1 // SPDX-License-Identifier: GPL-2.0 2 // 3 // Register map access API 4 // 5 // Copyright 2011 Wolfson Microelectronics plc 6 // 7 // Author: Mark Brown <broonie@opensource.wolfsonmicro.com> 8 9 #include <linux/device.h> 10 #include <linux/slab.h> 11 #include <linux/export.h> 12 #include <linux/mutex.h> 13 #include <linux/err.h> 14 #include <linux/property.h> 15 #include <linux/rbtree.h> 16 #include <linux/sched.h> 17 #include <linux/delay.h> 18 #include <linux/log2.h> 19 #include <linux/hwspinlock.h> 20 #include <linux/unaligned.h> 21 22 #define CREATE_TRACE_POINTS 23 #include "trace.h" 24 25 #include "internal.h" 26 27 /* 28 * Sometimes for failures during very early init the trace 29 * infrastructure isn't available early enough to be used. For this 30 * sort of problem defining LOG_DEVICE will add printks for basic 31 * register I/O on a specific device. 32 */ 33 #undef LOG_DEVICE 34 35 #ifdef LOG_DEVICE 36 static inline bool regmap_should_log(struct regmap *map) 37 { 38 return (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0); 39 } 40 #else 41 static inline bool regmap_should_log(struct regmap *map) { return false; } 42 #endif 43 44 45 static int _regmap_update_bits(struct regmap *map, unsigned int reg, 46 unsigned int mask, unsigned int val, 47 bool *change, bool force_write); 48 49 static int _regmap_bus_reg_read(void *context, unsigned int reg, 50 unsigned int *val); 51 static int _regmap_bus_read(void *context, unsigned int reg, 52 unsigned int *val); 53 static int _regmap_bus_formatted_write(void *context, unsigned int reg, 54 unsigned int val); 55 static int _regmap_bus_reg_write(void *context, unsigned int reg, 56 unsigned int val); 57 static int _regmap_bus_raw_write(void *context, unsigned int reg, 58 unsigned int val); 59 60 bool regmap_reg_in_ranges(unsigned int reg, 61 const struct regmap_range *ranges, 62 unsigned int nranges) 63 { 64 const struct regmap_range *r; 65 int i; 66 67 for (i = 0, r = ranges; i < nranges; i++, r++) 68 if (regmap_reg_in_range(reg, r)) 69 return true; 70 return false; 71 } 72 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges); 73 74 bool regmap_check_range_table(struct regmap *map, unsigned int reg, 75 const struct regmap_access_table *table) 76 { 77 /* Check "no ranges" first */ 78 if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges)) 79 return false; 80 81 /* In case zero "yes ranges" are supplied, any reg is OK */ 82 if (!table->n_yes_ranges) 83 return true; 84 85 return regmap_reg_in_ranges(reg, table->yes_ranges, 86 table->n_yes_ranges); 87 } 88 EXPORT_SYMBOL_GPL(regmap_check_range_table); 89 90 bool regmap_writeable(struct regmap *map, unsigned int reg) 91 { 92 if (map->max_register_is_set && reg > map->max_register) 93 return false; 94 95 if (map->writeable_reg) 96 return map->writeable_reg(map->dev, reg); 97 98 if (map->wr_table) 99 return regmap_check_range_table(map, reg, map->wr_table); 100 101 return true; 102 } 103 104 bool regmap_cached(struct regmap *map, unsigned int reg) 105 { 106 int ret; 107 unsigned int val; 108 109 if (map->cache_type == REGCACHE_NONE) 110 return false; 111 112 if (!map->cache_ops) 113 return false; 114 115 if (map->max_register_is_set && reg > map->max_register) 116 return false; 117 118 map->lock(map->lock_arg); 119 ret = regcache_read(map, reg, &val); 120 map->unlock(map->lock_arg); 121 if (ret) 122 return false; 123 124 return true; 125 } 126 127 bool regmap_readable(struct regmap *map, unsigned int reg) 128 { 129 if (!map->reg_read) 130 return false; 131 132 if (map->max_register_is_set && reg > map->max_register) 133 return false; 134 135 if (map->format.format_write) 136 return false; 137 138 if (map->readable_reg) 139 return map->readable_reg(map->dev, reg); 140 141 if (map->rd_table) 142 return regmap_check_range_table(map, reg, map->rd_table); 143 144 return true; 145 } 146 147 bool regmap_volatile(struct regmap *map, unsigned int reg) 148 { 149 if (!map->format.format_write && !regmap_readable(map, reg)) 150 return false; 151 152 if (map->volatile_reg) 153 return map->volatile_reg(map->dev, reg); 154 155 if (map->volatile_table) 156 return regmap_check_range_table(map, reg, map->volatile_table); 157 158 if (map->cache_ops) 159 return false; 160 else 161 return true; 162 } 163 164 bool regmap_precious(struct regmap *map, unsigned int reg) 165 { 166 if (!regmap_readable(map, reg)) 167 return false; 168 169 if (map->precious_reg) 170 return map->precious_reg(map->dev, reg); 171 172 if (map->precious_table) 173 return regmap_check_range_table(map, reg, map->precious_table); 174 175 return false; 176 } 177 178 bool regmap_writeable_noinc(struct regmap *map, unsigned int reg) 179 { 180 if (map->writeable_noinc_reg) 181 return map->writeable_noinc_reg(map->dev, reg); 182 183 if (map->wr_noinc_table) 184 return regmap_check_range_table(map, reg, map->wr_noinc_table); 185 186 return true; 187 } 188 189 bool regmap_readable_noinc(struct regmap *map, unsigned int reg) 190 { 191 if (map->readable_noinc_reg) 192 return map->readable_noinc_reg(map->dev, reg); 193 194 if (map->rd_noinc_table) 195 return regmap_check_range_table(map, reg, map->rd_noinc_table); 196 197 return true; 198 } 199 200 static bool regmap_volatile_range(struct regmap *map, unsigned int reg, 201 size_t num) 202 { 203 unsigned int i; 204 205 for (i = 0; i < num; i++) 206 if (!regmap_volatile(map, reg + regmap_get_offset(map, i))) 207 return false; 208 209 return true; 210 } 211 212 static void regmap_format_12_20_write(struct regmap *map, 213 unsigned int reg, unsigned int val) 214 { 215 u8 *out = map->work_buf; 216 217 out[0] = reg >> 4; 218 out[1] = (reg << 4) | (val >> 16); 219 out[2] = val >> 8; 220 out[3] = val; 221 } 222 223 224 static void regmap_format_2_6_write(struct regmap *map, 225 unsigned int reg, unsigned int val) 226 { 227 u8 *out = map->work_buf; 228 229 *out = (reg << 6) | val; 230 } 231 232 static void regmap_format_4_12_write(struct regmap *map, 233 unsigned int reg, unsigned int val) 234 { 235 __be16 *out = map->work_buf; 236 *out = cpu_to_be16((reg << 12) | val); 237 } 238 239 static void regmap_format_7_9_write(struct regmap *map, 240 unsigned int reg, unsigned int val) 241 { 242 __be16 *out = map->work_buf; 243 *out = cpu_to_be16((reg << 9) | val); 244 } 245 246 static void regmap_format_7_17_write(struct regmap *map, 247 unsigned int reg, unsigned int val) 248 { 249 u8 *out = map->work_buf; 250 251 out[2] = val; 252 out[1] = val >> 8; 253 out[0] = (val >> 16) | (reg << 1); 254 } 255 256 static void regmap_format_10_14_write(struct regmap *map, 257 unsigned int reg, unsigned int val) 258 { 259 u8 *out = map->work_buf; 260 261 out[2] = val; 262 out[1] = (val >> 8) | (reg << 6); 263 out[0] = reg >> 2; 264 } 265 266 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift) 267 { 268 u8 *b = buf; 269 270 b[0] = val << shift; 271 } 272 273 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift) 274 { 275 put_unaligned_be16(val << shift, buf); 276 } 277 278 static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift) 279 { 280 put_unaligned_le16(val << shift, buf); 281 } 282 283 static void regmap_format_16_native(void *buf, unsigned int val, 284 unsigned int shift) 285 { 286 u16 v = val << shift; 287 288 memcpy(buf, &v, sizeof(v)); 289 } 290 291 static void regmap_format_24_be(void *buf, unsigned int val, unsigned int shift) 292 { 293 put_unaligned_be24(val << shift, buf); 294 } 295 296 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift) 297 { 298 put_unaligned_be32(val << shift, buf); 299 } 300 301 static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift) 302 { 303 put_unaligned_le32(val << shift, buf); 304 } 305 306 static void regmap_format_32_native(void *buf, unsigned int val, 307 unsigned int shift) 308 { 309 u32 v = val << shift; 310 311 memcpy(buf, &v, sizeof(v)); 312 } 313 314 static void regmap_parse_inplace_noop(void *buf) 315 { 316 } 317 318 static unsigned int regmap_parse_8(const void *buf) 319 { 320 const u8 *b = buf; 321 322 return b[0]; 323 } 324 325 static unsigned int regmap_parse_16_be(const void *buf) 326 { 327 return get_unaligned_be16(buf); 328 } 329 330 static unsigned int regmap_parse_16_le(const void *buf) 331 { 332 return get_unaligned_le16(buf); 333 } 334 335 static void regmap_parse_16_be_inplace(void *buf) 336 { 337 u16 v = get_unaligned_be16(buf); 338 339 memcpy(buf, &v, sizeof(v)); 340 } 341 342 static void regmap_parse_16_le_inplace(void *buf) 343 { 344 u16 v = get_unaligned_le16(buf); 345 346 memcpy(buf, &v, sizeof(v)); 347 } 348 349 static unsigned int regmap_parse_16_native(const void *buf) 350 { 351 u16 v; 352 353 memcpy(&v, buf, sizeof(v)); 354 return v; 355 } 356 357 static unsigned int regmap_parse_24_be(const void *buf) 358 { 359 return get_unaligned_be24(buf); 360 } 361 362 static unsigned int regmap_parse_32_be(const void *buf) 363 { 364 return get_unaligned_be32(buf); 365 } 366 367 static unsigned int regmap_parse_32_le(const void *buf) 368 { 369 return get_unaligned_le32(buf); 370 } 371 372 static void regmap_parse_32_be_inplace(void *buf) 373 { 374 u32 v = get_unaligned_be32(buf); 375 376 memcpy(buf, &v, sizeof(v)); 377 } 378 379 static void regmap_parse_32_le_inplace(void *buf) 380 { 381 u32 v = get_unaligned_le32(buf); 382 383 memcpy(buf, &v, sizeof(v)); 384 } 385 386 static unsigned int regmap_parse_32_native(const void *buf) 387 { 388 u32 v; 389 390 memcpy(&v, buf, sizeof(v)); 391 return v; 392 } 393 394 static void regmap_lock_hwlock(void *__map) 395 { 396 struct regmap *map = __map; 397 398 hwspin_lock_timeout(map->hwlock, UINT_MAX); 399 } 400 401 static void regmap_lock_hwlock_irq(void *__map) 402 { 403 struct regmap *map = __map; 404 405 hwspin_lock_timeout_irq(map->hwlock, UINT_MAX); 406 } 407 408 static void regmap_lock_hwlock_irqsave(void *__map) 409 { 410 struct regmap *map = __map; 411 412 hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX, 413 &map->spinlock_flags); 414 } 415 416 static void regmap_unlock_hwlock(void *__map) 417 { 418 struct regmap *map = __map; 419 420 hwspin_unlock(map->hwlock); 421 } 422 423 static void regmap_unlock_hwlock_irq(void *__map) 424 { 425 struct regmap *map = __map; 426 427 hwspin_unlock_irq(map->hwlock); 428 } 429 430 static void regmap_unlock_hwlock_irqrestore(void *__map) 431 { 432 struct regmap *map = __map; 433 434 hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags); 435 } 436 437 static void regmap_lock_unlock_none(void *__map) 438 { 439 440 } 441 442 static void regmap_lock_mutex(void *__map) 443 { 444 struct regmap *map = __map; 445 mutex_lock(&map->mutex); 446 } 447 448 static void regmap_unlock_mutex(void *__map) 449 { 450 struct regmap *map = __map; 451 mutex_unlock(&map->mutex); 452 } 453 454 static void regmap_lock_spinlock(void *__map) 455 __acquires(&map->spinlock) 456 { 457 struct regmap *map = __map; 458 unsigned long flags; 459 460 spin_lock_irqsave(&map->spinlock, flags); 461 map->spinlock_flags = flags; 462 } 463 464 static void regmap_unlock_spinlock(void *__map) 465 __releases(&map->spinlock) 466 { 467 struct regmap *map = __map; 468 spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags); 469 } 470 471 static void regmap_lock_raw_spinlock(void *__map) 472 __acquires(&map->raw_spinlock) 473 { 474 struct regmap *map = __map; 475 unsigned long flags; 476 477 raw_spin_lock_irqsave(&map->raw_spinlock, flags); 478 map->raw_spinlock_flags = flags; 479 } 480 481 static void regmap_unlock_raw_spinlock(void *__map) 482 __releases(&map->raw_spinlock) 483 { 484 struct regmap *map = __map; 485 raw_spin_unlock_irqrestore(&map->raw_spinlock, map->raw_spinlock_flags); 486 } 487 488 static void dev_get_regmap_release(struct device *dev, void *res) 489 { 490 /* 491 * We don't actually have anything to do here; the goal here 492 * is not to manage the regmap but to provide a simple way to 493 * get the regmap back given a struct device. 494 */ 495 } 496 497 static bool _regmap_range_add(struct regmap *map, 498 struct regmap_range_node *data) 499 { 500 struct rb_root *root = &map->range_tree; 501 struct rb_node **new = &(root->rb_node), *parent = NULL; 502 503 while (*new) { 504 struct regmap_range_node *this = 505 rb_entry(*new, struct regmap_range_node, node); 506 507 parent = *new; 508 if (data->range_max < this->range_min) 509 new = &((*new)->rb_left); 510 else if (data->range_min > this->range_max) 511 new = &((*new)->rb_right); 512 else 513 return false; 514 } 515 516 rb_link_node(&data->node, parent, new); 517 rb_insert_color(&data->node, root); 518 519 return true; 520 } 521 522 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map, 523 unsigned int reg) 524 { 525 struct rb_node *node = map->range_tree.rb_node; 526 527 while (node) { 528 struct regmap_range_node *this = 529 rb_entry(node, struct regmap_range_node, node); 530 531 if (reg < this->range_min) 532 node = node->rb_left; 533 else if (reg > this->range_max) 534 node = node->rb_right; 535 else 536 return this; 537 } 538 539 return NULL; 540 } 541 542 static void regmap_range_exit(struct regmap *map) 543 { 544 struct rb_node *next; 545 struct regmap_range_node *range_node; 546 547 next = rb_first(&map->range_tree); 548 while (next) { 549 range_node = rb_entry(next, struct regmap_range_node, node); 550 next = rb_next(&range_node->node); 551 rb_erase(&range_node->node, &map->range_tree); 552 kfree(range_node); 553 } 554 555 kfree(map->selector_work_buf); 556 } 557 558 static int regmap_set_name(struct regmap *map, const struct regmap_config *config) 559 { 560 if (config->name) { 561 const char *name = kstrdup_const(config->name, GFP_KERNEL); 562 563 if (!name) 564 return -ENOMEM; 565 566 kfree_const(map->name); 567 map->name = name; 568 } 569 570 return 0; 571 } 572 573 int regmap_attach_dev(struct device *dev, struct regmap *map, 574 const struct regmap_config *config) 575 { 576 struct regmap **m; 577 int ret; 578 579 map->dev = dev; 580 581 ret = regmap_set_name(map, config); 582 if (ret) 583 return ret; 584 585 regmap_debugfs_exit(map); 586 regmap_debugfs_init(map); 587 588 /* Add a devres resource for dev_get_regmap() */ 589 m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL); 590 if (!m) { 591 regmap_debugfs_exit(map); 592 return -ENOMEM; 593 } 594 *m = map; 595 devres_add(dev, m); 596 597 return 0; 598 } 599 EXPORT_SYMBOL_GPL(regmap_attach_dev); 600 601 static int dev_get_regmap_match(struct device *dev, void *res, void *data); 602 603 static int regmap_detach_dev(struct device *dev, struct regmap *map) 604 { 605 if (!dev) 606 return 0; 607 608 return devres_release(dev, dev_get_regmap_release, 609 dev_get_regmap_match, (void *)map->name); 610 } 611 612 static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus, 613 const struct regmap_config *config) 614 { 615 enum regmap_endian endian; 616 617 /* Retrieve the endianness specification from the regmap config */ 618 endian = config->reg_format_endian; 619 620 /* If the regmap config specified a non-default value, use that */ 621 if (endian != REGMAP_ENDIAN_DEFAULT) 622 return endian; 623 624 /* Retrieve the endianness specification from the bus config */ 625 if (bus && bus->reg_format_endian_default) 626 endian = bus->reg_format_endian_default; 627 628 /* If the bus specified a non-default value, use that */ 629 if (endian != REGMAP_ENDIAN_DEFAULT) 630 return endian; 631 632 /* Use this if no other value was found */ 633 return REGMAP_ENDIAN_BIG; 634 } 635 636 enum regmap_endian regmap_get_val_endian(struct device *dev, 637 const struct regmap_bus *bus, 638 const struct regmap_config *config) 639 { 640 struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL; 641 enum regmap_endian endian; 642 643 /* Retrieve the endianness specification from the regmap config */ 644 endian = config->val_format_endian; 645 646 /* If the regmap config specified a non-default value, use that */ 647 if (endian != REGMAP_ENDIAN_DEFAULT) 648 return endian; 649 650 /* If the firmware node exist try to get endianness from it */ 651 if (fwnode_property_read_bool(fwnode, "big-endian")) 652 endian = REGMAP_ENDIAN_BIG; 653 else if (fwnode_property_read_bool(fwnode, "little-endian")) 654 endian = REGMAP_ENDIAN_LITTLE; 655 else if (fwnode_property_read_bool(fwnode, "native-endian")) 656 endian = REGMAP_ENDIAN_NATIVE; 657 658 /* If the endianness was specified in fwnode, use that */ 659 if (endian != REGMAP_ENDIAN_DEFAULT) 660 return endian; 661 662 /* Retrieve the endianness specification from the bus config */ 663 if (bus && bus->val_format_endian_default) 664 endian = bus->val_format_endian_default; 665 666 /* If the bus specified a non-default value, use that */ 667 if (endian != REGMAP_ENDIAN_DEFAULT) 668 return endian; 669 670 /* Use this if no other value was found */ 671 return REGMAP_ENDIAN_BIG; 672 } 673 EXPORT_SYMBOL_GPL(regmap_get_val_endian); 674 675 struct regmap *__regmap_init(struct device *dev, 676 const struct regmap_bus *bus, 677 void *bus_context, 678 const struct regmap_config *config, 679 struct lock_class_key *lock_key, 680 const char *lock_name) 681 { 682 struct regmap *map; 683 int ret = -EINVAL; 684 enum regmap_endian reg_endian, val_endian; 685 int i, j; 686 687 if (!config) 688 goto err; 689 690 map = kzalloc(sizeof(*map), GFP_KERNEL); 691 if (map == NULL) { 692 ret = -ENOMEM; 693 goto err; 694 } 695 696 ret = regmap_set_name(map, config); 697 if (ret) 698 goto err_map; 699 700 ret = -EINVAL; /* Later error paths rely on this */ 701 702 if (config->disable_locking) { 703 map->lock = map->unlock = regmap_lock_unlock_none; 704 map->can_sleep = config->can_sleep; 705 regmap_debugfs_disable(map); 706 } else if (config->lock && config->unlock) { 707 map->lock = config->lock; 708 map->unlock = config->unlock; 709 map->lock_arg = config->lock_arg; 710 map->can_sleep = config->can_sleep; 711 } else if (config->use_hwlock) { 712 map->hwlock = hwspin_lock_request_specific(config->hwlock_id); 713 if (!map->hwlock) { 714 ret = -ENXIO; 715 goto err_name; 716 } 717 718 switch (config->hwlock_mode) { 719 case HWLOCK_IRQSTATE: 720 map->lock = regmap_lock_hwlock_irqsave; 721 map->unlock = regmap_unlock_hwlock_irqrestore; 722 break; 723 case HWLOCK_IRQ: 724 map->lock = regmap_lock_hwlock_irq; 725 map->unlock = regmap_unlock_hwlock_irq; 726 break; 727 default: 728 map->lock = regmap_lock_hwlock; 729 map->unlock = regmap_unlock_hwlock; 730 break; 731 } 732 733 map->lock_arg = map; 734 } else { 735 if ((bus && bus->fast_io) || 736 config->fast_io) { 737 if (config->use_raw_spinlock) { 738 raw_spin_lock_init(&map->raw_spinlock); 739 map->lock = regmap_lock_raw_spinlock; 740 map->unlock = regmap_unlock_raw_spinlock; 741 lockdep_set_class_and_name(&map->raw_spinlock, 742 lock_key, lock_name); 743 } else { 744 spin_lock_init(&map->spinlock); 745 map->lock = regmap_lock_spinlock; 746 map->unlock = regmap_unlock_spinlock; 747 lockdep_set_class_and_name(&map->spinlock, 748 lock_key, lock_name); 749 } 750 } else { 751 mutex_init(&map->mutex); 752 map->lock = regmap_lock_mutex; 753 map->unlock = regmap_unlock_mutex; 754 map->can_sleep = true; 755 lockdep_set_class_and_name(&map->mutex, 756 lock_key, lock_name); 757 } 758 map->lock_arg = map; 759 map->lock_key = lock_key; 760 } 761 762 /* 763 * When we write in fast-paths with regmap_bulk_write() don't allocate 764 * scratch buffers with sleeping allocations. 765 */ 766 if ((bus && bus->fast_io) || config->fast_io) 767 map->alloc_flags = GFP_ATOMIC; 768 else 769 map->alloc_flags = GFP_KERNEL; 770 771 map->reg_base = config->reg_base; 772 map->reg_shift = config->pad_bits % 8; 773 774 map->format.pad_bytes = config->pad_bits / 8; 775 map->format.reg_shift = config->reg_shift; 776 map->format.reg_bytes = BITS_TO_BYTES(config->reg_bits); 777 map->format.val_bytes = BITS_TO_BYTES(config->val_bits); 778 map->format.buf_size = BITS_TO_BYTES(config->reg_bits + config->val_bits + config->pad_bits); 779 if (config->reg_stride) 780 map->reg_stride = config->reg_stride; 781 else 782 map->reg_stride = 1; 783 if (is_power_of_2(map->reg_stride)) 784 map->reg_stride_order = ilog2(map->reg_stride); 785 else 786 map->reg_stride_order = -1; 787 map->use_single_read = config->use_single_read || !(config->read || (bus && bus->read)); 788 map->use_single_write = config->use_single_write || !