1 // SPDX-License-Identifier: GPL-2.0 2 // 3 // Register map access API 4 // 5 // Copyright 2011 Wolfson Microelectronics plc 6 // 7 // Author: Mark Brown <broonie@opensource.wolfsonmicro.com> 8 9 #include <linux/device.h> 10 #include <linux/slab.h> 11 #include <linux/export.h> 12 #include <linux/mutex.h> 13 #include <linux/err.h> 14 #include <linux/property.h> 15 #include <linux/rbtree.h> 16 #include <linux/sched.h> 17 #include <linux/delay.h> 18 #include <linux/log2.h> 19 #include <linux/hwspinlock.h> 20 #include <asm/unaligned.h> 21 22 #define CREATE_TRACE_POINTS 23 #include "trace.h" 24 25 #include "internal.h" 26 27 /* 28 * Sometimes for failures during very early init the trace 29 * infrastructure isn't available early enough to be used. For this 30 * sort of problem defining LOG_DEVICE will add printks for basic 31 * register I/O on a specific device. 32 */ 33 #undef LOG_DEVICE 34 35 #ifdef LOG_DEVICE 36 static inline bool regmap_should_log(struct regmap *map) 37 { 38 return (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0); 39 } 40 #else 41 static inline bool regmap_should_log(struct regmap *map) { return false; } 42 #endif 43 44 45 static int _regmap_update_bits(struct regmap *map, unsigned int reg, 46 unsigned int mask, unsigned int val, 47 bool *change, bool force_write); 48 49 static int _regmap_bus_reg_read(void *context, unsigned int reg, 50 unsigned int *val); 51 static int _regmap_bus_read(void *context, unsigned int reg, 52 unsigned int *val); 53 static int _regmap_bus_formatted_write(void *context, unsigned int reg, 54 unsigned int val); 55 static int _regmap_bus_reg_write(void *context, unsigned int reg, 56 unsigned int val); 57 static int _regmap_bus_raw_write(void *context, unsigned int reg, 58 unsigned int val); 59 60 bool regmap_reg_in_ranges(unsigned int reg, 61 const struct regmap_range *ranges, 62 unsigned int nranges) 63 { 64 const struct regmap_range *r; 65 int i; 66 67 for (i = 0, r = ranges; i < nranges; i++, r++) 68 if (regmap_reg_in_range(reg, r)) 69 return true; 70 return false; 71 } 72 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges); 73 74 bool regmap_check_range_table(struct regmap *map, unsigned int reg, 75 const struct regmap_access_table *table) 76 { 77 /* Check "no ranges" first */ 78 if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges)) 79 return false; 80 81 /* In case zero "yes ranges" are supplied, any reg is OK */ 82 if (!table->n_yes_ranges) 83 return true; 84 85 return regmap_reg_in_ranges(reg, table->yes_ranges, 86 table->n_yes_ranges); 87 } 88 EXPORT_SYMBOL_GPL(regmap_check_range_table); 89 90 bool regmap_writeable(struct regmap *map, unsigned int reg) 91 { 92 if (map->max_register && reg > map->max_register) 93 return false; 94 95 if (map->writeable_reg) 96 return map->writeable_reg(map->dev, reg); 97 98 if (map->wr_table) 99 return regmap_check_range_table(map, reg, map->wr_table); 100 101 return true; 102 } 103 104 bool regmap_cached(struct regmap *map, unsigned int reg) 105 { 106 int ret; 107 unsigned int val; 108 109 if (map->cache_type == REGCACHE_NONE) 110 return false; 111 112 if (!map->cache_ops) 113 return false; 114 115 if (map->max_register && reg > map->max_register) 116 return false; 117 118 map->lock(map->lock_arg); 119 ret = regcache_read(map, reg, &val); 120 map->unlock(map->lock_arg); 121 if (ret) 122 return false; 123 124 return true; 125 } 126 127 bool regmap_readable(struct regmap *map, unsigned int reg) 128 { 129 if (!map->reg_read) 130 return false; 131 132 if (map->max_register && reg > map->max_register) 133 return false; 134 135 if (map->format.format_write) 136 return false; 137 138 if (map->readable_reg) 139 return map->readable_reg(map->dev, reg); 140 141 if (map->rd_table) 142 return regmap_check_range_table(map, reg, map->rd_table); 143 144 return true; 145 } 146 147 bool regmap_volatile(struct regmap *map, unsigned int reg) 148 { 149 if (!map->format.format_write && !regmap_readable(map, reg)) 150 return false; 151 152 if (map->volatile_reg) 153 return map->volatile_reg(map->dev, reg); 154 155 if (map->volatile_table) 156 return regmap_check_range_table(map, reg, map->volatile_table); 157 158 if (map->cache_ops) 159 return false; 160 else 161 return true; 162 } 163 164 bool regmap_precious(struct regmap *map, unsigned int reg) 165 { 166 if (!regmap_readable(map, reg)) 167 return false; 168 169 if (map->precious_reg) 170 return map->precious_reg(map->dev, reg); 171 172 if (map->precious_table) 173 return regmap_check_range_table(map, reg, map->precious_table); 174 175 return false; 176 } 177 178 bool regmap_writeable_noinc(struct regmap *map, unsigned int reg) 179 { 180 if (map->writeable_noinc_reg) 181 return map->writeable_noinc_reg(map->dev, reg); 182 183 if (map->wr_noinc_table) 184 return regmap_check_range_table(map, reg, map->wr_noinc_table); 185 186 return true; 187 } 188 189 bool regmap_readable_noinc(struct regmap *map, unsigned int reg) 190 { 191 if (map->readable_noinc_reg) 192 return map->readable_noinc_reg(map->dev, reg); 193 194 if (map->rd_noinc_table) 195 return regmap_check_range_table(map, reg, map->rd_noinc_table); 196 197 return true; 198 } 199 200 static bool regmap_volatile_range(struct regmap *map, unsigned int reg, 201 size_t num) 202 { 203 unsigned int i; 204 205 for (i = 0; i < num; i++) 206 if (!regmap_volatile(map, reg + regmap_get_offset(map, i))) 207 return false; 208 209 return true; 210 } 211 212 static void regmap_format_12_20_write(struct regmap *map, 213 unsigned int reg, unsigned int val) 214 { 215 u8 *out = map->work_buf; 216 217 out[0] = reg >> 4; 218 out[1] = (reg << 4) | (val >> 16); 219 out[2] = val >> 8; 220 out[3] = val; 221 } 222 223 224 static void regmap_format_2_6_write(struct regmap *map, 225 unsigned int reg, unsigned int val) 226 { 227 u8 *out = map->work_buf; 228 229 *out = (reg << 6) | val; 230 } 231 232 static void regmap_format_4_12_write(struct regmap *map, 233 unsigned int reg, unsigned int val) 234 { 235 __be16 *out = map->work_buf; 236 *out = cpu_to_be16((reg << 12) | val); 237 } 238 239 static void regmap_format_7_9_write(struct regmap *map, 240 unsigned int reg, unsigned int val) 241 { 242 __be16 *out = map->work_buf; 243 *out = cpu_to_be16((reg << 9) | val); 244 } 245 246 static void regmap_format_7_17_write(struct regmap *map, 247 unsigned int reg, unsigned int val) 248 { 249 u8 *out = map->work_buf; 250 251 out[2] = val; 252 out[1] = val >> 8; 253 out[0] = (val >> 16) | (reg << 1); 254 } 255 256 static void regmap_format_10_14_write(struct regmap *map, 257 unsigned int reg, unsigned int val) 258 { 259 u8 *out = map->work_buf; 260 261 out[2] = val; 262 out[1] = (val >> 8) | (reg << 6); 263 out[0] = reg >> 2; 264 } 265 266 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift) 267 { 268 u8 *b = buf; 269 270 b[0] = val << shift; 271 } 272 273 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift) 274 { 275 put_unaligned_be16(val << shift, buf); 276 } 277 278 static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift) 279 { 280 put_unaligned_le16(val << shift, buf); 281 } 282 283 static void regmap_format_16_native(void *buf, unsigned int val, 284 unsigned int shift) 285 { 286 u16 v = val << shift; 287 288 memcpy(buf, &v, sizeof(v)); 289 } 290 291 static void regmap_format_24(void *buf, unsigned int val, unsigned int shift) 292 { 293 u8 *b = buf; 294 295 val <<= shift; 296 297 b[0] = val >> 16; 298 b[1] = val >> 8; 299 b[2] = val; 300 } 301 302 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift) 303 { 304 put_unaligned_be32(val << shift, buf); 305 } 306 307 static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift) 308 { 309 put_unaligned_le32(val << shift, buf); 310 } 311 312 static void regmap_format_32_native(void *buf, unsigned int val, 313 unsigned int shift) 314 { 315 u32 v = val << shift; 316 317 memcpy(buf, &v, sizeof(v)); 318 } 319 320 #ifdef CONFIG_64BIT 321 static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift) 322 { 323 put_unaligned_be64((u64) val << shift, buf); 324 } 325 326 static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift) 327 { 328 put_unaligned_le64((u64) val << shift, buf); 329 } 330 331 static void regmap_format_64_native(void *buf, unsigned int val, 332 unsigned int shift) 333 { 334 u64 v = (u64) val << shift; 335 336 memcpy(buf, &v, sizeof(v)); 337 } 338 #endif 339 340 static void regmap_parse_inplace_noop(void *buf) 341 { 342 } 343 344 static unsigned int regmap_parse_8(const void *buf) 345 { 346 const u8 *b = buf; 347 348 return b[0]; 349 } 350 351 static unsigned int regmap_parse_16_be(const void *buf) 352 { 353 return get_unaligned_be16(buf); 354 } 355 356 static unsigned int regmap_parse_16_le(const void *buf) 357 { 358 return get_unaligned_le16(buf); 359 } 360 361 static void regmap_parse_16_be_inplace(void *buf) 362 { 363 u16 v = get_unaligned_be16(buf); 364 365 memcpy(buf, &v, sizeof(v)); 366 } 367 368 static void regmap_parse_16_le_inplace(void *buf) 369 { 370 u16 v = get_unaligned_le16(buf); 371 372 memcpy(buf, &v, sizeof(v)); 373 } 374 375 static unsigned int regmap_parse_16_native(const void *buf) 376 { 377 u16 v; 378 379 memcpy(&v, buf, sizeof(v)); 380 return v; 381 } 382 383 static unsigned int regmap_parse_24(const void *buf) 384 { 385 const u8 *b = buf; 386 unsigned int ret = b[2]; 387 ret |= ((unsigned int)b[1]) << 8; 388 ret |= ((unsigned int)b[0]) << 16; 389 390 return ret; 391 } 392 393 static unsigned int regmap_parse_32_be(const void *buf) 394 { 395 return get_unaligned_be32(buf); 396 } 397 398 static unsigned int regmap_parse_32_le(const void *buf) 399 { 400 return get_unaligned_le32(buf); 401 } 402 403 static void regmap_parse_32_be_inplace(void *buf) 404 { 405 u32 v = get_unaligned_be32(buf); 406 407 memcpy(buf, &v, sizeof(v)); 408 } 409 410 static void regmap_parse_32_le_inplace(void *buf) 411 { 412 u32 v = get_unaligned_le32(buf); 413 414 memcpy(buf, &v, sizeof(v)); 415 } 416 417 static unsigned int regmap_parse_32_native(const void *buf) 418 { 419 u32 v; 420 421 memcpy(&v, buf, sizeof(v)); 422 return v; 423 } 424 425 #ifdef CONFIG_64BIT 426 static unsigned int regmap_parse_64_be(const void *buf) 427 { 428 return get_unaligned_be64(buf); 429 } 430 431 static unsigned int regmap_parse_64_le(const void *buf) 432 { 433 return get_unaligned_le64(buf); 434 } 435 436 static void regmap_parse_64_be_inplace(void *buf) 437 { 438 u64 v = get_unaligned_be64(buf); 439 440 memcpy(buf, &v, sizeof(v)); 441 } 442 443 static void regmap_parse_64_le_inplace(void *buf) 444 { 445 u64 v = get_unaligned_le64(buf); 446 447 memcpy(buf, &v, sizeof(v)); 448 } 449 450 static unsigned int regmap_parse_64_native(const void *buf) 451 { 452 u64 v; 453 454 memcpy(&v, buf, sizeof(v)); 455 return v; 456 } 457 #endif 458 459 static void regmap_lock_hwlock(void *__map) 460 { 461 struct regmap *map = __map; 462 463 hwspin_lock_timeout(map->hwlock, UINT_MAX); 464 } 465 466 static void regmap_lock_hwlock_irq(void *__map) 467 { 468 struct regmap *map = __map; 469 470 hwspin_lock_timeout_irq(map->hwlock, UINT_MAX); 471 } 472 473 static void regmap_lock_hwlock_irqsave(void *__map) 474 { 475 struct regmap *map = __map; 476 477 hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX, 478 &map->spinlock_flags); 479 } 480 481 static void regmap_unlock_hwlock(void *__map) 482 { 483 struct regmap *map = __map; 484 485 hwspin_unlock(map->hwlock); 486 } 487 488 static void regmap_unlock_hwlock_irq(void *__map) 489 { 490 struct regmap *map = __map; 491 492 hwspin_unlock_irq(map->hwlock); 493 } 494 495 static void regmap_unlock_hwlock_irqrestore(void *__map) 496 { 497 struct regmap *map = __map; 498 499 hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags); 500 } 501 502 static void regmap_lock_unlock_none(void *__map) 503 { 504 505 } 506 507 static void regmap_lock_mutex(void *__map) 508 { 509 struct regmap *map = __map; 510 mutex_lock(&map->mutex); 511 } 512 513 static void regmap_unlock_mutex(void *__map) 514 { 515 struct regmap *map = __map; 516 mutex_unlock(&map->mutex); 517 } 518 519 static void regmap_lock_spinlock(void *__map) 520 __acquires(&map->spinlock) 521 { 522 struct regmap *map = __map; 523 unsigned long flags; 524 525 spin_lock_irqsave(&map->spinlock, flags); 526 map->spinlock_flags = flags; 527 } 528 529 static void regmap_unlock_spinlock(void *__map) 530 __releases(&map->spinlock) 531 { 532 struct regmap *map = __map; 533 spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags); 534 } 535 536 static void regmap_lock_raw_spinlock(void *__map) 537 __acquires(&map->raw_spinlock) 538 { 539 struct regmap *map = __map; 540 unsigned long flags; 541 542 raw_spin_lock_irqsave(&map->raw_spinlock, flags); 543 map->raw_spinlock_flags = flags; 544 } 545 546 static void regmap_unlock_raw_spinlock(void *__map) 547 __releases(&map->raw_spinlock) 548 { 549 struct regmap *map = __map; 550 raw_spin_unlock_irqrestore(&map->raw_spinlock, map->raw_spinlock_flags); 551 } 552 553 static void dev_get_regmap_release(struct device *dev, void *res) 554 { 555 /* 556 * We don't actually have anything to do here; the goal here 557 * is not to manage the regmap but to provide a simple way to 558 * get the regmap back given a struct device. 