xref: /linux/drivers/base/regmap/regmap.c (revision 08ec212c0f92cbf30e3ecc7349f18151714041d6)
1 /*
2  * Register map access API
3  *
4  * Copyright 2011 Wolfson Microelectronics plc
5  *
6  * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/mutex.h>
17 #include <linux/err.h>
18 #include <linux/rbtree.h>
19 
20 #define CREATE_TRACE_POINTS
21 #include <trace/events/regmap.h>
22 
23 #include "internal.h"
24 
25 /*
26  * Sometimes for failures during very early init the trace
27  * infrastructure isn't available early enough to be used.  For this
28  * sort of problem defining LOG_DEVICE will add printks for basic
29  * register I/O on a specific device.
30  */
31 #undef LOG_DEVICE
32 
33 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
34 			       unsigned int mask, unsigned int val,
35 			       bool *change);
36 
37 bool regmap_writeable(struct regmap *map, unsigned int reg)
38 {
39 	if (map->max_register && reg > map->max_register)
40 		return false;
41 
42 	if (map->writeable_reg)
43 		return map->writeable_reg(map->dev, reg);
44 
45 	return true;
46 }
47 
48 bool regmap_readable(struct regmap *map, unsigned int reg)
49 {
50 	if (map->max_register && reg > map->max_register)
51 		return false;
52 
53 	if (map->format.format_write)
54 		return false;
55 
56 	if (map->readable_reg)
57 		return map->readable_reg(map->dev, reg);
58 
59 	return true;
60 }
61 
62 bool regmap_volatile(struct regmap *map, unsigned int reg)
63 {
64 	if (!regmap_readable(map, reg))
65 		return false;
66 
67 	if (map->volatile_reg)
68 		return map->volatile_reg(map->dev, reg);
69 
70 	return true;
71 }
72 
73 bool regmap_precious(struct regmap *map, unsigned int reg)
74 {
75 	if (!regmap_readable(map, reg))
76 		return false;
77 
78 	if (map->precious_reg)
79 		return map->precious_reg(map->dev, reg);
80 
81 	return false;
82 }
83 
84 static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
85 	unsigned int num)
86 {
87 	unsigned int i;
88 
89 	for (i = 0; i < num; i++)
90 		if (!regmap_volatile(map, reg + i))
91 			return false;
92 
93 	return true;
94 }
95 
96 static void regmap_format_2_6_write(struct regmap *map,
97 				     unsigned int reg, unsigned int val)
98 {
99 	u8 *out = map->work_buf;
100 
101 	*out = (reg << 6) | val;
102 }
103 
104 static void regmap_format_4_12_write(struct regmap *map,
105 				     unsigned int reg, unsigned int val)
106 {
107 	__be16 *out = map->work_buf;
108 	*out = cpu_to_be16((reg << 12) | val);
109 }
110 
111 static void regmap_format_7_9_write(struct regmap *map,
112 				    unsigned int reg, unsigned int val)
113 {
114 	__be16 *out = map->work_buf;
115 	*out = cpu_to_be16((reg << 9) | val);
116 }
117 
118 static void regmap_format_10_14_write(struct regmap *map,
119 				    unsigned int reg, unsigned int val)
120 {
121 	u8 *out = map->work_buf;
122 
123 	out[2] = val;
124 	out[1] = (val >> 8) | (reg << 6);
125 	out[0] = reg >> 2;
126 }
127 
128 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
129 {
130 	u8 *b = buf;
131 
132 	b[0] = val << shift;
133 }
134 
135 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
136 {
137 	__be16 *b = buf;
138 
139 	b[0] = cpu_to_be16(val << shift);
140 }
141 
142 static void regmap_format_16_native(void *buf, unsigned int val,
143 				    unsigned int shift)
144 {
145 	*(u16 *)buf = val << shift;
146 }
147 
148 static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
149 {
150 	u8 *b = buf;
151 
152 	val <<= shift;
153 
154 	b[0] = val >> 16;
155 	b[1] = val >> 8;
156 	b[2] = val;
157 }
158 
159 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
160 {
161 	__be32 *b = buf;
162 
163 	b[0] = cpu_to_be32(val << shift);
164 }
165 
166 static void regmap_format_32_native(void *buf, unsigned int val,
167 				    unsigned int shift)
168 {
169 	*(u32 *)buf = val << shift;
170 }
171 
172 static unsigned int regmap_parse_8(void *buf)
173 {
174 	u8 *b = buf;
175 
176 	return b[0];
177 }
178 
179 static unsigned int regmap_parse_16_be(void *buf)
180 {
181 	__be16 *b = buf;
182 
183 	b[0] = be16_to_cpu(b[0]);
184 
185 	return b[0];
186 }
187 
188 static unsigned int regmap_parse_16_native(void *buf)
189 {
190 	return *(u16 *)buf;
191 }
192 
193 static unsigned int regmap_parse_24(void *buf)
194 {
195 	u8 *b = buf;
196 	unsigned int ret = b[2];
197 	ret |= ((unsigned int)b[1]) << 8;
198 	ret |= ((unsigned int)b[0]) << 16;
199 
200 	return ret;
201 }
202 
203 static unsigned int regmap_parse_32_be(void *buf)
204 {
205 	__be32 *b = buf;
206 
207 	b[0] = be32_to_cpu(b[0]);
208 
209 	return b[0];
210 }
211 
212 static unsigned int regmap_parse_32_native(void *buf)
213 {
214 	return *(u32 *)buf;
215 }
216 
217 static void regmap_lock_mutex(struct regmap *map)
218 {
219 	mutex_lock(&map->mutex);
220 }
221 
222 static void regmap_unlock_mutex(struct regmap *map)
223 {
224 	mutex_unlock(&map->mutex);
225 }
226 
227 static void regmap_lock_spinlock(struct regmap *map)
228 {
229 	spin_lock(&map->spinlock);
230 }
231 
232 static void regmap_unlock_spinlock(struct regmap *map)
233 {
234 	spin_unlock(&map->spinlock);
235 }
236 
237 static void dev_get_regmap_release(struct device *dev, void *res)
238 {
239 	/*
240 	 * We don't actually have anything to do here; the goal here
241 	 * is not to manage the regmap but to provide a simple way to
242 	 * get the regmap back given a struct device.