(config->write || (bus && bus->write)); 789 map->can_multi_write = config->can_multi_write && (config->write || (bus && bus->write)); 790 if (bus) { 791 map->max_raw_read = bus->max_raw_read; 792 map->max_raw_write = bus->max_raw_write; 793 } else if (config->max_raw_read && config->max_raw_write) { 794 map->max_raw_read = config->max_raw_read; 795 map->max_raw_write = config->max_raw_write; 796 } 797 map->dev = dev; 798 map->bus = bus; 799 map->bus_context = bus_context; 800 map->max_register = config->max_register; 801 map->max_register_is_set = map->max_register ?: config->max_register_is_0; 802 map->wr_table = config->wr_table; 803 map->rd_table = config->rd_table; 804 map->volatile_table = config->volatile_table; 805 map->precious_table = config->precious_table; 806 map->wr_noinc_table = config->wr_noinc_table; 807 map->rd_noinc_table = config->rd_noinc_table; 808 map->writeable_reg = config->writeable_reg; 809 map->readable_reg = config->readable_reg; 810 map->volatile_reg = config->volatile_reg; 811 map->precious_reg = config->precious_reg; 812 map->writeable_noinc_reg = config->writeable_noinc_reg; 813 map->readable_noinc_reg = config->readable_noinc_reg; 814 map->cache_type = config->cache_type; 815 816 spin_lock_init(&map->async_lock); 817 INIT_LIST_HEAD(&map->async_list); 818 INIT_LIST_HEAD(&map->async_free); 819 init_waitqueue_head(&map->async_waitq); 820 821 if (config->read_flag_mask || 822 config->write_flag_mask || 823 config->zero_flag_mask) { 824 map->read_flag_mask = config->read_flag_mask; 825 map->write_flag_mask = config->write_flag_mask; 826 } else if (bus) { 827 map->read_flag_mask = bus->read_flag_mask; 828 } 829 830 if (config->read && config->write) { 831 map->reg_read = _regmap_bus_read; 832 if (config->reg_update_bits) 833 map->reg_update_bits = config->reg_update_bits; 834 835 /* Bulk read/write */ 836 map->read = config->read; 837 map->write = config->write; 838 839 reg_endian = REGMAP_ENDIAN_NATIVE; 840 val_endian = REGMAP_ENDIAN_NATIVE; 841 } else if (!bus) { 842 map->reg_read = config->reg_read; 843 map->reg_write = config->reg_write; 844 map->reg_update_bits = config->reg_update_bits; 845 846 map->defer_caching = false; 847 goto skip_format_initialization; 848 } else if (!bus->read || !bus->write) { 849 map->reg_read = _regmap_bus_reg_read; 850 map->reg_write = _regmap_bus_reg_write; 851 map->reg_update_bits = bus->reg_update_bits; 852 853 map->defer_caching = false; 854 goto skip_format_initialization; 855 } else { 856 map->reg_read = _regmap_bus_read; 857 map->reg_update_bits = bus->reg_update_bits; 858 /* Bulk read/write */ 859 map->read = bus->read; 860 map->write = bus->write; 861 862 reg_endian = regmap_get_reg_endian(bus, config); 863 val_endian = regmap_get_val_endian(dev, bus, config); 864 } 865 866 switch (config->reg_bits + map->reg_shift) { 867 case 2: 868 switch (config->val_bits) { 869 case 6: 870 map->format.format_write = regmap_format_2_6_write; 871 break; 872 default: 873 goto err_hwlock; 874 } 875 break; 876 877 case 4: 878 switch (config->val_bits) { 879 case 12: 880 map->format.format_write = regmap_format_4_12_write; 881 break; 882 default: 883 goto err_hwlock; 884 } 885 break; 886 887 case 7: 888 switch (config->val_bits) { 889 case 9: 890 map->format.format_write = regmap_format_7_9_write; 891 break; 892 case 17: 893 map->format.format_write = regmap_format_7_17_write; 894 break; 895 default: 896 goto err_hwlock; 897 } 898 break; 899 900 case 10: 901 switch (config->val_bits) { 902 case 14: 903 map->format.format_write = regmap_format_10_14_write; 904 break; 905 default: 906 goto err_hwlock; 907 } 908 break; 909 910 case 12: 911 switch (config->val_bits) { 912 case 20: 913 map->format.format_write = regmap_format_12_20_write; 914 break; 915 default: 916 goto err_hwlock; 917 } 918 break; 919 920 case 8: 921 map->format.format_reg = regmap_format_8; 922 break; 923 924 case 16: 925 switch (reg_endian) { 926 case REGMAP_ENDIAN_BIG: 927 map->format.format_reg = regmap_format_16_be; 928 break; 929 case REGMAP_ENDIAN_LITTLE: 930 map->format.format_reg = regmap_format_16_le; 931 break; 932 case REGMAP_ENDIAN_NATIVE: 933 map->format.format_reg = regmap_format_16_native; 934 break; 935 default: 936 goto err_hwlock; 937 } 938 break; 939 940 case 24: 941 switch (reg_endian) { 942 case REGMAP_ENDIAN_BIG: 943 map->format.format_reg = regmap_format_24_be; 944 break; 945 default: 946 goto err_hwlock; 947 } 948 break; 949 950 case 32: 951 switch (reg_endian) { 952 case REGMAP_ENDIAN_BIG: 953 map->format.format_reg = regmap_format_32_be; 954 break; 955 case REGMAP_ENDIAN_LITTLE: 956 map->format.format_reg = regmap_format_32_le; 957 break; 958 case REGMAP_ENDIAN_NATIVE: 959 map->format.format_reg = regmap_format_32_native; 960 break; 961 default: 962 goto err_hwlock; 963 } 964 break; 965 966 default: 967 goto err_hwlock; 968 } 969 970 if (val_endian == REGMAP_ENDIAN_NATIVE) 971 map->format.parse_inplace = regmap_parse_inplace_noop; 972 973 switch (config->val_bits) { 974 case 8: 975 map->format.format_val = regmap_format_8; 976 map->format.parse_val = regmap_parse_8; 977 map->format.parse_inplace = regmap_parse_inplace_noop; 978 break; 979 case 16: 980 switch (val_endian) { 981 case REGMAP_ENDIAN_BIG: 982 map->format.format_val = regmap_format_16_be; 983 map->format.parse_val = regmap_parse_16_be; 984 map->format.parse_inplace = regmap_parse_16_be_inplace; 985 break; 986 case REGMAP_ENDIAN_LITTLE: 987 map->format.format_val = regmap_format_16_le; 988 map->format.parse_val = regmap_parse_16_le; 989 map->format.parse_inplace = regmap_parse_16_le_inplace; 990 break; 991 case REGMAP_ENDIAN_NATIVE: 992 map->format.format_val = regmap_format_16_native; 993 map->format.parse_val = regmap_parse_16_native; 994 break; 995 default: 996 goto err_hwlock; 997 } 998 break; 999 case 24: 1000 switch (val_endian) { 1001 case REGMAP_ENDIAN_BIG: 1002 map->format.format_val = regmap_format_24_be; 1003 map->format.parse_val = regmap_parse_24_be; 1004 break; 1005 default: 1006 goto err_hwlock; 1007 } 1008 break; 1009 case 32: 1010 switch (val_endian) { 1011 case REGMAP_ENDIAN_BIG: 1012 map->format.format_val = regmap_format_32_be; 1013 map->format.parse_val = regmap_parse_32_be; 1014 map->format.parse_inplace = regmap_parse_32_be_inplace; 1015 break; 1016 case REGMAP_ENDIAN_LITTLE: 1017 map->format.format_val = regmap_format_32_le; 1018 map->format.parse_val = regmap_parse_32_le; 1019 map->format.parse_inplace = regmap_parse_32_le_inplace; 1020 break; 1021 case REGMAP_ENDIAN_NATIVE: 1022 map->format.format_val = regmap_format_32_native; 1023 map->format.parse_val = regmap_parse_32_native; 1024 break; 1025 default: 1026 goto err_hwlock; 1027 } 1028 break; 1029 } 1030 1031 if (map->format.format_write) { 1032 if ((reg_endian != REGMAP_ENDIAN_BIG) || 1033 (val_endian != REGMAP_ENDIAN_BIG)) 1034 goto err_hwlock; 1035 map->use_single_write = true; 1036 } 1037 1038 if (!map->format.format_write && 1039 !(map->format.format_reg && map->format.format_val)) 1040 goto err_hwlock; 1041 1042 map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL); 1043 if (map->work_buf == NULL) { 1044 ret = -ENOMEM; 1045 goto err_hwlock; 1046 } 1047 1048 if (map->format.format_write) { 1049 map->defer_caching = false; 1050 map->reg_write = _regmap_bus_formatted_write; 1051 } else if (map->format.format_val) { 1052 map->defer_caching = true; 1053 map->reg_write = _regmap_bus_raw_write; 1054 } 1055 1056 skip_format_initialization: 1057 1058 map->range_tree = RB_ROOT; 1059 for (i = 0; i < config->num_ranges; i++) { 1060 const struct regmap_range_cfg *range_cfg = &config->ranges[i]; 1061 struct regmap_range_node *new; 1062 1063 /* Sanity check */ 1064 if (range_cfg->range_max < range_cfg->range_min) { 1065 dev_err(map->dev, "Invalid range %d: %u < %u\n", i, 1066 range_cfg->range_max, range_cfg->range_min); 1067 goto err_range; 1068 } 1069 1070 if (range_cfg->range_max > map->max_register) { 1071 dev_err(map->dev, "Invalid range %d: %u > %u\n", i, 1072 range_cfg->range_max, map->max_register); 1073 goto err_range; 1074 } 1075 1076 if (range_cfg->selector_reg > map->max_register) { 1077 dev_err(map->dev, 1078 "Invalid range %d: selector out of map\n", i); 1079 goto err_range; 1080 } 1081 1082 if (range_cfg->window_len == 0) { 1083 dev_err(map->dev, "Invalid range %d: window_len 0\n", 1084 i); 1085 goto err_range; 1086 } 1087 1088 /* Make sure, that this register range has no selector 1089 or data window within its boundary */ 1090 for (j = 0; j < config->num_ranges; j++) { 1091 unsigned int sel_reg = config->ranges[j].selector_reg; 1092 unsigned int win_min = config->ranges[j].window_start; 1093 unsigned int win_max = win_min + 1094 config->ranges[j].window_len - 1; 1095 1096 /* Allow data window inside its own virtual range */ 1097 if (j == i) 1098 continue; 1099 1100 if (range_cfg->range_min <= sel_reg && 1101 sel_reg <= range_cfg->range_max) { 1102 dev_err(map->dev, 1103 "Range %d: selector for %d in window\n", 1104 i, j); 1105 goto err_range; 1106 } 1107 1108 if (!(win_max < range_cfg->range_min || 1109 win_min > range_cfg->range_max)) { 1110 dev_err(map->dev, 1111 "Range %d: window for %d in window\n", 1112 i, j); 1113 goto err_range; 1114 } 1115 } 1116 1117 new = kzalloc(sizeof(*new), GFP_KERNEL); 1118 if (new == NULL) { 1119 ret = -ENOMEM; 1120 goto err_range; 1121 } 1122 1123 new->map = map; 1124 new->name = range_cfg->name; 1125 new->range_min = range_cfg->range_min; 1126 new->range_max = range_cfg->range_max; 1127 new->selector_reg = range_cfg->selector_reg; 1128 new->selector_mask = range_cfg->selector_mask; 1129 new->selector_shift = range_cfg->selector_shift; 1130 new->window_start = range_cfg->window_start; 1131 new->window_len = range_cfg->window_len; 1132 1133 if (!