xref: /linux/drivers/base/regmap/regmap.c (revision 1623bc27a85a93e82194c8d077eccc464efa67db)
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // Register map access API
4 //
5 // Copyright 2011 Wolfson Microelectronics plc
6 //
7 // Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8 
9 #include <linux/device.h>
10 #include <linux/slab.h>
11 #include <linux/export.h>
12 #include <linux/mutex.h>
13 #include <linux/err.h>
14 #include <linux/property.h>
15 #include <linux/rbtree.h>
16 #include <linux/sched.h>
17 #include <linux/delay.h>
18 #include <linux/log2.h>
19 #include <linux/hwspinlock.h>
20 #include <linux/unaligned.h>
21 
22 #define CREATE_TRACE_POINTS
23 #include "trace.h"
24 
25 #include "internal.h"
26 
27 /*
28  * Sometimes for failures during very early init the trace
29  * infrastructure isn't available early enough to be used.  For this
30  * sort of problem defining LOG_DEVICE will add printks for basic
31  * register I/O on a specific device.
32  */
33 #undef LOG_DEVICE
34 
35 #ifdef LOG_DEVICE
36 static inline bool regmap_should_log(struct regmap *map)
37 {
38 	return (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0);
39 }
40 #else
41 static inline bool regmap_should_log(struct regmap *map) { return false; }
42 #endif
43 
44 
45 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
46 			       unsigned int mask, unsigned int val,
47 			       bool *change, bool force_write);
48 
49 static int _regmap_bus_reg_read(void *context, unsigned int reg,
50 				unsigned int *val);
51 static int _regmap_bus_read(void *context, unsigned int reg,
52 			    unsigned int *val);
53 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
54 				       unsigned int val);
55 static int _regmap_bus_reg_write(void *context, unsigned int reg,
56 				 unsigned int val);
57 static int _regmap_bus_raw_write(void *context, unsigned int reg,
58 				 unsigned int val);
59 
60 bool regmap_reg_in_ranges(unsigned int reg,
61 			  const struct regmap_range *ranges,
62 			  unsigned int nranges)
63 {
64 	const struct regmap_range *r;
65 	int i;
66 
67 	for (i = 0, r = ranges; i < nranges; i++, r++)
68 		if (regmap_reg_in_range(reg, r))
69 			return true;
70 	return false;
71 }
72 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
73 
74 bool regmap_check_range_table(struct regmap *map, unsigned int reg,
75 			      const struct regmap_access_table *table)
76 {
77 	/* Check "no ranges" first */
78 	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
79 		return false;
80 
81 	/* In case zero "yes ranges" are supplied, any reg is OK */
82 	if (!table->n_yes_ranges)
83 		return true;
84 
85 	return regmap_reg_in_ranges(reg, table->yes_ranges,
86 				    table->n_yes_ranges);
87 }
88 EXPORT_SYMBOL_GPL(regmap_check_range_table);
89 
90 bool regmap_writeable(struct regmap *map, unsigned int reg)
91 {
92 	if (map->max_register_is_set && reg > map->max_register)
93 		return false;
94 
95 	if (map->writeable_reg)
96 		return map->writeable_reg(map->dev, reg);
97 
98 	if (map->wr_table)
99 		return regmap_check_range_table(map, reg, map->wr_table);
100 
101 	return true;
102 }
103 
104 bool regmap_cached(struct regmap *map, unsigned int reg)
105 {
106 	int ret;
107 	unsigned int val;
108 
109 	if (map->cache_type == REGCACHE_NONE)
110 		return false;
111 
112 	if (!map->cache_ops)
113 		return false;
114 
115 	if (map->max_register_is_set && reg > map->max_register)
116 		return false;
117 
118 	map->lock(map->lock_arg);
119 	ret = regcache_read(map, reg, &val);
120 	map->unlock(map->lock_arg);
121 	if (ret)
122 		return false;
123 
124 	return true;
125 }
126 
127 bool regmap_readable(struct regmap *map, unsigned int reg)
128 {
129 	if (!map->reg_read)
130 		return false;
131 
132 	if (map->max_register_is_set && reg > map->max_register)
133 		return false;
134 
135 	if (map->format.format_write)
136 		return false;
137 
138 	if (map->readable_reg)
139 		return map->readable_reg(map->dev, reg);
140 
141 	if (map->rd_table)
142 		return regmap_check_range_table(map, reg, map->rd_table);
143 
144 	return true;
145 }
146 
147 bool regmap_volatile(struct regmap *map, unsigned int reg)
148 {
149 	if (!map->format.format_write && !regmap_readable(map, reg))
150 		return false;
151 
152 	if (map->volatile_reg)
153 		return map->volatile_reg(map->dev, reg);
154 
155 	if (map->volatile_table)
156 		return regmap_check_range_table(map, reg, map->volatile_table);
157 
158 	if (map->cache_ops)
159 		return false;
160 	else
161 		return true;
162 }
163 
164 bool regmap_precious(struct regmap *map, unsigned int reg)
165 {
166 	if (!regmap_readable(map, reg))
167 		return false;
168 
169 	if (map->precious_reg)
170 		return map->precious_reg(map->dev, reg);
171 
172 	if (map->precious_table)
173 		return regmap_check_range_table(map, reg, map->precious_table);
174 
175 	return false;
176 }
177 
178 bool regmap_writeable_noinc(struct regmap *map, unsigned int reg)
179 {
180 	if (map->writeable_noinc_reg)
181 		return map->writeable_noinc_reg(map->dev, reg);
182 
183 	if (map->wr_noinc_table)
184 		return regmap_check_range_table(map, reg, map->wr_noinc_table);
185 
186 	return true;
187 }
188 
189 bool regmap_readable_noinc(struct regmap *map, unsigned int reg)
190 {
191 	if (map->readable_noinc_reg)
192 		return map->readable_noinc_reg(map->dev, reg);
193 
194 	if (map->rd_noinc_table)
195 		return regmap_check_range_table(map, reg, map->rd_noinc_table);
196 
197 	return true;
198 }
199 
200 static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
201 	size_t num)
202 {
203 	unsigned int i;
204 
205 	for (i = 0; i < num; i++)
206 		if (!regmap_volatile(map, reg + regmap_get_offset(map, i)))
207 			return false;
208 
209 	return true;
210 }
211 
212 static void regmap_format_12_20_write(struct regmap *map,
213 				     unsigned int reg, unsigned int val)
214 {
215 	u8 *out = map->work_buf;
216 
217 	out[0] = reg >> 4;
218 	out[1] = (reg << 4) | (val >> 16);
219 	out[2] = val >> 8;
220 	out[3] = val;
221 }
222 
223 
224 static void regmap_format_2_6_write(struct regmap *map,
225 				     unsigned int reg, unsigned int val)
226 {
227 	u8 *out = map->work_buf;
228 
229 	*out = (reg << 6) | val;
230 }
231 
232 static void regmap_format_4_12_write(struct regmap *map,
233 				     unsigned int reg, unsigned int val)
234 {
235 	__be16 *out = map->work_buf;
236 	*out = cpu_to_be16((reg << 12) | val);
237 }
238 
239 static void regmap_format_7_9_write(struct regmap *map,
240 				    unsigned int reg, unsigned int val)
241 {
242 	__be16 *out = map->work_buf;
243 	*out = cpu_to_be16((reg << 9) | val);
244 }
245 
246 static void regmap_format_7_17_write(struct regmap *map,
247 				    unsigned int reg, unsigned int val)
248 {
249 	u8 *out = map->work_buf;
250 
251 	out[2] = val;
252 	out[1] = val >> 8;
253 	out[0] = (val >> 16) | (reg << 1);
254 }
255 
256 static void regmap_format_10_14_write(struct regmap *map,
257 				    unsigned int reg, unsigned int val)
258 {
259 	u8 *out = map->work_buf;
260 
261 	out[2] = val;
262 	out[1] = (val >> 8) | (reg << 6);
263 	out[0] = reg >> 2;
264 }
265 
266 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
267 {
268 	u8 *b = buf;
269 
270 	b[0] = val << shift;
271 }
272 
273 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
274 {
275 	put_unaligned_be16(val << shift, buf);
276 }
277 
278 static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
279 {
280 	put_unaligned_le16(val << shift, buf);
281 }
282 
283 static void regmap_format_16_native(void *buf, unsigned int val,
284 				    unsigned int shift)
285 {
286 	u16 v = val << shift;
287 
288 	memcpy(buf, &v, sizeof(v));
289 }
290 
291 static void regmap_format_24_be(void *buf, unsigned int val, unsigned int shift)
292 {
293 	put_unaligned_be24(val << shift, buf);
294 }
295 
296 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
297 {
298 	put_unaligned_be32(val << shift, buf);
299 }
300 
301 static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
302 {
303 	put_unaligned_le32(val << shift, buf);
304 }
305 
306 static void regmap_format_32_native(void *buf, unsigned int val,
307 				    unsigned int shift)
308 {
309 	u32 v = val << shift;
310 
311 	memcpy(buf, &v, sizeof(v));
312 }
313 
314 static void regmap_parse_inplace_noop(void *buf)
315 {
316 }
317 
318 static unsigned int regmap_parse_8(const void *buf)
319 {
320 	const u8 *b = buf;
321 
322 	return b[0];
323 }
324 
325 static unsigned int regmap_parse_16_be(const void *buf)
326 {
327 	return get_unaligned_be16(buf);
328 }
329 
330 static unsigned int regmap_parse_16_le(const void *buf)
331 {
332 	return get_unaligned_le16(buf);
333 }
334 
335 static void regmap_parse_16_be_inplace(void *buf)
336 {
337 	u16 v = get_unaligned_be16(buf);
338 
339 	memcpy(buf, &v, sizeof(v));
340 }
341 
342 static void regmap_parse_16_le_inplace(void *buf)
343 {
344 	u16 v = get_unaligned_le16(buf);
345 
346 	memcpy(buf, &v, sizeof(v));
347 }
348 
349 static unsigned int regmap_parse_16_native(const void *buf)
350 {
351 	u16 v;
352 
353 	memcpy(&v, buf, sizeof(v));
354 	return v;
355 }
356 
357 static unsigned int regmap_parse_24_be(const void *buf)
358 {
359 	return get_unaligned_be24(buf);
360 }
361 
362 static unsigned int regmap_parse_32_be(const void *buf)
363 {
364 	return get_unaligned_be32(buf);
365 }
366 
367 static unsigned int regmap_parse_32_le(const void *buf)
368 {
369 	return get_unaligned_le32(buf);
370 }
371 
372 static void regmap_parse_32_be_inplace(void *buf)
373 {
374 	u32 v = get_unaligned_be32(buf);
375 
376 	memcpy(buf, &v, sizeof(v));
377 }
378 
379 static void regmap_parse_32_le_inplace(void *buf)
380 {
381 	u32 v = get_unaligned_le32(buf);
382 
383 	memcpy(buf, &v, sizeof(v));
384 }
385 
386 static unsigned int regmap_parse_32_native(const void *buf)
387 {
388 	u32 v;
389 
390 	memcpy(&v, buf, sizeof(v));
391 	return v;
392 }
393 
394 static void regmap_lock_hwlock(void *__map)
395 {
396 	struct regmap *map = __map;
397 
398 	hwspin_lock_timeout(map->hwlock, UINT_MAX);
399 }
400 
401 static void regmap_lock_hwlock_irq(void *__map)
402 {
403 	struct regmap *map = __map;
404 
405 	hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
406 }
407 
408 static void regmap_lock_hwlock_irqsave(void *__map)
409 {
410 	struct regmap *map = __map;
411 
412 	hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
413 				    &map->spinlock_flags);
414 }
415 
416 static void regmap_unlock_hwlock(void *__map)
417 {
418 	struct regmap *map = __map;
419 
420 	hwspin_unlock(map->hwlock);
421 }
422 
423 static void regmap_unlock_hwlock_irq(void *__map)
424 {
425 	struct regmap *map = __map;
426 
427 	hwspin_unlock_irq(map->hwlock);
428 }
429 
430 static void regmap_unlock_hwlock_irqrestore(void *__map)
431 {
432 	struct regmap *map = __map;
433 
434 	hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
435 }
436 
437 static void regmap_lock_unlock_none(void *__map)
438 {
439 
440 }
441 
442 static void regmap_lock_mutex(void *__map)
443 {
444 	struct regmap *map = __map;
445 	mutex_lock(&map->mutex);
446 }
447 
448 static void regmap_unlock_mutex(void *__map)
449 {
450 	struct regmap *map = __map;
451 	mutex_unlock(&map->mutex);
452 }
453 
454 static void regmap_lock_spinlock(void *__map)
455 __acquires(&map->spinlock)
456 {
457 	struct regmap *map = __map;
458 	unsigned long flags;
459 
460 	spin_lock_irqsave(&map->spinlock, flags);
461 	map->spinlock_flags = flags;
462 }
463 
464 static void regmap_unlock_spinlock(void *__map)
465 __releases(&map->spinlock)
466 {
467 	struct regmap *map = __map;
468 	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
469 }
470 
471 static void regmap_lock_raw_spinlock(void *__map)
472 __acquires(&map->raw_spinlock)
473 {
474 	struct regmap *map = __map;
475 	unsigned long flags;
476 
477 	raw_spin_lock_irqsave(&map->raw_spinlock, flags);
478 	map->raw_spinlock_flags = flags;
479 }
480 
481 static void regmap_unlock_raw_spinlock(void *__map)
482 __releases(&map->raw_spinlock)
483 {
484 	struct regmap *map = __map;
485 	raw_spin_unlock_irqrestore(&map->raw_spinlock, map->raw_spinlock_flags);
486 }
487 
488 static void dev_get_regmap_release(struct device *dev, void *res)
489 {
490 	/*
491 	 * We don't actually have anything to do here; the goal here
492 	 * is not to manage the regmap but to provide a simple way to
493 	 * get the regmap back given a struct device.