243 	 */
244 }
245 
246 static bool _regmap_range_add(struct regmap *map,
247 			      struct regmap_range_node *data)
248 {
249 	struct rb_root *root = &map->range_tree;
250 	struct rb_node **new = &(root->rb_node), *parent = NULL;
251 
252 	while (*new) {
253 		struct regmap_range_node *this =
254 			container_of(*new, struct regmap_range_node, node);
255 
256 		parent = *new;
257 		if (data->range_max < this->range_min)
258 			new = &((*new)->rb_left);
259 		else if (data->range_min > this->range_max)
260 			new = &((*new)->rb_right);
261 		else
262 			return false;
263 	}
264 
265 	rb_link_node(&data->node, parent, new);
266 	rb_insert_color(&data->node, root);
267 
268 	return true;
269 }
270 
271 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
272 						      unsigned int reg)
273 {
274 	struct rb_node *node = map->range_tree.rb_node;
275 
276 	while (node) {
277 		struct regmap_range_node *this =
278 			container_of(node, struct regmap_range_node, node);
279 
280 		if (reg < this->range_min)
281 			node = node->rb_left;
282 		else if (reg > this->range_max)
283 			node = node->rb_right;
284 		else
285 			return this;
286 	}
287 
288 	return NULL;
289 }
290 
291 static void regmap_range_exit(struct regmap *map)
292 {
293 	struct rb_node *next;
294 	struct regmap_range_node *range_node;
295 
296 	next = rb_first(&map->range_tree);
297 	while (next) {
298 		range_node = rb_entry(next, struct regmap_range_node, node);
299 		next = rb_next(&range_node->node);
300 		rb_erase(&range_node->node, &map->range_tree);
301 		kfree(range_node);
302 	}
303 
304 	kfree(map->selector_work_buf);
305 }
306 
307 /**
308  * regmap_init(): Initialise register map
309  *
310  * @dev: Device that will be interacted with
311  * @bus: Bus-specific callbacks to use with device
312  * @bus_context: Data passed to bus-specific callbacks
313  * @config: Configuration for register map
314  *
315  * The return value will be an ERR_PTR() on error or a valid pointer to
316  * a struct regmap.  This function should generally not be called
317  * directly, it should be called by bus-specific init functions.
318  */
319 struct regmap *regmap_init(struct device *dev,
320 			   const struct regmap_bus *bus,
321 			   void *bus_context,
322 			   const struct regmap_config *config)
323 {
324 	struct regmap *map, **m;
325 	int ret = -EINVAL;
326 	enum regmap_endian reg_endian, val_endian;
327 	int i, j;
328 
329 	if (!bus || !config)
330 		goto err;
331 
332 	map = kzalloc(sizeof(*map), GFP_KERNEL);
333 	if (map == NULL) {
334 		ret = -ENOMEM;
335 		goto err;
336 	}
337 
338 	if (bus->fast_io) {
339 		spin_lock_init(&map->spinlock);
340 		map->lock = regmap_lock_spinlock;
341 		map->unlock = regmap_unlock_spinlock;
342 	} else {
343 		mutex_init(&map->mutex);
344 		map->lock = regmap_lock_mutex;
345 		map->unlock = regmap_unlock_mutex;
346 	}
347 	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
348 	map->format.pad_bytes = config->pad_bits / 8;
349 	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
350 	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
351 			config->val_bits + config->pad_bits, 8);
352 	map->reg_shift = config->pad_bits % 8;
353 	if (config->reg_stride)
354 		map->reg_stride = config->reg_stride;
355 	else
356 		map->reg_stride = 1;
357 	map->use_single_rw = config->use_single_rw;
358 	map->dev = dev;
359 	map->bus = bus;
360 	map->bus_context = bus_context;
361 	map->max_register = config->max_register;
362 	map->writeable_reg = config->writeable_reg;
363 	map->readable_reg = config->readable_reg;
364 	map->volatile_reg = config->volatile_reg;
365 	map->precious_reg = config->precious_reg;
366 	map->cache_type = config->cache_type;
367 	map->name = config->name;
368 
369 	if (config->read_flag_mask || config->write_flag_mask) {
370 		map->read_flag_mask = config->read_flag_mask;
371 		map->write_flag_mask = config->write_flag_mask;
372 	} else {
373 		map->read_flag_mask = bus->read_flag_mask;
374 	}
375 
376 	reg_endian = config->reg_format_endian;
377 	if (reg_endian == REGMAP_ENDIAN_DEFAULT)
378 		reg_endian = bus->reg_format_endian_default;
379 	if (reg_endian == REGMAP_ENDIAN_DEFAULT)
380 		reg_endian = REGMAP_ENDIAN_BIG;
381 
382 	val_endian = config->val_format_endian;
383 	if (val_endian == REGMAP_ENDIAN_DEFAULT)
384 		val_endian = bus->val_format_endian_default;
385 	if (val_endian == REGMAP_ENDIAN_DEFAULT)
386 		val_endian = REGMAP_ENDIAN_BIG;
387 
388 	switch (config->reg_bits + map->reg_shift) {
389 	case 2:
390 		switch (config->val_bits) {
391 		case 6:
392 			map->format.format_write = regmap_format_2_6_write;
393 			break;
394 		default:
395 			goto err_map;