559 */ 560 } 561 562 static bool _regmap_range_add(struct regmap *map, 563 struct regmap_range_node *data) 564 { 565 struct rb_root *root = &map->range_tree; 566 struct rb_node **new = &(root->rb_node), *parent = NULL; 567 568 while (*new) { 569 struct regmap_range_node *this = 570 rb_entry(*new, struct regmap_range_node, node); 571 572 parent = *new; 573 if (data->range_max < this->range_min) 574 new = &((*new)->rb_left); 575 else if (data->range_min > this->range_max) 576 new = &((*new)->rb_right); 577 else 578 return false; 579 } 580 581 rb_link_node(&data->node, parent, new); 582 rb_insert_color(&data->node, root); 583 584 return true; 585 } 586 587 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map, 588 unsigned int reg) 589 { 590 struct rb_node *node = map->range_tree.rb_node; 591 592 while (node) { 593 struct regmap_range_node *this = 594 rb_entry(node, struct regmap_range_node, node); 595 596 if (reg < this->range_min) 597 node = node->rb_left; 598 else if (reg > this->range_max) 599 node = node->rb_right; 600 else 601 return this; 602 } 603 604 return NULL; 605 } 606 607 static void regmap_range_exit(struct regmap *map) 608 { 609 struct rb_node *next; 610 struct regmap_range_node *range_node; 611 612 next = rb_first(&map->range_tree); 613 while (next) { 614 range_node = rb_entry(next, struct regmap_range_node, node); 615 next = rb_next(&range_node->node); 616 rb_erase(&range_node->node, &map->range_tree); 617 kfree(range_node); 618 } 619 620 kfree(map->selector_work_buf); 621 } 622 623 static int regmap_set_name(struct regmap *map, const struct regmap_config *config) 624 { 625 if (config->name) { 626 const char *name = kstrdup_const(config->name, GFP_KERNEL); 627 628 if (!name) 629 return -ENOMEM; 630 631 kfree_const(map->name); 632 map->name = name; 633 } 634 635 return 0; 636 } 637 638 int regmap_attach_dev(struct device *dev, struct regmap *map, 639 const struct regmap_config *config) 640 { 641 struct regmap **m; 642 int ret; 643 644 map->dev = dev; 645 646 ret = regmap_set_name(map, config); 647 if (ret) 648 return ret; 649 650 regmap_debugfs_exit(map); 651 regmap_debugfs_init(map); 652 653 /* Add a devres resource for dev_get_regmap() */ 654 m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL); 655 if (!m) { 656 regmap_debugfs_exit(map); 657 return -ENOMEM; 658 } 659 *m = map; 660 devres_add(dev, m); 661 662 return 0; 663 } 664 EXPORT_SYMBOL_GPL(regmap_attach_dev); 665 666 static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus, 667 const struct regmap_config *config) 668 { 669 enum regmap_endian endian; 670 671 /* Retrieve the endianness specification from the regmap config */ 672 endian = config->reg_format_endian; 673 674 /* If the regmap config specified a non-default value, use that */ 675 if (endian != REGMAP_ENDIAN_DEFAULT) 676 return endian; 677 678 /* Retrieve the endianness specification from the bus config */ 679 if (bus && bus->reg_format_endian_default) 680 endian = bus->reg_format_endian_default; 681 682 /* If the bus specified a non-default value, use that */ 683 if (endian != REGMAP_ENDIAN_DEFAULT) 684 return endian; 685 686 /* Use this if no other value was found */ 687 return REGMAP_ENDIAN_BIG; 688 } 689 690 enum regmap_endian regmap_get_val_endian(struct device *dev, 691 const struct regmap_bus *bus, 692 const struct regmap_config *config) 693 { 694 struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL; 695 enum regmap_endian endian; 696 697 /* Retrieve the endianness specification from the regmap config */ 698 endian = config->val_format_endian; 699 700 /* If the regmap config specified a non-default value, use that */ 701 if (endian != REGMAP_ENDIAN_DEFAULT) 702 return endian; 703 704 /* If the firmware node exist try to get endianness from it */ 705 if (fwnode_property_read_bool(fwnode, "big-endian")) 706 endian = REGMAP_ENDIAN_BIG; 707 else if (fwnode_property_read_bool(fwnode, "little-endian")) 708 endian = REGMAP_ENDIAN_LITTLE; 709 else if (fwnode_property_read_bool(fwnode, "native-endian")) 710 endian = REGMAP_ENDIAN_NATIVE; 711 712 /* If the endianness was specified in fwnode, use that */ 713 if (endian != REGMAP_ENDIAN_DEFAULT) 714 return endian; 715 716 /* Retrieve the endianness specification from the bus config */ 717 if (bus && bus->val_format_endian_default) 718 endian = bus->val_format_endian_default; 719 720 /* If the bus specified a non-default value, use that */ 721 if (endian != REGMAP_ENDIAN_DEFAULT) 722 return endian; 723 724 /* Use this if no other value was found */ 725 return REGMAP_ENDIAN_BIG; 726 } 727 EXPORT_SYMBOL_GPL(regmap_get_val_endian); 728 729 struct regmap *__regmap_init(struct device *dev, 730 const struct regmap_bus *bus, 731 void *bus_context, 732 const struct regmap_config *config, 733 struct lock_class_key *lock_key, 734 const char *lock_name) 735 { 736 struct regmap *map; 737 int ret = -EINVAL; 738 enum regmap_endian reg_endian, val_endian; 739 int i, j; 740 741 if (!config) 742 goto err; 743 744 map = kzalloc(sizeof(*map), GFP_KERNEL); 745 if (map == NULL) { 746 ret = -ENOMEM; 747 goto err; 748 } 749 750 ret = regmap_set_name(map, config); 751 if (ret) 752 goto err_map; 753 754 ret = -EINVAL; /* Later error paths rely on this */ 755 756 if (config->disable_locking) { 757 map->lock = map->unlock = regmap_lock_unlock_none; 758 map->can_sleep = config->can_sleep; 759 regmap_debugfs_disable(map); 760 } else if (config->lock && config->unlock) { 761 map->lock = config->lock; 762 map->unlock = config->unlock; 763 map->lock_arg = config->lock_arg; 764 map->can_sleep = config->can_sleep; 765 } else if (config->use_hwlock) { 766 map->hwlock = hwspin_lock_request_specific(config->hwlock_id); 767 if (!map->hwlock) { 768 ret = -ENXIO; 769 goto err_name; 770 } 771 772 switch (config->hwlock_mode) { 773 case HWLOCK_IRQSTATE: 774 map->lock = regmap_lock_hwlock_irqsave; 775 map->unlock = regmap_unlock_hwlock_irqrestore; 776 break; 777 case HWLOCK_IRQ: 778 map->lock = regmap_lock_hwlock_irq; 779 map->unlock = regmap_unlock_hwlock_irq; 780 break; 781 default: 782 map->lock = regmap_lock_hwlock; 783 map->unlock = regmap_unlock_hwlock; 784 break; 785 } 786 787 map->lock_arg = map; 788 } else { 789 if ((bus && bus->fast_io) || 790 config->fast_io) { 791 if (config->use_raw_spinlock) { 792 raw_spin_lock_init(&map->raw_spinlock); 793 map->lock = regmap_lock_raw_spinlock; 794 map->unlock = regmap_unlock_raw_spinlock; 795 lockdep_set_class_and_name(&map->raw_spinlock, 796 lock_key, lock_name); 797 } else { 798 spin_lock_init(&map->spinlock); 799 map->lock = regmap_lock_spinlock; 800 map->unlock = regmap_unlock_spinlock; 801 lockdep_set_class_and_name(&map->spinlock, 802 lock_key, lock_name); 803 } 804 } else { 805 mutex_init(&map->mutex); 806 map->lock = regmap_lock_mutex; 807 map->unlock = regmap_unlock_mutex; 808 map->can_sleep = true; 809 lockdep_set_class_and_name(&map->mutex, 810 lock_key, lock_name); 811 } 812 map->lock_arg = map; 813 } 814 815 /* 816 * When we write in fast-paths with regmap_bulk_write() don't allocate 817 * scratch buffers with sleeping allocations. 818 */ 819 if ((bus && bus->fast_io) || config->fast_io) 820 map->alloc_flags = GFP_ATOMIC; 821 else 822 map->alloc_flags = GFP_KERNEL; 823 824 map->reg_base = config->reg_base; 825 826 map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8); 827 map->format.pad_bytes = config->pad_bits / 8; 828 map->format.reg_downshift = config->reg_downshift; 829 map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8); 830 map->format.buf_size = DIV_ROUND_UP(config->reg_bits + 831 config->val_bits + config->pad_bits, 8); 832 map->reg_shift = config->pad_bits % 8; 833 if (config->reg_stride) 834 map->reg_stride = config->reg_stride; 835 else 836 map->reg_stride = 1; 837 if (is_power_of_2(map->reg_stride)) 838 map->reg_stride_order = ilog2(map->reg_stride); 839 else 840 map->reg_stride_order = -1; 841 map->use_single_read = config->use_single_read || !(config->read || (bus && bus->read)); 842 map->use_single_write = config->use_single_write || !(config->write || (bus && bus->write)); 843 map->can_multi_write = config->can_multi_write && (config->write || (bus && bus->write)); 844 if (bus) { 845 map->max_raw_read = bus->max_raw_read; 846 map->max_raw_write = bus->max_raw_write; 847 } else if (config->max_raw_read && config->max_raw_write) { 848 map->max_raw_read = config->max_raw_read; 849 map->max_raw_write = config->max_raw_write; 850 } 851 map->dev = dev; 852 map->bus = bus; 853 map->bus_context = bus_context; 854 map->max_register = config->max_register; 855 map->wr_table = config->wr_table; 856 map->rd_table = config->rd_table; 857 map->volatile_table = config->volatile_table; 858 map->precious_table = config->precious_table; 859 map->wr_noinc_table = config->wr_noinc_table; 860 map->rd_noinc_table = config->rd_noinc_table; 861 map->writeable_reg = config->writeable_reg; 862 map->readable_reg = config->readable_reg; 863 map->volatile_reg = config->volatile_reg; 864 map->precious_reg = config->precious_reg; 865 map->writeable_noinc_reg = config->writeable_noinc_reg; 866 map->readable_noinc_reg = config->readable_noinc_reg; 867 map->cache_type = config->cache_type; 868 869 spin_lock_init(&map->async_lock); 870 INIT_LIST_HEAD(&map->async_list); 871 INIT_LIST_HEAD(&map->async_free); 872 init_waitqueue_head(&map->async_waitq); 873 874 if (config->read_flag_mask || 875 config->write_flag_mask || 876 config->zero_flag_mask) { 877 map->read_flag_mask = config->read_flag_mask; 878 map->write_flag_mask = config->write_flag_mask; 879 } else if (bus) { 880 map->read_flag_mask = bus->read_flag_mask; 881 } 882 883 if (config && config->read && config->write) { 884 map->reg_read = _regmap_bus_read; 885 if (config->reg_update_bits) 886 map->reg_update_bits = config->reg_update_bits; 887 888 /* Bulk read/write */ 889 map->read = config->read; 890 map->write = config->write; 891 892 reg_endian = REGMAP_ENDIAN_NATIVE; 893 val_endian = REGMAP_ENDIAN_NATIVE; 894 } else if (!bus) { 895 map->reg_read = config->reg_read; 896 map->reg_write = config->reg_write; 897 