494 	 */
495 }
496 
497 static bool _regmap_range_add(struct regmap *map,
498 			      struct regmap_range_node *data)
499 {
500 	struct rb_root *root = &map->range_tree;
501 	struct rb_node **new = &(root->rb_node), *parent = NULL;
502 
503 	while (*new) {
504 		struct regmap_range_node *this =
505 			rb_entry(*new, struct regmap_range_node, node);
506 
507 		parent = *new;
508 		if (data->range_max < this->range_min)
509 			new = &((*new)->rb_left);
510 		else if (data->range_min > this->range_max)
511 			new = &((*new)->rb_right);
512 		else
513 			return false;
514 	}
515 
516 	rb_link_node(&data->node, parent, new);
517 	rb_insert_color(&data->node, root);
518 
519 	return true;
520 }
521 
522 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
523 						      unsigned int reg)
524 {
525 	struct rb_node *node = map->range_tree.rb_node;
526 
527 	while (node) {
528 		struct regmap_range_node *this =
529 			rb_entry(node, struct regmap_range_node, node);
530 
531 		if (reg < this->range_min)
532 			node = node->rb_left;
533 		else if (reg > this->range_max)
534 			node = node->rb_right;
535 		else
536 			return this;
537 	}
538 
539 	return NULL;
540 }
541 
542 static void regmap_range_exit(struct regmap *map)
543 {
544 	struct rb_node *next;
545 	struct regmap_range_node *range_node;
546 
547 	next = rb_first(&map->range_tree);
548 	while (next) {
549 		range_node = rb_entry(next, struct regmap_range_node, node);
550 		next = rb_next(&range_node->node);
551 		rb_erase(&range_node->node, &map->range_tree);
552 		kfree(range_node);
553 	}
554 
555 	kfree(map->selector_work_buf);
556 }
557 
558 static int regmap_set_name(struct regmap *map, const struct regmap_config *config)
559 {
560 	if (config->name) {
561 		const char *name = kstrdup_const(config->name, GFP_KERNEL);
562 
563 		if (!name)
564 			return -ENOMEM;
565 
566 		kfree_const(map->name);
567 		map->name = name;
568 	}
569 
570 	return 0;
571 }
572 
573 int regmap_attach_dev(struct device *dev, struct regmap *map,
574 		      const struct regmap_config *config)
575 {
576 	struct regmap **m;
577 	int ret;
578 
579 	map->dev = dev;
580 
581 	ret = regmap_set_name(map, config);
582 	if (ret)
583 		return ret;
584 
585 	regmap_debugfs_exit(map);
586 	regmap_debugfs_init(map);
587 
588 	/* Add a devres resource for dev_get_regmap() */
589 	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
590 	if (!m) {
591 		regmap_debugfs_exit(map);
592 		return -ENOMEM;
593 	}
594 	*m = map;
595 	devres_add(dev, m);
596 
597 	return 0;
598 }
599 EXPORT_SYMBOL_GPL(regmap_attach_dev);
600 
601 static int dev_get_regmap_match(struct device *dev, void *res, void *data);
602 
603 static int regmap_detach_dev(struct device *dev, struct regmap *map)
604 {
605 	if (!dev)
606 		return 0;
607 
608 	return devres_release(dev, dev_get_regmap_release,
609 			      dev_get_regmap_match, (void *)map->name);
610 }
611 
612 static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
613 					const struct regmap_config *config)
614 {
615 	enum regmap_endian endian;
616 
617 	/* Retrieve the endianness specification from the regmap config */
618 	endian = config->reg_format_endian;
619 
620 	/* If the regmap config specified a non-default value, use that */
621 	if (endian != REGMAP_ENDIAN_DEFAULT)
622 		return endian;
623 
624 	/* Retrieve the endianness specification from the bus config */
625 	if (bus && bus->reg_format_endian_default)
626 		endian = bus->reg_format_endian_default;
627 
628 	/* If the bus specified a non-default value, use that */
629 	if (endian != REGMAP_ENDIAN_DEFAULT)
630 		return endian;
631 
632 	/* Use this if no other value was found */
633 	return REGMAP_ENDIAN_BIG;
634 }
635 
636 enum regmap_endian regmap_get_val_endian(struct device *dev,
637 					 const struct regmap_bus *bus,
638 					 const struct regmap_config *config)
639 {
640 	struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
641 	enum regmap_endian endian;
642 
643 	/* Retrieve the endianness specification from the regmap config */
644 	endian = config->val_format_endian;
645 
646 	/* If the regmap config specified a non-default value, use that */
647 	if (endian != REGMAP_ENDIAN_DEFAULT)
648 		return endian;
649 
650 	/* If the firmware node exist try to get endianness from it */
651 	if (fwnode_property_read_bool(fwnode, "big-endian"))
652 		endian = REGMAP_ENDIAN_BIG;
653 	else if (fwnode_property_read_bool(fwnode, "little-endian"))
654 		endian = REGMAP_ENDIAN_LITTLE;
655 	else if (fwnode_property_read_bool(fwnode, "native-endian"))
656 		endian = REGMAP_ENDIAN_NATIVE;
657 
658 	/* If the endianness was specified in fwnode, use that */
659 	if (endian != REGMAP_ENDIAN_DEFAULT)
660 		return endian;
661 
662 	/* Retrieve the endianness specification from the bus config */
663 	if (bus && bus->val_format_endian_default)
664 		endian = bus->val_format_endian_default;
665 
666 	/* If the bus specified a non-default value, use that */
667 	if (endian != REGMAP_ENDIAN_DEFAULT)
668 		return endian;
669 
670 	/* Use this if no other value was found */
671 	return REGMAP_ENDIAN_BIG;
672 }
673 EXPORT_SYMBOL_GPL(regmap_get_val_endian);
674 
675 struct regmap *__regmap_init(struct device *dev,
676 			     const struct regmap_bus *bus,
677 			     void *bus_context,
678 			     const struct regmap_config *config,
679 			     struct lock_class_key *lock_key,
680 			     const char *lock_name)
681 {
682 	struct regmap *map;
683 	int ret = -EINVAL;
684 	enum regmap_endian reg_endian, val_endian;
685 	int i, j;
686 
687 	if (!config)
688 		goto err;
689 
690 	map = kzalloc(sizeof(*map), GFP_KERNEL);
691 	if (map == NULL) {
692 		ret = -ENOMEM;
693 		goto err;
694 	}
695 
696 	ret = regmap_set_name(map, config);
697 	if (ret)
698 		goto err_map;
699 
700 	ret = -EINVAL; /* Later error paths rely on this */
701 
702 	if (config->disable_locking) {
703 		map->lock = map->unlock = regmap_lock_unlock_none;
704 		map->can_sleep = config->can_sleep;
705 		regmap_debugfs_disable(map);
706 	} else if (config->lock && config->unlock) {
707 		map->lock = config->lock;
708 		map->unlock = config->unlock;
709 		map->lock_arg = config->lock_arg;
710 		map->can_sleep = config->can_sleep;
711 	} else if (config->use_hwlock) {
712 		map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
713 		if (!map->hwlock) {
714 			ret = -ENXIO;
715 			goto err_name;
716 		}
717 
718 		switch (config->hwlock_mode) {
719 		case HWLOCK_IRQSTATE:
720 			map->lock = regmap_lock_hwlock_irqsave;
721 			map->unlock = regmap_unlock_hwlock_irqrestore;
722 			break;
723 		case HWLOCK_IRQ:
724 			map->lock = regmap_lock_hwlock_irq;
725 			map->unlock = regmap_unlock_hwlock_irq;
726 			break;
727 		default:
728 			map->lock = regmap_lock_hwlock;
729 			map->unlock = regmap_unlock_hwlock;
730 			break;
731 		}
732 
733 		map->lock_arg = map;
734 	} else {
735 		if ((bus && bus->fast_io) ||
736 		    config->fast_io) {
737 			if (config->use_raw_spinlock) {
738 				raw_spin_lock_init(&map->raw_spinlock);
739 				map->lock = regmap_lock_raw_spinlock;
740 				map->unlock = regmap_unlock_raw_spinlock;
741 				lockdep_set_class_and_name(&map->raw_spinlock,
742 							   lock_key, lock_name);
743 			} else {
744 				spin_lock_init(&map->spinlock);
745 				map->lock = regmap_lock_spinlock;
746 				map->unlock = regmap_unlock_spinlock;
747 				lockdep_set_class_and_name(&map->spinlock,
748 							   lock_key, lock_name);
749 			}
750 		} else {
751 			mutex_init(&map->mutex);
752 			map->lock = regmap_lock_mutex;
753 			map->unlock = regmap_unlock_mutex;
754 			map->can_sleep = true;
755 			lockdep_set_class_and_name(&map->mutex,
756 						   lock_key, lock_name);
757 		}
758 		map->lock_arg = map;
759 		map->lock_key = lock_key;
760 	}
761 
762 	/*
763 	 * When we write in fast-paths with regmap_bulk_write() don't allocate
764 	 * scratch buffers with sleeping allocations.
765 	 */
766 	if ((bus && bus->fast_io) || config->fast_io)
767 		map->alloc_flags = GFP_ATOMIC;
768 	else
769 		map->alloc_flags = GFP_KERNEL;
770 
771 	map->reg_base = config->reg_base;
772 
773 	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
774 	map->format.pad_bytes = config->pad_bits / 8;
775 	map->format.reg_shift = config->reg_shift;
776 	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
777 	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
778 			config->val_bits + config->pad_bits, 8);
779 	map->reg_shift = config->pad_bits % 8;
780 	if (config->reg_stride)
781 		map->reg_stride = config->reg_stride;
782 	else
783 		map->reg_stride = 1;
784 	if (is_power_of_2(map->reg_stride))
785 		map->reg_stride_order = ilog2(map->reg_stride);
786 	else
787 		map->reg_stride_order = -1;
788 	map->use_single_read = config->use_single_read || !(config->read || (bus && bus->read));
789 	map->use_single_write = config->use_single_write || !(config->write || (bus && bus->write));
790 	map->can_multi_write = config->can_multi_write && (config->write || (bus && bus->write));
791 	if (bus) {
792 		map->max_raw_read = bus->max_raw_read;
793 		map->max_raw_write = bus->max_raw_write;
794 	} else if (config->max_raw_read && config->max_raw_write) {
795 		map->max_raw_read = config->max_raw_read;
796 		map->max_raw_write = config->max_raw_write;
797 	}
798 	map->dev = dev;
799 	map->bus = bus;
800 	map->bus_context = bus_context;
801 	map->max_register = config->max_register;
802 	map->max_register_is_set = map->max_register ?: config->max_register_is_0;
803 	map->wr_table = config->wr_table;
804 	map->rd_table = config->rd_table;
805 	map->volatile_table = config->volatile_table;
806 	map->precious_table = config->precious_table;
807 	map->wr_noinc_table = config->wr_noinc_table;
808 	map->rd_noinc_table = config->rd_noinc_table;
809 	map->writeable_reg = config->writeable_reg;
810 	map->readable_reg = config->readable_reg;
811 	map->volatile_reg = config->volatile_reg;
812 	map->precious_reg = config->precious_reg;
813 	map->writeable_noinc_reg = config->writeable_noinc_reg;
814 	map->readable_noinc_reg = config->readable_noinc_reg;
815 	map->cache_type = config->cache_type;
816 
817 	spin_lock_init(&map->async_lock);
818 	INIT_LIST_HEAD(&map->async_list);
819 	INIT_LIST_HEAD(&map->async_free);
820 	init_waitqueue_head(&map->async_waitq);
821 
822 	if (config->read_flag_mask ||
823 	    config->write_flag_mask ||
824 	    config->zero_flag_mask) {
825 		map->read_flag_mask = config->read_flag_mask;
826 		map->write_flag_mask = config->write_flag_mask;
827 	} else if (bus) {
828 		map->read_flag_mask = bus->read_flag_mask;
829 	}
830 
831 	if (config && config->read && config->write) {
832 		map->reg_read  = _regmap_bus_read;
833 		if (config->reg_update_bits)
834 			map->reg_update_bits = config->reg_update_bits;
835 
836 		/* Bulk read/write */
837 		map->read = config->read;
838 		map->write = config->write;
839 
840 		reg_endian = REGMAP_ENDIAN_NATIVE;
841 		val_endian = REGMAP_ENDIAN_NATIVE;
842 	} else if (!bus) {
843 		map->reg_read  = config->reg_read;
844 		map->reg_write = config->reg_write;
845 		map->reg_update_bits = config->reg_update_bits;
846 
847 		map->defer_caching = false;
848 		goto skip_format_initialization;
849 	} else if (!bus->read || !bus->write) {
850 		map->reg_read = _regmap_bus_reg_read;
851 		map->reg_write = _regmap_bus_reg_write;
852 		map->reg_update_bits = bus->reg_update_bits;
853 
854 		map->defer_caching = false;
855 		goto skip_format_initialization;
856 	} else {
857 		map->reg_read  = _regmap_bus_read;
858 		map->reg_update_bits = bus->reg_update_bits;
859 		/* Bulk read/write */
860 		map->read = bus->read;
861 		map->write = bus->write;
862 
863 		reg_endian = regmap_get_reg_endian(bus, config);
864 		val_endian = regmap_get_val_endian(dev, bus, config);
865 	}
866 
867 	switch (config->reg_bits + map->reg_shift) {
868 	case 2:
869 		switch (config->val_bits) {
870 		case 6:
871 			map->format.format_write = regmap_format_2_6_write;
872 			break;
873 		default:
874 			goto err_hwlock;
875 		}
876 		break;
877 
878 	case 4:
879 		switch (config->val_bits) {
880 		case 12:
881 			map->format.format_write = regmap_format_4_12_write;
882 			break;
883 		default:
884 			goto err_hwlock;
885 		}
886 		break;
887 
888 	case 7:
889 		switch (config->val_bits) {
890 		case 9:
891 			map->format.format_write = regmap_format_7_9_write;
892 			break;
893 		case 17:
894 			map->format.format_write = regmap_format_7_17_write;
895 			break;
896 		default:
897 			goto err_hwlock;
898 		}
899 		break;
900 
901 	case 10:
902 		switch (config->val_bits) {
903 		case 14:
904 			map->format.format_write = regmap_format_10_14_write;
905 			break;
906 		default:
907 			goto err_hwlock;
908 		}
909 		break;
910 
911 	case 12:
912 		switch (config->val_bits) {
913 		case 20:
914 			map->format.format_write = regmap_format_12_20_write;
915 			break;
916 		default:
917 			goto err_hwlock;
918 		}
919 		break;
920 
921 	case 8:
922 		map->format.format_reg = regmap_format_8;
923 		break;
924 
925 	case 16:
926 		switch (reg_endian) {
927 		case REGMAP_ENDIAN_BIG:
928 			map->format.format_reg = regmap_format_16_be;
929 			break;
930 		case REGMAP_ENDIAN_LITTLE:
931 			map->format.format_reg = regmap_format_16_le;
932 			break;
933 		case REGMAP_ENDIAN_NATIVE:
934 			map->format.format_reg = regmap_format_16_native;
935 			break;
936 		default:
937 			goto err_hwlock;
938 		}
939 		break;
940 
941 	case 24:
942 		switch (reg_endian) {
943 		case REGMAP_ENDIAN_BIG:
944 			map->format.format_reg = regmap_format_24_be;
945 			break;
946 		default:
947 			goto err_hwlock;
948 		}
949 		break;
950 
951 	case 32:
952 		switch (reg_endian) {
953 		case REGMAP_ENDIAN_BIG:
954 			map->format.format_reg = regmap_format_32_be;
955 			break;
956 		case REGMAP_ENDIAN_LITTLE:
957 			map->format.format_reg = regmap_format_32_le;
958 			break;
959 		case REGMAP_ENDIAN_NATIVE:
960 			map->format.format_reg = regmap_format_32_native;
961 			break;
962 		default:
963 			goto err_hwlock;
964 		}
965 		break;
966 
967 	default:
968 		goto err_hwlock;
969 	}
970 
971 	if (val_endian == REGMAP_ENDIAN_NATIVE)
972 		map->format.parse_inplace = regmap_parse_inplace_noop;
973 
974 	switch (config->val_bits) {
975 	case 8:
976 		map->format.format_val = regmap_format_8;
977 		map->format.parse_val = regmap_parse_8;
978 		map->format.parse_inplace = regmap_parse_inplace_noop;
979 		break;
980 	case 16:
981 		switch (val_endian) {
982 		case REGMAP_ENDIAN_BIG:
983 			map->format.format_val = regmap_format_16_be;
984 			map->format.parse_val = regmap_parse_16_be;
985 			map->format.parse_inplace = regmap_parse_16_be_inplace;
986 			break;
987 		case REGMAP_ENDIAN_LITTLE:
988 			map->format.format_val = regmap_format_16_le;
989 			map->format.parse_val = regmap_parse_16_le;
990 			map->format.parse_inplace = regmap_parse_16_le_inplace;
991 			break;
992 		case REGMAP_ENDIAN_NATIVE:
993 			map->format.format_val = regmap_format_16_native;
994 			map->format.parse_val = regmap_parse_16_native;
995 			break;
996 		default:
997 			goto err_hwlock;
998 		}
999 		break;
1000 	case 24:
1001 		switch (val_endian) {
1002 		case REGMAP_ENDIAN_BIG:
1003 			map->format.format_val = regmap_format_24_be;
1004 			map->format.parse_val = regmap_parse_24_be;
1005 			break;
1006 		default:
1007 			goto err_hwlock;
1008 		}
1009 		break;
1010 	case 32:
1011 		switch (val_endian) {
1012 		case REGMAP_ENDIAN_BIG:
1013 			map->format.format_val = regmap_format_32_be;
1014 			map->format.parse_val = regmap_parse_32_be;
1015 			map->format.parse_inplace = regmap_parse_32_be_inplace;
1016 			break;
1017 		case REGMAP_ENDIAN_LITTLE:
1018 			map->format.format_val = regmap_format_32_le;
1019 			map->format.parse_val = regmap_parse_32_le;
1020 			map->format.parse_inplace = regmap_parse_32_le_inplace;
1021 			break;
1022 		case REGMAP_ENDIAN_NATIVE:
1023 			map->format.format_val = regmap_format_32_native;
1024 			map->format.parse_val = regmap_parse_32_native;
1025 			break;
1026 		default:
1027 			goto err_hwlock;
1028 		}
1029 		break;
1030 	}
1031 
1032 	if (map->format.format_write) {
1033 		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
1034 		    (val_endian != REGMAP_ENDIAN_BIG))
1035 			goto err_hwlock;
1036 		map->use_single_write = true;
1037 	}
1038 
1039 	if (!map->format.format_write &&
1040 	    !(map->format.format_reg && map->format.format_val))
1041 		goto err_hwlock;
1042 
1043 	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1044 	if (map->work_buf == NULL) {
1045 		ret = -ENOMEM;
1046 		goto err_hwlock;
1047 	}
1048 
1049 	if (map->format.format_write) {
1050 		map->defer_caching = false;
1051 		map->reg_write = _regmap_bus_formatted_write;
1052 	} else if (map->format.format_val) {
1053 		map->defer_caching = true;
1054 		map->reg_write = _regmap_bus_raw_write;
1055 	}
1056 
1057 skip_format_initialization:
1058 
1059 	map->range_tree = RB_ROOT;
1060 	for (i = 0; i < config->num_ranges; i++) {
1061 		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
1062 		struct regmap_range_node *new;
1063 
1064 		/* Sanity check */
1065 		if (range_cfg->range_max < range_cfg->range_min) {
1066 			dev_err(map->dev, "Invalid range %d: %u < %u\n", i,
1067 				range_cfg->range_max, range_cfg->range_min);
1068 			goto err_range;
1069 		}
1070 
1071 		if (range_cfg->range_max > map->max_register) {
1072 			dev_err(map->dev, "Invalid range %d: %u > %u\n", i,
1073 				range_cfg->range_max, map->max_register);
1074 			goto err_range;
1075 		}
1076 
1077 		if (range_cfg->selector_reg > map->max_register) {
1078 			dev_err(map->dev,
1079 				"Invalid range %d: selector out of map\n", i);
1080 			goto err_range;
1081 		}
1082 
1083 		if (range_cfg->window_len == 0) {
1084 			dev_err(map->dev, "Invalid range %d: window_len 0\n",
1085 				i);
1086 			goto err_range;
1087 		}
1088 
1089 		/* Make sure, that this register range has no selector
1090 		   or data window within its boundary */
1091 		for (j = 0; j < config->num_ranges; j++) {
1092 			unsigned int sel_reg = config->ranges[j].selector_reg;
1093 			unsigned int win_min = config->ranges[j].window_start;
1094 			unsigned int win_max = win_min +
1095 					       config->ranges[j].window_len - 1;
1096 
1097 			/* Allow data window inside its own virtual range */
1098 			if (j == i)
1099 				continue;
1100 
1101 			if (range_cfg->range_min <= sel_reg &&
1102 			    sel_reg <= range_cfg->range_max) {
1103 				dev_err(map->dev,
1104 					"Range %d: selector for %d in window\n",
1105 					i, j);
1106 				goto err_range;
1107 			}
1108 
1109 			if (!(win_max < range_cfg->range_min ||
1110 			      win_min > range_cfg->range_max)) {
1111 				dev_err(map->dev,
1112 					"Range %d: window for %d in window\n",
1113 					i, j);
1114 				goto err_range;
1115 			}
1116 		}
1117 
1118 		new = kzalloc(sizeof(*new), GFP_KERNEL);
1119 		if (new == NULL) {
1120 			ret = -ENOMEM;
1121 			goto err_range;
1122 		}
1123 
1124 		new->map = map;
1125 		new->name = range_cfg->name;
1126 		new->range_min = range_cfg->range_min;
1127 		new->range_max = range_cfg->range_max;
1128 		new->selector_reg = range_cfg->selector_reg;
1129 		new->selector_mask = range_cfg->selector_mask;
1130 		new->selector_shift = range_cfg->selector_shift;
1131 		new->window_start = range_cfg->window_start;
1132 		new->window_len = range_cfg->window_len;
1133 
1134 		if (!_regmap_range_add(map, new)) {
1135 			dev_err(map->dev, "Failed to add range %d\n", i);
1136 			kfree(new);
1137 			goto err_range;
1138 		}
1139 
1140 		if (map->selector_work_buf == NULL) {
1141 			map->selector_work_buf =
1142 				kzalloc(map->format.buf_size, GFP_KERNEL);
1143 			if (map->selector_work_buf == NULL) {
1144 				ret = -ENOMEM;
1145 				goto err_range;
1146 			}
1147 		}
1148 	}
1149 
1150 	ret = regcache_init(map, config);
1151 	if (ret != 0)
1152 		goto err_range;
1153 
1154 	if (dev) {
1155 		ret = regmap_attach_dev(dev, map, config);
1156 		if (ret != 0)
1157 			goto err_regcache;
1158 	} else {
1159 		regmap_debugfs_init(map);
1160 	}
1161 
1162 	return map;
1163 
1164 err_regcache:
1165 	regcache_exit(map);
1166 err_range:
1167 	regmap_range_exit(map);
1168 	kfree(map->work_buf);
1169 err_hwlock:
1170 	if (map->hwlock)
1171 		hwspin_lock_free(map->hwlock);
1172 err_name:
1173 	kfree_const(map->name);
1174 err_map:
1175 	kfree(map);
1176 err:
1177 	return ERR_PTR(ret);
1178 }
1179 EXPORT_SYMBOL_GPL(__regmap_init);
1180 
1181 static void devm_regmap_release(struct device *dev, void *res)
1182 {
1183 	regmap_exit(*(struct regmap **)res);
1184 }
1185 
1186 struct regmap *__devm_regmap_init(struct device *dev,
1187 				  const struct regmap_bus *bus,
1188 				  void *bus_context,
1189 				  const struct regmap_config *config,
1190 				  struct lock_class_key *lock_key,
1191 				  const char *lock_name)
1192 {
1193 	struct regmap **ptr, *regmap;
1194 
1195 	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1196 	if (!ptr)
1197 		return ERR_PTR(-ENOMEM);
1198 
1199 	regmap = __regmap_init(dev, bus, bus_context, config,
1200 			       lock_key, lock_name);
1201 	if (!IS_ERR(regmap)) {
1202 		*ptr = regmap;
1203 		devres_add(dev, ptr);
1204 	} else {
1205 		devres_free(ptr);
1206 	}
1207 
1208 	return regmap;
1209 }
1210 EXPORT_SYMBOL_GPL(__devm_regmap_init);
1211 
1212 static void regmap_field_init(struct regmap_field *rm_field,
1213 	struct regmap *regmap, struct reg_field reg_field)
1214 {
1215 	rm_field->regmap = regmap;
1216 	rm_field->reg = reg_field.reg;
1217 	rm_field->shift = reg_field.lsb;
1218 	rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1219 
1220 	WARN_ONCE(rm_field->mask == 0, "invalid empty mask defined\n");
1221 
1222 	rm_field->id_size = reg_field.id_size;
1223 	rm_field->id_offset = reg_field.id_offset;
1224 }
1225 
1226 /**
1227  * devm_regmap_field_alloc() - Allocate and initialise a register field.
1228  *
1229  * @dev: Device that will be interacted with
1230  * @regmap: regmap bank in which this register field is located.
1231  * @reg_field: Register field with in the bank.
1232  *
1233  * The return value will be an ERR_PTR() on error or a valid pointer
1234  * to a struct regmap_field. The regmap_field will be automatically freed
1235  * by the device management code.
1236  */
1237 struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1238 		struct regmap *regmap, struct reg_field reg_field)
1239 {
1240 	struct regmap_field *rm_field = devm_kzalloc(dev,
1241 					sizeof(*rm_field), GFP_KERNEL);
1242 	if (!rm_field)
1243 		return ERR_PTR(-ENOMEM);
1244 
1245 	regmap_field_init(rm_field, regmap, reg_field);
1246 
1247 	return rm_field;
1248 
1249 }
1250 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1251 
1252 
1253 /**
1254  * regmap_field_bulk_alloc() - Allocate and initialise a bulk register field.
1255  *
1256  * @regmap: regmap bank in which this register field is located.
1257  * @rm_field: regmap register fields within the bank.
1258  * @reg_field: Register fields within the bank.
1259  * @num_fields: Number of register fields.
1260  *
1261  * The return value will be an -ENOMEM on error or zero for success.
1262  * Newly allocated regmap_fields should be freed by calling
1263  * regmap_field_bulk_free()
1264  */
1265 int regmap_field_bulk_alloc(struct regmap *regmap,
1266 			    struct regmap_field **rm_field,
1267 			    const struct reg_field *reg_field,
1268 			    int num_fields)
1269 {
1270 	struct regmap_field *rf;
1271 	int i;
1272 
1273 	rf = kcalloc(num_fields, sizeof(*rf), GFP_KERNEL);
1274 	if (!rf)
1275 		return -ENOMEM;
1276 
1277 	for (i = 0; i < num_fields; i++) {
1278 		regmap_field_init(&rf[i], regmap, reg_field[i]);
1279 		rm_field[i] = &rf[i];
1280 	}
1281 
1282 	return 0;
1283 }
1284 EXPORT_SYMBOL_GPL(regmap_field_bulk_alloc);
1285 
1286 /**
1287  * devm_regmap_field_bulk_alloc() - Allocate and initialise a bulk register
1288  * fields.
1289  *
1290  * @dev: Device that will be interacted with
1291  * @regmap: regmap bank in which this register field is located.
1292  * @rm_field: regmap register fields within the bank.
1293  * @reg_field: Register fields within the bank.
1294  * @num_fields: Number of register fields.
1295  *
1296  * The return value will be an -ENOMEM on error or zero for success.
1297  * Newly allocated regmap_fields will be automatically freed by the
1298  * device management code.
1299  */
1300 int devm_regmap_field_bulk_alloc(struct device *dev,
1301 				 struct regmap *regmap,
1302 				 struct regmap_field **rm_field,
1303 				 const struct reg_field *reg_field,
1304 				 int num_fields)
1305 {
1306 	struct regmap_field *rf;
1307 	int i;
1308 
1309 	rf = devm_kcalloc(dev, num_fields, sizeof(*rf), GFP_KERNEL);
1310 	if (!rf)
1311 		return -ENOMEM;
1312 
1313 	for (i = 0; i < num_fields; i++) {
1314 		regmap_field_init(&rf[i], regmap, reg_field[i]);
1315 		rm_field[i] = &rf[i];
1316 	}
1317 
1318 	return 0;
1319 }
1320 EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_alloc);
1321 
1322 /**
1323  * regmap_field_bulk_free() - Free register field allocated using
1324  *                       regmap_field_bulk_alloc.
1325  *
1326  * @field: regmap fields which should be freed.
1327  */
1328 void regmap_field_bulk_free(struct regmap_field *field)
1329 {
1330 	kfree(field);
1331 }
1332 EXPORT_SYMBOL_GPL(regmap_field_bulk_free);
1333 
1334 /**
1335  * devm_regmap_field_bulk_free() - Free a bulk register field allocated using
1336  *                            devm_regmap_field_bulk_alloc.