396 		}
397 		break;
398 
399 	case 4:
400 		switch (config->val_bits) {
401 		case 12:
402 			map->format.format_write = regmap_format_4_12_write;
403 			break;
404 		default:
405 			goto err_map;
406 		}
407 		break;
408 
409 	case 7:
410 		switch (config->val_bits) {
411 		case 9:
412 			map->format.format_write = regmap_format_7_9_write;
413 			break;
414 		default:
415 			goto err_map;
416 		}
417 		break;
418 
419 	case 10:
420 		switch (config->val_bits) {
421 		case 14:
422 			map->format.format_write = regmap_format_10_14_write;
423 			break;
424 		default:
425 			goto err_map;
426 		}
427 		break;
428 
429 	case 8:
430 		map->format.format_reg = regmap_format_8;
431 		break;
432 
433 	case 16:
434 		switch (reg_endian) {
435 		case REGMAP_ENDIAN_BIG:
436 			map->format.format_reg = regmap_format_16_be;
437 			break;
438 		case REGMAP_ENDIAN_NATIVE:
439 			map->format.format_reg = regmap_format_16_native;
440 			break;
441 		default:
442 			goto err_map;
443 		}
444 		break;
445 
446 	case 32:
447 		switch (reg_endian) {
448 		case REGMAP_ENDIAN_BIG:
449 			map->format.format_reg = regmap_format_32_be;
450 			break;
451 		case REGMAP_ENDIAN_NATIVE:
452 			map->format.format_reg = regmap_format_32_native;
453 			break;
454 		default:
455 			goto err_map;
456 		}
457 		break;
458 
459 	default:
460 		goto err_map;
461 	}
462 
463 	switch (config->val_bits) {
464 	case 8:
465 		map->format.format_val = regmap_format_8;
466 		map->format.parse_val = regmap_parse_8;
467 		break;
468 	case 16:
469 		switch (val_endian) {
470 		case REGMAP_ENDIAN_BIG:
471 			map->format.format_val = regmap_format_16_be;
472 			map->format.parse_val = regmap_parse_16_be;
473 			break;
474 		case REGMAP_ENDIAN_NATIVE:
475 			map->format.format_val = regmap_format_16_native;
476 			map->format.parse_val = regmap_parse_16_native;
477 			break;
478 		default:
479 			goto err_map;
480 		}
481 		break;
482 	case 24:
483 		if (val_endian != REGMAP_ENDIAN_BIG)
484 			goto err_map;
485 		map->format.format_val = regmap_format_24;
486 		map->format.parse_val = regmap_parse_24;
487 		break;
488 	case 32:
489 		switch (val_endian) {
490 		case REGMAP_ENDIAN_BIG:
491 			map->format.format_val = regmap_format_32_be;
492 			map->format.parse_val = regmap_parse_32_be;
493 			break;
494 		case REGMAP_ENDIAN_NATIVE:
495 			map->format.format_val = regmap_format_32_native;
496 			map->format.parse_val = regmap_parse_32_native;
497 			break;
498 		default:
499 			goto err_map;
500 		}
501 		break;
502 	}
503 
504 	if (map->format.format_write) {
505 		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
506 		    (val_endian != REGMAP_ENDIAN_BIG))
507 			goto err_map;
508 		map->use_single_rw = true;
509 	}
510 
511 	if (!map->format.format_write &&
512 	    !(map->format.format_reg && map->format.format_val))
513 		goto err_map;
514 
515 	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
516 	if (map->work_buf == NULL) {
517 		ret = -ENOMEM;
518 		goto err_map;
519 	}
520 
521 	map->range_tree = RB_ROOT;
522 	for (i = 0; i < config->n_ranges; i++) {
523 		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
524 		struct regmap_range_node *new;
525 
526 		/* Sanity check */
527 		if (range_cfg->range_max < range_cfg->range_min ||
528 		    range_cfg->range_max > map->max_register ||
529 		    range_cfg->selector_reg > map->max_register ||
530 		    range_cfg->window_len == 0)
531 			goto err_range;
532 
533 		/* Make sure, that this register range has no selector
534 		   or data window within its boundary */
535 		for (j = 0; j < config->n_ranges; j++) {
536 			unsigned sel_reg = config->ranges[j].selector_reg;
537 			unsigned win_min = config->ranges[j].window_start;
538 			unsigned win_max = win_min +
539 					   config->ranges[j].window_len - 1;
540 
541 			if (range_cfg->range_min <= sel_reg &&
542 			    sel_reg <= range_cfg->range_max) {
543 				goto err_range;
544 			}
545 
546 			if (!(win_max < range_cfg->range_min ||
547 			      win_min > range_cfg->range_max)) {
548 				goto err_range;
549 			}
550 		}
551 
552 		new = kzalloc(sizeof(*new), GFP_KERNEL);
553 		if (new == NULL) {
554 			ret = -ENOMEM;
555 			goto err_range;
556 		}
557 
558 		new->range_min = range_cfg->range_min;
559 		new->range_max = range_cfg->range_max;
560 		new->selector_reg = range_cfg->selector_reg;
561 		new->selector_mask = range_cfg->selector_mask;
562 		new->selector_shift = range_cfg->selector_shift;
563 		new->window_start = range_cfg->window_start;
564 		new->window_len = range_cfg->window_len;
565 
566 		if (_regmap_range_add(map, new) == false) {
567 			kfree(new);
568 			goto err_range;
569 		}