map->reg_update_bits = config->reg_update_bits; 898 899 map->defer_caching = false; 900 goto skip_format_initialization; 901 } else if (!bus->read || !bus->write) { 902 map->reg_read = _regmap_bus_reg_read; 903 map->reg_write = _regmap_bus_reg_write; 904 map->reg_update_bits = bus->reg_update_bits; 905 906 map->defer_caching = false; 907 goto skip_format_initialization; 908 } else { 909 map->reg_read = _regmap_bus_read; 910 map->reg_update_bits = bus->reg_update_bits; 911 /* Bulk read/write */ 912 map->read = bus->read; 913 map->write = bus->write; 914 915 reg_endian = regmap_get_reg_endian(bus, config); 916 val_endian = regmap_get_val_endian(dev, bus, config); 917 } 918 919 switch (config->reg_bits + map->reg_shift) { 920 case 2: 921 switch (config->val_bits) { 922 case 6: 923 map->format.format_write = regmap_format_2_6_write; 924 break; 925 default: 926 goto err_hwlock; 927 } 928 break; 929 930 case 4: 931 switch (config->val_bits) { 932 case 12: 933 map->format.format_write = regmap_format_4_12_write; 934 break; 935 default: 936 goto err_hwlock; 937 } 938 break; 939 940 case 7: 941 switch (config->val_bits) { 942 case 9: 943 map->format.format_write = regmap_format_7_9_write; 944 break; 945 case 17: 946 map->format.format_write = regmap_format_7_17_write; 947 break; 948 default: 949 goto err_hwlock; 950 } 951 break; 952 953 case 10: 954 switch (config->val_bits) { 955 case 14: 956 map->format.format_write = regmap_format_10_14_write; 957 break; 958 default: 959 goto err_hwlock; 960 } 961 break; 962 963 case 12: 964 switch (config->val_bits) { 965 case 20: 966 map->format.format_write = regmap_format_12_20_write; 967 break; 968 default: 969 goto err_hwlock; 970 } 971 break; 972 973 case 8: 974 map->format.format_reg = regmap_format_8; 975 break; 976 977 case 16: 978 switch (reg_endian) { 979 case REGMAP_ENDIAN_BIG: 980 map->format.format_reg = regmap_format_16_be; 981 break; 982 case REGMAP_ENDIAN_LITTLE: 983 map->format.format_reg = regmap_format_16_le; 984 break; 985 case REGMAP_ENDIAN_NATIVE: 986 map->format.format_reg = regmap_format_16_native; 987 break; 988 default: 989 goto err_hwlock; 990 } 991 break; 992 993 case 24: 994 if (reg_endian != REGMAP_ENDIAN_BIG) 995 goto err_hwlock; 996 map->format.format_reg = regmap_format_24; 997 break; 998 999 case 32: 1000 switch (reg_endian) { 1001 case REGMAP_ENDIAN_BIG: 1002 map->format.format_reg = regmap_format_32_be; 1003 break; 1004 case REGMAP_ENDIAN_LITTLE: 1005 map->format.format_reg = regmap_format_32_le; 1006 break; 1007 case REGMAP_ENDIAN_NATIVE: 1008 map->format.format_reg = regmap_format_32_native; 1009 break; 1010 default: 1011 goto err_hwlock; 1012 } 1013 break; 1014 1015 #ifdef CONFIG_64BIT 1016 case 64: 1017 switch (reg_endian) { 1018 case REGMAP_ENDIAN_BIG: 1019 map->format.format_reg = regmap_format_64_be; 1020 break; 1021 case REGMAP_ENDIAN_LITTLE: 1022 map->format.format_reg = regmap_format_64_le; 1023 break; 1024 case REGMAP_ENDIAN_NATIVE: 1025 map->format.format_reg = regmap_format_64_native; 1026 break; 1027 default: 1028 goto err_hwlock; 1029 } 1030 break; 1031 #endif 1032 1033 default: 1034 goto err_hwlock; 1035 } 1036 1037 if (val_endian == REGMAP_ENDIAN_NATIVE) 1038 map->format.parse_inplace = regmap_parse_inplace_noop; 1039 1040 switch (config->val_bits) { 1041 case 8: 1042 map->format.format_val = regmap_format_8; 1043 map->format.parse_val = regmap_parse_8; 1044 map->format.parse_inplace = regmap_parse_inplace_noop; 1045 break; 1046 case 16: 1047 switch (val_endian) { 1048 case REGMAP_ENDIAN_BIG: 1049 map->format.format_val = regmap_format_16_be; 1050 map->format.parse_val = regmap_parse_16_be; 1051 map->format.parse_inplace = regmap_parse_16_be_inplace; 1052 break; 1053 case REGMAP_ENDIAN_LITTLE: 1054 map->format.format_val = regmap_format_16_le; 1055 map->format.parse_val = regmap_parse_16_le; 1056 map->format.parse_inplace = regmap_parse_16_le_inplace; 1057 break; 1058 case REGMAP_ENDIAN_NATIVE: 1059 map->format.format_val = regmap_format_16_native; 1060 map->format.parse_val = regmap_parse_16_native; 1061 break; 1062 default: 1063 goto err_hwlock; 1064 } 1065 break; 1066 case 24: 1067 if (val_endian != REGMAP_ENDIAN_BIG) 1068 goto err_hwlock; 1069 map->format.format_val = regmap_format_24; 1070 map->format.parse_val = regmap_parse_24; 1071 break; 1072 case 32: 1073 switch (val_endian) { 1074 case REGMAP_ENDIAN_BIG: 1075 map->format.format_val = regmap_format_32_be; 1076 map->format.parse_val = regmap_parse_32_be; 1077 map->format.parse_inplace = regmap_parse_32_be_inplace; 1078 break; 1079 case REGMAP_ENDIAN_LITTLE: 1080 map->format.format_val = regmap_format_32_le; 1081 map->format.parse_val = regmap_parse_32_le; 1082 map->format.parse_inplace = regmap_parse_32_le_inplace; 1083 break; 1084 case REGMAP_ENDIAN_NATIVE: 1085 map->format.format_val = regmap_format_32_native; 1086 map->format.parse_val = regmap_parse_32_native; 1087 break; 1088 default: 1089 goto err_hwlock; 1090 } 1091 break; 1092 #ifdef CONFIG_64BIT 1093 case 64: 1094 switch (val_endian) { 1095 case REGMAP_ENDIAN_BIG: 1096 map->format.format_val = regmap_format_64_be; 1097 map->format.parse_val = regmap_parse_64_be; 1098 map->format.parse_inplace = regmap_parse_64_be_inplace; 1099 break; 1100 case REGMAP_ENDIAN_LITTLE: 1101 map->format.format_val = regmap_format_64_le; 1102 map->format.parse_val = regmap_parse_64_le; 1103 map->format.parse_inplace = regmap_parse_64_le_inplace; 1104 break; 1105 case REGMAP_ENDIAN_NATIVE: 1106 map->format.format_val = regmap_format_64_native; 1107 map->format.parse_val = regmap_parse_64_native; 1108 break; 1109 default: 1110 goto err_hwlock; 1111 } 1112 break; 1113 #endif 1114 } 1115 1116 if (map->format.format_write) { 1117 if ((reg_endian != REGMAP_ENDIAN_BIG) || 1118 (val_endian != REGMAP_ENDIAN_BIG)) 1119 goto err_hwlock; 1120 map->use_single_write = true; 1121 } 1122 1123 if (!map->format.format_write && 1124 !(map->format.format_reg && map->format.format_val)) 1125 goto err_hwlock; 1126 1127 map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL); 1128 if (map->work_buf == NULL) { 1129 ret = -ENOMEM; 1130 goto err_hwlock; 1131 } 1132 1133 if (map->format.format_write) { 1134 map->defer_caching = false; 1135 map->reg_write = _regmap_bus_formatted_write; 1136 } else if (map->format.format_val) { 1137 map->defer_caching = true; 1138 map->reg_write = _regmap_bus_raw_write; 1139 } 1140 1141 skip_format_initialization: 1142 1143 map->range_tree = RB_ROOT; 1144 for (i = 0; i < config->num_ranges; i++) { 1145 const struct regmap_range_cfg *range_cfg = &config->ranges[i]; 1146 struct regmap_range_node *new; 1147 1148 /* Sanity check */ 1149 if (range_cfg->range_max < range_cfg->range_min) { 1150 dev_err(map->dev, "Invalid range %d: %d < %d\n", i, 1151 range_cfg->range_max, range_cfg->range_min); 1152 goto err_range; 1153 } 1154 1155 if (range_cfg->range_max > map->max_register) { 1156 dev_err(map->dev, "Invalid range %d: %d > %d\n", i, 1157 range_cfg->range_max, map->max_register); 1158 goto err_range; 1159 } 1160 1161 if (range_cfg->selector_reg > map->max_register) { 1162 dev_err(map->dev, 1163 "Invalid range %d: selector out of map\n", i); 1164 goto err_range; 1165 } 1166 1167 if (range_cfg->window_len == 0) { 1168 dev_err(map->dev, "Invalid range %d: window_len 0\n", 1169 i); 1170 goto err_range; 1171 } 1172 1173 /* Make sure, that this register range has no selector 1174 or data window within its boundary */ 1175 for (j = 0; j < config->num_ranges; j++) { 1176 unsigned int sel_reg = config->ranges[j].selector_reg; 1177 unsigned int win_min = config->ranges[j].window_start; 1178 unsigned int win_max = win_min + 1179 config->ranges[j].window_len - 1; 1180 1181 /* Allow data window inside its own virtual range */ 1182 if (j == i) 1183 continue; 1184 1185 if (range_cfg->range_min <= sel_reg && 1186 sel_reg <= range_cfg->range_max) { 1187 dev_err(map->dev, 1188 "Range %d: selector for %d in window\n", 1189 i, j); 1190 goto err_range; 1191 } 1192 1193 if (!(win_max < range_cfg->range_min || 1194 win_min > range_cfg->range_max)) { 1195 dev_err(map->dev, 1196 "Range %d: window for %d in window\n", 1197 i, j); 1198 goto err_range; 1199 } 1200 } 1201 1202 new = kzalloc(sizeof(*new), GFP_KERNEL); 1203 if (new == NULL) { 1204 ret = -ENOMEM; 1205 goto err_range; 1206 } 1207 1208 new->map = map; 1209 new->name = range_cfg->name; 1210 new->range_min = range_cfg->range_min; 1211 new->range_max = range_cfg->range_max; 1212 new->selector_reg = range_cfg->selector_reg; 1213 new->selector_mask = range_cfg->selector_mask; 1214 new->selector_shift = range_cfg->selector_shift; 1215 new->window_start = range_cfg->window_start; 1216 new->window_len = range_cfg->window_len; 1217 1218 if (!_regmap_range_add(map, new)) { 1219 dev_err(map->dev, "Failed to add range %d\n", i); 1220 kfree(new); 1221 goto err_range; 1222 } 1223 1224 if (map->selector_work_buf == NULL) { 1225 map->selector_work_buf = 1226 kzalloc(map->format.buf_size, GFP_KERNEL); 1227 if (map->selector_work_buf == NULL) { 1228 ret = -ENOMEM; 1229 goto err_range; 1230 } 1231 } 1232 } 1233 1234 ret = regcache_init(map, config); 1235 if (ret != 0) 1236 goto err_range; 1237 1238 if (dev) { 1239 ret = regmap_attach_dev(dev, map, config); 1240 if (ret != 0) 1241 goto err_regcache; 1242 } else { 1243 regmap_debugfs_init(map); 1244 } 1245 1246 return map; 1247 1248 err_regcache: 1249 regcache_exit(map); 1250 err_range: 1251 regmap_range_exit(map); 1252 kfree(map->work_buf); 1253 err_hwlock: 1254 if (map->hwlock) 1255 hwspin_lock_free(map->hwlock); 1256 err_name: 1257 kfree_const(map->name); 1258 err_map: 1259 kfree(map); 1260 err: 1261 return ERR_PTR(ret); 1262 } 1263 EXPORT_SYMBOL_GPL(__regmap_init); 1264 1265 static void devm_regmap_release(struct device *dev, void *res) 1266 { 1267 regmap_exit(*(struct regmap **)res); 1268 } 1269 1270 struct regmap *__devm_regmap_init(struct device *dev, 1271 const struct regmap_bus *bus, 1272 void *bus_context, 1273 const struct regmap_config *config, 1274 struct lock_class_key *lock_key, 1275 const char *lock_name) 1276 { 1277 struct regmap **ptr, *regmap; 1278 1279 ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL); 1280 if (!ptr) 1281 return ERR_PTR(-ENOMEM); 1282 1283 regmap = __regmap_init(dev, bus, bus_context, config, 1284 lock_key, lock_name); 1285 if (!IS_ERR(regmap)) { 1286 *ptr = regmap; 1287 devres_add(dev, ptr); 1288 } else { 1289 devres_free(ptr); 1290 } 1291 1292 return regmap; 1293 } 1294 EXPORT_SYMBOL_GPL(__devm_regmap_init); 1295 1296 static void regmap_field_init(struct regmap_field *rm_field, 1297 struct regmap *regmap, struct reg_field reg_field) 1298 { 1299 rm_field->regmap = regmap; 1300 rm_field->reg = reg_field.reg; 1301 rm_field->shift = reg_field.lsb; 1302 rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb); 1303 1304 WARN_ONCE(rm_field->mask == 0, "invalid empty mask defined\n"); 1305 1306 rm_field->id_size = reg_field.id_size; 1307 rm_field->id_offset = reg_field.id_offset; 1308 } 1309 1310 /** 1311 * devm_regmap_field_alloc() - Allocate and initialise a register field. 1312 * 1313 * @dev: Device that will be interacted with 1314 * @regmap: regmap bank in which this register field is located. 1315 * @reg_field: Register field with in the bank. 1316 * 1317 * The return value will be an ERR_PTR() on error or a valid pointer 1318 * to a struct regmap_field. The regmap_field will be automatically freed 1319 * by the device management code. 1320 */ 1321 struct regmap_field *devm_regmap_field_alloc(struct device *dev, 1322 struct regmap *regmap, struct reg_field reg_field) 1323 { 1324 struct regmap_field *rm_field = devm_kzalloc(dev, 1325 sizeof(*rm_field), GFP_KERNEL); 1326 if (!rm_field) 1327 return ERR_PTR(-ENOMEM); 1328 1329 regmap_field_init(rm_field, regmap, reg_field); 1330 1331 return rm_field; 1332 1333 } 1334 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc); 1335 1336 1337 /** 1338 * regmap_field_bulk_alloc() - Allocate and initialise a bulk register field. 