_regmap_range_add(map, new)) { 1134 dev_err(map->dev, "Failed to add range %d\n", i); 1135 kfree(new); 1136 goto err_range; 1137 } 1138 1139 if (map->selector_work_buf == NULL) { 1140 map->selector_work_buf = 1141 kzalloc(map->format.buf_size, GFP_KERNEL); 1142 if (map->selector_work_buf == NULL) { 1143 ret = -ENOMEM; 1144 goto err_range; 1145 } 1146 } 1147 } 1148 1149 ret = regcache_init(map, config); 1150 if (ret != 0) 1151 goto err_range; 1152 1153 if (dev) { 1154 ret = regmap_attach_dev(dev, map, config); 1155 if (ret != 0) 1156 goto err_regcache; 1157 } else { 1158 regmap_debugfs_init(map); 1159 } 1160 1161 return map; 1162 1163 err_regcache: 1164 regcache_exit(map); 1165 err_range: 1166 regmap_range_exit(map); 1167 kfree(map->work_buf); 1168 err_hwlock: 1169 if (map->hwlock) 1170 hwspin_lock_free(map->hwlock); 1171 err_name: 1172 kfree_const(map->name); 1173 err_map: 1174 kfree(map); 1175 err: 1176 if (bus && bus->free_on_exit) 1177 kfree(bus); 1178 return ERR_PTR(ret); 1179 } 1180 EXPORT_SYMBOL_GPL(__regmap_init); 1181 1182 static void devm_regmap_release(struct device *dev, void *res) 1183 { 1184 regmap_exit(*(struct regmap **)res); 1185 } 1186 1187 struct regmap *__devm_regmap_init(struct device *dev, 1188 const struct regmap_bus *bus, 1189 void *bus_context, 1190 const struct regmap_config *config, 1191 struct lock_class_key *lock_key, 1192 const char *lock_name) 1193 { 1194 struct regmap **ptr, *regmap; 1195 1196 ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL); 1197 if (!ptr) 1198 return ERR_PTR(-ENOMEM); 1199 1200 regmap = __regmap_init(dev, bus, bus_context, config, 1201 lock_key, lock_name); 1202 if (!IS_ERR(regmap)) { 1203 *ptr = regmap; 1204 devres_add(dev, ptr); 1205 } else { 1206 devres_free(ptr); 1207 } 1208 1209 return regmap; 1210 } 1211 EXPORT_SYMBOL_GPL(__devm_regmap_init); 1212 1213 static void regmap_field_init(struct regmap_field *rm_field, 1214 struct regmap *regmap, struct reg_field reg_field) 1215 { 1216 rm_field->regmap = regmap; 1217 rm_field->reg = reg_field.reg; 1218 rm_field->shift = reg_field.lsb; 1219 rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb); 1220 1221 WARN_ONCE(rm_field->mask == 0, "invalid empty mask defined\n"); 1222 1223 rm_field->id_size = reg_field.id_size; 1224 rm_field->id_offset = reg_field.id_offset; 1225 } 1226 1227 /** 1228 * devm_regmap_field_alloc() - Allocate and initialise a register field. 1229 * 1230 * @dev: Device that will be interacted with 1231 * @regmap: regmap bank in which this register field is located. 1232 * @reg_field: Register field with in the bank. 1233 * 1234 * The return value will be an ERR_PTR() on error or a valid pointer 1235 * to a struct regmap_field. The regmap_field will be automatically freed 1236 * by the device management code. 1237 */ 1238 struct regmap_field *devm_regmap_field_alloc(struct device *dev, 1239 struct regmap *regmap, struct reg_field reg_field) 1240 { 1241 struct regmap_field *rm_field = devm_kzalloc(dev, 1242 sizeof(*rm_field), GFP_KERNEL); 1243 if (!rm_field) 1244 return ERR_PTR(-ENOMEM); 1245 1246 regmap_field_init(rm_field, regmap, reg_field); 1247 1248 return rm_field; 1249 1250 } 1251 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc); 1252 1253 1254 /** 1255 * regmap_field_bulk_alloc() - Allocate and initialise a bulk register field. 1256 * 1257 * @regmap: regmap bank in which this register field is located. 1258 * @rm_field: regmap register fields within the bank. 1259 * @reg_field: Register fields within the bank. 1260 * @num_fields: Number of register fields. 1261 * 1262 * The return value will be an -ENOMEM on error or zero for success. 1263 * Newly allocated regmap_fields should be freed by calling 1264 * regmap_field_bulk_free() 1265 */ 1266 int regmap_field_bulk_alloc(struct regmap *regmap, 1267 struct regmap_field **rm_field, 1268 const struct reg_field *reg_field, 1269 int num_fields) 1270 { 1271 struct regmap_field *rf; 1272 int i; 1273 1274 rf = kcalloc(num_fields, sizeof(*rf), GFP_KERNEL); 1275 if (!rf) 1276 return -ENOMEM; 1277 1278 for (i = 0; i < num_fields; i++) { 1279 regmap_field_init(&rf[i], regmap, reg_field[i]); 1280 rm_field[i] = &rf[i]; 1281 } 1282 1283 return 0; 1284 } 1285 EXPORT_SYMBOL_GPL(regmap_field_bulk_alloc); 1286 1287 /** 1288 * devm_regmap_field_bulk_alloc() - Allocate and initialise a bulk register 1289 * fields. 1290 * 1291 * @dev: Device that will be interacted with 1292 * @regmap: regmap bank in which this register field is located. 1293 * @rm_field: regmap register fields within the bank. 1294 * @reg_field: Register fields within the bank. 1295 * @num_fields: Number of register fields. 1296 * 1297 * The return value will be an -ENOMEM on error or zero for success. 1298 * Newly allocated regmap_fields will be automatically freed by the 1299 * device management code. 1300 */ 1301 int devm_regmap_field_bulk_alloc(struct device *dev, 1302 struct regmap *regmap, 1303 struct regmap_field **rm_field, 1304 const struct reg_field *reg_field, 1305 int num_fields) 1306 { 1307 struct regmap_field *rf; 1308 int i; 1309 1310 rf = devm_kcalloc(dev, num_fields, sizeof(*rf), GFP_KERNEL); 1311 if (!rf) 1312 return -ENOMEM; 1313 1314 for (i = 0; i < num_fields; i++) { 1315 regmap_field_init(&rf[i], regmap, reg_field[i]); 1316 rm_field[i] = &rf[i]; 1317 } 1318 1319 return 0; 1320 } 1321 EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_alloc); 1322 1323 /** 1324 * regmap_field_bulk_free() - Free register field allocated using 1325 * regmap_field_bulk_alloc. 1326 * 1327 * @field: regmap fields which should be freed. 1328 */ 1329 void regmap_field_bulk_free(struct regmap_field *field) 1330 { 1331 kfree(field); 1332 } 1333 EXPORT_SYMBOL_GPL(regmap_field_bulk_free); 1334 1335 /** 1336 * devm_regmap_field_bulk_free() - Free a bulk register field allocated using 1337 * devm_regmap_field_bulk_alloc. 1338 * 1339 * @dev: Device that will be interacted with 1340 * @field: regmap field which should be freed. 1341 * 1342 * Free register field allocated using devm_regmap_field_bulk_alloc(). Usually 1343 * drivers need not call this function, as the memory allocated via devm 1344 * will be freed as per device-driver life-cycle. 1345 */ 1346 void devm_regmap_field_bulk_free(struct device *dev, 1347 struct regmap_field *field) 1348 { 1349 devm_kfree(dev, field); 1350 } 1351 EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_free); 1352 1353 /** 1354 * devm_regmap_field_free() - Free a register field allocated using 1355 * devm_regmap_field_alloc. 1356 * 1357 * @dev: Device that will be interacted with 1358 * @field: regmap field which should be freed. 1359 * 1360 * Free register field allocated using devm_regmap_field_alloc(). Usually 1361 * drivers need not call this function, as the memory allocated via devm 1362 * will be freed as per device-driver life-cyle. 1363 */ 1364 void devm_regmap_field_free(struct device *dev, 1365 struct regmap_field *field) 1366 { 1367 devm_kfree(dev, field); 1368 } 1369 EXPORT_SYMBOL_GPL(devm_regmap_field_free); 1370 1371 /** 1372 * regmap_field_alloc() - Allocate and initialise a register field. 1373 * 1374 * @regmap: regmap bank in which this register field is located. 1375 * @reg_field: Register field with in the bank. 1376 * 1377 * The return value will be an ERR_PTR() on error or a valid pointer 1378 * to a struct regmap_field. The regmap_field should be freed by the 1379 * user once its finished working with it using regmap_field_free(). 1380 */ 1381 struct regmap_field *regmap_field_alloc(struct regmap *regmap, 1382 struct reg_field reg_field) 1383 { 1384 struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL); 1385 1386 if (!rm_field) 1387 return ERR_PTR(-ENOMEM); 1388 1389 regmap_field_init(rm_field, regmap, reg_field); 1390 1391 return rm_field; 1392 } 1393 EXPORT_SYMBOL_GPL(regmap_field_alloc); 1394 1395 /** 1396 * regmap_field_free() - Free register field allocated using 1397 * regmap_field_alloc. 1398 * 1399 * @field: regmap field which should be freed. 1400 */ 1401 void regmap_field_free(struct regmap_field *field) 1402 { 1403 kfree(field); 1404 } 1405 EXPORT_SYMBOL_GPL(regmap_field_free); 1406 1407 /** 1408 * regmap_reinit_cache() - Reinitialise the current register cache 1409 * 1410 * @map: Register map to operate on. 1411 * @config: New configuration. Only the cache data will be used. 1412 * 1413 * Discard any existing register cache for the map and initialize a 1414 * new cache. This can be used to restore the cache to defaults or to 1415 * update the cache configuration to reflect runtime discovery of the 1416 * hardware. 1417 * 1418 * No explicit locking is done here, the user needs to ensure that 1419 * this function will not race with other calls to regmap. 1420 */ 1421 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config) 1422 { 1423 int ret; 1424 1425 regcache_exit(map); 1426 regmap_debugfs_exit(map); 1427 1428 map->max_register = config->max_register; 1429 map->max_register_is_set = map->max_register ?: config->max_register_is_0; 1430 map->writeable_reg = config->writeable_reg; 1431 map->readable_reg = config->readable_reg; 1432 map->volatile_reg = config->volatile_reg; 1433 map->precious_reg = config->precious_reg; 1434 map->writeable_noinc_reg = config->writeable_noinc_reg; 1435 map->readable_noinc_reg = config->readable_noinc_reg; 1436 map->cache_type = config->cache_type; 1437 1438 ret = regmap_set_name(map, config); 1439 if (ret) 1440 return ret; 1441 1442 regmap_debugfs_init(map); 1443 1444 map->cache_bypass = false; 1445 map->cache_only = false; 1446 1447 return regcache_init(map, config); 1448 } 1449 EXPORT_SYMBOL_GPL(regmap_reinit_cache); 1450 1451 /** 1452 * regmap_exit() - Free a previously allocated register map 1453 * 1454 * @map: Register map to operate on. 1455 */ 1456 void regmap_exit(struct regmap *map) 1457 { 1458 struct regmap_async *async; 1459 1460 regmap_detach_dev(map->dev, map); 1461 regcache_exit(map); 1462 1463 regmap_debugfs_exit(map); 1464 regmap_range_exit(map); 1465 if (map->bus && map->bus->free_context) 1466 map->bus->free_context(map->bus_context); 1467 kfree(map->work_buf); 1468 while (!list_empty(&map->async_free)) { 1469 async = list_first_entry_or_null(&map->async_free, 1470 struct regmap_async, 1471 list); 1472 list_del(&async->list); 1473 kfree(async->work_buf); 1474 kfree(async); 1475 } 1476 if (map->hwlock) 1477 hwspin_lock_free(map->hwlock); 1478 if (map->lock == regmap_lock_mutex) 1479 mutex_destroy(&map->mutex); 1480 kfree_const(map->name); 1481 kfree(map->patch); 1482 if (map->bus && map->bus->free_on_exit) 1483 kfree(map->bus); 1484 kfree(map); 1485 } 1486 EXPORT_SYMBOL_GPL(regmap_exit); 1487 1488 static int dev_get_regmap_match(struct device *dev, void *res, void *data) 1489 { 1490 struct regmap **r = res; 1491 if (!r || !*r) { 1492 WARN_ON(!r || !