570 
571 		if (map->selector_work_buf == NULL) {
572 			map->selector_work_buf =
573 				kzalloc(map->format.buf_size, GFP_KERNEL);
574 			if (map->selector_work_buf == NULL) {
575 				ret = -ENOMEM;
576 				goto err_range;
577 			}
578 		}
579 	}
580 
581 	ret = regcache_init(map, config);
582 	if (ret < 0)
583 		goto err_range;
584 
585 	regmap_debugfs_init(map, config->name);
586 
587 	/* Add a devres resource for dev_get_regmap() */
588 	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
589 	if (!m) {
590 		ret = -ENOMEM;
591 		goto err_debugfs;
592 	}
593 	*m = map;
594 	devres_add(dev, m);
595 
596 	return map;
597 
598 err_debugfs:
599 	regmap_debugfs_exit(map);
600 	regcache_exit(map);
601 err_range:
602 	regmap_range_exit(map);
603 	kfree(map->work_buf);
604 err_map:
605 	kfree(map);
606 err:
607 	return ERR_PTR(ret);
608 }
609 EXPORT_SYMBOL_GPL(regmap_init);
610 
611 static void devm_regmap_release(struct device *dev, void *res)
612 {
613 	regmap_exit(*(struct regmap **)res);
614 }
615 
616 /**
617  * devm_regmap_init(): Initialise managed register map
618  *
619  * @dev: Device that will be interacted with
620  * @bus: Bus-specific callbacks to use with device
621  * @bus_context: Data passed to bus-specific callbacks
622  * @config: Configuration for register map
623  *
624  * The return value will be an ERR_PTR() on error or a valid pointer
625  * to a struct regmap.  This function should generally not be called
626  * directly, it should be called by bus-specific init functions.  The
627  * map will be automatically freed by the device management code.
628  */
629 struct regmap *devm_regmap_init(struct device *dev,
630 				const struct regmap_bus *bus,
631 				void *bus_context,
632 				const struct regmap_config *config)
633 {
634 	struct regmap **ptr, *regmap;
635 
636 	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
637 	if (!ptr)
638 		return ERR_PTR(-ENOMEM);
639 
640 	regmap = regmap_init(dev, bus, bus_context, config);
641 	if (!IS_ERR(regmap)) {
642 		*ptr = regmap;
643 		devres_add(dev, ptr);
644 	} else {
645 		devres_free(ptr);
646 	}
647 
648 	return regmap;
649 }
650 EXPORT_SYMBOL_GPL(devm_regmap_init);
651 
652 /**
653  * regmap_reinit_cache(): Reinitialise the current register cache
654  *
655  * @map: Register map to operate on.
656  * @config: New configuration.  Only the cache data will be used.
657  *
658  * Discard any existing register cache for the map and initialize a
659  * new cache.  This can be used to restore the cache to defaults or to
660  * update the cache configuration to reflect runtime discovery of the
661  * hardware.
662  *
663  * No explicit locking is done here, the user needs to ensure that
664  * this function will not race with other calls to regmap.
665  */
666 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
667 {
668 	regcache_exit(map);
669 	regmap_debugfs_exit(map);
670 
671 	map->max_register = config->max_register;
672 	map->writeable_reg = config->writeable_reg;
673 	map->readable_reg = config->readable_reg;
674 	map->volatile_reg = config->volatile_reg;
675 	map->precious_reg = config->precious_reg;
676 	map->cache_type = config->cache_type;
677 
678 	regmap_debugfs_init(map, config->name);
679 
680 	map->cache_bypass = false;
681 	map->cache_only = false;
682 
683 	return regcache_init(map, config);
684 }
685 EXPORT_SYMBOL_GPL(regmap_reinit_cache);
686 
687 /**
688  * regmap_exit(): Free a previously allocated register map
689  */
690 void regmap_exit(struct regmap *map)
691 {
692 	regcache_exit(map);
693 	regmap_debugfs_exit(map);
694 	regmap_range_exit(map);
695 	if (map->bus->free_context)
696 		map->bus->free_context(map->bus_context);
697 	kfree(map->work_buf);
698 	kfree(map);
699 }
700 EXPORT_SYMBOL_GPL(regmap_exit);
701 
702 static int dev_get_regmap_match(struct device *dev, void *res, void *data)
703 {
704 	struct regmap **r = res;
705 	if (!r || !*r) {
706 		WARN_ON(!r || !*r);
707 		return 0;
708 	}
709 
710 	/* If the user didn't specify a name match any */
711 	if (data)
712 		return (*r)->name == data;
713 	else
714 		return 1;
715 }
716 
717 /**
718  * dev_get_regmap(): Obtain the regmap (if any) for a device
719  *
720  * @dev: Device to retrieve the map for
721  * @name: Optional name for the register map, usually NULL.
722  *
723  * Returns the regmap for the device if one is present, or NULL.  If
724  * name is specified then it must match the name specified when
725  * registering the device, if it is NULL then the first regmap found
726  * will be used.  Devices with multiple register maps are very rare,
727  * generic code should normally not need to specify a name.