1337  *
1338  * @dev: Device that will be interacted with
1339  * @field: regmap field which should be freed.
1340  *
1341  * Free register field allocated using devm_regmap_field_bulk_alloc(). Usually
1342  * drivers need not call this function, as the memory allocated via devm
1343  * will be freed as per device-driver life-cycle.
1344  */
1345 void devm_regmap_field_bulk_free(struct device *dev,
1346 				 struct regmap_field *field)
1347 {
1348 	devm_kfree(dev, field);
1349 }
1350 EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_free);
1351 
1352 /**
1353  * devm_regmap_field_free() - Free a register field allocated using
1354  *                            devm_regmap_field_alloc.
1355  *
1356  * @dev: Device that will be interacted with
1357  * @field: regmap field which should be freed.
1358  *
1359  * Free register field allocated using devm_regmap_field_alloc(). Usually
1360  * drivers need not call this function, as the memory allocated via devm
1361  * will be freed as per device-driver life-cyle.
1362  */
1363 void devm_regmap_field_free(struct device *dev,
1364 	struct regmap_field *field)
1365 {
1366 	devm_kfree(dev, field);
1367 }
1368 EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1369 
1370 /**
1371  * regmap_field_alloc() - Allocate and initialise a register field.
1372  *
1373  * @regmap: regmap bank in which this register field is located.
1374  * @reg_field: Register field with in the bank.
1375  *
1376  * The return value will be an ERR_PTR() on error or a valid pointer
1377  * to a struct regmap_field. The regmap_field should be freed by the
1378  * user once its finished working with it using regmap_field_free().
1379  */
1380 struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1381 		struct reg_field reg_field)
1382 {
1383 	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1384 
1385 	if (!rm_field)
1386 		return ERR_PTR(-ENOMEM);
1387 
1388 	regmap_field_init(rm_field, regmap, reg_field);
1389 
1390 	return rm_field;
1391 }
1392 EXPORT_SYMBOL_GPL(regmap_field_alloc);
1393 
1394 /**
1395  * regmap_field_free() - Free register field allocated using
1396  *                       regmap_field_alloc.
1397  *
1398  * @field: regmap field which should be freed.
1399  */
1400 void regmap_field_free(struct regmap_field *field)
1401 {
1402 	kfree(field);
1403 }
1404 EXPORT_SYMBOL_GPL(regmap_field_free);
1405 
1406 /**
1407  * regmap_reinit_cache() - Reinitialise the current register cache
1408  *
1409  * @map: Register map to operate on.
1410  * @config: New configuration.  Only the cache data will be used.
1411  *
1412  * Discard any existing register cache for the map and initialize a
1413  * new cache.  This can be used to restore the cache to defaults or to
1414  * update the cache configuration to reflect runtime discovery of the
1415  * hardware.
1416  *
1417  * No explicit locking is done here, the user needs to ensure that
1418  * this function will not race with other calls to regmap.
1419  */
1420 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1421 {
1422 	int ret;
1423 
1424 	regcache_exit(map);
1425 	regmap_debugfs_exit(map);
1426 
1427 	map->max_register = config->max_register;
1428 	map->max_register_is_set = map->max_register ?: config->max_register_is_0;
1429 	map->writeable_reg = config->writeable_reg;
1430 	map->readable_reg = config->readable_reg;
1431 	map->volatile_reg = config->volatile_reg;
1432 	map->precious_reg = config->precious_reg;
1433 	map->writeable_noinc_reg = config->writeable_noinc_reg;
1434 	map->readable_noinc_reg = config->readable_noinc_reg;
1435 	map->cache_type = config->cache_type;
1436 
1437 	ret = regmap_set_name(map, config);
1438 	if (ret)
1439 		return ret;
1440 
1441 	regmap_debugfs_init(map);
1442 
1443 	map->cache_bypass = false;
1444 	map->cache_only = false;
1445 
1446 	return regcache_init(map, config);
1447 }
1448 EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1449 
1450 /**
1451  * regmap_exit() - Free a previously allocated register map
1452  *
1453  * @map: Register map to operate on.
1454  */
1455 void regmap_exit(struct regmap *map)
1456 {
1457 	struct regmap_async *async;
1458 
1459 	regmap_detach_dev(map->dev, map);
1460 	regcache_exit(map);
1461 
1462 	regmap_debugfs_exit(map);
1463 	regmap_range_exit(map);
1464 	if (map->bus && map->bus->free_context)
1465 		map->bus->free_context(map->bus_context);
1466 	kfree(map->work_buf);
1467 	while (!list_empty(&map->async_free)) {
1468 		async = list_first_entry_or_null(&map->async_free,
1469 						 struct regmap_async,
1470 						 list);
1471 		list_del(&async->list);
1472 		kfree(async->work_buf);
1473 		kfree(async);
1474 	}
1475 	if (map->hwlock)
1476 		hwspin_lock_free(map->hwlock);
1477 	if (map->lock == regmap_lock_mutex)
1478 		mutex_destroy(&map->mutex);
1479 	kfree_const(map->name);
1480 	kfree(map->patch);
1481 	if (map->bus && map->bus->free_on_exit)
1482 		kfree(map->bus);
1483 	kfree(map);
1484 }
1485 EXPORT_SYMBOL_GPL(regmap_exit);
1486 
1487 static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1488 {
1489 	struct regmap **r = res;
1490 	if (!r || !*r) {
1491 		WARN_ON(!r || !*r);
1492 		return 0;
1493 	}
1494 
1495 	/* If the user didn't specify a name match any */
1496 	if (data)
1497 		return (*r)->name && !strcmp((*r)->name, data);
1498 	else
1499 		return 1;
1500 }
1501 
1502 /**
1503  * dev_get_regmap() - Obtain the regmap (if any) for a device
1504  *
1505  * @dev: Device to retrieve the map for
1506  * @name: Optional name for the register map, usually NULL.
1507  *
1508  * Returns the regmap for the device if one is present, or NULL.  If
1509  * name is specified then it must match the name specified when
1510  * registering the device, if it is NULL then the first regmap found
1511  * will be used.  Devices with multiple register maps are very rare,
1512  * generic code should normally not need to specify a name.
1513  */
1514 struct regmap *dev_get_regmap(struct device *dev, const char *name)
1515 {
1516 	struct regmap **r = devres_find(dev, dev_get_regmap_release,
1517 					dev_get_regmap_match, (void *)name);
1518 
1519 	if (!r)
1520 		return NULL;
1521 	return *r;
1522 }
1523 EXPORT_SYMBOL_GPL(dev_get_regmap);
1524 
1525 /**
1526  * regmap_get_device() - Obtain the device from a regmap
1527  *
1528  * @map: Register map to operate on.
1529  *
1530  * Returns the underlying device that the regmap has been created for.
1531  */
1532 struct device *regmap_get_device(struct regmap *map)
1533 {
1534 	return map->dev;
1535 }
1536 EXPORT_SYMBOL_GPL(regmap_get_device);
1537 
1538 static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1539 			       struct regmap_range_node *range,
1540 			       unsigned int val_num)
1541 {
1542 	void *orig_work_buf;
1543 	unsigned int win_offset;
1544 	unsigned int win_page;
1545 	bool page_chg;
1546 	int ret;
1547 
1548 	win_offset = (*reg - range->range_min) % range->window_len;
1549 	win_page = (*reg - range->range_min) / range->window_len;
1550 
1551 	if (val_num > 1) {
1552 		/* Bulk write shouldn't cross range boundary */
1553 		if (*reg + val_num - 1 > range->range_max)
1554 			return -EINVAL;
1555 
1556 		/* ... or single page boundary */
1557 		if (val_num > range->window_len - win_offset)
1558 			return -EINVAL;
1559 	}
1560 
1561 	/* It is possible to have selector register inside data window.
1562 	   In that case, selector register is located on every page and
1563 	   it needs no page switching, when accessed alone. */
1564 	if (val_num > 1 ||
1565 	    range->window_start + win_offset != range->selector_reg) {
1566 		/* Use separate work_buf during page switching */
1567 		orig_work_buf = map->work_buf;
1568 		map->work_buf = map->selector_work_buf;
1569 
1570 		ret = _regmap_update_bits(map, range->selector_reg,
1571 					  range->selector_mask,
1572 					  win_page << range->selector_shift,
1573 					  &page_chg, false);
1574 
1575 		map->work_buf = orig_work_buf;
1576 
1577 		if (ret != 0)
1578 			return ret;
1579 	}
1580 
1581 	*reg = range->window_start + win_offset;
1582 
1583 	return 0;
1584 }
1585 
1586 static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1587 					  unsigned long mask)
1588 {
1589 	u8 *buf;
1590 	int i;
1591 
1592 	if (!mask || !map->work_buf)
1593 		return;
1594 
1595 	buf = map->work_buf;
1596 
1597 	for (i = 0; i < max_bytes; i++)
1598 		buf[i] |= (mask >> (8 * i)) & 0xff;
1599 }
1600 
1601 static unsigned int regmap_reg_addr(struct regmap *map, unsigned int reg)
1602 {
1603 	reg += map->reg_base;
1604 
1605 	if (map->format.reg_shift > 0)
1606 		reg >>= map->format.reg_shift;
1607 	else if (map->format.reg_shift < 0)
1608 		reg <<= -(map->format.reg_shift);
1609 
1610 	return reg;
1611 }
1612 
1613 static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg,
1614 				  const void *val, size_t val_len, bool noinc)
1615 {
1616 	struct regmap_range_node *range;
1617 	unsigned long flags;
1618 	void *work_val = map->work_buf + map->format.reg_bytes +
1619 		map->format.pad_bytes;
1620 	void *buf;
1621 	int ret = -ENOTSUPP;
1622 	size_t len;
1623 	int i;
1624 
1625 	/* Check for unwritable or noinc registers in range
1626 	 * before we start
1627 	 */
1628 	if (!regmap_writeable_noinc(map, reg)) {
1629 		for (i = 0; i < val_len / map->format.val_bytes; i++) {
1630 			unsigned int element =
1631 				reg + regmap_get_offset(map, i);
1632 			if (!regmap_writeable(map, element) ||
1633 				regmap_writeable_noinc(map, element))
1634 				return -EINVAL;
1635 		}
1636 	}
1637 
1638 	if (!map->cache_bypass && map->format.parse_val) {
1639 		unsigned int ival, offset;
1640 		int val_bytes = map->format.val_bytes;
1641 
1642 		/* Cache the last written value for noinc writes */
1643 		i = noinc ? val_len - val_bytes : 0;
1644 		for (; i < val_len; i += val_bytes) {
1645 			ival = map->format.parse_val(val + i);
1646 			offset = noinc ? 0 : regmap_get_offset(map, i / val_bytes);
1647 			ret = regcache_write(map, reg + offset, ival);
1648 			if (ret) {
1649 				dev_err(map->dev,
1650 					"Error in caching of register: %x ret: %d\n",
1651 					reg + offset, ret);
1652 				return ret;
1653 			}
1654 		}
1655 		if (map->cache_only) {
1656 			map->cache_dirty = true;
1657 			return 0;
1658 		}
1659 	}
1660 
1661 	range = _regmap_range_lookup(map, reg);
1662 	if (range) {
1663 		int val_num = val_len / map->format.val_bytes;
1664 		int win_offset = (reg - range->range_min) % range->window_len;
1665 		int win_residue = range->window_len - win_offset;
1666 
1667 		/* If the write goes beyond the end of the window split it */
1668 		while (val_num > win_residue) {
1669 			dev_dbg(map->dev, "Writing window %d/%zu\n",
1670 				win_residue, val_len / map->format.val_bytes);
1671 			ret = _regmap_raw_write_impl(map, reg, val,
1672 						     win_residue *
1673 						     map->format.val_bytes, noinc);
1674 			if (ret != 0)
1675 				return ret;
1676 
1677 			reg += win_residue;
1678 			val_num -= win_residue;
1679 			val += win_residue * map->format.val_bytes;
1680 			val_len -= win_residue * map->format.val_bytes;
1681 
1682 			win_offset = (reg - range->range_min) %
1683 				range->window_len;
1684 			win_residue = range->window_len - win_offset;
1685 		}
1686 
1687 		ret = _regmap_select_page(map, &reg, range, noinc ? 1 : val_num);
1688 		if (ret != 0)
1689 			return ret;
1690 	}
1691 
1692 	reg = regmap_reg_addr(map, reg);
1693 	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1694 	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1695 				      map->write_flag_mask);
1696 
1697 	/*
1698 	 * Essentially all I/O mechanisms will be faster with a single
1699 	 * buffer to write.  Since register syncs often generate raw
1700 	 * writes of single registers optimise that case.
1701 	 */
1702 	if (val != work_val && val_len == map->format.val_bytes) {
1703 		memcpy(work_val, val, map->format.val_bytes);
1704 		val = work_val;
1705 	}
1706 
1707 	if (map->async && map->bus && map->bus->async_write) {
1708 		struct regmap_async *async;
1709 
1710 		trace_regmap_async_write_start(map, reg, val_len);
1711 
1712 		spin_lock_irqsave(&map->async_lock, flags);
1713 		async = list_first_entry_or_null(&map->async_free,
1714 						 struct regmap_async,
1715 						 list);
1716 		if (async)
1717 			list_del(&async->list);
1718 		spin_unlock_irqrestore(&map->async_lock, flags);
1719 
1720 		if (!async) {
1721 			async = map->bus->async_alloc();
1722 			if (!async)
1723 				return -ENOMEM;
1724 
1725 			async->work_buf = kzalloc(map->format.buf_size,
1726 						  GFP_KERNEL | GFP_DMA);
1727 			if (!async->work_buf) {
1728 				kfree(async);
1729 				return -ENOMEM;
1730 			}
1731 		}
1732 
1733 		async->map = map;
1734 
1735 		/* If the caller supplied the value we can use it safely. */
1736 		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1737 		       map->format.reg_bytes + map->format.val_bytes);
1738 
1739 		spin_lock_irqsave(&map->async_lock, flags);
1740 		list_add_tail(&async->list, &map->async_list);
1741 		spin_unlock_irqrestore(&map->async_lock, flags);
1742 
1743 		if (val != work_val)
1744 			ret = map->bus->async_write(map->bus_context,
1745 						    async->work_buf,
1746 						    map->format.reg_bytes +
1747 						    map->format.pad_bytes,
1748 						    val, val_len, async);
1749 		else
1750 			ret = map->bus->async_write(map->bus_context,
1751 						    async->work_buf,
1752 						    map->format.reg_bytes +
1753 						    map->format.pad_bytes +
1754 						    val_len, NULL, 0, async);
1755 
1756 		if (ret != 0) {
1757 			dev_err(map->dev, "Failed to schedule write: %d\n",
1758 				ret);
1759 
1760 			spin_lock_irqsave(&map->async_lock, flags);
1761 			list_move(&async->list, &map->async_free);
1762 			spin_unlock_irqrestore(&map->async_lock, flags);
1763 		}
1764 
1765 		return ret;
1766 	}
1767 
1768 	trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1769 
1770 	/* If we're doing a single register write we can probably just
1771 	 * send the work_buf directly, otherwise try to do a gather
1772 	 * write.