1339 * 1340 * @regmap: regmap bank in which this register field is located. 1341 * @rm_field: regmap register fields within the bank. 1342 * @reg_field: Register fields within the bank. 1343 * @num_fields: Number of register fields. 1344 * 1345 * The return value will be an -ENOMEM on error or zero for success. 1346 * Newly allocated regmap_fields should be freed by calling 1347 * regmap_field_bulk_free() 1348 */ 1349 int regmap_field_bulk_alloc(struct regmap *regmap, 1350 struct regmap_field **rm_field, 1351 const struct reg_field *reg_field, 1352 int num_fields) 1353 { 1354 struct regmap_field *rf; 1355 int i; 1356 1357 rf = kcalloc(num_fields, sizeof(*rf), GFP_KERNEL); 1358 if (!rf) 1359 return -ENOMEM; 1360 1361 for (i = 0; i < num_fields; i++) { 1362 regmap_field_init(&rf[i], regmap, reg_field[i]); 1363 rm_field[i] = &rf[i]; 1364 } 1365 1366 return 0; 1367 } 1368 EXPORT_SYMBOL_GPL(regmap_field_bulk_alloc); 1369 1370 /** 1371 * devm_regmap_field_bulk_alloc() - Allocate and initialise a bulk register 1372 * fields. 1373 * 1374 * @dev: Device that will be interacted with 1375 * @regmap: regmap bank in which this register field is located. 1376 * @rm_field: regmap register fields within the bank. 1377 * @reg_field: Register fields within the bank. 1378 * @num_fields: Number of register fields. 1379 * 1380 * The return value will be an -ENOMEM on error or zero for success. 1381 * Newly allocated regmap_fields will be automatically freed by the 1382 * device management code. 1383 */ 1384 int devm_regmap_field_bulk_alloc(struct device *dev, 1385 struct regmap *regmap, 1386 struct regmap_field **rm_field, 1387 const struct reg_field *reg_field, 1388 int num_fields) 1389 { 1390 struct regmap_field *rf; 1391 int i; 1392 1393 rf = devm_kcalloc(dev, num_fields, sizeof(*rf), GFP_KERNEL); 1394 if (!rf) 1395 return -ENOMEM; 1396 1397 for (i = 0; i < num_fields; i++) { 1398 regmap_field_init(&rf[i], regmap, reg_field[i]); 1399 rm_field[i] = &rf[i]; 1400 } 1401 1402 return 0; 1403 } 1404 EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_alloc); 1405 1406 /** 1407 * regmap_field_bulk_free() - Free register field allocated using 1408 * regmap_field_bulk_alloc. 1409 * 1410 * @field: regmap fields which should be freed. 1411 */ 1412 void regmap_field_bulk_free(struct regmap_field *field) 1413 { 1414 kfree(field); 1415 } 1416 EXPORT_SYMBOL_GPL(regmap_field_bulk_free); 1417 1418 /** 1419 * devm_regmap_field_bulk_free() - Free a bulk register field allocated using 1420 * devm_regmap_field_bulk_alloc. 1421 * 1422 * @dev: Device that will be interacted with 1423 * @field: regmap field which should be freed. 1424 * 1425 * Free register field allocated using devm_regmap_field_bulk_alloc(). Usually 1426 * drivers need not call this function, as the memory allocated via devm 1427 * will be freed as per device-driver life-cycle. 1428 */ 1429 void devm_regmap_field_bulk_free(struct device *dev, 1430 struct regmap_field *field) 1431 { 1432 devm_kfree(dev, field); 1433 } 1434 EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_free); 1435 1436 /** 1437 * devm_regmap_field_free() - Free a register field allocated using 1438 * devm_regmap_field_alloc. 1439 * 1440 * @dev: Device that will be interacted with 1441 * @field: regmap field which should be freed. 1442 * 1443 * Free register field allocated using devm_regmap_field_alloc(). Usually 1444 * drivers need not call this function, as the memory allocated via devm 1445 * will be freed as per device-driver life-cyle. 1446 */ 1447 void devm_regmap_field_free(struct device *dev, 1448 struct regmap_field *field) 1449 { 1450 devm_kfree(dev, field); 1451 } 1452 EXPORT_SYMBOL_GPL(devm_regmap_field_free); 1453 1454 /** 1455 * regmap_field_alloc() - Allocate and initialise a register field. 1456 * 1457 * @regmap: regmap bank in which this register field is located. 1458 * @reg_field: Register field with in the bank. 1459 * 1460 * The return value will be an ERR_PTR() on error or a valid pointer 1461 * to a struct regmap_field. The regmap_field should be freed by the 1462 * user once its finished working with it using regmap_field_free(). 1463 */ 1464 struct regmap_field *regmap_field_alloc(struct regmap *regmap, 1465 struct reg_field reg_field) 1466 { 1467 struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL); 1468 1469 if (!rm_field) 1470 return ERR_PTR(-ENOMEM); 1471 1472 regmap_field_init(rm_field, regmap, reg_field); 1473 1474 return rm_field; 1475 } 1476 EXPORT_SYMBOL_GPL(regmap_field_alloc); 1477 1478 /** 1479 * regmap_field_free() - Free register field allocated using 1480 * regmap_field_alloc. 1481 * 1482 * @field: regmap field which should be freed. 1483 */ 1484 void regmap_field_free(struct regmap_field *field) 1485 { 1486 kfree(field); 1487 } 1488 EXPORT_SYMBOL_GPL(regmap_field_free); 1489 1490 /** 1491 * regmap_reinit_cache() - Reinitialise the current register cache 1492 * 1493 * @map: Register map to operate on. 1494 * @config: New configuration. Only the cache data will be used. 1495 * 1496 * Discard any existing register cache for the map and initialize a 1497 * new cache. This can be used to restore the cache to defaults or to 1498 * update the cache configuration to reflect runtime discovery of the 1499 * hardware. 1500 * 1501 * No explicit locking is done here, the user needs to ensure that 1502 * this function will not race with other calls to regmap. 1503 */ 1504 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config) 1505 { 1506 int ret; 1507 1508 regcache_exit(map); 1509 regmap_debugfs_exit(map); 1510 1511 map->max_register = config->max_register; 1512 map->writeable_reg = config->writeable_reg; 1513 map->readable_reg = config->readable_reg; 1514 map->volatile_reg = config->volatile_reg; 1515 map->precious_reg = config->precious_reg; 1516 map->writeable_noinc_reg = config->writeable_noinc_reg; 1517 map->readable_noinc_reg = config->readable_noinc_reg; 1518 map->cache_type = config->cache_type; 1519 1520 ret = regmap_set_name(map, config); 1521 if (ret) 1522 return ret; 1523 1524 regmap_debugfs_init(map); 1525 1526 map->cache_bypass = false; 1527 map->cache_only = false; 1528 1529 return regcache_init(map, config); 1530 } 1531 EXPORT_SYMBOL_GPL(regmap_reinit_cache); 1532 1533 /** 1534 * regmap_exit() - Free a previously allocated register map 1535 * 1536 * @map: Register map to operate on. 1537 */ 1538 void regmap_exit(struct regmap *map) 1539 { 1540 struct regmap_async *async; 1541 1542 regcache_exit(map); 1543 regmap_debugfs_exit(map); 1544 regmap_range_exit(map); 1545 if (map->bus && map->bus->free_context) 1546 map->bus->free_context(map->bus_context); 1547 kfree(map->work_buf); 1548 while (!list_empty(&map->async_free)) { 1549 async = list_first_entry_or_null(&map->async_free, 1550 struct regmap_async, 1551 list); 1552 list_del(&async->list); 1553 kfree(async->work_buf); 1554 kfree(async); 1555 } 1556 if (map->hwlock) 1557 hwspin_lock_free(map->hwlock); 1558 if (map->lock == regmap_lock_mutex) 1559 mutex_destroy(&map->mutex); 1560 kfree_const(map->name); 1561 kfree(map->patch); 1562 if (map->bus && map->bus->free_on_exit) 1563 kfree(map->bus); 1564 kfree(map); 1565 } 1566 EXPORT_SYMBOL_GPL(regmap_exit); 1567 1568 static int dev_get_regmap_match(struct device *dev, void *res, void *data) 1569 { 1570 struct regmap **r = res; 1571 if (!r || !*r) { 1572 WARN_ON(!r || !*r); 1573 return 0; 1574 } 1575 1576 /* If the user didn't specify a name match any */ 1577 if (data) 1578 return !strcmp((*r)->name, data); 1579 else 1580 return 1; 1581 } 1582 1583 /** 1584 * dev_get_regmap() - Obtain the regmap (if any) for a device 1585 * 1586 * @dev: Device to retrieve the map for 1587 * @name: Optional name for the register map, usually NULL. 1588 * 1589 * Returns the regmap for the device if one is present, or NULL. If 1590 * name is specified then it must match the name specified when 1591 * registering the device, if it is NULL then the first regmap found 1592 * will be used. Devices with multiple register maps are very rare, 1593 * generic code should normally not need to specify a name. 1594 */ 1595 struct regmap *dev_get_regmap(struct device *dev, const char *name) 1596 { 1597 struct regmap **r = devres_find(dev, dev_get_regmap_release, 1598 dev_get_regmap_match, (void *)name); 1599 1600 if (!r) 1601 return NULL; 1602 return *r; 1603 } 1604 EXPORT_SYMBOL_GPL(dev_get_regmap); 1605 1606 /** 1607 * regmap_get_device() - Obtain the device from a regmap 1608 * 1609 * @map: Register map to operate on. 1610 * 1611 * Returns the underlying device that the regmap has been created for. 1612 */ 1613 struct device *regmap_get_device(struct regmap *map) 1614 { 1615 return map->dev; 1616 } 1617 EXPORT_SYMBOL_GPL(regmap_get_device); 1618 1619 static int _regmap_select_page(struct regmap *map, unsigned int *reg, 1620 struct regmap_range_node *range, 1621 unsigned int val_num) 1622 { 1623 void *orig_work_buf; 1624 unsigned int win_offset; 1625 unsigned int win_page; 1626 bool page_chg; 1627 int ret; 1628 1629 win_offset = (*reg - range->range_min) % range->window_len; 1630 win_page = (*reg - range->range_min) / range->window_len; 1631 1632 if (val_num > 1) { 1633 /* Bulk write shouldn't cross range boundary */ 1634 if (*reg + val_num - 1 > range->range_max) 1635 return -EINVAL; 1636 1637 /* ... or single page boundary */ 1638 if (val_num > range->window_len - win_offset) 1639 return -EINVAL; 1640 } 1641 1642 /* It is possible to have selector register inside data window. 1643 In that case, selector register is located on every page and 1644 it needs no page switching, when accessed alone. */ 1645 if (val_num > 1 || 1646 range->window_start + win_offset != range->selector_reg) { 1647 /* Use separate work_buf during page switching */ 1648 orig_work_buf = map->work_buf; 1649 map->work_buf = map->selector_work_buf; 1650 1651 ret = _regmap_update_bits(map, range->selector_reg, 1652 range->selector_mask, 1653 win_page << range->selector_shift, 1654 &page_chg, false); 1655 1656 map->work_buf = orig_work_buf; 1657 1658 if (ret != 0) 1659 return ret; 1660 } 1661 1662 *reg = range->window_start + win_offset; 1663 1664 return 0; 1665 } 1666 1667 static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes, 1668 unsigned long mask) 1669 { 1670 u8 *buf; 1671 int i; 1672 1673 if (!mask || !map->work_buf) 1674 return; 1675 1676 buf = map->work_buf; 1677 1678 for (i = 0; i < max_bytes; i++) 1679 buf[i] |= (mask >> (8 * i)) & 0xff; 1680 } 1681 1682 static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg, 1683 const void *val, size_t val_len, bool noinc) 1684 { 1685 struct regmap_range_node *range; 1686 unsigned long flags; 1687 void *work_val = map->work_buf + map->format.reg_bytes + 1688 map->format.pad_bytes; 1689 void *buf; 1690 int ret = -ENOTSUPP; 1691 size_t len; 1692 int i; 1693 1694 /* Check for unwritable or noinc registers in range 1695 * before we start 1696 */ 1697 if (!regmap_writeable_noinc(map, reg)) { 1698 for (i = 0; i < val_len / map->format.val_bytes; i++) { 1699 unsigned int element = 1700 reg + regmap_get_offset(map, i); 1701 if (!regmap_writeable(map, element) || 1702 regmap_writeable_noinc(map, element)) 1703 return -EINVAL; 1704 } 1705 } 1706 1707 if (!map->cache_bypass && map->format.parse_val) { 1708 unsigned int ival; 1709 int val_bytes = map->format.val_bytes; 1710 for (i = 0; i < val_len / val_bytes; i++) { 1711 ival = map->format.parse_val(val + (i * val_bytes)); 1712 ret = regcache_write(map, 1713 reg + regmap_get_offset(map, i), 1714 ival); 1715 if (ret) { 1716 dev_err(map->dev, 1717 "Error in caching of register: %x ret: %d\n", 1718 reg + regmap_get_offset(map, i), ret); 1719 return ret; 1720 } 1721 } 1722 if (map->cache_only) { 1723 map->cache_dirty = true; 1724 return 0; 1725 } 1726 } 1727 1728 range = _regmap_range_lookup(map, reg); 1729 if (range) { 1730 int val_num = val_len / map->format.val_bytes; 1731 int win_offset = (reg - range->range_min) % range->window_len; 1732 int win_residue = range->window_len - win_offset; 1733 1734 /* If the write goes beyond the end of the window split it */ 1735 while (val_num > win_residue) { 1736 dev_dbg(map->dev, "Writing window %d/%zu\n", 1737 win_residue, val_len / map->format.val_bytes); 1738 ret = _regmap_raw_write_impl(map, reg, val, 1739 win_residue * 1740 map->format.val_bytes, noinc); 1741 if (ret != 0) 1742 return ret; 1743 1744 reg += win_residue; 1745 val_num -= win_residue; 1746 val += win_residue * map->format.val_bytes; 1747 val_len -= win_residue * map->format.val_bytes; 1748 1749 win_offset = (reg - range->range_min) % 1750 range->window_len; 1751 win_residue = range->window_len - win_offset; 1752 } 1753 1754 ret = _regmap_select_page(map, ®, range, noinc ? 