*r); 1493 return 0; 1494 } 1495 1496 /* If the user didn't specify a name match any */ 1497 if (data) 1498 return (*r)->name && !strcmp((*r)->name, data); 1499 else 1500 return 1; 1501 } 1502 1503 /** 1504 * dev_get_regmap() - Obtain the regmap (if any) for a device 1505 * 1506 * @dev: Device to retrieve the map for 1507 * @name: Optional name for the register map, usually NULL. 1508 * 1509 * Returns the regmap for the device if one is present, or NULL. If 1510 * name is specified then it must match the name specified when 1511 * registering the device, if it is NULL then the first regmap found 1512 * will be used. Devices with multiple register maps are very rare, 1513 * generic code should normally not need to specify a name. 1514 */ 1515 struct regmap *dev_get_regmap(struct device *dev, const char *name) 1516 { 1517 struct regmap **r = devres_find(dev, dev_get_regmap_release, 1518 dev_get_regmap_match, (void *)name); 1519 1520 if (!r) 1521 return NULL; 1522 return *r; 1523 } 1524 EXPORT_SYMBOL_GPL(dev_get_regmap); 1525 1526 /** 1527 * regmap_get_device() - Obtain the device from a regmap 1528 * 1529 * @map: Register map to operate on. 1530 * 1531 * Returns the underlying device that the regmap has been created for. 1532 */ 1533 struct device *regmap_get_device(struct regmap *map) 1534 { 1535 return map->dev; 1536 } 1537 EXPORT_SYMBOL_GPL(regmap_get_device); 1538 1539 static int _regmap_select_page(struct regmap *map, unsigned int *reg, 1540 struct regmap_range_node *range, 1541 unsigned int val_num) 1542 { 1543 void *orig_work_buf; 1544 unsigned int win_offset; 1545 unsigned int win_page; 1546 bool page_chg; 1547 int ret; 1548 1549 win_offset = (*reg - range->range_min) % range->window_len; 1550 win_page = (*reg - range->range_min) / range->window_len; 1551 1552 if (val_num > 1) { 1553 /* Bulk write shouldn't cross range boundary */ 1554 if (*reg + val_num - 1 > range->range_max) 1555 return -EINVAL; 1556 1557 /* ... or single page boundary */ 1558 if (val_num > range->window_len - win_offset) 1559 return -EINVAL; 1560 } 1561 1562 /* It is possible to have selector register inside data window. 1563 In that case, selector register is located on every page and 1564 it needs no page switching, when accessed alone. */ 1565 if (val_num > 1 || 1566 range->window_start + win_offset != range->selector_reg) { 1567 /* Use separate work_buf during page switching */ 1568 orig_work_buf = map->work_buf; 1569 map->work_buf = map->selector_work_buf; 1570 1571 ret = _regmap_update_bits(map, range->selector_reg, 1572 range->selector_mask, 1573 win_page << range->selector_shift, 1574 &page_chg, false); 1575 1576 map->work_buf = orig_work_buf; 1577 1578 if (ret != 0) 1579 return ret; 1580 } 1581 1582 *reg = range->window_start + win_offset; 1583 1584 return 0; 1585 } 1586 1587 static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes, 1588 unsigned long mask) 1589 { 1590 u8 *buf; 1591 int i; 1592 1593 if (!mask || !map->work_buf) 1594 return; 1595 1596 buf = map->work_buf; 1597 1598 for (i = 0; i < max_bytes; i++) 1599 buf[i] |= (mask >> (8 * i)) & 0xff; 1600 } 1601 1602 static unsigned int regmap_reg_addr(struct regmap *map, unsigned int reg) 1603 { 1604 reg += map->reg_base; 1605 1606 if (map->format.reg_shift > 0) 1607 reg >>= map->format.reg_shift; 1608 else if (map->format.reg_shift < 0) 1609 reg <<= -(map->format.reg_shift); 1610 1611 return reg; 1612 } 1613 1614 static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg, 1615 const void *val, size_t val_len, bool noinc) 1616 { 1617 struct regmap_range_node *range; 1618 unsigned long flags; 1619 void *work_val = map->work_buf + map->format.reg_bytes + 1620 map->format.pad_bytes; 1621 void *buf; 1622 int ret = -ENOTSUPP; 1623 size_t len; 1624 int i; 1625 1626 /* Check for unwritable or noinc registers in range 1627 * before we start 1628 */ 1629 if (!regmap_writeable_noinc(map, reg)) { 1630 for (i = 0; i < val_len / map->format.val_bytes; i++) { 1631 unsigned int element = 1632 reg + regmap_get_offset(map, i); 1633 if (!regmap_writeable(map, element) || 1634 regmap_writeable_noinc(map, element)) 1635 return -EINVAL; 1636 } 1637 } 1638 1639 if (!map->cache_bypass && map->format.parse_val) { 1640 unsigned int ival, offset; 1641 int val_bytes = map->format.val_bytes; 1642 1643 /* Cache the last written value for noinc writes */ 1644 i = noinc ? val_len - val_bytes : 0; 1645 for (; i < val_len; i += val_bytes) { 1646 ival = map->format.parse_val(val + i); 1647 offset = noinc ? 0 : regmap_get_offset(map, i / val_bytes); 1648 ret = regcache_write(map, reg + offset, ival); 1649 if (ret) { 1650 dev_err(map->dev, 1651 "Error in caching of register: %x ret: %d\n", 1652 reg + offset, ret); 1653 return ret; 1654 } 1655 } 1656 if (map->cache_only) { 1657 map->cache_dirty = true; 1658 return 0; 1659 } 1660 } 1661 1662 range = _regmap_range_lookup(map, reg); 1663 if (range) { 1664 int val_num = val_len / map->format.val_bytes; 1665 int win_offset = (reg - range->range_min) % range->window_len; 1666 int win_residue = range->window_len - win_offset; 1667 1668 /* If the write goes beyond the end of the window split it */ 1669 while (val_num > win_residue) { 1670 dev_dbg(map->dev, "Writing window %d/%zu\n", 1671 win_residue, val_len / map->format.val_bytes); 1672 ret = _regmap_raw_write_impl(map, reg, val, 1673 win_residue * 1674 map->format.val_bytes, noinc); 1675 if (ret != 0) 1676 return ret; 1677 1678 reg += win_residue; 1679 val_num -= win_residue; 1680 val += win_residue * map->format.val_bytes; 1681 val_len -= win_residue * map->format.val_bytes; 1682 1683 win_offset = (reg - range->range_min) % 1684 range->window_len; 1685 win_residue = range->window_len - win_offset; 1686 } 1687 1688 ret = _regmap_select_page(map, ®, range, noinc ? 1 : val_num); 1689 if (ret != 0) 1690 return ret; 1691 } 1692 1693 reg = regmap_reg_addr(map, reg); 1694 map->format.format_reg(map->work_buf, reg, map->reg_shift); 1695 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes, 1696 map->write_flag_mask); 1697 1698 /* 1699 * Essentially all I/O mechanisms will be faster with a single 1700 * buffer to write. Since register syncs often generate raw 1701 * writes of single registers optimise that case. 1702 */ 1703 if (val != work_val && val_len == map->format.val_bytes) { 1704 memcpy(work_val, val, map->format.val_bytes); 1705 val = work_val; 1706 } 1707 1708 if (map->async && map->bus && map->bus->async_write) { 1709 struct regmap_async *async; 1710 1711 trace_regmap_async_write_start(map, reg, val_len); 1712 1713 spin_lock_irqsave(&map->async_lock, flags); 1714 async = list_first_entry_or_null(&map->async_free, 1715 struct regmap_async, 1716 list); 1717 if (async) 1718 list_del(&async->list); 1719 spin_unlock_irqrestore(&map->async_lock, flags); 1720 1721 if (!async) { 1722 async = map->bus->async_alloc(); 1723 if (!async) 1724 return -ENOMEM; 1725 1726 async->work_buf = kzalloc(map->format.buf_size, 1727 GFP_KERNEL | GFP_DMA); 1728 if (!async->work_buf) { 1729 kfree(async); 1730 return -ENOMEM; 1731 } 1732 } 1733 1734 async->map = map; 1735 1736 /* If the caller supplied the value we can use it safely. */ 1737 memcpy(async->work_buf, map->work_buf, map->format.pad_bytes + 1738 map->format.reg_bytes + map->format.val_bytes); 1739 1740 spin_lock_irqsave(&map->async_lock, flags); 1741 list_add_tail(&async->list, &map->async_list); 1742 spin_unlock_irqrestore(&map->async_lock, flags); 1743 1744 if (val != work_val) 1745 ret = map->bus->async_write(map->bus_context, 1746 async->work_buf, 1747 map->format.reg_bytes + 1748 map->format.pad_bytes, 1749 val, val_len, async); 1750 else 1751 ret = map->bus->async_write(map->bus_context, 1752 async->work_buf, 1753 map->format.reg_bytes + 1754 map->format.pad_bytes + 1755 val_len, NULL, 0, async); 1756 1757 if (ret != 0) { 1758 dev_err(map->dev, "Failed to schedule write: %d\n", 1759 ret); 1760 1761 spin_lock_irqsave(&map->async_lock, flags); 1762 list_move(&async->list, &map->async_free); 1763 spin_unlock_irqrestore(&map->async_lock, flags); 1764 } 1765 1766 return ret; 1767 } 1768 1769 trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes); 1770 1771 /* If we're doing a single register write we can probably just 1772 * send the work_buf directly, otherwise try to do a gather 1773 * write. 1774 */ 1775 if (val == work_val) 1776 ret = map->write(map->bus_context, map->work_buf, 1777 map->format.reg_bytes + 1778 map->format.pad_bytes + 1779 val_len); 1780 else if (map->bus && map->bus->gather_write) 1781 ret = map->bus->gather_write(map->bus_context, map->work_buf, 1782 map->format.reg_bytes + 1783 map->format.pad_bytes, 1784 val, val_len); 1785 else 1786 ret = -ENOTSUPP; 1787 1788 /* If that didn't work fall back on linearising by hand. */ 1789 if (ret == -ENOTSUPP) { 1790 len = map->format.reg_bytes + map->format.pad_bytes + val_len; 1791 buf = kzalloc(len, GFP_KERNEL); 1792 if (!buf) 1793 return -ENOMEM; 1794 1795 memcpy(buf, map->work_buf, map->format.reg_bytes); 1796 memcpy(buf + map->format.reg_bytes + map->format.pad_bytes, 1797 val, val_len); 1798 ret = map->write(map->bus_context, buf, len); 1799 1800 kfree(buf); 1801 } else if (ret != 0 && !map->cache_bypass && map->format.parse_val) { 1802 /* regcache_drop_region() takes lock that we already have, 1803 * thus call map->cache_ops->drop() directly 1804 */ 1805 if (map->cache_ops && map->cache_ops->drop) 1806 map->cache_ops->drop(map, reg, reg + 1); 1807 } 1808 1809 trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes); 1810 1811 return ret; 1812 } 1813 1814 /** 1815 * regmap_can_raw_write - Test if regmap_raw_write() is supported 1816 * 1817 * @map: Map to check. 1818 */ 1819 bool regmap_can_raw_write(struct regmap *map) 1820 { 1821 return map->write && map->format.format_val && map->format.format_reg; 1822 } 1823 EXPORT_SYMBOL_GPL(regmap_can_raw_write); 1824 1825 /** 1826 * regmap_get_raw_read_max - Get the maximum size we can read 1827 * 1828 * @map: Map to check. 1829 */ 1830 size_t regmap_get_raw_read_max(struct regmap *map) 1831 { 1832 return map->max_raw_read; 1833 } 1834 EXPORT_SYMBOL_GPL(regmap_get_raw_read_max); 1835 1836 /** 1837 * regmap_get_raw_write_max - Get the maximum size we can read 1838 * 1839 * @map: Map to check. 