1773 	 */
1774 	if (val == work_val)
1775 		ret = map->write(map->bus_context, map->work_buf,
1776 				 map->format.reg_bytes +
1777 				 map->format.pad_bytes +
1778 				 val_len);
1779 	else if (map->bus && map->bus->gather_write)
1780 		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1781 					     map->format.reg_bytes +
1782 					     map->format.pad_bytes,
1783 					     val, val_len);
1784 	else
1785 		ret = -ENOTSUPP;
1786 
1787 	/* If that didn't work fall back on linearising by hand. */
1788 	if (ret == -ENOTSUPP) {
1789 		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1790 		buf = kzalloc(len, GFP_KERNEL);
1791 		if (!buf)
1792 			return -ENOMEM;
1793 
1794 		memcpy(buf, map->work_buf, map->format.reg_bytes);
1795 		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1796 		       val, val_len);
1797 		ret = map->write(map->bus_context, buf, len);
1798 
1799 		kfree(buf);
1800 	} else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1801 		/* regcache_drop_region() takes lock that we already have,
1802 		 * thus call map->cache_ops->drop() directly
1803 		 */
1804 		if (map->cache_ops && map->cache_ops->drop)
1805 			map->cache_ops->drop(map, reg, reg + 1);
1806 	}
1807 
1808 	trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1809 
1810 	return ret;
1811 }
1812 
1813 /**
1814  * regmap_can_raw_write - Test if regmap_raw_write() is supported
1815  *
1816  * @map: Map to check.
1817  */
1818 bool regmap_can_raw_write(struct regmap *map)
1819 {
1820 	return map->write && map->format.format_val && map->format.format_reg;
1821 }
1822 EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1823 
1824 /**
1825  * regmap_get_raw_read_max - Get the maximum size we can read
1826  *
1827  * @map: Map to check.
1828  */
1829 size_t regmap_get_raw_read_max(struct regmap *map)
1830 {
1831 	return map->max_raw_read;
1832 }
1833 EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1834 
1835 /**
1836  * regmap_get_raw_write_max - Get the maximum size we can read
1837  *
1838  * @map: Map to check.
1839  */
1840 size_t regmap_get_raw_write_max(struct regmap *map)
1841 {
1842 	return map->max_raw_write;
1843 }
1844 EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1845 
1846 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1847 				       unsigned int val)
1848 {
1849 	int ret;
1850 	struct regmap_range_node *range;
1851 	struct regmap *map = context;
1852 
1853 	WARN_ON(!map->format.format_write);
1854 
1855 	range = _regmap_range_lookup(map, reg);
1856 	if (range) {
1857 		ret = _regmap_select_page(map, &reg, range, 1);
1858 		if (ret != 0)
1859 			return ret;
1860 	}
1861 
1862 	reg = regmap_reg_addr(map, reg);
1863 	map->format.format_write(map, reg, val);
1864 
1865 	trace_regmap_hw_write_start(map, reg, 1);
1866 
1867 	ret = map->write(map->bus_context, map->work_buf, map->format.buf_size);
1868 
1869 	trace_regmap_hw_write_done(map, reg, 1);
1870 
1871 	return ret;
1872 }
1873 
1874 static int _regmap_bus_reg_write(void *context, unsigned int reg,
1875 				 unsigned int val)
1876 {
1877 	struct regmap *map = context;
1878 	struct regmap_range_node *range;
1879 	int ret;
1880 
1881 	range = _regmap_range_lookup(map, reg);
1882 	if (range) {
1883 		ret = _regmap_select_page(map, &reg, range, 1);
1884 		if (ret != 0)
1885 			return ret;
1886 	}
1887 
1888 	reg = regmap_reg_addr(map, reg);
1889 	return map->bus->reg_write(map->bus_context, reg, val);
1890 }
1891 
1892 static int _regmap_bus_raw_write(void *context, unsigned int reg,
1893 				 unsigned int val)
1894 {
1895 	struct regmap *map = context;
1896 
1897 	WARN_ON(!map->format.format_val);
1898 
1899 	map->format.format_val(map->work_buf + map->format.reg_bytes
1900 			       + map->format.pad_bytes, val, 0);
1901 	return _regmap_raw_write_impl(map, reg,
1902 				      map->work_buf +
1903 				      map->format.reg_bytes +
1904 				      map->format.pad_bytes,
1905 				      map->format.val_bytes,
1906 				      false);
1907 }
1908 
1909 static inline void *_regmap_map_get_context(struct regmap *map)
1910 {
1911 	return (map->bus || (!map->bus && map->read)) ? map : map->bus_context;
1912 }
1913 
1914 int _regmap_write(struct regmap *map, unsigned int reg,
1915 		  unsigned int val)
1916 {
1917 	int ret;
1918 	void *context = _regmap_map_get_context(map);
1919 
1920 	if (!regmap_writeable(map, reg))
1921 		return -EIO;
1922 
1923 	if (!map->cache_bypass && !map->defer_caching) {
1924 		ret = regcache_write(map, reg, val);
1925 		if (ret != 0)
1926 			return ret;
1927 		if (map->cache_only) {
1928 			map->cache_dirty = true;
1929 			return 0;
1930 		}
1931 	}
1932 
1933 	ret = map->reg_write(context, reg, val);
1934 	if (ret == 0) {
1935 		if (regmap_should_log(map))
1936 			dev_info(map->dev, "%x <= %x\n", reg, val);
1937 
1938 		trace_regmap_reg_write(map, reg, val);
1939 	}
1940 
1941 	return ret;
1942 }
1943 
1944 /**
1945  * regmap_write() - Write a value to a single register
1946  *
1947  * @map: Register map to write to
1948  * @reg: Register to write to
1949  * @val: Value to be written
1950  *
1951  * A value of zero will be returned on success, a negative errno will
1952  * be returned in error cases.
1953  */
1954 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1955 {
1956 	int ret;
1957 
1958 	if (!IS_ALIGNED(reg, map->reg_stride))
1959 		return -EINVAL;
1960 
1961 	map->lock(map->lock_arg);
1962 
1963 	ret = _regmap_write(map, reg, val);
1964 
1965 	map->unlock(map->lock_arg);
1966 
1967 	return ret;
1968 }
1969 EXPORT_SYMBOL_GPL(regmap_write);
1970 
1971 /**
1972  * regmap_write_async() - Write a value to a single register asynchronously
1973  *
1974  * @map: Register map to write to
1975  * @reg: Register to write to
1976  * @val: Value to be written
1977  *
1978  * A value of zero will be returned on success, a negative errno will
1979  * be returned in error cases.
1980  */
1981 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1982 {
1983 	int ret;
1984 
1985 	if (!IS_ALIGNED(reg, map->reg_stride))
1986 		return -EINVAL;
1987 
1988 	map->lock(map->lock_arg);
1989 
1990 	map->async = true;
1991 
1992 	ret = _regmap_write(map, reg, val);
1993 
1994 	map->async = false;
1995 
1996 	map->unlock(map->lock_arg);
1997 
1998 	return ret;
1999 }
2000 EXPORT_SYMBOL_GPL(regmap_write_async);
2001 
2002 int _regmap_raw_write(struct regmap *map, unsigned int reg,
2003 		      const void *val, size_t val_len, bool noinc)
2004 {
2005 	size_t val_bytes = map->format.val_bytes;
2006 	size_t val_count = val_len / val_bytes;
2007 	size_t chunk_count, chunk_bytes;
2008 	size_t chunk_regs = val_count;
2009 	int ret, i;
2010 
2011 	if (!val_count)
2012 		return -EINVAL;
2013 
2014 	if (map->use_single_write)
2015 		chunk_regs = 1;
2016 	else if (map->max_raw_write && val_len > map->max_raw_write)
2017 		chunk_regs = map->max_raw_write / val_bytes;
2018 
2019 	chunk_count = val_count / chunk_regs;
2020 	chunk_bytes = chunk_regs * val_bytes;
2021 
2022 	/* Write as many bytes as possible with chunk_size */
2023 	for (i = 0; i < chunk_count; i++) {
2024 		ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes, noinc);
2025 		if (ret)
2026 			return ret;
2027 
2028 		reg += regmap_get_offset(map, chunk_regs);
2029 		val += chunk_bytes;
2030 		val_len -= chunk_bytes;
2031 	}
2032 
2033 	/* Write remaining bytes */
2034 	if (val_len)
2035 		ret = _regmap_raw_write_impl(map, reg, val, val_len, noinc);
2036 
2037 	return ret;
2038 }
2039 
2040 /**
2041  * regmap_raw_write() - Write raw values to one or more registers
2042  *
2043  * @map: Register map to write to
2044  * @reg: Initial register to write to
2045  * @val: Block of data to be written, laid out for direct transmission to the
2046  *       device
2047  * @val_len: Length of data pointed to by val.
2048  *
2049  * This function is intended to be used for things like firmware
2050  * download where a large block of data needs to be transferred to the
2051  * device.  No formatting will be done on the data provided.
2052  *
2053  * A value of zero will be returned on success, a negative errno will
2054  * be returned in error cases.
2055  */
2056 int regmap_raw_write(struct regmap *map, unsigned int reg,
2057 		     const void *val, size_t val_len)
2058 {
2059 	int ret;
2060 
2061 	if (!regmap_can_raw_write(map))
2062 		return -EINVAL;
2063 	if (val_len % map->format.val_bytes)
2064 		return -EINVAL;
2065 
2066 	map->lock(map->lock_arg);
2067 
2068 	ret = _regmap_raw_write(map, reg, val, val_len, false);
2069 
2070 	map->unlock(map->lock_arg);
2071 
2072 	return ret;
2073 }
2074 EXPORT_SYMBOL_GPL(regmap_raw_write);
2075 
2076 static int regmap_noinc_readwrite(struct regmap *map, unsigned int reg,
2077 				  void *val, unsigned int val_len, bool write)
2078 {
2079 	size_t val_bytes = map->format.val_bytes;
2080 	size_t val_count = val_len / val_bytes;
2081 	unsigned int lastval;
2082 	u8 *u8p;
2083 	u16 *u16p;
2084 	u32 *u32p;
2085 	int ret;
2086 	int i;
2087 
2088 	switch (val_bytes) {
2089 	case 1:
2090 		u8p = val;
2091 		if (write)
2092 			lastval = (unsigned int)u8p[val_count - 1];
2093 		break;
2094 	case 2:
2095 		u16p = val;
2096 		if (write)
2097 			lastval = (unsigned int)u16p[val_count - 1];
2098 		break;
2099 	case 4:
2100 		u32p = val;
2101 		if (write)
2102 			lastval = (unsigned int)u32p[val_count - 1];
2103 		break;
2104 	default:
2105 		return -EINVAL;
2106 	}
2107 
2108 	/*
2109 	 * Update the cache with the last value we write, the rest is just
2110 	 * gone down in the hardware FIFO. We can't cache FIFOs. This makes
2111 	 * sure a single read from the cache will work.
2112 	 */
2113 	if (write) {
2114 		if (!map->cache_bypass && !map->defer_caching) {
2115 			ret = regcache_write(map, reg, lastval);
2116 			if (ret != 0)
2117 				return ret;
2118 			if (map->cache_only) {
2119 				map->cache_dirty = true;
2120 				return 0;
2121 			}
2122 		}
2123 		ret = map->bus->reg_noinc_write(map->bus_context, reg, val, val_count);
2124 	} else {
2125 		ret = map->bus->reg_noinc_read(map->bus_context, reg, val, val_count);
2126 	}
2127 
2128 	if (!ret && regmap_should_log(map)) {
2129 		dev_info(map->dev, "%x %s [", reg, write ? "<=" : "=>");
2130 		for (i = 0; i < val_count; i++) {
2131 			switch (val_bytes) {
2132 			case 1:
2133 				pr_cont("%x", u8p[i]);
2134 				break;
2135 			case 2:
2136 				pr_cont("%x", u16p[i]);
2137 				break;
2138 			case 4:
2139 				pr_cont("%x", u32p[i]);
2140 				break;
2141 			default:
2142 				break;
2143 			}
2144 			if (i == (val_count - 1))
2145 				pr_cont("]\n");
2146 			else
2147 				pr_cont(",");
2148 		}
2149 	}
2150 
2151 	return 0;
2152 }
2153 
2154 /**
2155  * regmap_noinc_write(): Write data to a register without incrementing the
2156  *			register number
2157  *
2158  * @map: Register map to write to
2159  * @reg: Register to write to
2160  * @val: Pointer to data buffer
2161  * @val_len: Length of output buffer in bytes.
2162  *
2163  * The regmap API usually assumes that bulk bus write operations will write a
2164  * range of registers. Some devices have certain registers for which a write
2165  * operation can write to an internal FIFO.
2166  *
2167  * The target register must be volatile but registers after it can be
2168  * completely unrelated cacheable registers.
2169  *
2170  * This will attempt multiple writes as required to write val_len bytes.
2171  *
2172  * A value of zero will be returned on success, a negative errno will be
2173  * returned in error cases.
2174  */
2175 int regmap_noinc_write(struct regmap *map, unsigned int reg,
2176 		      const void *val, size_t val_len)
2177 {
2178 	size_t write_len;
2179 	int ret;
2180 
2181 	if (!map->write && !(map->bus && map->bus->reg_noinc_write))
2182 		return -EINVAL;
2183 	if (val_len % map->format.val_bytes)
2184 		return -EINVAL;
2185 	if (!IS_ALIGNED(reg, map->reg_stride))
2186 		return -EINVAL;
2187 	if (val_len == 0)
2188 		return -EINVAL;
2189 
2190 	map->lock(map->lock_arg);
2191 
2192 	if (!regmap_volatile(map, reg) || !regmap_writeable_noinc(map, reg)) {
2193 		ret = -EINVAL;
2194 		goto out_unlock;
2195 	}
2196 
2197 	/*
2198 	 * Use the accelerated operation if we can. The val drops the const
2199 	 * typing in order to facilitate code reuse in regmap_noinc_readwrite().
