytes;
3077 }
3078 EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
3079 
3080 /**
3081  * regmap_get_max_register() - Report the max register value
3082  *
3083  * @map: Register map to operate on.
3084  *
3085  * Report the max register value, mainly intended to for use by
3086  * generic infrastructure built on top of regmap.
3087  */
3088 int regmap_get_max_register(struct regmap *map)
3089 {
3090 	return map->max_register ? map->max_register : -EINVAL;
3091 }
3092 EXPORT_SYMBOL_GPL(regmap_get_max_register);
3093 
3094 /**
3095  * regmap_get_reg_stride() - Report the register address stride
3096  *
3097  * @map: Register map to operate on.
3098  *
3099  * Report the register address stride, mainly intended to for use by
3100  * generic infrastructure built on top of regmap.
3101  */
3102 int regmap_get_reg_stride(struct regmap *map)
3103 {
3104 	return map->reg_stride;
3105 }
3106 EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
3107 
3108 int regmap_parse_val(struct regmap *map, const void *buf,
3109 			unsigned int *val)
3110 {
3111 	if (!map->format.parse_val)
3112 		return -EINVAL;
3113 
3114 	*val = map->format.parse_val(buf);
3115 
3116 	return 0;
3117 }
3118 EXPORT_SYMBOL_GPL(regmap_parse_val);
3119 
3120 static int __init regmap_initcall(void)
3121 {
3122 	regmap_debugfs_initcall();
3123 
3124 	return 0;
3125 }
3126 postcore_initcall(regmap_initcall);
3127