1840 */ 1841 size_t regmap_get_raw_write_max(struct regmap *map) 1842 { 1843 return map->max_raw_write; 1844 } 1845 EXPORT_SYMBOL_GPL(regmap_get_raw_write_max); 1846 1847 static int _regmap_bus_formatted_write(void *context, unsigned int reg, 1848 unsigned int val) 1849 { 1850 int ret; 1851 struct regmap_range_node *range; 1852 struct regmap *map = context; 1853 1854 WARN_ON(!map->format.format_write); 1855 1856 range = _regmap_range_lookup(map, reg); 1857 if (range) { 1858 ret = _regmap_select_page(map, ®, range, 1); 1859 if (ret != 0) 1860 return ret; 1861 } 1862 1863 reg = regmap_reg_addr(map, reg); 1864 map->format.format_write(map, reg, val); 1865 1866 trace_regmap_hw_write_start(map, reg, 1); 1867 1868 ret = map->write(map->bus_context, map->work_buf, map->format.buf_size); 1869 1870 trace_regmap_hw_write_done(map, reg, 1); 1871 1872 return ret; 1873 } 1874 1875 static int _regmap_bus_reg_write(void *context, unsigned int reg, 1876 unsigned int val) 1877 { 1878 struct regmap *map = context; 1879 struct regmap_range_node *range; 1880 int ret; 1881 1882 range = _regmap_range_lookup(map, reg); 1883 if (range) { 1884 ret = _regmap_select_page(map, ®, range, 1); 1885 if (ret != 0) 1886 return ret; 1887 } 1888 1889 reg = regmap_reg_addr(map, reg); 1890 return map->bus->reg_write(map->bus_context, reg, val); 1891 } 1892 1893 static int _regmap_bus_raw_write(void *context, unsigned int reg, 1894 unsigned int val) 1895 { 1896 struct regmap *map = context; 1897 1898 WARN_ON(!map->format.format_val); 1899 1900 map->format.format_val(map->work_buf + map->format.reg_bytes 1901 + map->format.pad_bytes, val, 0); 1902 return _regmap_raw_write_impl(map, reg, 1903 map->work_buf + 1904 map->format.reg_bytes + 1905 map->format.pad_bytes, 1906 map->format.val_bytes, 1907 false); 1908 } 1909 1910 static inline void *_regmap_map_get_context(struct regmap *map) 1911 { 1912 return (map->bus || (!map->bus && map->read)) ? map : map->bus_context; 1913 } 1914 1915 int _regmap_write(struct regmap *map, unsigned int reg, 1916 unsigned int val) 1917 { 1918 int ret; 1919 void *context = _regmap_map_get_context(map); 1920 1921 if (!regmap_writeable(map, reg)) 1922 return -EIO; 1923 1924 if (!map->cache_bypass && !map->defer_caching) { 1925 ret = regcache_write(map, reg, val); 1926 if (ret != 0) 1927 return ret; 1928 if (map->cache_only) { 1929 map->cache_dirty = true; 1930 return 0; 1931 } 1932 } 1933 1934 ret = map->reg_write(context, reg, val); 1935 if (ret == 0) { 1936 if (regmap_should_log(map)) 1937 dev_info(map->dev, "%x <= %x\n", reg, val); 1938 1939 trace_regmap_reg_write(map, reg, val); 1940 } 1941 1942 return ret; 1943 } 1944 1945 /** 1946 * regmap_write() - Write a value to a single register 1947 * 1948 * @map: Register map to write to 1949 * @reg: Register to write to 1950 * @val: Value to be written 1951 * 1952 * A value of zero will be returned on success, a negative errno will 1953 * be returned in error cases. 1954 */ 1955 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val) 1956 { 1957 int ret; 1958 1959 if (!IS_ALIGNED(reg, map->reg_stride)) 1960 return -EINVAL; 1961 1962 map->lock(map->lock_arg); 1963 1964 ret = _regmap_write(map, reg, val); 1965 1966 map->unlock(map->lock_arg); 1967 1968 return ret; 1969 } 1970 EXPORT_SYMBOL_GPL(regmap_write); 1971 1972 /** 1973 * regmap_write_async() - Write a value to a single register asynchronously 1974 * 1975 * @map: Register map to write to 1976 * @reg: Register to write to 1977 * @val: Value to be written 1978 * 1979 * A value of zero will be returned on success, a negative errno will 1980 * be returned in error cases. 1981 */ 1982 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val) 1983 { 1984 int ret; 1985 1986 if (!IS_ALIGNED(reg, map->reg_stride)) 1987 return -EINVAL; 1988 1989 map->lock(map->lock_arg); 1990 1991 map->async = true; 1992 1993 ret = _regmap_write(map, reg, val); 1994 1995 map->async = false; 1996 1997 map->unlock(map->lock_arg); 1998 1999 return ret; 2000 } 2001 EXPORT_SYMBOL_GPL(regmap_write_async); 2002 2003 int _regmap_raw_write(struct regmap *map, unsigned int reg, 2004 const void *val, size_t val_len, bool noinc) 2005 { 2006 size_t val_bytes = map->format.val_bytes; 2007 size_t val_count = val_len / val_bytes; 2008 size_t chunk_count, chunk_bytes; 2009 size_t chunk_regs = val_count; 2010 int ret, i; 2011 2012 if (!val_count) 2013 return -EINVAL; 2014 2015 if (map->use_single_write) 2016 chunk_regs = 1; 2017 else if (map->max_raw_write && val_len > map->max_raw_write) 2018 chunk_regs = map->max_raw_write / val_bytes; 2019 2020 chunk_count = val_count / chunk_regs; 2021 chunk_bytes = chunk_regs * val_bytes; 2022 2023 /* Write as many bytes as possible with chunk_size */ 2024 for (i = 0; i < chunk_count; i++) { 2025 ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes, noinc); 2026 if (ret) 2027 return ret; 2028 2029 reg += regmap_get_offset(map, chunk_regs); 2030 val += chunk_bytes; 2031 val_len -= chunk_bytes; 2032 } 2033 2034 /* Write remaining bytes */ 2035 if (val_len) 2036 ret = _regmap_raw_write_impl(map, reg, val, val_len, noinc); 2037 2038 return ret; 2039 } 2040 2041 /** 2042 * regmap_raw_write() - Write raw values to one or more registers 2043 * 2044 * @map: Register map to write to 2045 * @reg: Initial register to write to 2046 * @val: Block of data to be written, laid out for direct transmission to the 2047 * device 2048 * @val_len: Length of data pointed to by val. 2049 * 2050 * This function is intended to be used for things like firmware 2051 * download where a large block of data needs to be transferred to the 2052 * device. No formatting will be done on the data provided. 2053 * 2054 * A value of zero will be returned on success, a negative errno will 2055 * be returned in error cases. 2056 */ 2057 int regmap_raw_write(struct regmap *map, unsigned int reg, 2058 const void *val, size_t val_len) 2059 { 2060 int ret; 2061 2062 if (!regmap_can_raw_write(map)) 2063 return -EINVAL; 2064 if (val_len % map->format.val_bytes) 2065 return -EINVAL; 2066 2067 map->lock(map->lock_arg); 2068 2069 ret = _regmap_raw_write(map, reg, val, val_len, false); 2070 2071 map->unlock(map->lock_arg); 2072 2073 return ret; 2074 } 2075 EXPORT_SYMBOL_GPL(regmap_raw_write); 2076 2077 static int regmap_noinc_readwrite(struct regmap *map, unsigned int reg, 2078 void *val, unsigned int val_len, bool write) 2079 { 2080 size_t val_bytes = map->format.val_bytes; 2081 size_t val_count = val_len / val_bytes; 2082 unsigned int lastval; 2083 u8 *u8p; 2084 u16 *u16p; 2085 u32 *u32p; 2086 int ret; 2087 int i; 2088 2089 switch (val_bytes) { 2090 case 1: 2091 u8p = val; 2092 if (write) 2093 lastval = (unsigned int)u8p[val_count - 1]; 2094 break; 2095 case 2: 2096 u16p = val; 2097 if (write) 2098 lastval = (unsigned int)u16p[val_count - 1]; 2099 break; 2100 case 4: 2101 u32p = val; 2102 if (write) 2103 lastval = (unsigned int)u32p[val_count - 1]; 2104 break; 2105 default: 2106 return -EINVAL; 2107 } 2108 2109 /* 2110 * Update the cache with the last value we write, the rest is just 2111 * gone down in the hardware FIFO. We can't cache FIFOs. This makes 2112 * sure a single read from the cache will work. 2113 */ 2114 if (write) { 2115 if (!map->cache_bypass && !map->defer_caching) { 2116 ret = regcache_write(map, reg, lastval); 2117 if (ret != 0) 2118 return ret; 2119 if (map->cache_only) { 2120 map->cache_dirty = true; 2121 return 0; 2122 } 2123 } 2124 ret = map->bus->reg_noinc_write(map->bus_context, reg, val, val_count); 2125 } else { 2126 ret = map->bus->reg_noinc_read(map->bus_context, reg, val, val_count); 2127 } 2128 2129 if (!ret && regmap_should_log(map)) { 2130 dev_info(map->dev, "%x %s [", reg, write ? "<=" : "=>"); 2131 for (i = 0; i < val_count; i++) { 2132 switch (val_bytes) { 2133 case 1: 2134 pr_cont("%x", u8p[i]); 2135 break; 2136 case 2: 2137 pr_cont("%x", u16p[i]); 2138 break; 2139 case 4: 2140 pr_cont("%x", u32p[i]); 2141 break; 2142 default: 2143 break; 2144 } 2145 if (i == (val_count - 1)) 2146 pr_cont("]\n"); 2147 else 2148 pr_cont(","); 2149 } 2150 } 2151 2152 return 0; 2153 } 2154 2155 /** 2156 * regmap_noinc_write(): Write data to a register without incrementing the 2157 * register number 2158 * 2159 * @map: Register map to write to 2160 * @reg: Register to write to 2161 * @val: Pointer to data buffer 2162 * @val_len: Length of output buffer in bytes. 2163 * 2164 * The regmap API usually assumes that bulk bus write operations will write a 2165 * range of registers. Some devices have certain registers for which a write 2166 * operation can write to an internal FIFO. 2167 * 2168 * The target register must be volatile but registers after it can be 2169 * completely unrelated cacheable registers. 2170 * 2171 * This will attempt multiple writes as required to write val_len bytes. 2172 * 2173 * A value of zero will be returned on success, a negative errno will be 2174 * returned in error cases. 2175 */ 2176 int regmap_noinc_write(struct regmap *map, unsigned int reg, 2177 const void *val, size_t val_len) 2178 { 2179 size_t write_len; 2180 int ret; 2181 2182 if (!map->write && !(map->bus && map->bus->reg_noinc_write)) 2183 return -EINVAL; 2184 if (val_len % map->format.val_bytes) 2185 return -EINVAL; 2186 if (!IS_ALIGNED(reg, map->reg_stride)) 2187 return -EINVAL; 2188 if (val_len == 0) 2189 return -EINVAL; 2190 2191 map->lock(map->lock_arg); 2192 2193 if (!regmap_volatile(map, reg) || !regmap_writeable_noinc(map, reg)) { 2194 ret = -EINVAL; 2195 goto out_unlock; 2196 } 2197 2198 /* 2199 * Use the accelerated operation if we can. The val drops the const 2200 * typing in order to facilitate code reuse in regmap_noinc_readwrite(). 2201 */ 2202 if (map->bus->reg_noinc_write) { 2203 ret = regmap_noinc_readwrite(map, reg, (void *)val, val_len, true); 2204 goto out_unlock; 2205 } 2206 2207 while (val_len) { 2208 if (map->max_raw_write && map->max_raw_write < val_len) 2209 write_len = map->max_raw_write; 2210 else 2211 write_len = val_len; 2212 ret = _regmap_raw_write(map, reg, val, write_len, true); 2213 if (ret) 2214 goto out_unlock; 2215 val = ((u8 *)val) + write_len; 2216 val_len -= write_len; 2217 } 2218 2219 out_unlock: 2220 map->unlock(map->lock_arg); 2221 return ret; 2222 } 2223 EXPORT_SYMBOL_GPL(regmap_noinc_write); 2224 2225 /** 2226 * regmap_field_update_bits_base() - Perform a read/modify/write cycle a 2227 * register field. 