2200 	 */
2201 	if (map->bus->reg_noinc_write) {
2202 		ret = regmap_noinc_readwrite(map, reg, (void *)val, val_len, true);
2203 		goto out_unlock;
2204 	}
2205 
2206 	while (val_len) {
2207 		if (map->max_raw_write && map->max_raw_write < val_len)
2208 			write_len = map->max_raw_write;
2209 		else
2210 			write_len = val_len;
2211 		ret = _regmap_raw_write(map, reg, val, write_len, true);
2212 		if (ret)
2213 			goto out_unlock;
2214 		val = ((u8 *)val) + write_len;
2215 		val_len -= write_len;
2216 	}
2217 
2218 out_unlock:
2219 	map->unlock(map->lock_arg);
2220 	return ret;
2221 }
2222 EXPORT_SYMBOL_GPL(regmap_noinc_write);
2223 
2224 /**
2225  * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
2226  *                                   register field.
2227  *
2228  * @field: Register field to write to
2229  * @mask: Bitmask to change
2230  * @val: Value to be written
2231  * @change: Boolean indicating if a write was done
2232  * @async: Boolean indicating asynchronously
2233  * @force: Boolean indicating use force update
2234  *
2235  * Perform a read/modify/write cycle on the register field with change,
2236  * async, force option.
2237  *
2238  * A value of zero will be returned on success, a negative errno will
2239  * be returned in error cases.
2240  */
2241 int regmap_field_update_bits_base(struct regmap_field *field,
2242 				  unsigned int mask, unsigned int val,
2243 				  bool *change, bool async, bool force)
2244 {
2245 	mask = (mask << field->shift) & field->mask;
2246 
2247 	return regmap_update_bits_base(field->regmap, field->reg,
2248 				       mask, val << field->shift,
2249 				       change, async, force);
2250 }
2251 EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
2252 
2253 /**
2254  * regmap_field_test_bits() - Check if all specified bits are set in a
2255  *                            register field.
2256  *
2257  * @field: Register field to operate on
2258  * @bits: Bits to test
2259  *
2260  * Returns -1 if the underlying regmap_field_read() fails, 0 if at least one of the
2261  * tested bits is not set and 1 if all tested bits are set.
2262  */
2263 int regmap_field_test_bits(struct regmap_field *field, unsigned int bits)
2264 {
2265 	unsigned int val, ret;
2266 
2267 	ret = regmap_field_read(field, &val);
2268 	if (ret)
2269 		return ret;
2270 
2271 	return (val & bits) == bits;
2272 }
2273 EXPORT_SYMBOL_GPL(regmap_field_test_bits);
2274 
2275 /**
2276  * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
2277  *                                    register field with port ID
2278  *
2279  * @field: Register field to write to
2280  * @id: port ID
2281  * @mask: Bitmask to change
2282  * @val: Value to be written
2283  * @change: Boolean indicating if a write was done
2284  * @async: Boolean indicating asynchronously
2285  * @force: Boolean indicating use force update
2286  *
2287  * A value of zero will be returned on success, a negative errno will
2288  * be returned in error cases.
2289  */
2290 int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id,
2291 				   unsigned int mask, unsigned int val,
2292 				   bool *change, bool async, bool force)
2293 {
2294 	if (id >= field->id_size)
2295 		return -EINVAL;
2296 
2297 	mask = (mask << field->shift) & field->mask;
2298 
2299 	return regmap_update_bits_base(field->regmap,
2300 				       field->reg + (field->id_offset * id),
2301 				       mask, val << field->shift,
2302 				       change, async, force);
2303 }
2304 EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
2305 
2306 /**
2307  * regmap_bulk_write() - Write multiple registers to the device
2308  *
2309  * @map: Register map to write to
2310  * @reg: First register to be write from
2311  * @val: Block of data to be written, in native register size for device
2312  * @val_count: Number of registers to write
2313  *
2314  * This function is intended to be used for writing a large block of
2315  * data to the device either in single transfer or multiple transfer.
2316  *
2317  * A value of zero will be returned on success, a negative errno will
2318  * be returned in error cases.
2319  */
2320 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
2321 		     size_t val_count)
2322 {
2323 	int ret = 0, i;
2324 	size_t val_bytes = map->format.val_bytes;
2325 
2326 	if (!IS_ALIGNED(reg, map->reg_stride))
2327 		return -EINVAL;
2328 
2329 	/*
2330 	 * Some devices don't support bulk write, for them we have a series of
2331 	 * single write operations.
2332 	 */
2333 	if (!map->write || !map->format.parse_inplace) {
2334 		map->lock(map->lock_arg);
2335 		for (i = 0; i < val_count; i++) {
2336 			unsigned int ival;
2337 
2338 			switch (val_bytes) {
2339 			case 1:
2340 				ival = *(u8 *)(val + (i * val_bytes));
2341 				break;
2342 			case 2:
2343 				ival = *(u16 *)(val + (i * val_bytes));
2344 				break;
2345 			case 4:
2346 				ival = *(u32 *)(val + (i * val_bytes));
2347 				break;
2348 			default:
2349 				ret = -EINVAL;
2350 				goto out;
2351 			}
2352 
2353 			ret = _regmap_write(map,
2354 					    reg + regmap_get_offset(map, i),
2355 					    ival);
2356 			if (ret != 0)
2357 				goto out;
2358 		}
2359 out:
2360 		map->unlock(map->lock_arg);
2361 	} else {
2362 		void *wval;
2363 
2364 		wval = kmemdup_array(val, val_count, val_bytes, map->alloc_flags);
2365 		if (!wval)
2366 			return -ENOMEM;
2367 
2368 		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2369 			map->format.parse_inplace(wval + i);
2370 
2371 		ret = regmap_raw_write(map, reg, wval, val_bytes * val_count);
2372 
2373 		kfree(wval);
2374 	}
2375 
2376 	if (!ret)
2377 		trace_regmap_bulk_write(map, reg, val, val_bytes * val_count);
2378 
2379 	return ret;
2380 }
2381 EXPORT_SYMBOL_GPL(regmap_bulk_write);
2382 
2383 /*
2384  * _regmap_raw_multi_reg_write()
2385  *
2386  * the (register,newvalue) pairs in regs have not been formatted, but
2387  * they are all in the same page and have been changed to being page
2388  * relative. The page register has been written if that was necessary.
2389  */
2390 static int _regmap_raw_multi_reg_write(struct regmap *map,
2391 				       const struct reg_sequence *regs,
2392 				       size_t num_regs)
2393 {
2394 	int ret;
2395 	void *buf;
2396 	int i;
2397 	u8 *u8;
2398 	size_t val_bytes = map->format.val_bytes;
2399 	size_t reg_bytes = map->format.reg_bytes;
2400 	size_t pad_bytes = map->format.pad_bytes;
2401 	size_t pair_size = reg_bytes + pad_bytes + val_bytes;
2402 	size_t len = pair_size * num_regs;
2403 
2404 	if (!len)
2405 		return -EINVAL;
2406 
2407 	buf = kzalloc(len, GFP_KERNEL);
2408 	if (!buf)
2409 		return -ENOMEM;
2410 
2411 	/* We have to linearise by hand. */
2412 
2413 	u8 = buf;
2414 
2415 	for (i = 0; i < num_regs; i++) {
2416 		unsigned int reg = regs[i].reg;
2417 		unsigned int val = regs[i].def;
2418 		trace_regmap_hw_write_start(map, reg, 1);
2419 		reg = regmap_reg_addr(map, reg);
2420 		map->format.format_reg(u8, reg, map->reg_shift);
2421 		u8 += reg_bytes + pad_bytes;
2422 		map->format.format_val(u8, val, 0);
2423 		u8 += val_bytes;
2424 	}
2425 	u8 = buf;
2426 	*u8 |= map->write_flag_mask;
2427 
2428 	ret = map->write(map->bus_context, buf, len);
2429 
2430 	kfree(buf);
2431 
2432 	for (i = 0; i < num_regs; i++) {
2433 		int reg = regs[i].reg;
2434 		trace_regmap_hw_write_done(map, reg, 1);
2435 	}
2436 	return ret;
2437 }
2438 
2439 static unsigned int _regmap_register_page(struct regmap *map,
2440 					  unsigned int reg,
2441 					  struct regmap_range_node *range)
2442 {
2443 	unsigned int win_page = (reg - range->range_min) / range->window_len;
2444 
2445 	return win_page;
2446 }
2447 
2448 static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2449 					       struct reg_sequence *regs,
2450 					       size_t num_regs)
2451 {
2452 	int ret;
2453 	int i, n;
2454 	struct reg_sequence *base;
2455 	unsigned int this_page = 0;
2456 	unsigned int page_change = 0;
2457 	/*
2458 	 * the set of registers are not neccessarily in order, but
2459 	 * since the order of write must be preserved this algorithm
2460 	 * chops the set each time the page changes. This also applies
2461 	 * if there is a delay required at any point in the sequence.
2462 	 */
2463 	base = regs;
2464 	for (i = 0, n = 0; i < num_regs; i++, n++) {
2465 		unsigned int reg = regs[i].reg;
2466 		struct regmap_range_node *range;
2467 
2468 		range = _regmap_range_lookup(map, reg);
2469 		if (range) {
2470 			unsigned int win_page = _regmap_register_page(map, reg,
2471 								      range);
2472 
2473 			if (i == 0)
2474 				this_page = win_page;
2475 			if (win_page != this_page) {
2476 				this_page = win_page;
2477 				page_change = 1;
2478 			}
2479 		}
2480 
2481 		/* If we have both a page change and a delay make sure to
2482 		 * write the regs and apply the delay before we change the
2483 		 * page.
2484 		 */
2485 
2486 		if (page_change || regs[i].delay_us) {
2487 
2488 				/* For situations where the first write requires
2489 				 * a delay we need to make sure we don't call
2490 				 * raw_multi_reg_write with n=0
2491 				 * This can't occur with page breaks as we
2492 				 * never write on the first iteration
2493 				 */
2494 				if (regs[i].delay_us && i == 0)
2495 					n = 1;
2496 
2497 				ret = _regmap_raw_multi_reg_write(map, base, n);
2498 				if (ret != 0)
2499 					return ret;
2500 
2501 				if (regs[i].delay_us) {
2502 					if (map->can_sleep)
2503 						fsleep(regs[i].delay_us);
2504 					else
2505 						udelay(regs[i].delay_us);
2506 				}
2507 
2508 				base += n;
2509 				n = 0;
2510 
2511 				if (page_change) {
2512 					ret = _regmap_select_page(map,
2513 								  &base[n].reg,
2514 								  range, 1);
2515 					if (ret != 0)
2516 						return ret;
2517 
2518 					page_change = 0;
2519 				}
2520 
2521 		}
2522 
2523 	}
2524 	if (n > 0)
2525 		return _regmap_raw_multi_reg_write(map, base, n);
2526 	return 0;
2527 }
2528 
2529 static int _regmap_multi_reg_write(struct regmap *map,
2530 				   const struct reg_sequence *regs,
2531 				   size_t num_regs)
2532 {
2533 	int i;
2534 	int ret;
2535 
2536 	if (!map->can_multi_write) {
2537 		for (i = 0; i < num_regs; i++) {
2538 			ret = _regmap_write(map, regs[i].reg, regs[i].def);
2539 			if (ret != 0)
2540 				return ret;
2541 
2542 			if (regs[i].delay_us) {
2543 				if (map->can_sleep)
2544 					fsleep(regs[i].delay_us);
2545 				else
2546 					udelay(regs[i].delay_us);
2547 			}
2548 		}
2549 		return 0;
2550 	}
2551 
2552 	if (!map->format.parse_inplace)
2553 		return -EINVAL;
2554 
2555 	if (map->writeable_reg)
2556 		for (i = 0; i < num_regs; i++) {
2557 			int reg = regs[i].reg;
2558 			if (!map->writeable_reg(map->dev, reg))
2559 				return -EINVAL;
2560 			if (!IS_ALIGNED(reg, map->reg_stride))
2561 				return -EINVAL;
2562 		}
2563 
2564 	if (!map->cache_bypass) {
2565 		for (i = 0; i < num_regs; i++) {
2566 			unsigned int val = regs[i].def;
2567 			unsigned int reg = regs[i].reg;
2568 			ret = regcache_write(map, reg, val);
2569 			if (ret) {
2570 				dev_err(map->dev,
2571 				"Error in caching of register: %x ret: %d\n",
2572 								reg, ret);
2573 				return ret;
2574 			}
2575 		}
2576 		if (map->cache_only) {
2577 			map->cache_dirty = true;
2578 			return 0;
2579 		}
2580 	}
2581 
2582 	WARN_ON(!map->bus);
2583 
2584 	for (i = 0; i < num_regs; i++) {
2585 		unsigned int reg = regs[i].reg;
2586 		struct regmap_range_node *range;
2587 
2588 		/* Coalesce all the writes between a page break or a delay
2589 		 * in a sequence
2590 		 */
2591 		range = _regmap_range_lookup(map, reg);
2592 		if (range || regs[i].delay_us) {
2593 			size_t len = sizeof(struct reg_sequence)*num_regs;
2594 			struct reg_sequence *base = kmemdup(regs, len,
2595 							   GFP_KERNEL);
2596 			if (!base)
2597 				return -ENOMEM;
2598 			ret = _regmap_range_multi_paged_reg_write(map, base,
2599 								  num_regs);
2600 			kfree(base);
2601 
2602 			return ret;
2603 		}
2604 	}
2605 	return _regmap_raw_multi_reg_write(map, regs, num_regs);
2606 }
2607 
2608 /**
2609  * regmap_multi_reg_write() - Write multiple registers to the device
2610  *
2611  * @map: Register map to write to
2612  * @regs: Array of structures containing register,value to be written
2613  * @num_regs: Number of registers to write
2614  *
2615  * Write multiple registers to the device where the set of register, value
2616  * pairs are supplied in any order, possibly not all in a single range.