728  */
729 struct regmap *dev_get_regmap(struct device *dev, const char *name)
730 {
731 	struct regmap **r = devres_find(dev, dev_get_regmap_release,
732 					dev_get_regmap_match, (void *)name);
733 
734 	if (!r)
735 		return NULL;
736 	return *r;
737 }
738 EXPORT_SYMBOL_GPL(dev_get_regmap);
739 
740 static int _regmap_select_page(struct regmap *map, unsigned int *reg,
741 			       unsigned int val_num)
742 {
743 	struct regmap_range_node *range;
744 	void *orig_work_buf;
745 	unsigned int win_offset;
746 	unsigned int win_page;
747 	bool page_chg;
748 	int ret;
749 
750 	range = _regmap_range_lookup(map, *reg);
751 	if (range) {
752 		win_offset = (*reg - range->range_min) % range->window_len;
753 		win_page = (*reg - range->range_min) / range->window_len;
754 
755 		if (val_num > 1) {
756 			/* Bulk write shouldn't cross range boundary */
757 			if (*reg + val_num - 1 > range->range_max)
758 				return -EINVAL;
759 
760 			/* ... or single page boundary */
761 			if (val_num > range->window_len - win_offset)
762 				return -EINVAL;
763 		}
764 
765 		/* It is possible to have selector register inside data window.
766 		   In that case, selector register is located on every page and
767 		   it needs no page switching, when accessed alone. */
768 		if (val_num > 1 ||
769 		    range->window_start + win_offset != range->selector_reg) {
770 			/* Use separate work_buf during page switching */
771 			orig_work_buf = map->work_buf;
772 			map->work_buf = map->selector_work_buf;
773 
774 			ret = _regmap_update_bits(map, range->selector_reg,
775 					range->selector_mask,
776 					win_page << range->selector_shift,
777 					&page_chg);
778 
779 			map->work_buf = orig_work_buf;
780 
781 			if (ret < 0)
782 				return ret;
783 		}
784 
785 		*reg = range->window_start + win_offset;
786 	}
787 
788 	return 0;
789 }
790 
791 static int _regmap_raw_write(struct regmap *map, unsigned int reg,
792 			     const void *val, size_t val_len)
793 {
794 	u8 *u8 = map->work_buf;
795 	void *buf;
796 	int ret = -ENOTSUPP;
797 	size_t len;
798 	int i;
799 
800 	/* Check for unwritable registers before we start */
801 	if (map->writeable_reg)
802 		for (i = 0; i < val_len / map->format.val_bytes; i++)
803 			if (!map->writeable_reg(map->dev,
804 						reg + (i * map->reg_stride)))
805 				return -EINVAL;
806 
807 	if (!map->cache_bypass && map->format.parse_val) {
808 		unsigned int ival;
809 		int val_bytes = map->format.val_bytes;
810 		for (i = 0; i < val_len / val_bytes; i++) {
811 			memcpy(map->work_buf, val + (i * val_bytes), val_bytes);
812 			ival = map->format.parse_val(map->work_buf);
813 			ret = regcache_write(map, reg + (i * map->reg_stride),
814 					     ival);
815 			if (ret) {
816 				dev_err(map->dev,
817 				   "Error in caching of register: %u ret: %d\n",
818 					reg + i, ret);
819 				return ret;
820 			}
821 		}
822 		if (map->cache_only) {
823 			map->cache_dirty = true;
824 			return 0;
825 		}
826 	}
827 
828 	ret = _regmap_select_page(map, &reg, val_len / map->format.val_bytes);
829 	if (ret < 0)
830 		return ret;
831 
832 	map->format.format_reg(map->work_buf, reg, map->reg_shift);
833 
834 	u8[0] |= map->write_flag_mask;
835 
836 	trace_regmap_hw_write_start(map->dev, reg,
837 				    val_len / map->format.val_bytes);
838 
839 	/* If we're doing a single register write we can probably just
840 	 * send the work_buf directly, otherwise try to do a gather
841 	 * write.
842 	 */
843 	if (val == (map->work_buf + map->format.pad_bytes +
844 		    map->format.reg_bytes))
845 		ret = map->bus->write(map->bus_context, map->work_buf,
846 				      map->format.reg_bytes +
847 				      map->format.pad_bytes +
848 				      val_len);
849 	else if (map->bus->gather_write)
850 		ret = map->bus->gather_write(map->bus_context, map->work_buf,
851 					     map->format.reg_bytes +
852 					     map->format.pad_bytes,
853 					     val, val_len);
854 
855 	/* If that didn't work fall back on linearising by hand. */
856 	if (ret == -ENOTSUPP) {
857 		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
858 		buf = kzalloc(len, GFP_KERNEL);
859 		if (!buf)
860 			return -ENOMEM;
861 
862 		memcpy(buf, map->work_buf, map->format.reg_bytes);
863 		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
864 		       val, val_len);
865 		ret = map->bus->write(map->bus_context, buf, len);
866 
867 		kfree(buf);
868 	}
869 
870 	trace_regmap_hw_write_done(map->dev, reg,
871 				   val_len / map->format.val_bytes);
872 
873 	return ret;
874 }
875 
876 int _regmap_write(struct regmap *map, unsigned int reg,
877 		  unsigned int val)
878 {
879 	int ret;
880 	BUG_ON(!map->format.format_write && !map->format.format_val);
881 
882 	if (!map->cache_bypass && map->format.format_write) {
883 		ret = regcache_write(map, reg, val);
884 		if (ret != 0)
885 			return ret;
886 		if (map->cache_only) {
887 			map->cache_dirty = true;
888 			return 0;
889 		}
890 	}
891 
892 #ifdef LOG_DEVICE
893 	if (strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
894 		dev_info(map->dev, "%x <= %x\n", reg, val);
895 #endif
896 
897 	trace_regmap_reg_write(map->dev, reg, val);
898 
899 	if (map->format.format_write) {
900 		ret = _regmap_select_page(map, &reg, 1);
901 		if (ret < 0)
902 			return ret;
903 
904 		map->format.format_write(map, reg, val);
905 
906 		trace_regmap_hw_write_start(map->dev, reg, 1);
907 
908 		ret = map->bus->write(map->bus_context, map->work_buf,
909 				      map->format.buf_size);
910 
911 		trace_regmap_hw_write_done(map->dev, reg, 1);
912 
913 		return ret;
914 	} else {
915 		map->format.format_val(map->work_buf + map->format.reg_bytes
916 				       + map->format.pad_bytes, val, 0);
917 		return _regmap_raw_write(map, reg,
918 					 map->work_buf +
919 					 map->format.reg_bytes +
920 					 map->format.pad_bytes,
921 					 map->format.val_bytes);
922 	}
923 }
924 
925 /**
926  * regmap_write(): Write a value to a single register
927  *
928  * @map: Register map to write to
929  * @reg: Register to write to
930  * @val: Value to be written
931  *
932  * A value of zero will be returned on success, a negative errno will
933  * be returned in error cases.