2228 * 2229 * @field: Register field to write to 2230 * @mask: Bitmask to change 2231 * @val: Value to be written 2232 * @change: Boolean indicating if a write was done 2233 * @async: Boolean indicating asynchronously 2234 * @force: Boolean indicating use force update 2235 * 2236 * Perform a read/modify/write cycle on the register field with change, 2237 * async, force option. 2238 * 2239 * A value of zero will be returned on success, a negative errno will 2240 * be returned in error cases. 2241 */ 2242 int regmap_field_update_bits_base(struct regmap_field *field, 2243 unsigned int mask, unsigned int val, 2244 bool *change, bool async, bool force) 2245 { 2246 mask = (mask << field->shift) & field->mask; 2247 2248 return regmap_update_bits_base(field->regmap, field->reg, 2249 mask, val << field->shift, 2250 change, async, force); 2251 } 2252 EXPORT_SYMBOL_GPL(regmap_field_update_bits_base); 2253 2254 /** 2255 * regmap_field_test_bits() - Check if all specified bits are set in a 2256 * register field. 2257 * 2258 * @field: Register field to operate on 2259 * @bits: Bits to test 2260 * 2261 * Returns negative errno if the underlying regmap_field_read() fails, 2262 * 0 if at least one of the tested bits is not set and 1 if all tested 2263 * bits are set. 2264 */ 2265 int regmap_field_test_bits(struct regmap_field *field, unsigned int bits) 2266 { 2267 unsigned int val; 2268 int ret; 2269 2270 ret = regmap_field_read(field, &val); 2271 if (ret) 2272 return ret; 2273 2274 return (val & bits) == bits; 2275 } 2276 EXPORT_SYMBOL_GPL(regmap_field_test_bits); 2277 2278 /** 2279 * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a 2280 * register field with port ID 2281 * 2282 * @field: Register field to write to 2283 * @id: port ID 2284 * @mask: Bitmask to change 2285 * @val: Value to be written 2286 * @change: Boolean indicating if a write was done 2287 * @async: Boolean indicating asynchronously 2288 * @force: Boolean indicating use force update 2289 * 2290 * A value of zero will be returned on success, a negative errno will 2291 * be returned in error cases. 2292 */ 2293 int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id, 2294 unsigned int mask, unsigned int val, 2295 bool *change, bool async, bool force) 2296 { 2297 if (id >= field->id_size) 2298 return -EINVAL; 2299 2300 mask = (mask << field->shift) & field->mask; 2301 2302 return regmap_update_bits_base(field->regmap, 2303 field->reg + (field->id_offset * id), 2304 mask, val << field->shift, 2305 change, async, force); 2306 } 2307 EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base); 2308 2309 /** 2310 * regmap_bulk_write() - Write multiple registers to the device 2311 * 2312 * @map: Register map to write to 2313 * @reg: First register to be write from 2314 * @val: Block of data to be written, in native register size for device 2315 * @val_count: Number of registers to write 2316 * 2317 * This function is intended to be used for writing a large block of 2318 * data to the device either in single transfer or multiple transfer. 2319 * 2320 * A value of zero will be returned on success, a negative errno will 2321 * be returned in error cases. 2322 */ 2323 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val, 2324 size_t val_count) 2325 { 2326 int ret = 0, i; 2327 size_t val_bytes = map->format.val_bytes; 2328 2329 if (!IS_ALIGNED(reg, map->reg_stride)) 2330 return -EINVAL; 2331 2332 /* 2333 * Some devices don't support bulk write, for them we have a series of 2334 * single write operations. 2335 */ 2336 if (!map->write || !map->format.parse_inplace) { 2337 map->lock(map->lock_arg); 2338 for (i = 0; i < val_count; i++) { 2339 unsigned int ival; 2340 2341 switch (val_bytes) { 2342 case 1: 2343 ival = *(u8 *)(val + (i * val_bytes)); 2344 break; 2345 case 2: 2346 ival = *(u16 *)(val + (i * val_bytes)); 2347 break; 2348 case 4: 2349 ival = *(u32 *)(val + (i * val_bytes)); 2350 break; 2351 default: 2352 ret = -EINVAL; 2353 goto out; 2354 } 2355 2356 ret = _regmap_write(map, 2357 reg + regmap_get_offset(map, i), 2358 ival); 2359 if (ret != 0) 2360 goto out; 2361 } 2362 out: 2363 map->unlock(map->lock_arg); 2364 } else { 2365 void *wval; 2366 2367 wval = kmemdup_array(val, val_count, val_bytes, map->alloc_flags); 2368 if (!wval) 2369 return -ENOMEM; 2370 2371 for (i = 0; i < val_count * val_bytes; i += val_bytes) 2372 map->format.parse_inplace(wval + i); 2373 2374 ret = regmap_raw_write(map, reg, wval, val_bytes * val_count); 2375 2376 kfree(wval); 2377 } 2378 2379 if (!ret) 2380 trace_regmap_bulk_write(map, reg, val, val_bytes * val_count); 2381 2382 return ret; 2383 } 2384 EXPORT_SYMBOL_GPL(regmap_bulk_write); 2385 2386 /* 2387 * _regmap_raw_multi_reg_write() 2388 * 2389 * the (register,newvalue) pairs in regs have not been formatted, but 2390 * they are all in the same page and have been changed to being page 2391 * relative. The page register has been written if that was necessary. 2392 */ 2393 static int _regmap_raw_multi_reg_write(struct regmap *map, 2394 const struct reg_sequence *regs, 2395 size_t num_regs) 2396 { 2397 int ret; 2398 void *buf; 2399 int i; 2400 u8 *u8; 2401 size_t val_bytes = map->format.val_bytes; 2402 size_t reg_bytes = map->format.reg_bytes; 2403 size_t pad_bytes = map->format.pad_bytes; 2404 size_t pair_size = reg_bytes + pad_bytes + val_bytes; 2405 size_t len = pair_size * num_regs; 2406 2407 if (!len) 2408 return -EINVAL; 2409 2410 buf = kzalloc(len, GFP_KERNEL); 2411 if (!buf) 2412 return -ENOMEM; 2413 2414 /* We have to linearise by hand. */ 2415 2416 u8 = buf; 2417 2418 for (i = 0; i < num_regs; i++) { 2419 unsigned int reg = regs[i].reg; 2420 unsigned int val = regs[i].def; 2421 trace_regmap_hw_write_start(map, reg, 1); 2422 reg = regmap_reg_addr(map, reg); 2423 map->format.format_reg(u8, reg, map->reg_shift); 2424 u8 += reg_bytes + pad_bytes; 2425 map->format.format_val(u8, val, 0); 2426 u8 += val_bytes; 2427 } 2428 u8 = buf; 2429 *u8 |= map->write_flag_mask; 2430 2431 ret = map->write(map->bus_context, buf, len); 2432 2433 kfree(buf); 2434 2435 for (i = 0; i < num_regs; i++) { 2436 int reg = regs[i].reg; 2437 trace_regmap_hw_write_done(map, reg, 1); 2438 } 2439 return ret; 2440 } 2441 2442 static unsigned int _regmap_register_page(struct regmap *map, 2443 unsigned int reg, 2444 struct regmap_range_node *range) 2445 { 2446 unsigned int win_page = (reg - range->range_min) / range->window_len; 2447 2448 return win_page; 2449 } 2450 2451 static int _regmap_range_multi_paged_reg_write(struct regmap *map, 2452 struct reg_sequence *regs, 2453 size_t num_regs) 2454 { 2455 int ret; 2456 int i, n; 2457 struct reg_sequence *base; 2458 unsigned int this_page = 0; 2459 unsigned int page_change = 0; 2460 /* 2461 * the set of registers are not neccessarily in order, but 2462 * since the order of write must be preserved this algorithm 2463 * chops the set each time the page changes. This also applies 2464 * if there is a delay required at any point in the sequence. 2465 */ 2466 base = regs; 2467 for (i = 0, n = 0; i < num_regs; i++, n++) { 2468 unsigned int reg = regs[i].reg; 2469 struct regmap_range_node *range; 2470 2471 range = _regmap_range_lookup(map, reg); 2472 if (range) { 2473 unsigned int win_page = _regmap_register_page(map, reg, 2474 range); 2475 2476 if (i == 0) 2477 this_page = win_page; 2478 if (win_page != this_page) { 2479 this_page = win_page; 2480 page_change = 1; 2481 } 2482 } 2483 2484 /* If we have both a page change and a delay make sure to 2485 * write the regs and apply the delay before we change the 2486 * page. 2487 */ 2488 2489 if (page_change || regs[i].delay_us) { 2490 2491 /* For situations where the first write requires 2492 * a delay we need to make sure we don't call 2493 * raw_multi_reg_write with n=0 2494 * This can't occur with page breaks as we 2495 * never write on the first iteration 2496 */ 2497 if (regs[i].delay_us && i == 0) 2498 n = 1; 2499 2500 ret = _regmap_raw_multi_reg_write(map, base, n); 2501 if (ret != 0) 2502 return ret; 2503 2504 if (regs[i].delay_us) { 2505 if (map->can_sleep) 2506 fsleep(regs[i].delay_us); 2507 else 2508 udelay(regs[i].delay_us); 2509 } 2510 2511 base += n; 2512 n = 0; 2513 2514 if (page_change) { 2515 ret = _regmap_select_page(map, 2516 &base[n].reg, 2517 range, 1); 2518 if (ret != 0) 2519 return ret; 2520 2521 page_change = 0; 2522 } 2523 2524 } 2525 2526 } 2527 if (n > 0) 2528 return _regmap_raw_multi_reg_write(map, base, n); 2529 return 0; 2530 } 2531 2532 static int _regmap_multi_reg_write(struct regmap *map, 2533 const struct reg_sequence *regs, 2534 size_t num_regs) 2535 { 2536 int i; 2537 int ret; 2538 2539 if (!map->can_multi_write) { 2540 for (i = 0; i < num_regs; i++) { 2541 ret = _regmap_write(map, regs[i].reg, regs[i].def); 2542 if (ret != 0) 2543 return ret; 2544 2545 if (regs[i].delay_us) { 2546 if (map->can_sleep) 2547 fsleep(regs[i].delay_us); 2548 else 2549 udelay(regs[i].delay_us); 2550 } 2551 } 2552 return 0; 2553 } 2554 2555 if (!map->format.parse_inplace) 2556 return -EINVAL; 2557 2558 if (map->writeable_reg) 2559 for (i = 0; i < num_regs; i++) { 2560 int reg = regs[i].reg; 2561 if (!map->writeable_reg(map->dev, reg)) 2562 return -EINVAL; 2563 if (!IS_ALIGNED(reg, map->reg_stride)) 2564 return -EINVAL; 2565 } 2566 2567 if (!map->cache_bypass) { 2568 for (i = 0; i < num_regs; i++) { 2569 unsigned int val = regs[i].def; 2570 unsigned int reg = regs[i].reg; 2571 ret = regcache_write(map, reg, val); 2572 if (ret) { 2573 dev_err(map->dev, 2574 "Error in caching of register: %x ret: %d\n", 2575 reg, ret); 2576 return ret; 2577 } 2578 } 2579 if (map->cache_only) { 2580 map->cache_dirty = true; 2581 return 0; 2582 } 2583 } 2584 2585 WARN_ON(!map->bus); 2586 2587 for (i = 0; i < num_regs; i++) { 2588 unsigned int reg = regs[i].reg; 2589 struct regmap_range_node *range; 2590 2591 /* Coalesce all the writes between a page break or a delay 2592 * in a sequence 2593 */ 2594 range = _regmap_range_lookup(map, reg); 2595 if (range || regs[i].delay_us) { 2596 size_t len = sizeof(struct reg_sequence)*num_regs; 2597 struct reg_sequence *base = kmemdup(regs, len, 2598 GFP_KERNEL); 2599 if (!base) 2600 return -ENOMEM; 2601 ret = _regmap_range_multi_paged_reg_write(map, base, 2602 num_regs); 2603 kfree(base); 2604 2605 return ret; 2606 } 2607 } 2608 return _regmap_raw_multi_reg_write(map, regs, num_regs); 2609 } 2610 2611 /** 2612 * regmap_multi_reg_write() - Write multiple registers to the device 2613 * 2614 * @map: Register map to write to 2615 * @regs: Array of structures containing register,value to be written 2616 * @num_regs: Number of registers to write 2617 * 2618 * Write multiple registers to the device where the set of register, value 2619 * pairs are supplied in any order, possibly not all in a single range. 