1 : val_num); 1755 if (ret != 0) 1756 return ret; 1757 } 1758 1759 reg += map->reg_base; 1760 reg >>= map->format.reg_downshift; 1761 map->format.format_reg(map->work_buf, reg, map->reg_shift); 1762 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes, 1763 map->write_flag_mask); 1764 1765 /* 1766 * Essentially all I/O mechanisms will be faster with a single 1767 * buffer to write. Since register syncs often generate raw 1768 * writes of single registers optimise that case. 1769 */ 1770 if (val != work_val && val_len == map->format.val_bytes) { 1771 memcpy(work_val, val, map->format.val_bytes); 1772 val = work_val; 1773 } 1774 1775 if (map->async && map->bus && map->bus->async_write) { 1776 struct regmap_async *async; 1777 1778 trace_regmap_async_write_start(map, reg, val_len); 1779 1780 spin_lock_irqsave(&map->async_lock, flags); 1781 async = list_first_entry_or_null(&map->async_free, 1782 struct regmap_async, 1783 list); 1784 if (async) 1785 list_del(&async->list); 1786 spin_unlock_irqrestore(&map->async_lock, flags); 1787 1788 if (!async) { 1789 async = map->bus->async_alloc(); 1790 if (!async) 1791 return -ENOMEM; 1792 1793 async->work_buf = kzalloc(map->format.buf_size, 1794 GFP_KERNEL | GFP_DMA); 1795 if (!async->work_buf) { 1796 kfree(async); 1797 return -ENOMEM; 1798 } 1799 } 1800 1801 async->map = map; 1802 1803 /* If the caller supplied the value we can use it safely. */ 1804 memcpy(async->work_buf, map->work_buf, map->format.pad_bytes + 1805 map->format.reg_bytes + map->format.val_bytes); 1806 1807 spin_lock_irqsave(&map->async_lock, flags); 1808 list_add_tail(&async->list, &map->async_list); 1809 spin_unlock_irqrestore(&map->async_lock, flags); 1810 1811 if (val != work_val) 1812 ret = map->bus->async_write(map->bus_context, 1813 async->work_buf, 1814 map->format.reg_bytes + 1815 map->format.pad_bytes, 1816 val, val_len, async); 1817 else 1818 ret = map->bus->async_write(map->bus_context, 1819 async->work_buf, 1820 map->format.reg_bytes + 1821 map->format.pad_bytes + 1822 val_len, NULL, 0, async); 1823 1824 if (ret != 0) { 1825 dev_err(map->dev, "Failed to schedule write: %d\n", 1826 ret); 1827 1828 spin_lock_irqsave(&map->async_lock, flags); 1829 list_move(&async->list, &map->async_free); 1830 spin_unlock_irqrestore(&map->async_lock, flags); 1831 } 1832 1833 return ret; 1834 } 1835 1836 trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes); 1837 1838 /* If we're doing a single register write we can probably just 1839 * send the work_buf directly, otherwise try to do a gather 1840 * write. 1841 */ 1842 if (val == work_val) 1843 ret = map->write(map->bus_context, map->work_buf, 1844 map->format.reg_bytes + 1845 map->format.pad_bytes + 1846 val_len); 1847 else if (map->bus && map->bus->gather_write) 1848 ret = map->bus->gather_write(map->bus_context, map->work_buf, 1849 map->format.reg_bytes + 1850 map->format.pad_bytes, 1851 val, val_len); 1852 else 1853 ret = -ENOTSUPP; 1854 1855 /* If that didn't work fall back on linearising by hand. */ 1856 if (ret == -ENOTSUPP) { 1857 len = map->format.reg_bytes + map->format.pad_bytes + val_len; 1858 buf = kzalloc(len, GFP_KERNEL); 1859 if (!buf) 1860 return -ENOMEM; 1861 1862 memcpy(buf, map->work_buf, map->format.reg_bytes); 1863 memcpy(buf + map->format.reg_bytes + map->format.pad_bytes, 1864 val, val_len); 1865 ret = map->write(map->bus_context, buf, len); 1866 1867 kfree(buf); 1868 } else if (ret != 0 && !map->cache_bypass && map->format.parse_val) { 1869 /* regcache_drop_region() takes lock that we already have, 1870 * thus call map->cache_ops->drop() directly 1871 */ 1872 if (map->cache_ops && map->cache_ops->drop) 1873 map->cache_ops->drop(map, reg, reg + 1); 1874 } 1875 1876 trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes); 1877 1878 return ret; 1879 } 1880 1881 /** 1882 * regmap_can_raw_write - Test if regmap_raw_write() is supported 1883 * 1884 * @map: Map to check. 1885 */ 1886 bool regmap_can_raw_write(struct regmap *map) 1887 { 1888 return map->write && map->format.format_val && map->format.format_reg; 1889 } 1890 EXPORT_SYMBOL_GPL(regmap_can_raw_write); 1891 1892 /** 1893 * regmap_get_raw_read_max - Get the maximum size we can read 1894 * 1895 * @map: Map to check. 1896 */ 1897 size_t regmap_get_raw_read_max(struct regmap *map) 1898 { 1899 return map->max_raw_read; 1900 } 1901 EXPORT_SYMBOL_GPL(regmap_get_raw_read_max); 1902 1903 /** 1904 * regmap_get_raw_write_max - Get the maximum size we can read 1905 * 1906 * @map: Map to check. 1907 */ 1908 size_t regmap_get_raw_write_max(struct regmap *map) 1909 { 1910 return map->max_raw_write; 1911 } 1912 EXPORT_SYMBOL_GPL(regmap_get_raw_write_max); 1913 1914 static int _regmap_bus_formatted_write(void *context, unsigned int reg, 1915 unsigned int val) 1916 { 1917 int ret; 1918 struct regmap_range_node *range; 1919 struct regmap *map = context; 1920 1921 WARN_ON(!map->format.format_write); 1922 1923 range = _regmap_range_lookup(map, reg); 1924 if (range) { 1925 ret = _regmap_select_page(map, ®, range, 1); 1926 if (ret != 0) 1927 return ret; 1928 } 1929 1930 reg += map->reg_base; 1931 reg >>= map->format.reg_downshift; 1932 map->format.format_write(map, reg, val); 1933 1934 trace_regmap_hw_write_start(map, reg, 1); 1935 1936 ret = map->write(map->bus_context, map->work_buf, map->format.buf_size); 1937 1938 trace_regmap_hw_write_done(map, reg, 1); 1939 1940 return ret; 1941 } 1942 1943 static int _regmap_bus_reg_write(void *context, unsigned int reg, 1944 unsigned int val) 1945 { 1946 struct regmap *map = context; 1947 1948 return map->bus->reg_write(map->bus_context, reg, val); 1949 } 1950 1951 static int _regmap_bus_raw_write(void *context, unsigned int reg, 1952 unsigned int val) 1953 { 1954 struct regmap *map = context; 1955 1956 WARN_ON(!map->format.format_val); 1957 1958 map->format.format_val(map->work_buf + map->format.reg_bytes 1959 + map->format.pad_bytes, val, 0); 1960 return _regmap_raw_write_impl(map, reg, 1961 map->work_buf + 1962 map->format.reg_bytes + 1963 map->format.pad_bytes, 1964 map->format.val_bytes, 1965 false); 1966 } 1967 1968 static inline void *_regmap_map_get_context(struct regmap *map) 1969 { 1970 return (map->bus || (!map->bus && map->read)) ? map : map->bus_context; 1971 } 1972 1973 int _regmap_write(struct regmap *map, unsigned int reg, 1974 unsigned int val) 1975 { 1976 int ret; 1977 void *context = _regmap_map_get_context(map); 1978 1979 if (!regmap_writeable(map, reg)) 1980 return -EIO; 1981 1982 if (!map->cache_bypass && !map->defer_caching) { 1983 ret = regcache_write(map, reg, val); 1984 if (ret != 0) 1985 return ret; 1986 if (map->cache_only) { 1987 map->cache_dirty = true; 1988 return 0; 1989 } 1990 } 1991 1992 ret = map->reg_write(context, reg, val); 1993 if (ret == 0) { 1994 if (regmap_should_log(map)) 1995 dev_info(map->dev, "%x <= %x\n", reg, val); 1996 1997 trace_regmap_reg_write(map, reg, val); 1998 } 1999 2000 return ret; 2001 } 2002 2003 /** 2004 * regmap_write() - Write a value to a single register 2005 * 2006 * @map: Register map to write to 2007 * @reg: Register to write to 2008 * @val: Value to be written 2009 * 2010 * A value of zero will be returned on success, a negative errno will 2011 * be returned in error cases. 2012 */ 2013 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val) 2014 { 2015 int ret; 2016 2017 if (!IS_ALIGNED(reg, map->reg_stride)) 2018 return -EINVAL; 2019 2020 map->lock(map->lock_arg); 2021 2022 ret = _regmap_write(map, reg, val); 2023 2024 map->unlock(map->lock_arg); 2025 2026 return ret; 2027 } 2028 EXPORT_SYMBOL_GPL(regmap_write); 2029 2030 /** 2031 * regmap_write_async() - Write a value to a single register asynchronously 2032 * 2033 * @map: Register map to write to 2034 * @reg: Register to write to 2035 * @val: Value to be written 2036 * 2037 * A value of zero will be returned on success, a negative errno will 2038 * be returned in error cases. 2039 */ 2040 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val) 2041 { 2042 int ret; 2043 2044 if (!IS_ALIGNED(reg, map->reg_stride)) 2045 return -EINVAL; 2046 2047 map->lock(map->lock_arg); 2048 2049 map->async = true; 2050 2051 ret = _regmap_write(map, reg, val); 2052 2053 map->async = false; 2054 2055 map->unlock(map->lock_arg); 2056 2057 return ret; 2058 } 2059 EXPORT_SYMBOL_GPL(regmap_write_async); 2060 2061 int _regmap_raw_write(struct regmap *map, unsigned int reg, 2062 const void *val, size_t val_len, bool noinc) 2063 { 2064 size_t val_bytes = map->format.val_bytes; 2065 size_t val_count = val_len / val_bytes; 2066 size_t chunk_count, chunk_bytes; 2067 size_t chunk_regs = val_count; 2068 int ret, i; 2069 2070 if (!val_count) 2071 return -EINVAL; 2072 2073 if (map->use_single_write) 2074 chunk_regs = 1; 2075 else if (map->max_raw_write && val_len > map->max_raw_write) 2076 chunk_regs = map->max_raw_write / val_bytes; 2077 2078 chunk_count = val_count / chunk_regs; 2079 chunk_bytes = chunk_regs * val_bytes; 2080 2081 /* Write as many bytes as possible with chunk_size */ 2082 for (i = 0; i < chunk_count; i++) { 2083 ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes, noinc); 2084 if (ret) 2085 return ret; 2086 2087 reg += regmap_get_offset(map, chunk_regs); 2088 val += chunk_bytes; 2089 val_len -= chunk_bytes; 2090 } 2091 2092 /* Write remaining bytes */ 2093 if (val_len) 2094 ret = _regmap_raw_write_impl(map, reg, val, val_len, noinc); 2095 2096 return ret; 2097 } 2098 2099 /** 2100 * regmap_raw_write() - Write raw values to one or more registers 2101 * 2102 * @map: Register map to write to 2103 * @reg: Initial register to write to 2104 * @val: Block of data to be written, laid out for direct transmission to the 2105 * device 2106 * @val_len: Length of data pointed to by val. 2107 * 2108 * This function is intended to be used for things like firmware 2109 * download where a large block of data needs to be transferred to the 2110 * device. No formatting will be done on the data provided. 2111 * 2112 * A value of zero will be returned on success, a negative errno will 2113 * be returned in error cases. 