934  */
935 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
936 {
937 	int ret;
938 
939 	if (reg % map->reg_stride)
940 		return -EINVAL;
941 
942 	map->lock(map);
943 
944 	ret = _regmap_write(map, reg, val);
945 
946 	map->unlock(map);
947 
948 	return ret;
949 }
950 EXPORT_SYMBOL_GPL(regmap_write);
951 
952 /**
953  * regmap_raw_write(): Write raw values to one or more registers
954  *
955  * @map: Register map to write to
956  * @reg: Initial register to write to
957  * @val: Block of data to be written, laid out for direct transmission to the
958  *       device
959  * @val_len: Length of data pointed to by val.
960  *
961  * This function is intended to be used for things like firmware
962  * download where a large block of data needs to be transferred to the
963  * device.  No formatting will be done on the data provided.
964  *
965  * A value of zero will be returned on success, a negative errno will
966  * be returned in error cases.
967  */
968 int regmap_raw_write(struct regmap *map, unsigned int reg,
969 		     const void *val, size_t val_len)
970 {
971 	int ret;
972 
973 	if (val_len % map->format.val_bytes)
974 		return -EINVAL;
975 	if (reg % map->reg_stride)
976 		return -EINVAL;
977 
978 	map->lock(map);
979 
980 	ret = _regmap_raw_write(map, reg, val, val_len);
981 
982 	map->unlock(map);
983 
984 	return ret;
985 }
986 EXPORT_SYMBOL_GPL(regmap_raw_write);
987 
988 /*
989  * regmap_bulk_write(): Write multiple registers to the device
990  *
991  * @map: Register map to write to
992  * @reg: First register to be write from
993  * @val: Block of data to be written, in native register size for device
994  * @val_count: Number of registers to write
995  *
996  * This function is intended to be used for writing a large block of
997  * data to be device either in single transfer or multiple transfer.
998  *
999  * A value of zero will be returned on success, a negative errno will
1000  * be returned in error cases.
1001  */
1002 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
1003 		     size_t val_count)
1004 {
1005 	int ret = 0, i;
1006 	size_t val_bytes = map->format.val_bytes;
1007 	void *wval;
1008 
1009 	if (!map->format.parse_val)
1010 		return -EINVAL;
1011 	if (reg % map->reg_stride)
1012 		return -EINVAL;
1013 
1014 	map->lock(map);
1015 
1016 	/* No formatting is require if val_byte is 1 */
1017 	if (val_bytes == 1) {
1018 		wval = (void *)val;
1019 	} else {
1020 		wval = kmemdup(val, val_count * val_bytes, GFP_KERNEL);
1021 		if (!wval) {
1022 			ret = -ENOMEM;
1023 			dev_err(map->dev, "Error in memory allocation\n");
1024 			goto out;
1025 		}
1026 		for (i = 0; i < val_count * val_bytes; i += val_bytes)
1027 			map->format.parse_val(wval + i);
1028 	}
1029 	/*
1030 	 * Some devices does not support bulk write, for
1031 	 * them we have a series of single write operations.
1032 	 */
1033 	if (map->use_single_rw) {
1034 		for (i = 0; i < val_count; i++) {
1035 			ret = regmap_raw_write(map,
1036 						reg + (i * map->reg_stride),
1037 						val + (i * val_bytes),
1038 						val_bytes);
1039 			if (ret != 0)
1040 				return ret;
1041 		}
1042 	} else {
1043 		ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count);
1044 	}
1045 
1046 	if (val_bytes != 1)
1047 		kfree(wval);
1048 
1049 out:
1050 	map->unlock(map);
1051 	return ret;
1052 }
1053 EXPORT_SYMBOL_GPL(regmap_bulk_write);
1054 
1055 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
1056 			    unsigned int val_len)
1057 {
1058 	u8 *u8 = map->work_buf;
1059 	int ret;
1060 
1061 	ret = _regmap_select_page(map, &reg, val_len / map->format.val_bytes);
1062 	if (ret < 0)
1063 		return ret;
1064 
1065 	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1066 
1067 	/*
1068 	 * Some buses or devices flag reads by setting the high bits in the
1069 	 * register addresss; since it's always the high bits for all
1070 	 * current formats we can do this here rather than in
1071 	 * formatting.  This may break if we get interesting formats.