2617  *
2618  * The 'normal' block write mode will send ultimately send data on the
2619  * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2620  * addressed. However, this alternative block multi write mode will send
2621  * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2622  * must of course support the mode.
2623  *
2624  * A value of zero will be returned on success, a negative errno will be
2625  * returned in error cases.
2626  */
2627 int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2628 			   int num_regs)
2629 {
2630 	int ret;
2631 
2632 	map->lock(map->lock_arg);
2633 
2634 	ret = _regmap_multi_reg_write(map, regs, num_regs);
2635 
2636 	map->unlock(map->lock_arg);
2637 
2638 	return ret;
2639 }
2640 EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2641 
2642 /**
2643  * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2644  *                                     device but not the cache
2645  *
2646  * @map: Register map to write to
2647  * @regs: Array of structures containing register,value to be written
2648  * @num_regs: Number of registers to write
2649  *
2650  * Write multiple registers to the device but not the cache where the set
2651  * of register are supplied in any order.
2652  *
2653  * This function is intended to be used for writing a large block of data
2654  * atomically to the device in single transfer for those I2C client devices
2655  * that implement this alternative block write mode.
2656  *
2657  * A value of zero will be returned on success, a negative errno will
2658  * be returned in error cases.
2659  */
2660 int regmap_multi_reg_write_bypassed(struct regmap *map,
2661 				    const struct reg_sequence *regs,
2662 				    int num_regs)
2663 {
2664 	int ret;
2665 	bool bypass;
2666 
2667 	map->lock(map->lock_arg);
2668 
2669 	bypass = map->cache_bypass;
2670 	map->cache_bypass = true;
2671 
2672 	ret = _regmap_multi_reg_write(map, regs, num_regs);
2673 
2674 	map->cache_bypass = bypass;
2675 
2676 	map->unlock(map->lock_arg);
2677 
2678 	return ret;
2679 }
2680 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2681 
2682 /**
2683  * regmap_raw_write_async() - Write raw values to one or more registers
2684  *                            asynchronously
2685  *
2686  * @map: Register map to write to
2687  * @reg: Initial register to write to
2688  * @val: Block of data to be written, laid out for direct transmission to the
2689  *       device.  Must be valid until regmap_async_complete() is called.
2690  * @val_len: Length of data pointed to by val.
2691  *
2692  * This function is intended to be used for things like firmware
2693  * download where a large block of data needs to be transferred to the
2694  * device.  No formatting will be done on the data provided.
2695  *
2696  * If supported by the underlying bus the write will be scheduled
2697  * asynchronously, helping maximise I/O speed on higher speed buses
2698  * like SPI.  regmap_async_complete() can be called to ensure that all
2699  * asynchrnous writes have been completed.
2700  *
2701  * A value of zero will be returned on success, a negative errno will
2702  * be returned in error cases.
2703  */
2704 int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2705 			   const void *val, size_t val_len)
2706 {
2707 	int ret;
2708 
2709 	if (val_len % map->format.val_bytes)
2710 		return -EINVAL;
2711 	if (!IS_ALIGNED(reg, map->reg_stride))
2712 		return -EINVAL;
2713 
2714 	map->lock(map->lock_arg);
2715 
2716 	map->async = true;
2717 
2718 	ret = _regmap_raw_write(map, reg, val, val_len, false);
2719 
2720 	map->async = false;
2721 
2722 	map->unlock(map->lock_arg);
2723 
2724 	return ret;
2725 }
2726 EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2727 
2728 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2729 			    unsigned int val_len, bool noinc)
2730 {
2731 	struct regmap_range_node *range;
2732 	int ret;
2733 
2734 	if (!map->read)
2735 		return -EINVAL;
2736 
2737 	range = _regmap_range_lookup(map, reg);
2738 	if (range) {
2739 		ret = _regmap_select_page(map, &reg, range,
2740 					  noinc ? 1 : val_len / map->format.val_bytes);
2741 		if (ret != 0)
2742 			return ret;
2743 	}
2744 
2745 	reg = regmap_reg_addr(map, reg);
2746 	map->format.format_reg(map->work_buf, reg, map->reg_shift);
2747 	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2748 				      map->read_flag_mask);
2749 	trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2750 
2751 	ret = map->read(map->bus_context, map->work_buf,
2752 			map->format.reg_bytes + map->format.pad_bytes,
2753 			val, val_len);
2754 
2755 	trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2756 
2757 	return ret;
2758 }
2759 
2760 static int _regmap_bus_reg_read(void *context, unsigned int reg,
2761 				unsigned int *val)
2762 {
2763 	struct regmap *map = context;
2764 	struct regmap_range_node *range;
2765 	int ret;
2766 
2767 	range = _regmap_range_lookup(map, reg);
2768 	if (range) {
2769 		ret = _regmap_select_page(map, &reg, range, 1);
2770 		if (ret != 0)
2771 			return ret;
2772 	}
2773 
2774 	reg = regmap_reg_addr(map, reg);
2775 	return map->bus->reg_read(map->bus_context, reg, val);
2776 }
2777 
2778 static int _regmap_bus_read(void *context, unsigned int reg,
2779 			    unsigned int *val)
2780 {
2781 	int ret;
2782 	struct regmap *map = context;
2783 	void *work_val = map->work_buf + map->format.reg_bytes +
2784 		map->format.pad_bytes;
2785 
2786 	if (!map->format.parse_val)
2787 		return -EINVAL;
2788 
2789 	ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes, false);
2790 	if (ret == 0)
2791 		*val = map->format.parse_val(work_val);
2792 
2793 	return ret;
2794 }
2795 
2796 static int _regmap_read(struct regmap *map, unsigned int reg,
2797 			unsigned int *val)
2798 {
2799 	int ret;
2800 	void *context = _regmap_map_get_context(map);
2801 
2802 	if (!map->cache_bypass) {
2803 		ret = regcache_read(map, reg, val);
2804 		if (ret == 0)
2805 			return 0;
2806 	}
2807 
2808 	if (map->cache_only)
2809 		return -EBUSY;
2810 
2811 	if (!regmap_readable(map, reg))
2812 		return -EIO;
2813 
2814 	ret = map->reg_read(context, reg, val);
2815 	if (ret == 0) {
2816 		if (regmap_should_log(map))
2817 			dev_info(map->dev, "%x => %x\n", reg, *val);
2818 
2819 		trace_regmap_reg_read(map, reg, *val);
2820 
2821 		if (!map->cache_bypass)
2822 			regcache_write(map, reg, *val);
2823 	}
2824 
2825 	return ret;
2826 }
2827 
2828 /**
2829  * regmap_read() - Read a value from a single register
2830  *
2831  * @map: Register map to read from
2832  * @reg: Register to be read from
2833  * @val: Pointer to store read value
2834  *
2835  * A value of zero will be returned on success, a negative errno will
2836  * be returned in error cases.
2837  */
2838 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2839 {
2840 	int ret;
2841 
2842 	if (!IS_ALIGNED(reg, map->reg_stride))
2843 		return -EINVAL;
2844 
2845 	map->lock(map->lock_arg);
2846 
2847 	ret = _regmap_read(map, reg, val);
2848 
2849 	map->unlock(map->lock_arg);
2850 
2851 	return ret;
2852 }
2853 EXPORT_SYMBOL_GPL(regmap_read);
2854 
2855 /**
2856  * regmap_read_bypassed() - Read a value from a single register direct
2857  *			    from the device, bypassing the cache
2858  *
2859  * @map: Register map to read from
2860  * @reg: Register to be read from
2861  * @val: Pointer to store read value
2862  *
2863  * A value of zero will be returned on success, a negative errno will
2864  * be returned in error cases.
2865  */
2866 int regmap_read_bypassed(struct regmap *map, unsigned int reg, unsigned int *val)
2867 {
2868 	int ret;
2869 	bool bypass, cache_only;
2870 
2871 	if (!IS_ALIGNED(reg, map->reg_stride))
2872 		return -EINVAL;
2873 
2874 	map->lock(map->lock_arg);
2875 
2876 	bypass = map->cache_bypass;
2877 	cache_only = map->cache_only;
2878 	map->cache_bypass = true;
2879 	map->cache_only = false;
2880 
2881 	ret = _regmap_read(map, reg, val);
2882 
2883 	map->cache_bypass = bypass;
2884 	map->cache_only = cache_only;
2885 
2886 	map->unlock(map->lock_arg);
2887 
2888 	return ret;
2889 }
2890 EXPORT_SYMBOL_GPL(regmap_read_bypassed);
2891 
2892 /**
2893  * regmap_raw_read() - Read raw data from the device
2894  *
2895  * @map: Register map to read from
2896  * @reg: First register to be read from
2897  * @val: Pointer to store read value
2898  * @val_len: Size of data to read
2899  *
2900  * A value of zero will be returned on success, a negative errno will
2901  * be returned in error cases.
2902  */
2903 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2904 		    size_t val_len)
2905 {
2906 	size_t val_bytes = map->format.val_bytes;
2907 	size_t val_count = val_len / val_bytes;
2908 	unsigned int v;
2909 	int ret, i;
2910 
2911 	if (val_len % map->format.val_bytes)
2912 		return -EINVAL;
2913 	if (!IS_ALIGNED(reg, map->reg_stride))
2914 		return -EINVAL;
2915 	if (val_count == 0)
2916 		return -EINVAL;
2917 
2918 	map->lock(map->lock_arg);
2919 
2920 	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2921 	    map->cache_type == REGCACHE_NONE) {
2922 		size_t chunk_count, chunk_bytes;
2923 		size_t chunk_regs = val_count;
2924 
2925 		if (!map->cache_bypass && map->cache_only) {
2926 			ret = -EBUSY;
2927 			goto out;
2928 		}
2929 
2930 		if (!map->read) {
2931 			ret = -ENOTSUPP;
2932 			goto out;
2933 		}
2934 
2935 		if (map->use_single_read)
2936 			chunk_regs = 1;
2937 		else if (map->max_raw_read && val_len > map->max_raw_read)
2938 			chunk_regs = map->max_raw_read / val_bytes;
2939 
2940 		chunk_count = val_count / chunk_regs;
2941 		chunk_bytes = chunk_regs * val_bytes;
2942 
2943 		/* Read bytes that fit into whole chunks */
2944 		for (i = 0; i < chunk_count; i++) {
2945 			ret = _regmap_raw_read(map, reg, val, chunk_bytes, false);
2946 			if (ret != 0)
2947 				goto out;
2948 
2949 			reg += regmap_get_offset(map, chunk_regs);
2950 			val += chunk_bytes;
2951 			val_len -= chunk_bytes;
2952 		}
2953 
2954 		/* Read remaining bytes */
2955 		if (val_len) {
2956 			ret = _regmap_raw_read(map, reg, val, val_len, false);
2957 			if (ret != 0)
2958 				goto out;
2959 		}
2960 	} else {
2961 		/* Otherwise go word by word for the cache; should be low
2962 		 * cost as we expect to hit the cache.
2963 		 */
2964 		for (i = 0; i < val_count; i++) {
2965 			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2966 					   &v);
2967 			if (ret != 0)
2968 				goto out;
2969 
2970 			map->format.format_val(val + (i * val_bytes), v, 0);
2971 		}
2972 	}
2973 
2974  out:
2975 	map->unlock(map->lock_arg);
2976 
2977 	return ret;
2978 }
2979 EXPORT_SYMBOL_GPL(regmap_raw_read);
2980 
2981 /**
2982  * regmap_noinc_read(): Read data from a register without incrementing the
2983  *			register number
2984  *
2985  * @map: Register map to read from
2986  * @reg: Register to read from
2987  * @val: Pointer to data buffer
2988  * @val_len: Length of output buffer in bytes.
2989  *
2990  * The regmap API usually assumes that bulk read operations will read a
2991  * range of registers. Some devices have certain registers for which a read
2992  * operation read will read from an internal FIFO.
2993  *
2994  * The target register must be volatile but registers after it can be
2995  * completely unrelated cacheable registers.
2996  *
2997  * This will attempt multiple reads as required to read val_len bytes.
2998  *
2999  * A value of zero will be returned on success, a negative errno will be
3000  * returned in error cases.
3001  */
3002 int regmap_noinc_read(struct regmap *map, unsigned int reg,
3003 		      void *val, size_t val_len)
3004 {
3005 	size_t read_len;
3006 	int ret;
3007 
3008 	if (!map->read)
3009 		return -ENOTSUPP;
3010 
3011 	if (val_len % map->format.val_bytes)
3012 		return -EINVAL;
3013 	if (!IS_ALIGNED(reg, map->reg_stride))
3014 		return -EINVAL;
3015 	if (val_len == 0)
3016 		return -EINVAL;
3017 
3018 	map->lock(map->lock_arg);
3019 
3020 	if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) {
3021 		ret = -EINVAL;
3022 		goto out_unlock;
3023 	}
3024 
3025 	/*
3026 	 * We have not defined the FIFO semantics for cache, as the
3027 	 * cache is just one value deep. Should we return the last
3028 	 * written value? Just avoid this by always reading the FIFO
3029 	 * even when using cache. Cache only will not work.
3030 	 */
3031 	if (!map->cache_bypass && map->cache_only) {
3032 		ret = -EBUSY;
3033 		goto out_unlock;
3034 	}
3035 
3036 	/* Use the accelerated operation if we can */
3037 	if (map->bus->reg_noinc_read) {
3038 		ret = regmap_noinc_readwrite(map, reg, val, val_len, false);
3039 		goto out_unlock;
3040 	}
3041 
3042 	while (val_len) {
3043 		if (map->max_raw_read && map->max_raw_read < val_len)
3044 			read_len = map->max_raw_read;
3045 		else
3046 			read_len = val_len;
3047 		ret = _regmap_raw_read(map, reg, val, read_len, true);
3048 		if (ret)
3049 			goto out_unlock;
3050 		val = ((u8 *)val) + read_len;
3051 		val_len -= read_len;
3052 	}
3053 
3054 out_unlock:
3055 	map->unlock(map->lock_arg);
3056 	return ret;
3057 }
3058 EXPORT_SYMBOL_GPL(regmap_noinc_read);
3059 
3060 /**
3061  * regmap_field_read(): Read a value to a single register field
3062  *
3063  * @field: Register field to read from
3064  * @val: Pointer to store read value
3065  *
3066  * A value of zero will be returned on success, a negative errno will
3067  * be returned in error cases.