2114 */ 2115 int regmap_raw_write(struct regmap *map, unsigned int reg, 2116 const void *val, size_t val_len) 2117 { 2118 int ret; 2119 2120 if (!regmap_can_raw_write(map)) 2121 return -EINVAL; 2122 if (val_len % map->format.val_bytes) 2123 return -EINVAL; 2124 2125 map->lock(map->lock_arg); 2126 2127 ret = _regmap_raw_write(map, reg, val, val_len, false); 2128 2129 map->unlock(map->lock_arg); 2130 2131 return ret; 2132 } 2133 EXPORT_SYMBOL_GPL(regmap_raw_write); 2134 2135 /** 2136 * regmap_noinc_write(): Write data from a register without incrementing the 2137 * register number 2138 * 2139 * @map: Register map to write to 2140 * @reg: Register to write to 2141 * @val: Pointer to data buffer 2142 * @val_len: Length of output buffer in bytes. 2143 * 2144 * The regmap API usually assumes that bulk bus write operations will write a 2145 * range of registers. Some devices have certain registers for which a write 2146 * operation can write to an internal FIFO. 2147 * 2148 * The target register must be volatile but registers after it can be 2149 * completely unrelated cacheable registers. 2150 * 2151 * This will attempt multiple writes as required to write val_len bytes. 2152 * 2153 * A value of zero will be returned on success, a negative errno will be 2154 * returned in error cases. 2155 */ 2156 int regmap_noinc_write(struct regmap *map, unsigned int reg, 2157 const void *val, size_t val_len) 2158 { 2159 size_t write_len; 2160 int ret; 2161 2162 if (!map->write) 2163 return -ENOTSUPP; 2164 2165 if (val_len % map->format.val_bytes) 2166 return -EINVAL; 2167 if (!IS_ALIGNED(reg, map->reg_stride)) 2168 return -EINVAL; 2169 if (val_len == 0) 2170 return -EINVAL; 2171 2172 map->lock(map->lock_arg); 2173 2174 if (!regmap_volatile(map, reg) || !regmap_writeable_noinc(map, reg)) { 2175 ret = -EINVAL; 2176 goto out_unlock; 2177 } 2178 2179 while (val_len) { 2180 if (map->max_raw_write && map->max_raw_write < val_len) 2181 write_len = map->max_raw_write; 2182 else 2183 write_len = val_len; 2184 ret = _regmap_raw_write(map, reg, val, write_len, true); 2185 if (ret) 2186 goto out_unlock; 2187 val = ((u8 *)val) + write_len; 2188 val_len -= write_len; 2189 } 2190 2191 out_unlock: 2192 map->unlock(map->lock_arg); 2193 return ret; 2194 } 2195 EXPORT_SYMBOL_GPL(regmap_noinc_write); 2196 2197 /** 2198 * regmap_field_update_bits_base() - Perform a read/modify/write cycle a 2199 * register field. 2200 * 2201 * @field: Register field to write to 2202 * @mask: Bitmask to change 2203 * @val: Value to be written 2204 * @change: Boolean indicating if a write was done 2205 * @async: Boolean indicating asynchronously 2206 * @force: Boolean indicating use force update 2207 * 2208 * Perform a read/modify/write cycle on the register field with change, 2209 * async, force option. 2210 * 2211 * A value of zero will be returned on success, a negative errno will 2212 * be returned in error cases. 2213 */ 2214 int regmap_field_update_bits_base(struct regmap_field *field, 2215 unsigned int mask, unsigned int val, 2216 bool *change, bool async, bool force) 2217 { 2218 mask = (mask << field->shift) & field->mask; 2219 2220 return regmap_update_bits_base(field->regmap, field->reg, 2221 mask, val << field->shift, 2222 change, async, force); 2223 } 2224 EXPORT_SYMBOL_GPL(regmap_field_update_bits_base); 2225 2226 /** 2227 * regmap_field_test_bits() - Check if all specified bits are set in a 2228 * register field. 2229 * 2230 * @field: Register field to operate on 2231 * @bits: Bits to test 2232 * 2233 * Returns -1 if the underlying regmap_field_read() fails, 0 if at least one of the 2234 * tested bits is not set and 1 if all tested bits are set. 2235 */ 2236 int regmap_field_test_bits(struct regmap_field *field, unsigned int bits) 2237 { 2238 unsigned int val, ret; 2239 2240 ret = regmap_field_read(field, &val); 2241 if (ret) 2242 return ret; 2243 2244 return (val & bits) == bits; 2245 } 2246 EXPORT_SYMBOL_GPL(regmap_field_test_bits); 2247 2248 /** 2249 * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a 2250 * register field with port ID 2251 * 2252 * @field: Register field to write to 2253 * @id: port ID 2254 * @mask: Bitmask to change 2255 * @val: Value to be written 2256 * @change: Boolean indicating if a write was done 2257 * @async: Boolean indicating asynchronously 2258 * @force: Boolean indicating use force update 2259 * 2260 * A value of zero will be returned on success, a negative errno will 2261 * be returned in error cases. 2262 */ 2263 int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id, 2264 unsigned int mask, unsigned int val, 2265 bool *change, bool async, bool force) 2266 { 2267 if (id >= field->id_size) 2268 return -EINVAL; 2269 2270 mask = (mask << field->shift) & field->mask; 2271 2272 return regmap_update_bits_base(field->regmap, 2273 field->reg + (field->id_offset * id), 2274 mask, val << field->shift, 2275 change, async, force); 2276 } 2277 EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base); 2278 2279 /** 2280 * regmap_bulk_write() - Write multiple registers to the device 2281 * 2282 * @map: Register map to write to 2283 * @reg: First register to be write from 2284 * @val: Block of data to be written, in native register size for device 2285 * @val_count: Number of registers to write 2286 * 2287 * This function is intended to be used for writing a large block of 2288 * data to the device either in single transfer or multiple transfer. 2289 * 2290 * A value of zero will be returned on success, a negative errno will 2291 * be returned in error cases. 2292 */ 2293 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val, 2294 size_t val_count) 2295 { 2296 int ret = 0, i; 2297 size_t val_bytes = map->format.val_bytes; 2298 2299 if (!IS_ALIGNED(reg, map->reg_stride)) 2300 return -EINVAL; 2301 2302 /* 2303 * Some devices don't support bulk write, for them we have a series of 2304 * single write operations. 2305 */ 2306 if (!map->write || !map->format.parse_inplace) { 2307 map->lock(map->lock_arg); 2308 for (i = 0; i < val_count; i++) { 2309 unsigned int ival; 2310 2311 switch (val_bytes) { 2312 case 1: 2313 ival = *(u8 *)(val + (i * val_bytes)); 2314 break; 2315 case 2: 2316 ival = *(u16 *)(val + (i * val_bytes)); 2317 break; 2318 case 4: 2319 ival = *(u32 *)(val + (i * val_bytes)); 2320 break; 2321 #ifdef CONFIG_64BIT 2322 case 8: 2323 ival = *(u64 *)(val + (i * val_bytes)); 2324 break; 2325 #endif 2326 default: 2327 ret = -EINVAL; 2328 goto out; 2329 } 2330 2331 ret = _regmap_write(map, 2332 reg + regmap_get_offset(map, i), 2333 ival); 2334 if (ret != 0) 2335 goto out; 2336 } 2337 out: 2338 map->unlock(map->lock_arg); 2339 } else { 2340 void *wval; 2341 2342 wval = kmemdup(val, val_count * val_bytes, map->alloc_flags); 2343 if (!wval) 2344 return -ENOMEM; 2345 2346 for (i = 0; i < val_count * val_bytes; i += val_bytes) 2347 map->format.parse_inplace(wval + i); 2348 2349 ret = regmap_raw_write(map, reg, wval, val_bytes * val_count); 2350 2351 kfree(wval); 2352 } 2353 return ret; 2354 } 2355 EXPORT_SYMBOL_GPL(regmap_bulk_write); 2356 2357 /* 2358 * _regmap_raw_multi_reg_write() 2359 * 2360 * the (register,newvalue) pairs in regs have not been formatted, but 2361 * they are all in the same page and have been changed to being page 2362 * relative. The page register has been written if that was necessary. 2363 */ 2364 static int _regmap_raw_multi_reg_write(struct regmap *map, 2365 const struct reg_sequence *regs, 2366 size_t num_regs) 2367 { 2368 int ret; 2369 void *buf; 2370 int i; 2371 u8 *u8; 2372 size_t val_bytes = map->format.val_bytes; 2373 size_t reg_bytes = map->format.reg_bytes; 2374 size_t pad_bytes = map->format.pad_bytes; 2375 size_t pair_size = reg_bytes + pad_bytes + val_bytes; 2376 size_t len = pair_size * num_regs; 2377 2378 if (!len) 2379 return -EINVAL; 2380 2381 buf = kzalloc(len, GFP_KERNEL); 2382 if (!buf) 2383 return -ENOMEM; 2384 2385 /* We have to linearise by hand. */ 2386 2387 u8 = buf; 2388 2389 for (i = 0; i < num_regs; i++) { 2390 unsigned int reg = regs[i].reg; 2391 unsigned int val = regs[i].def; 2392 trace_regmap_hw_write_start(map, reg, 1); 2393 reg += map->reg_base; 2394 reg >>= map->format.reg_downshift; 2395 map->format.format_reg(u8, reg, map->reg_shift); 2396 u8 += reg_bytes + pad_bytes; 2397 map->format.format_val(u8, val, 0); 2398 u8 += val_bytes; 2399 } 2400 u8 = buf; 2401 *u8 |= map->write_flag_mask; 2402 2403 ret = map->write(map->bus_context, buf, len); 2404 2405 kfree(buf); 2406 2407 for (i = 0; i < num_regs; i++) { 2408 int reg = regs[i].reg; 2409 trace_regmap_hw_write_done(map, reg, 1); 2410 } 2411 return ret; 2412 } 2413 2414 static unsigned int _regmap_register_page(struct regmap *map, 2415 unsigned int reg, 2416 struct regmap_range_node *range) 2417 { 2418 unsigned int win_page = (reg - range->range_min) / range->window_len; 2419 2420 return win_page; 2421 } 2422 2423 static int _regmap_range_multi_paged_reg_write(struct regmap *map, 2424 struct reg_sequence *regs, 2425 size_t num_regs) 2426 { 2427 int ret; 2428 int i, n; 2429 struct reg_sequence *base; 2430 unsigned int this_page = 0; 2431 unsigned int page_change = 0; 2432 /* 2433 * the set of registers are not neccessarily in order, but 2434 * since the order of write must be preserved this algorithm 2435 * chops the set each time the page changes. This also applies 2436 * if there is a delay required at any point in the sequence. 2437 */ 2438 base = regs; 2439 for (i = 0, n = 0; i < num_regs; i++, n++) { 2440 unsigned int reg = regs[i].reg; 2441 struct regmap_range_node *range; 2442 2443 range = _regmap_range_lookup(map, reg); 2444 if (range) { 2445 unsigned int win_page = _regmap_register_page(map, reg, 2446 range); 2447 2448 if (i == 0) 2449 this_page = win_page; 2450 if (win_page != this_page) { 2451 this_page = win_page; 2452 page_change = 1; 2453 } 2454 } 2455 2456 /* If we have both a page change and a delay make sure to 2457 * write the regs and apply the delay before we change the 2458 * page. 2459 */ 2460 2461 if (page_change || regs[i].delay_us) { 2462 2463 /* For situations where the first write requires 2464 * a delay we need to make sure we don't call 2465 * raw_multi_reg_write with n=0 2466 * This can't occur with page breaks as we 2467 * never write on the first iteration 2468 */ 2469 if (regs[i].delay_us && i == 0) 2470 n = 1; 2471 2472 ret = _regmap_raw_multi_reg_write(map, base, n); 2473 if (ret != 0) 2474 return ret; 2475 2476 if (regs[i].delay_us) { 2477 if (map->can_sleep) 2478 fsleep(regs[i].delay_us); 2479 else 2480 udelay(regs[i].delay_us); 2481 } 2482 2483 base += n; 2484 n = 0; 2485 2486 if (page_change) { 2487 ret = _regmap_select_page(map, 2488 &base[n].reg, 2489 range, 1); 2490 if (ret != 0) 2491 return ret; 2492 2493 page_change = 0; 2494 } 2495 2496 } 2497 2498 } 2499 if (n > 0) 2500 return _regmap_raw_multi_reg_write(map, base, n); 2501 return 0; 2502 } 2503 2504 static int _regmap_multi_reg_write(struct regmap *map, 2505 const struct reg_sequence *regs, 2506 size_t num_regs) 2507 { 2508 int i; 2509 int ret; 2510 2511 if (!map->can_multi_write) { 2512 for (i = 0; i < num_regs; i++) { 2513 ret = _regmap_write(map, regs[i].reg, regs[i].def); 2514 if (ret != 0) 2515 return ret; 2516 2517 if (regs[i].delay_us) { 2518 if (map->can_sleep) 2519 fsleep(regs[i].delay_us); 2520 else 2521 udelay(regs[i].delay_us); 2522 } 2523 } 2524 return 0; 2525 } 2526 2527 if (!map->format.parse_inplace) 2528 return -EINVAL; 2529 2530 if (map->writeable_reg) 2531 for (i = 0; i < num_regs; i++) { 2532 int reg = regs[i].reg; 2533 if (!map->writeable_reg(map->dev, reg)) 2534 return -EINVAL; 2535 if (!IS_ALIGNED(reg, map->reg_stride)) 2536 return -EINVAL; 2537 } 2538 2539 if (!map->cache_bypass) { 2540 for (i = 0; i < num_regs; i++) { 2541 unsigned int val = regs[i].def; 2542 unsigned int reg = regs[i].reg; 2543 ret = regcache_write(map, reg, val); 2544 if (ret) { 2545 dev_err(map->dev, 2546 "Error in caching of register: %x ret: %d\n", 2547 reg, ret); 2548 return ret; 2549 } 2550 } 2551 if (map->cache_only) { 2552 map->cache_dirty = true; 2553 return 0; 2554 } 2555 } 2556 2557 WARN_ON(!map->bus); 2558 2559 for (i = 0; i < num_regs; i++) { 2560 unsigned int reg = regs[i].reg; 2561 struct regmap_range_node *range; 2562 2563 /* Coalesce all the writes between a page break or a delay 2564 * in a sequence 2565 */ 2566 range = _regmap_range_lookup(map, reg); 2567 if (range || regs[i].delay_us) { 2568 size_t len = sizeof(struct reg_sequence)*num_regs; 2569 struct reg_sequence *base = kmemdup(regs, len, 2570 GFP_KERNEL); 2571 if (!base) 2572 return -ENOMEM; 2573 ret = _regmap_range_multi_paged_reg_write(map, base, 2574 num_regs); 2575 kfree(base); 2576 2577 return ret; 2578 } 2579 } 2580 return _regmap_raw_multi_reg_write(map, regs, num_regs); 2581 } 2582 2583 /** 2584 * regmap_multi_reg_write() - Write multiple registers to the device 2585 * 2586 * @map: Register map to write to 2587 * @regs: Array of structures containing register,value to be written 2588 * @num_regs: Number of registers to write 2589 * 2590 * Write multiple registers to the device where the set of register, value 2591 * pairs are supplied in any order, possibly not all in a single range. 