1072 	 */
1073 	u8[0] |= map->read_flag_mask;
1074 
1075 	trace_regmap_hw_read_start(map->dev, reg,
1076 				   val_len / map->format.val_bytes);
1077 
1078 	ret = map->bus->read(map->bus_context, map->work_buf,
1079 			     map->format.reg_bytes + map->format.pad_bytes,
1080 			     val, val_len);
1081 
1082 	trace_regmap_hw_read_done(map->dev, reg,
1083 				  val_len / map->format.val_bytes);
1084 
1085 	return ret;
1086 }
1087 
1088 static int _regmap_read(struct regmap *map, unsigned int reg,
1089 			unsigned int *val)
1090 {
1091 	int ret;
1092 
1093 	if (!map->cache_bypass) {
1094 		ret = regcache_read(map, reg, val);
1095 		if (ret == 0)
1096 			return 0;
1097 	}
1098 
1099 	if (!map->format.parse_val)
1100 		return -EINVAL;
1101 
1102 	if (map->cache_only)
1103 		return -EBUSY;
1104 
1105 	ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes);
1106 	if (ret == 0) {
1107 		*val = map->format.parse_val(map->work_buf);
1108 
1109 #ifdef LOG_DEVICE
1110 		if (strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1111 			dev_info(map->dev, "%x => %x\n", reg, *val);
1112 #endif
1113 
1114 		trace_regmap_reg_read(map->dev, reg, *val);
1115 	}
1116 
1117 	if (ret == 0 && !map->cache_bypass)
1118 		regcache_write(map, reg, *val);
1119 
1120 	return ret;
1121 }
1122 
1123 /**
1124  * regmap_read(): Read a value from a single register
1125  *
1126  * @map: Register map to write to
1127  * @reg: Register to be read from
1128  * @val: Pointer to store read value
1129  *
1130  * A value of zero will be returned on success, a negative errno will
1131  * be returned in error cases.
1132  */
1133 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
1134 {
1135 	int ret;
1136 
1137 	if (reg % map->reg_stride)
1138 		return -EINVAL;
1139 
1140 	map->lock(map);
1141 
1142 	ret = _regmap_read(map, reg, val);
1143 
1144 	map->unlock(map);
1145 
1146 	return ret;
1147 }
1148 EXPORT_SYMBOL_GPL(regmap_read);
1149 
1150 /**
1151  * regmap_raw_read(): Read raw data from the device
1152  *
1153  * @map: Register map to write to
1154  * @reg: First register to be read from
1155  * @val: Pointer to store read value
1156  * @val_len: Size of data to read
1157  *
1158  * A value of zero will be returned on success, a negative errno will
1159  * be returned in error cases.
1160  */
1161 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
1162 		    size_t val_len)
1163 {
1164 	size_t val_bytes = map->format.val_bytes;
1165 	size_t val_count = val_len / val_bytes;
1166 	unsigned int v;
1167 	int ret, i;
1168 
1169 	if (val_len % map->format.val_bytes)
1170 		return -EINVAL;
1171 	if (reg % map->reg_stride)
1172 		return -EINVAL;
1173 
1174 	map->lock(map);
1175 
1176 	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
1177 	    map->cache_type == REGCACHE_NONE) {
1178 		/* Physical block read if there's no cache involved */
1179 		ret = _regmap_raw_read(map, reg, val, val_len);
1180 
1181 	} else {
1182 		/* Otherwise go word by word for the cache; should be low
1183 		 * cost as we expect to hit the cache.
1184 		 */
1185 		for (i = 0; i < val_count; i++) {
1186 			ret = _regmap_read(map, reg + (i * map->reg_stride),
1187 					   &v);
1188 			if (ret != 0)
1189 				goto out;
1190 
1191 			map->format.format_val(val + (i * val_bytes), v, 0);
1192 		}
1193 	}
1194 
1195  out:
1196 	map->unlock(map);
1197 
1198 	return ret;
1199 }
1200 EXPORT_SYMBOL_GPL(regmap_raw_read);
1201 
1202 /**
1203  * regmap_bulk_read(): Read multiple registers from the device
1204  *
1205  * @map: Register map to write to
1206  * @reg: First register to be read from
1207  * @val: Pointer to store read value, in native register size for device
1208  * @val_count: Number of registers to read
1209  *
1210  * A value of zero will be returned on success, a negative errno will
1211  * be returned in error cases.
1212  */
1213 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
1214 		     size_t val_count)
1215 {
1216 	int ret, i;
1217 	size_t val_bytes = map->format.val_bytes;
1218 	bool vol = regmap_volatile_range(map, reg, val_count);
1219 
1220 	if (!map->format.parse_val)
1221 		return -EINVAL;
1222 	if (reg % map->reg_stride)
1223 		return -EINVAL;
1224 
1225 	if (vol || map->cache_type == REGCACHE_NONE) {
1226 		/*
1227 		 * Some devices does not support bulk read, for
1228 		 * them we have a series of single read operations.