3068  */
3069 int regmap_field_read(struct regmap_field *field, unsigned int *val)
3070 {
3071 	int ret;
3072 	unsigned int reg_val;
3073 	ret = regmap_read(field->regmap, field->reg, &reg_val);
3074 	if (ret != 0)
3075 		return ret;
3076 
3077 	reg_val &= field->mask;
3078 	reg_val >>= field->shift;
3079 	*val = reg_val;
3080 
3081 	return ret;
3082 }
3083 EXPORT_SYMBOL_GPL(regmap_field_read);
3084 
3085 /**
3086  * regmap_fields_read() - Read a value to a single register field with port ID
3087  *
3088  * @field: Register field to read from
3089  * @id: port ID
3090  * @val: Pointer to store read value
3091  *
3092  * A value of zero will be returned on success, a negative errno will
3093  * be returned in error cases.
3094  */
3095 int regmap_fields_read(struct regmap_field *field, unsigned int id,
3096 		       unsigned int *val)
3097 {
3098 	int ret;
3099 	unsigned int reg_val;
3100 
3101 	if (id >= field->id_size)
3102 		return -EINVAL;
3103 
3104 	ret = regmap_read(field->regmap,
3105 			  field->reg + (field->id_offset * id),
3106 			  &reg_val);
3107 	if (ret != 0)
3108 		return ret;
3109 
3110 	reg_val &= field->mask;
3111 	reg_val >>= field->shift;
3112 	*val = reg_val;
3113 
3114 	return ret;
3115 }
3116 EXPORT_SYMBOL_GPL(regmap_fields_read);
3117 
3118 static int _regmap_bulk_read(struct regmap *map, unsigned int reg,
3119 			     unsigned int *regs, void *val, size_t val_count)
3120 {
3121 	u32 *u32 = val;
3122 	u16 *u16 = val;
3123 	u8 *u8 = val;
3124 	int ret, i;
3125 
3126 	map->lock(map->lock_arg);
3127 
3128 	for (i = 0; i < val_count; i++) {
3129 		unsigned int ival;
3130 
3131 		if (regs) {
3132 			if (!IS_ALIGNED(regs[i], map->reg_stride)) {
3133 				ret = -EINVAL;
3134 				goto out;
3135 			}
3136 			ret = _regmap_read(map, regs[i], &ival);
3137 		} else {
3138 			ret = _regmap_read(map, reg + regmap_get_offset(map, i), &ival);
3139 		}
3140 		if (ret != 0)
3141 			goto out;
3142 
3143 		switch (map->format.val_bytes) {
3144 		case 4:
3145 			u32[i] = ival;
3146 			break;
3147 		case 2:
3148 			u16[i] = ival;
3149 			break;
3150 		case 1:
3151 			u8[i] = ival;
3152 			break;
3153 		default:
3154 			ret = -EINVAL;
3155 			goto out;
3156 		}
3157 	}
3158 out:
3159 	map->unlock(map->lock_arg);
3160 	return ret;
3161 }
3162 
3163 /**
3164  * regmap_bulk_read() - Read multiple sequential registers from the device
3165  *
3166  * @map: Register map to read from
3167  * @reg: First register to be read from
3168  * @val: Pointer to store read value, in native register size for device
3169  * @val_count: Number of registers to read
3170  *
3171  * A value of zero will be returned on success, a negative errno will
3172  * be returned in error cases.
3173  */
3174 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
3175 		     size_t val_count)
3176 {
3177 	int ret, i;
3178 	size_t val_bytes = map->format.val_bytes;
3179 	bool vol = regmap_volatile_range(map, reg, val_count);
3180 
3181 	if (!IS_ALIGNED(reg, map->reg_stride))
3182 		return -EINVAL;
3183 	if (val_count == 0)
3184 		return -EINVAL;
3185 
3186 	if (map->read && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
3187 		ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
3188 		if (ret != 0)
3189 			return ret;
3190 
3191 		for (i = 0; i < val_count * val_bytes; i += val_bytes)
3192 			map->format.parse_inplace(val + i);
3193 	} else {
3194 		ret = _regmap_bulk_read(map, reg, NULL, val, val_count);
3195 	}
3196 	if (!ret)
3197 		trace_regmap_bulk_read(map, reg, val, val_bytes * val_count);
3198 	return ret;
3199 }
3200 EXPORT_SYMBOL_GPL(regmap_bulk_read);
3201 
3202 /**
3203  * regmap_multi_reg_read() - Read multiple non-sequential registers from the device
3204  *
3205  * @map: Register map to read from
3206  * @regs: Array of registers to read from
3207  * @val: Pointer to store read value, in native register size for device
3208  * @val_count: Number of registers to read
3209  *
3210  * A value of zero will be returned on success, a negative errno will
3211  * be returned in error cases.
3212  */
3213 int regmap_multi_reg_read(struct regmap *map, unsigned int *regs, void *val,
3214 			  size_t val_count)
3215 {
3216 	if (val_count == 0)
3217 		return -EINVAL;
3218 
3219 	return _regmap_bulk_read(map, 0, regs, val, val_count);
3220 }
3221 EXPORT_SYMBOL_GPL(regmap_multi_reg_read);
3222 
3223 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
3224 			       unsigned int mask, unsigned int val,
3225 			       bool *change, bool force_write)
3226 {
3227 	int ret;
3228 	unsigned int tmp, orig;
3229 
3230 	if (change)
3231 		*change = false;
3232 
3233 	if (regmap_volatile(map, reg) && map->reg_update_bits) {
3234 		reg = regmap_reg_addr(map, reg);
3235 		ret = map->reg_update_bits(map->bus_context, reg, mask, val);
3236 		if (ret == 0 && change)
3237 			*change = true;
3238 	} else {
3239 		ret = _regmap_read(map, reg, &orig);
3240 		if (ret != 0)
3241 			return ret;
3242 
3243 		tmp = orig & ~mask;
3244 		tmp |= val & mask;
3245 
3246 		if (force_write || (tmp != orig) || map->force_write_field) {
3247 			ret = _regmap_write(map, reg, tmp);
3248 			if (ret == 0 && change)
3249 				*change = true;
3250 		}
3251 	}
3252 
3253 	return ret;
3254 }
3255 
3256 /**
3257  * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
3258  *
3259  * @map: Register map to update
3260  * @reg: Register to update
3261  * @mask: Bitmask to change
3262  * @val: New value for bitmask
3263  * @change: Boolean indicating if a write was done
3264  * @async: Boolean indicating asynchronously
3265  * @force: Boolean indicating use force update
3266  *
3267  * Perform a read/modify/write cycle on a register map with change, async, force
3268  * options.
3269  *
3270  * If async is true:
3271  *
3272  * With most buses the read must be done synchronously so this is most useful
3273  * for devices with a cache which do not need to interact with the hardware to
3274  * determine the current register value.
3275  *
3276  * Returns zero for success, a negative number on error.
3277  */
3278 int regmap_update_bits_base(struct regmap *map, unsigned int reg,
3279 			    unsigned int mask, unsigned int val,
3280 			    bool *change, bool async, bool force)
3281 {
3282 	int ret;
3283 
3284 	map->lock(map->lock_arg);
3285 
3286 	map->async = async;
3287 
3288 	ret = _regmap_update_bits(map, reg, mask, val, change, force);
3289 
3290 	map->async = false;
3291 
3292 	map->unlock(map->lock_arg);
3293 
3294 	return ret;
3295 }
3296 EXPORT_SYMBOL_GPL(regmap_update_bits_base);
3297 
3298 /**
3299  * regmap_test_bits() - Check if all specified bits are set in a register.
3300  *
3301  * @map: Register map to operate on
3302  * @reg: Register to read from
3303  * @bits: Bits to test
3304  *
3305  * Returns 0 if at least one of the tested bits is not set, 1 if all tested
3306  * bits are set and a negative error number if the underlying regmap_read()
3307  * fails.
3308  */
3309 int regmap_test_bits(struct regmap *map, unsigned int reg, unsigned int bits)
3310 {
3311 	unsigned int val, ret;
3312 
3313 	ret = regmap_read(map, reg, &val);
3314 	if (ret)
3315 		return ret;
3316 
3317 	return (val & bits) == bits;
3318 }
3319 EXPORT_SYMBOL_GPL(regmap_test_bits);
3320 
3321 void regmap_async_complete_cb(struct regmap_async *async, int ret)
3322 {
3323 	struct regmap *map = async->map;
3324 	bool wake;
3325 
3326 	trace_regmap_async_io_complete(map);
3327 
3328 	spin_lock(&map->async_lock);
3329 	list_move(&async->list, &map->async_free);
3330 	wake = list_empty(&map->async_list);
3331 
3332 	if (ret != 0)
3333 		map->async_ret = ret;
3334 
3335 	spin_unlock(&map->async_lock);
3336 
3337 	if (wake)
3338 		wake_up(&map->async_waitq);
3339 }
3340 EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
3341 
3342 static int regmap_async_is_done(struct regmap *map)
3343 {
3344 	unsigned long flags;
3345 	int ret;
3346 
3347 	spin_lock_irqsave(&map->async_lock, flags);
3348 	ret = list_empty(&map->async_list);
3349 	spin_unlock_irqrestore(&map->async_lock, flags);
3350 
3351 	return ret;
3352 }
3353 
3354 /**
3355  * regmap_async_complete - Ensure all asynchronous I/O has completed.
3356  *
3357  * @map: Map to operate on.
3358  *
3359  * Blocks until any pending asynchronous I/O has completed.  Returns
3360  * an error code for any failed I/O operations.
3361  */
3362 int regmap_async_complete(struct regmap *map)
3363 {
3364 	unsigned long flags;
3365 	int ret;
3366 
3367 	/* Nothing to do with no async support */
3368 	if (!map->bus || !map->bus->async_write)
3369 		return 0;
3370 
3371 	trace_regmap_async_complete_start(map);
3372 
3373 	wait_event(map->async_waitq, regmap_async_is_done(map));
3374 
3375 	spin_lock_irqsave(&map->async_lock, flags);
3376 	ret = map->async_ret;
3377 	map->async_ret = 0;
3378 	spin_unlock_irqrestore(&map->async_lock, flags);
3379 
3380 	trace_regmap_async_complete_done(map);
3381 
3382 	return ret;
3383 }
3384 EXPORT_SYMBOL_GPL(regmap_async_complete);
3385 
3386 /**
3387  * regmap_register_patch - Register and apply register updates to be applied
3388  *                         on device initialistion
3389  *
3390  * @map: Register map to apply updates to.
3391  * @regs: Values to update.
3392  * @num_regs: Number of entries in regs.
3393  *
3394  * Register a set of register updates to be applied to the device
3395  * whenever the device registers are synchronised with the cache and
3396  * apply them immediately.  Typically this is used to apply
3397  * corrections to be applied to the device defaults on startup, such
3398  * as the updates some vendors provide to undocumented registers.
3399  *
3400  * The caller must ensure that this function cannot be called
3401  * concurrently with either itself or regcache_sync().
3402  */
3403 int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
3404 			  int num_regs)
3405 {
3406 	struct reg_sequence *p;
3407 	int ret;
3408 	bool bypass;
3409 
3410 	if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
3411 	    num_regs))
3412 		return 0;
3413 
3414 	p = krealloc(map->patch,
3415 		     sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
3416 		     GFP_KERNEL);
3417 	if (p) {
3418 		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
3419 		map->patch = p;
3420 		map->patch_regs += num_regs;
3421 	} else {
3422 		return -ENOMEM;
3423 	}
3424 
3425 	map->lock(map->lock_arg);
3426 
3427 	bypass = map->cache_bypass;
3428 
3429 	map->cache_bypass = true;
3430 	map->async = true;
3431 
3432 	ret = _regmap_multi_reg_write(map, regs, num_regs);
3433 
3434 	map->async = false;
3435 	map->cache_bypass = bypass;
3436 
3437 	map->unlock(map->lock_arg);
3438 
3439 	regmap_async_complete(map);
3440 
3441 	return ret;
3442 }
3443 EXPORT_SYMBOL_GPL(regmap_register_patch);
3444 
3445 /**
3446  * regmap_get_val_bytes() - Report the size of a register value
3447  *
3448  * @map: Register map to operate on.
3449  *
3450  * Report the size of a register value, mainly intended to for use by
3451  * generic infrastructure built on top of regmap.
3452  */
3453 int regmap_get_val_bytes(struct regmap *map)
3454 {
3455 	if (map->format.format_write)
3456 		return -EINVAL;
3457 
3458 	return map->format.val_bytes;
3459 }
3460 EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
3461 
3462 /**
3463  * regmap_get_max_register() - Report the max register value
3464  *
3465  * @map: Register map to operate on.
3466  *
3467  * Report the max register value, mainly intended to for use by
3468  * generic infrastructure built on top of regmap.
3469  */
3470 int regmap_get_max_register(struct regmap *map)
3471 {
3472 	return map->max_register_is_set ? map->max_register : -EINVAL;
3473 }
3474 EXPORT_SYMBOL_GPL(regmap_get_max_register);
3475 
3476 /**
3477  * regmap_get_reg_stride() - Report the register address stride
3478  *
3479  * @map: Register map to operate on.
3480  *
3481  * Report the register address stride, mainly intended to for use by
3482  * generic infrastructure built on top of regmap.
3483  */
3484 int regmap_get_reg_stride(struct regmap *map)
3485 {
3486 	return map->reg_stride;
3487 }
3488 EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
3489 
3490 /**
3491  * regmap_might_sleep() - Returns whether a regmap access might sleep.
3492  *
3493  * @map: Register map to operate on.
3494  *
3495  * Returns true if an access to the register might sleep, else false.
3496  */
3497 bool regmap_might_sleep(struct regmap *map)
3498 {
3499 	return map->can_sleep;
3500 }
3501 EXPORT_SYMBOL_GPL(regmap_might_sleep);
3502 
3503 int regmap_parse_val(struct regmap *map, const void *buf,
3504 			unsigned int *val)
3505 {
3506 	if (!map->format.parse_val)
3507 		return -EINVAL;
3508 
3509 	*val = map->format.parse_val(buf);
3510 
3511 	return 0;
3512 }
3513 EXPORT_SYMBOL_GPL(regmap_parse_val);
3514 
3515 static int __init regmap_initcall(void)
3516 {
3517 	regmap_debugfs_initcall();
3518 
3519 	return 0;
3520 }
3521 postcore_initcall(regmap_initcall);
3522