2592 * 2593 * The 'normal' block write mode will send ultimately send data on the 2594 * target bus as R,V1,V2,V3,..,Vn where successively higher registers are 2595 * addressed. However, this alternative block multi write mode will send 2596 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device 2597 * must of course support the mode. 2598 * 2599 * A value of zero will be returned on success, a negative errno will be 2600 * returned in error cases. 2601 */ 2602 int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs, 2603 int num_regs) 2604 { 2605 int ret; 2606 2607 map->lock(map->lock_arg); 2608 2609 ret = _regmap_multi_reg_write(map, regs, num_regs); 2610 2611 map->unlock(map->lock_arg); 2612 2613 return ret; 2614 } 2615 EXPORT_SYMBOL_GPL(regmap_multi_reg_write); 2616 2617 /** 2618 * regmap_multi_reg_write_bypassed() - Write multiple registers to the 2619 * device but not the cache 2620 * 2621 * @map: Register map to write to 2622 * @regs: Array of structures containing register,value to be written 2623 * @num_regs: Number of registers to write 2624 * 2625 * Write multiple registers to the device but not the cache where the set 2626 * of register are supplied in any order. 2627 * 2628 * This function is intended to be used for writing a large block of data 2629 * atomically to the device in single transfer for those I2C client devices 2630 * that implement this alternative block write mode. 2631 * 2632 * A value of zero will be returned on success, a negative errno will 2633 * be returned in error cases. 2634 */ 2635 int regmap_multi_reg_write_bypassed(struct regmap *map, 2636 const struct reg_sequence *regs, 2637 int num_regs) 2638 { 2639 int ret; 2640 bool bypass; 2641 2642 map->lock(map->lock_arg); 2643 2644 bypass = map->cache_bypass; 2645 map->cache_bypass = true; 2646 2647 ret = _regmap_multi_reg_write(map, regs, num_regs); 2648 2649 map->cache_bypass = bypass; 2650 2651 map->unlock(map->lock_arg); 2652 2653 return ret; 2654 } 2655 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed); 2656 2657 /** 2658 * regmap_raw_write_async() - Write raw values to one or more registers 2659 * asynchronously 2660 * 2661 * @map: Register map to write to 2662 * @reg: Initial register to write to 2663 * @val: Block of data to be written, laid out for direct transmission to the 2664 * device. Must be valid until regmap_async_complete() is called. 2665 * @val_len: Length of data pointed to by val. 2666 * 2667 * This function is intended to be used for things like firmware 2668 * download where a large block of data needs to be transferred to the 2669 * device. No formatting will be done on the data provided. 2670 * 2671 * If supported by the underlying bus the write will be scheduled 2672 * asynchronously, helping maximise I/O speed on higher speed buses 2673 * like SPI. regmap_async_complete() can be called to ensure that all 2674 * asynchrnous writes have been completed. 2675 * 2676 * A value of zero will be returned on success, a negative errno will 2677 * be returned in error cases. 2678 */ 2679 int regmap_raw_write_async(struct regmap *map, unsigned int reg, 2680 const void *val, size_t val_len) 2681 { 2682 int ret; 2683 2684 if (val_len % map->format.val_bytes) 2685 return -EINVAL; 2686 if (!IS_ALIGNED(reg, map->reg_stride)) 2687 return -EINVAL; 2688 2689 map->lock(map->lock_arg); 2690 2691 map->async = true; 2692 2693 ret = _regmap_raw_write(map, reg, val, val_len, false); 2694 2695 map->async = false; 2696 2697 map->unlock(map->lock_arg); 2698 2699 return ret; 2700 } 2701 EXPORT_SYMBOL_GPL(regmap_raw_write_async); 2702 2703 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val, 2704 unsigned int val_len, bool noinc) 2705 { 2706 struct regmap_range_node *range; 2707 int ret; 2708 2709 if (!map->read) 2710 return -EINVAL; 2711 2712 range = _regmap_range_lookup(map, reg); 2713 if (range) { 2714 ret = _regmap_select_page(map, ®, range, 2715 noinc ? 1 : val_len / map->format.val_bytes); 2716 if (ret != 0) 2717 return ret; 2718 } 2719 2720 reg += map->reg_base; 2721 reg >>= map->format.reg_downshift; 2722 map->format.format_reg(map->work_buf, reg, map->reg_shift); 2723 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes, 2724 map->read_flag_mask); 2725 trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes); 2726 2727 ret = map->read(map->bus_context, map->work_buf, 2728 map->format.reg_bytes + map->format.pad_bytes, 2729 val, val_len); 2730 2731 trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes); 2732 2733 return ret; 2734 } 2735 2736 static int _regmap_bus_reg_read(void *context, unsigned int reg, 2737 unsigned int *val) 2738 { 2739 struct regmap *map = context; 2740 2741 return map->bus->reg_read(map->bus_context, reg, val); 2742 } 2743 2744 static int _regmap_bus_read(void *context, unsigned int reg, 2745 unsigned int *val) 2746 { 2747 int ret; 2748 struct regmap *map = context; 2749 void *work_val = map->work_buf + map->format.reg_bytes + 2750 map->format.pad_bytes; 2751 2752 if (!map->format.parse_val) 2753 return -EINVAL; 2754 2755 ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes, false); 2756 if (ret == 0) 2757 *val = map->format.parse_val(work_val); 2758 2759 return ret; 2760 } 2761 2762 static int _regmap_read(struct regmap *map, unsigned int reg, 2763 unsigned int *val) 2764 { 2765 int ret; 2766 void *context = _regmap_map_get_context(map); 2767 2768 if (!map->cache_bypass) { 2769 ret = regcache_read(map, reg, val); 2770 if (ret == 0) 2771 return 0; 2772 } 2773 2774 if (map->cache_only) 2775 return -EBUSY; 2776 2777 if (!regmap_readable(map, reg)) 2778 return -EIO; 2779 2780 ret = map->reg_read(context, reg, val); 2781 if (ret == 0) { 2782 if (regmap_should_log(map)) 2783 dev_info(map->dev, "%x => %x\n", reg, *val); 2784 2785 trace_regmap_reg_read(map, reg, *val); 2786 2787 if (!map->cache_bypass) 2788 regcache_write(map, reg, *val); 2789 } 2790 2791 return ret; 2792 } 2793 2794 /** 2795 * regmap_read() - Read a value from a single register 2796 * 2797 * @map: Register map to read from 2798 * @reg: Register to be read from 2799 * @val: Pointer to store read value 2800 * 2801 * A value of zero will be returned on success, a negative errno will 2802 * be returned in error cases. 2803 */ 2804 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val) 2805 { 2806 int ret; 2807 2808 if (!IS_ALIGNED(reg, map->reg_stride)) 2809 return -EINVAL; 2810 2811 map->lock(map->lock_arg); 2812 2813 ret = _regmap_read(map, reg, val); 2814 2815 map->unlock(map->lock_arg); 2816 2817 return ret; 2818 } 2819 EXPORT_SYMBOL_GPL(regmap_read); 2820 2821 /** 2822 * regmap_raw_read() - Read raw data from the device 2823 * 2824 * @map: Register map to read from 2825 * @reg: First register to be read from 2826 * @val: Pointer to store read value 2827 * @val_len: Size of data to read 2828 * 2829 * A value of zero will be returned on success, a negative errno will 2830 * be returned in error cases. 2831 */ 2832 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val, 2833 size_t val_len) 2834 { 2835 size_t val_bytes = map->format.val_bytes; 2836 size_t val_count = val_len / val_bytes; 2837 unsigned int v; 2838 int ret, i; 2839 2840 if (val_len % map->format.val_bytes) 2841 return -EINVAL; 2842 if (!IS_ALIGNED(reg, map->reg_stride)) 2843 return -EINVAL; 2844 if (val_count == 0) 2845 return -EINVAL; 2846 2847 map->lock(map->lock_arg); 2848 2849 if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass || 2850 map->cache_type == REGCACHE_NONE) { 2851 size_t chunk_count, chunk_bytes; 2852 size_t chunk_regs = val_count; 2853 2854 if (!map->read) { 2855 ret = -ENOTSUPP; 2856 goto out; 2857 } 2858 2859 if (map->use_single_read) 2860 chunk_regs = 1; 2861 else if (map->max_raw_read && val_len > map->max_raw_read) 2862 chunk_regs = map->max_raw_read / val_bytes; 2863 2864 chunk_count = val_count / chunk_regs; 2865 chunk_bytes = chunk_regs * val_bytes; 2866 2867 /* Read bytes that fit into whole chunks */ 2868 for (i = 0; i < chunk_count; i++) { 2869 ret = _regmap_raw_read(map, reg, val, chunk_bytes, false); 2870 if (ret != 0) 2871 goto out; 2872 2873 reg += regmap_get_offset(map, chunk_regs); 2874 val += chunk_bytes; 2875 val_len -= chunk_bytes; 2876 } 2877 2878 /* Read remaining bytes */ 2879 if (val_len) { 2880 ret = _regmap_raw_read(map, reg, val, val_len, false); 2881 if (ret != 0) 2882 goto out; 2883 } 2884 } else { 2885 /* Otherwise go word by word for the cache; should be low 2886 * cost as we expect to hit the cache. 2887 */ 2888 for (i = 0; i < val_count; i++) { 2889 ret = _regmap_read(map, reg + regmap_get_offset(map, i), 2890 &v); 2891 if (ret != 0) 2892 goto out; 2893 2894 map->format.format_val(val + (i * val_bytes), v, 0); 2895 } 2896 } 2897 2898 out: 2899 map->unlock(map->lock_arg); 2900 2901 return ret; 2902 } 2903 EXPORT_SYMBOL_GPL(regmap_raw_read); 2904 2905 /** 2906 * regmap_noinc_read(): Read data from a register without incrementing the 2907 * register number 2908 * 2909 * @map: Register map to read from 2910 * @reg: Register to read from 2911 * @val: Pointer to data buffer 2912 * @val_len: Length of output buffer in bytes. 2913 * 2914 * The regmap API usually assumes that bulk read operations will read a 2915 * range of registers. Some devices have certain registers for which a read 2916 * operation read will read from an internal FIFO. 2917 * 2918 * The target register must be volatile but registers after it can be 2919 * completely unrelated cacheable registers. 2920 * 2921 * This will attempt multiple reads as required to read val_len bytes. 2922 * 2923 * A value of zero will be returned on success, a negative errno will be 2924 * returned in error cases. 