1229 		 */
1230 		if (map->use_single_rw) {
1231 			for (i = 0; i < val_count; i++) {
1232 				ret = regmap_raw_read(map,
1233 						reg + (i * map->reg_stride),
1234 						val + (i * val_bytes),
1235 						val_bytes);
1236 				if (ret != 0)
1237 					return ret;
1238 			}
1239 		} else {
1240 			ret = regmap_raw_read(map, reg, val,
1241 					      val_bytes * val_count);
1242 			if (ret != 0)
1243 				return ret;
1244 		}
1245 
1246 		for (i = 0; i < val_count * val_bytes; i += val_bytes)
1247 			map->format.parse_val(val + i);
1248 	} else {
1249 		for (i = 0; i < val_count; i++) {
1250 			unsigned int ival;
1251 			ret = regmap_read(map, reg + (i * map->reg_stride),
1252 					  &ival);
1253 			if (ret != 0)
1254 				return ret;
1255 			memcpy(val + (i * val_bytes), &ival, val_bytes);
1256 		}
1257 	}
1258 
1259 	return 0;
1260 }
1261 EXPORT_SYMBOL_GPL(regmap_bulk_read);
1262 
1263 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
1264 			       unsigned int mask, unsigned int val,
1265 			       bool *change)
1266 {
1267 	int ret;
1268 	unsigned int tmp, orig;
1269 
1270 	ret = _regmap_read(map, reg, &orig);
1271 	if (ret != 0)
1272 		return ret;
1273 
1274 	tmp = orig & ~mask;
1275 	tmp |= val & mask;
1276 
1277 	if (tmp != orig) {
1278 		ret = _regmap_write(map, reg, tmp);
1279 		*change = true;
1280 	} else {
1281 		*change = false;
1282 	}
1283 
1284 	return ret;
1285 }
1286 
1287 /**
1288  * regmap_update_bits: Perform a read/modify/write cycle on the register map
1289  *
1290  * @map: Register map to update
1291  * @reg: Register to update
1292  * @mask: Bitmask to change
1293  * @val: New value for bitmask
1294  *
1295  * Returns zero for success, a negative number on error.
1296  */
1297 int regmap_update_bits(struct regmap *map, unsigned int reg,
1298 		       unsigned int mask, unsigned int val)
1299 {
1300 	bool change;
1301 	int ret;
1302 
1303 	map->lock(map);
1304 	ret = _regmap_update_bits(map, reg, mask, val, &change);
1305 	map->unlock(map);
1306 
1307 	return ret;
1308 }
1309 EXPORT_SYMBOL_GPL(regmap_update_bits);
1310 
1311 /**
1312  * regmap_update_bits_check: Perform a read/modify/write cycle on the
1313  *                           register map and report if updated
1314  *
1315  * @map: Register map to update
1316  * @reg: Register to update
1317  * @mask: Bitmask to change
1318  * @val: New value for bitmask
1319  * @change: Boolean indicating if a write was done
1320  *
1321  * Returns zero for success, a negative number on error.
1322  */
1323 int regmap_update_bits_check(struct regmap *map, unsigned int reg,
1324 			     unsigned int mask, unsigned int val,
1325 			     bool *change)
1326 {
1327 	int ret;
1328 
1329 	map->lock(map);
1330 	ret = _regmap_update_bits(map, reg, mask, val, change);
1331 	map->unlock(map);
1332 	return ret;
1333 }
1334 EXPORT_SYMBOL_GPL(regmap_update_bits_check);
1335 
1336 /**
1337  * regmap_register_patch: Register and apply register updates to be applied
1338  *                        on device initialistion
1339  *
1340  * @map: Register map to apply updates to.
1341  * @regs: Values to update.
1342  * @num_regs: Number of entries in regs.
1343  *
1344  * Register a set of register updates to be applied to the device
1345  * whenever the device registers are synchronised with the cache and
1346  * apply them immediately.  Typically this is used to apply
1347  * corrections to be applied to the device defaults on startup, such
1348  * as the updates some vendors provide to undocumented registers.
1349  */
1350 int regmap_register_patch(struct regmap *map, const struct reg_default *regs,
1351 			  int num_regs)
1352 {
1353 	int i, ret;
1354 	bool bypass;
1355 
1356 	/* If needed the implementation can be extended to support this */
1357 	if (map->patch)
1358 		return -EBUSY;
1359 
1360 	map->lock(map);
1361 
1362 	bypass = map->cache_bypass;
1363 
1364 	map->cache_bypass = true;
1365 
1366 	/* Write out first; it's useful to apply even if we fail later. */
1367 	for (i = 0; i < num_regs; i++) {
1368 		ret = _regmap_write(map, regs[i].reg, regs[i].def);
1369 		if (ret != 0) {
1370 			dev_err(map->dev, "Failed to write %x = %x: %d\n",
1371 				regs[i].reg, regs[i].def, ret);
1372 			goto out;
1373 		}
1374 	}
1375 
1376 	map->patch = kcalloc(num_regs, sizeof(struct reg_default), GFP_KERNEL);
1377 	if (map->patch != NULL) {
1378 		memcpy(map->patch, regs,
1379 		       num_regs * sizeof(struct reg_default));
1380 		map->patch_regs = num_regs;
1381 	} else {
1382 		ret = -ENOMEM;
1383 	}
1384 
1385 out:
1386 	map->cache_bypass = bypass;
1387 
1388 	map->unlock(map);
1389 
1390 	return ret;
1391 }
1392 EXPORT_SYMBOL_GPL(regmap_register_patch);
1393 
1394 /*
1395  * regmap_get_val_bytes(): Report the size of a register value
1396  *
1397  * Report the size of a register value, mainly intended to for use by
1398  * generic infrastructure built on top of regmap.
1399  */
1400 int regmap_get_val_bytes(struct regmap *map)
1401 {
1402 	if (map->format.format_write)
1403 		return -EINVAL;
1404 
1405 	return map->format.val_bytes;
1406 }
1407 EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
1408 
1409 static int __init regmap_initcall(void)
1410 {
1411 	regmap_debugfs_initcall();
1412 
1413 	return 0;
1414 }
1415 postcore_initcall(regmap_initcall);
1416