2925 */ 2926 int regmap_noinc_read(struct regmap *map, unsigned int reg, 2927 void *val, size_t val_len) 2928 { 2929 size_t read_len; 2930 int ret; 2931 2932 if (!map->read) 2933 return -ENOTSUPP; 2934 2935 if (val_len % map->format.val_bytes) 2936 return -EINVAL; 2937 if (!IS_ALIGNED(reg, map->reg_stride)) 2938 return -EINVAL; 2939 if (val_len == 0) 2940 return -EINVAL; 2941 2942 map->lock(map->lock_arg); 2943 2944 if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) { 2945 ret = -EINVAL; 2946 goto out_unlock; 2947 } 2948 2949 while (val_len) { 2950 if (map->max_raw_read && map->max_raw_read < val_len) 2951 read_len = map->max_raw_read; 2952 else 2953 read_len = val_len; 2954 ret = _regmap_raw_read(map, reg, val, read_len, true); 2955 if (ret) 2956 goto out_unlock; 2957 val = ((u8 *)val) + read_len; 2958 val_len -= read_len; 2959 } 2960 2961 out_unlock: 2962 map->unlock(map->lock_arg); 2963 return ret; 2964 } 2965 EXPORT_SYMBOL_GPL(regmap_noinc_read); 2966 2967 /** 2968 * regmap_field_read(): Read a value to a single register field 2969 * 2970 * @field: Register field to read from 2971 * @val: Pointer to store read value 2972 * 2973 * A value of zero will be returned on success, a negative errno will 2974 * be returned in error cases. 2975 */ 2976 int regmap_field_read(struct regmap_field *field, unsigned int *val) 2977 { 2978 int ret; 2979 unsigned int reg_val; 2980 ret = regmap_read(field->regmap, field->reg, ®_val); 2981 if (ret != 0) 2982 return ret; 2983 2984 reg_val &= field->mask; 2985 reg_val >>= field->shift; 2986 *val = reg_val; 2987 2988 return ret; 2989 } 2990 EXPORT_SYMBOL_GPL(regmap_field_read); 2991 2992 /** 2993 * regmap_fields_read() - Read a value to a single register field with port ID 2994 * 2995 * @field: Register field to read from 2996 * @id: port ID 2997 * @val: Pointer to store read value 2998 * 2999 * A value of zero will be returned on success, a negative errno will 3000 * be returned in error cases. 3001 */ 3002 int regmap_fields_read(struct regmap_field *field, unsigned int id, 3003 unsigned int *val) 3004 { 3005 int ret; 3006 unsigned int reg_val; 3007 3008 if (id >= field->id_size) 3009 return -EINVAL; 3010 3011 ret = regmap_read(field->regmap, 3012 field->reg + (field->id_offset * id), 3013 ®_val); 3014 if (ret != 0) 3015 return ret; 3016 3017 reg_val &= field->mask; 3018 reg_val >>= field->shift; 3019 *val = reg_val; 3020 3021 return ret; 3022 } 3023 EXPORT_SYMBOL_GPL(regmap_fields_read); 3024 3025 /** 3026 * regmap_bulk_read() - Read multiple registers from the device 3027 * 3028 * @map: Register map to read from 3029 * @reg: First register to be read from 3030 * @val: Pointer to store read value, in native register size for device 3031 * @val_count: Number of registers to read 3032 * 3033 * A value of zero will be returned on success, a negative errno will 3034 * be returned in error cases. 3035 */ 3036 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val, 3037 size_t val_count) 3038 { 3039 int ret, i; 3040 size_t val_bytes = map->format.val_bytes; 3041 bool vol = regmap_volatile_range(map, reg, val_count); 3042 3043 if (!IS_ALIGNED(reg, map->reg_stride)) 3044 return -EINVAL; 3045 if (val_count == 0) 3046 return -EINVAL; 3047 3048 if (map->read && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) { 3049 ret = regmap_raw_read(map, reg, val, val_bytes * val_count); 3050 if (ret != 0) 3051 return ret; 3052 3053 for (i = 0; i < val_count * val_bytes; i += val_bytes) 3054 map->format.parse_inplace(val + i); 3055 } else { 3056 #ifdef CONFIG_64BIT 3057 u64 *u64 = val; 3058 #endif 3059 u32 *u32 = val; 3060 u16 *u16 = val; 3061 u8 *u8 = val; 3062 3063 map->lock(map->lock_arg); 3064 3065 for (i = 0; i < val_count; i++) { 3066 unsigned int ival; 3067 3068 ret = _regmap_read(map, reg + regmap_get_offset(map, i), 3069 &ival); 3070 if (ret != 0) 3071 goto out; 3072 3073 switch (map->format.val_bytes) { 3074 #ifdef CONFIG_64BIT 3075 case 8: 3076 u64[i] = ival; 3077 break; 3078 #endif 3079 case 4: 3080 u32[i] = ival; 3081 break; 3082 case 2: 3083 u16[i] = ival; 3084 break; 3085 case 1: 3086 u8[i] = ival; 3087 break; 3088 default: 3089 ret = -EINVAL; 3090 goto out; 3091 } 3092 } 3093 3094 out: 3095 map->unlock(map->lock_arg); 3096 } 3097 3098 return ret; 3099 } 3100 EXPORT_SYMBOL_GPL(regmap_bulk_read); 3101 3102 static int _regmap_update_bits(struct regmap *map, unsigned int reg, 3103 unsigned int mask, unsigned int val, 3104 bool *change, bool force_write) 3105 { 3106 int ret; 3107 unsigned int tmp, orig; 3108 3109 if (change) 3110 *change = false; 3111 3112 if (regmap_volatile(map, reg) && map->reg_update_bits) { 3113 ret = map->reg_update_bits(map->bus_context, reg, mask, val); 3114 if (ret == 0 && change) 3115 *change = true; 3116 } else { 3117 ret = _regmap_read(map, reg, &orig); 3118 if (ret != 0) 3119 return ret; 3120 3121 tmp = orig & ~mask; 3122 tmp |= val & mask; 3123 3124 if (force_write || (tmp != orig)) { 3125 ret = _regmap_write(map, reg, tmp); 3126 if (ret == 0 && change) 3127 *change = true; 3128 } 3129 } 3130 3131 return ret; 3132 } 3133 3134 /** 3135 * regmap_update_bits_base() - Perform a read/modify/write cycle on a register 3136 * 3137 * @map: Register map to update 3138 * @reg: Register to update 3139 * @mask: Bitmask to change 3140 * @val: New value for bitmask 3141 * @change: Boolean indicating if a write was done 3142 * @async: Boolean indicating asynchronously 3143 * @force: Boolean indicating use force update 3144 * 3145 * Perform a read/modify/write cycle on a register map with change, async, force 3146 * options. 3147 * 3148 * If async is true: 3149 * 3150 * With most buses the read must be done synchronously so this is most useful 3151 * for devices with a cache which do not need to interact with the hardware to 3152 * determine the current register value. 3153 * 3154 * Returns zero for success, a negative number on error. 3155 */ 3156 int regmap_update_bits_base(struct regmap *map, unsigned int reg, 3157 unsigned int mask, unsigned int val, 3158 bool *change, bool async, bool force) 3159 { 3160 int ret; 3161 3162 map->lock(map->lock_arg); 3163 3164 map->async = async; 3165 3166 ret = _regmap_update_bits(map, reg, mask, val, change, force); 3167 3168 map->async = false; 3169 3170 map->unlock(map->lock_arg); 3171 3172 return ret; 3173 } 3174 EXPORT_SYMBOL_GPL(regmap_update_bits_base); 3175 3176 /** 3177 * regmap_test_bits() - Check if all specified bits are set in a register. 3178 * 3179 * @map: Register map to operate on 3180 * @reg: Register to read from 3181 * @bits: Bits to test 3182 * 3183 * Returns 0 if at least one of the tested bits is not set, 1 if all tested 3184 * bits are set and a negative error number if the underlying regmap_read() 3185 * fails. 3186 */ 3187 int regmap_test_bits(struct regmap *map, unsigned int reg, unsigned int bits) 3188 { 3189 unsigned int val, ret; 3190 3191 ret = regmap_read(map, reg, &val); 3192 if (ret) 3193 return ret; 3194 3195 return (val & bits) == bits; 3196 } 3197 EXPORT_SYMBOL_GPL(regmap_test_bits); 3198 3199 void regmap_async_complete_cb(struct regmap_async *async, int ret) 3200 { 3201 struct regmap *map = async->map; 3202 bool wake; 3203 3204 trace_regmap_async_io_complete(map); 3205 3206 spin_lock(&map->async_lock); 3207 list_move(&async->list, &map->async_free); 3208 wake = list_empty(&map->async_list); 3209 3210 if (ret != 0) 3211 map->async_ret = ret; 3212 3213 spin_unlock(&map->async_lock); 3214 3215 if (wake) 3216 wake_up(&map->async_waitq); 3217 } 3218 EXPORT_SYMBOL_GPL(regmap_async_complete_cb); 3219 3220 static int regmap_async_is_done(struct regmap *map) 3221 { 3222 unsigned long flags; 3223 int ret; 3224 3225 spin_lock_irqsave(&map->async_lock, flags); 3226 ret = list_empty(&map->async_list); 3227 spin_unlock_irqrestore(&map->async_lock, flags); 3228 3229 return ret; 3230 } 3231 3232 /** 3233 * regmap_async_complete - Ensure all asynchronous I/O has completed. 3234 * 3235 * @map: Map to operate on. 3236 * 3237 * Blocks until any pending asynchronous I/O has completed. Returns 3238 * an error code for any failed I/O operations. 3239 */ 3240 int regmap_async_complete(struct regmap *map) 3241 { 3242 unsigned long flags; 3243 int ret; 3244 3245 /* Nothing to do with no async support */ 3246 if (!map->bus || !map->bus->async_write) 3247 return 0; 3248 3249 trace_regmap_async_complete_start(map); 3250 3251 wait_event(map->async_waitq, regmap_async_is_done(map)); 3252 3253 spin_lock_irqsave(&map->async_lock, flags); 3254 ret = map->async_ret; 3255 map->async_ret = 0; 3256 spin_unlock_irqrestore(&map->async_lock, flags); 3257 3258 trace_regmap_async_complete_done(map); 3259 3260 return ret; 3261 } 3262 EXPORT_SYMBOL_GPL(regmap_async_complete); 3263 3264 /** 3265 * regmap_register_patch - Register and apply register updates to be applied 3266 * on device initialistion 3267 * 3268 * @map: Register map to apply updates to. 3269 * @regs: Values to update. 3270 * @num_regs: Number of entries in regs. 3271 * 3272 * Register a set of register updates to be applied to the device 3273 * whenever the device registers are synchronised with the cache and 3274 * apply them immediately. Typically this is used to apply 3275 * corrections to be applied to the device defaults on startup, such 3276 * as the updates some vendors provide to undocumented registers. 3277 * 3278 * The caller must ensure that this function cannot be called 3279 * concurrently with either itself or regcache_sync(). 3280 */ 3281 int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs, 3282 int num_regs) 3283 { 3284 struct reg_sequence *p; 3285 int ret; 3286 bool bypass; 3287 3288 if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n", 3289 num_regs)) 3290 return 0; 3291 3292 p = krealloc(map->patch, 3293 sizeof(struct reg_sequence) * (map->patch_regs + num_regs), 3294 GFP_KERNEL); 3295 if (p) { 3296 memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs)); 3297 map->patch = p; 3298 map->patch_regs += num_regs; 3299 } else { 3300 return -ENOMEM; 3301 } 3302 3303 map->lock(map->lock_arg); 3304 3305 bypass = map->cache_bypass; 3306 3307 map->cache_bypass = true; 3308 map->async = true; 3309 3310 ret = _regmap_multi_reg_write(map, regs, num_regs); 3311 3312 map->async = false; 3313 map->cache_bypass = bypass; 3314 3315 map->unlock(map->lock_arg); 3316 3317 regmap_async_complete(map); 3318 3319 return ret; 3320 } 3321 EXPORT_SYMBOL_GPL(regmap_register_patch); 3322 3323 /** 3324 * regmap_get_val_bytes() - Report the size of a register value 3325 * 3326 * @map: Register map to operate on. 3327 * 3328 * Report the size of a register value, mainly intended to for use by 3329 * generic infrastructure built on top of regmap. 3330 */ 3331 int regmap_get_val_bytes(struct regmap *map) 3332 { 3333 if (map->format.format_write) 3334 return -EINVAL; 3335 3336 return map->format.val_bytes; 3337 } 3338 EXPORT_SYMBOL_GPL(regmap_get_val_bytes); 3339 3340 /** 3341 * regmap_get_max_register() - Report the max register value 3342 * 3343 * @map: Register map to operate on. 3344 * 3345 * Report the max register value, mainly intended to for use by 3346 * generic infrastructure built on top of regmap. 3347 */ 3348 int regmap_get_max_register(struct regmap *map) 3349 { 3350 return map->max_register ? map->max_register : -EINVAL; 3351 } 3352 EXPORT_SYMBOL_GPL(regmap_get_max_register); 3353 3354 /** 3355 * regmap_get_reg_stride() - Report the register address stride 3356 * 3357 * @map: Register map to operate on. 3358 * 3359 * Report the register address stride, mainly intended to for use by 3360 * generic infrastructure built on top of regmap. 3361 */ 3362 int regmap_get_reg_stride(struct regmap *map) 3363 { 3364 return map->reg_stride; 3365 } 3366 EXPORT_SYMBOL_GPL(regmap_get_reg_stride); 3367 3368 int regmap_parse_val(struct regmap *map, const void *buf, 3369 unsigned int *val) 3370 { 3371 if (!map->format.parse_val) 3372 return -EINVAL; 3373 3374 *val = map->format.parse_val(buf); 3375 3376 return 0; 3377 } 3378 EXPORT_SYMBOL_GPL(regmap_parse_val); 3379 3380 static int __init regmap_initcall(void) 3381 { 3382 regmap_debugfs_initcall(); 3383 3384 return 0; 3385 } 3386 postcore_initcall(regmap_initcall); 3387