2620 * 2621 * The 'normal' block write mode will send ultimately send data on the 2622 * target bus as R,V1,V2,V3,..,Vn where successively higher registers are 2623 * addressed. However, this alternative block multi write mode will send 2624 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device 2625 * must of course support the mode. 2626 * 2627 * A value of zero will be returned on success, a negative errno will be 2628 * returned in error cases. 2629 */ 2630 int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs, 2631 int num_regs) 2632 { 2633 int ret; 2634 2635 map->lock(map->lock_arg); 2636 2637 ret = _regmap_multi_reg_write(map, regs, num_regs); 2638 2639 map->unlock(map->lock_arg); 2640 2641 return ret; 2642 } 2643 EXPORT_SYMBOL_GPL(regmap_multi_reg_write); 2644 2645 /** 2646 * regmap_multi_reg_write_bypassed() - Write multiple registers to the 2647 * device but not the cache 2648 * 2649 * @map: Register map to write to 2650 * @regs: Array of structures containing register,value to be written 2651 * @num_regs: Number of registers to write 2652 * 2653 * Write multiple registers to the device but not the cache where the set 2654 * of register are supplied in any order. 2655 * 2656 * This function is intended to be used for writing a large block of data 2657 * atomically to the device in single transfer for those I2C client devices 2658 * that implement this alternative block write mode. 2659 * 2660 * A value of zero will be returned on success, a negative errno will 2661 * be returned in error cases. 2662 */ 2663 int regmap_multi_reg_write_bypassed(struct regmap *map, 2664 const struct reg_sequence *regs, 2665 int num_regs) 2666 { 2667 int ret; 2668 bool bypass; 2669 2670 map->lock(map->lock_arg); 2671 2672 bypass = map->cache_bypass; 2673 map->cache_bypass = true; 2674 2675 ret = _regmap_multi_reg_write(map, regs, num_regs); 2676 2677 map->cache_bypass = bypass; 2678 2679 map->unlock(map->lock_arg); 2680 2681 return ret; 2682 } 2683 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed); 2684 2685 /** 2686 * regmap_raw_write_async() - Write raw values to one or more registers 2687 * asynchronously 2688 * 2689 * @map: Register map to write to 2690 * @reg: Initial register to write to 2691 * @val: Block of data to be written, laid out for direct transmission to the 2692 * device. Must be valid until regmap_async_complete() is called. 2693 * @val_len: Length of data pointed to by val. 2694 * 2695 * This function is intended to be used for things like firmware 2696 * download where a large block of data needs to be transferred to the 2697 * device. No formatting will be done on the data provided. 2698 * 2699 * If supported by the underlying bus the write will be scheduled 2700 * asynchronously, helping maximise I/O speed on higher speed buses 2701 * like SPI. regmap_async_complete() can be called to ensure that all 2702 * asynchrnous writes have been completed. 2703 * 2704 * A value of zero will be returned on success, a negative errno will 2705 * be returned in error cases. 2706 */ 2707 int regmap_raw_write_async(struct regmap *map, unsigned int reg, 2708 const void *val, size_t val_len) 2709 { 2710 int ret; 2711 2712 if (val_len % map->format.val_bytes) 2713 return -EINVAL; 2714 if (!IS_ALIGNED(reg, map->reg_stride)) 2715 return -EINVAL; 2716 2717 map->lock(map->lock_arg); 2718 2719 map->async = true; 2720 2721 ret = _regmap_raw_write(map, reg, val, val_len, false); 2722 2723 map->async = false; 2724 2725 map->unlock(map->lock_arg); 2726 2727 return ret; 2728 } 2729 EXPORT_SYMBOL_GPL(regmap_raw_write_async); 2730 2731 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val, 2732 unsigned int val_len, bool noinc) 2733 { 2734 struct regmap_range_node *range; 2735 int ret; 2736 2737 if (!map->read) 2738 return -EINVAL; 2739 2740 range = _regmap_range_lookup(map, reg); 2741 if (range) { 2742 ret = _regmap_select_page(map, ®, range, 2743 noinc ? 1 : val_len / map->format.val_bytes); 2744 if (ret != 0) 2745 return ret; 2746 } 2747 2748 reg = regmap_reg_addr(map, reg); 2749 map->format.format_reg(map->work_buf, reg, map->reg_shift); 2750 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes, 2751 map->read_flag_mask); 2752 trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes); 2753 2754 ret = map->read(map->bus_context, map->work_buf, 2755 map->format.reg_bytes + map->format.pad_bytes, 2756 val, val_len); 2757 2758 trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes); 2759 2760 return ret; 2761 } 2762 2763 static int _regmap_bus_reg_read(void *context, unsigned int reg, 2764 unsigned int *val) 2765 { 2766 struct regmap *map = context; 2767 struct regmap_range_node *range; 2768 int ret; 2769 2770 range = _regmap_range_lookup(map, reg); 2771 if (range) { 2772 ret = _regmap_select_page(map, ®, range, 1); 2773 if (ret != 0) 2774 return ret; 2775 } 2776 2777 reg = regmap_reg_addr(map, reg); 2778 return map->bus->reg_read(map->bus_context, reg, val); 2779 } 2780 2781 static int _regmap_bus_read(void *context, unsigned int reg, 2782 unsigned int *val) 2783 { 2784 int ret; 2785 struct regmap *map = context; 2786 void *work_val = map->work_buf + map->format.reg_bytes + 2787 map->format.pad_bytes; 2788 2789 if (!map->format.parse_val) 2790 return -EINVAL; 2791 2792 ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes, false); 2793 if (ret == 0) 2794 *val = map->format.parse_val(work_val); 2795 2796 return ret; 2797 } 2798 2799 static int _regmap_read(struct regmap *map, unsigned int reg, 2800 unsigned int *val) 2801 { 2802 int ret; 2803 void *context = _regmap_map_get_context(map); 2804 2805 if (!map->cache_bypass) { 2806 ret = regcache_read(map, reg, val); 2807 if (ret == 0) 2808 return 0; 2809 } 2810 2811 if (map->cache_only) 2812 return -EBUSY; 2813 2814 if (!regmap_readable(map, reg)) 2815 return -EIO; 2816 2817 ret = map->reg_read(context, reg, val); 2818 if (ret == 0) { 2819 if (regmap_should_log(map)) 2820 dev_info(map->dev, "%x => %x\n", reg, *val); 2821 2822 trace_regmap_reg_read(map, reg, *val); 2823 2824 if (!map->cache_bypass) 2825 regcache_write(map, reg, *val); 2826 } 2827 2828 return ret; 2829 } 2830 2831 /** 2832 * regmap_read() - Read a value from a single register 2833 * 2834 * @map: Register map to read from 2835 * @reg: Register to be read from 2836 * @val: Pointer to store read value 2837 * 2838 * A value of zero will be returned on success, a negative errno will 2839 * be returned in error cases. 2840 */ 2841 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val) 2842 { 2843 int ret; 2844 2845 if (!IS_ALIGNED(reg, map->reg_stride)) 2846 return -EINVAL; 2847 2848 map->lock(map->lock_arg); 2849 2850 ret = _regmap_read(map, reg, val); 2851 2852 map->unlock(map->lock_arg); 2853 2854 return ret; 2855 } 2856 EXPORT_SYMBOL_GPL(regmap_read); 2857 2858 /** 2859 * regmap_read_bypassed() - Read a value from a single register direct 2860 * from the device, bypassing the cache 2861 * 2862 * @map: Register map to read from 2863 * @reg: Register to be read from 2864 * @val: Pointer to store read value 2865 * 2866 * A value of zero will be returned on success, a negative errno will 2867 * be returned in error cases. 2868 */ 2869 int regmap_read_bypassed(struct regmap *map, unsigned int reg, unsigned int *val) 2870 { 2871 int ret; 2872 bool bypass, cache_only; 2873 2874 if (!IS_ALIGNED(reg, map->reg_stride)) 2875 return -EINVAL; 2876 2877 map->lock(map->lock_arg); 2878 2879 bypass = map->cache_bypass; 2880 cache_only = map->cache_only; 2881 map->cache_bypass = true; 2882 map->cache_only = false; 2883 2884 ret = _regmap_read(map, reg, val); 2885 2886 map->cache_bypass = bypass; 2887 map->cache_only = cache_only; 2888 2889 map->unlock(map->lock_arg); 2890 2891 return ret; 2892 } 2893 EXPORT_SYMBOL_GPL(regmap_read_bypassed); 2894 2895 /** 2896 * regmap_raw_read() - Read raw data from the device 2897 * 2898 * @map: Register map to read from 2899 * @reg: First register to be read from 2900 * @val: Pointer to store read value 2901 * @val_len: Size of data to read 2902 * 2903 * A value of zero will be returned on success, a negative errno will 2904 * be returned in error cases. 2905 */ 2906 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val, 2907 size_t val_len) 2908 { 2909 size_t val_bytes = map->format.val_bytes; 2910 size_t val_count = val_len / val_bytes; 2911 unsigned int v; 2912 int ret, i; 2913 2914 if (val_len % map->format.val_bytes) 2915 return -EINVAL; 2916 if (!IS_ALIGNED(reg, map->reg_stride)) 2917 return -EINVAL; 2918 if (val_count == 0) 2919 return -EINVAL; 2920 2921 map->lock(map->lock_arg); 2922 2923 if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass || 2924 map->cache_type == REGCACHE_NONE) { 2925 size_t chunk_count, chunk_bytes; 2926 size_t chunk_regs = val_count; 2927 2928 if (!map->cache_bypass && map->cache_only) { 2929 ret = -EBUSY; 2930 goto out; 2931 } 2932 2933 if (!map->read) { 2934 ret = -ENOTSUPP; 2935 goto out; 2936 } 2937 2938 if (map->use_single_read) 2939 chunk_regs = 1; 2940 else if (map->max_raw_read && val_len > map->max_raw_read) 2941 chunk_regs = map->max_raw_read / val_bytes; 2942 2943 chunk_count = val_count / chunk_regs; 2944 chunk_bytes = chunk_regs * val_bytes; 2945 2946 /* Read bytes that fit into whole chunks */ 2947 for (i = 0; i < chunk_count; i++) { 2948 ret = _regmap_raw_read(map, reg, val, chunk_bytes, false); 2949 if (ret != 0) 2950 goto out; 2951 2952 reg += regmap_get_offset(map, chunk_regs); 2953 val += chunk_bytes; 2954 val_len -= chunk_bytes; 2955 } 2956 2957 /* Read remaining bytes */ 2958 if (val_len) { 2959 ret = _regmap_raw_read(map, reg, val, val_len, false); 2960 if (ret != 0) 2961 goto out; 2962 } 2963 } else { 2964 /* Otherwise go word by word for the cache; should be low 2965 * cost as we expect to hit the cache. 2966 */ 2967 for (i = 0; i < val_count; i++) { 2968 ret = _regmap_read(map, reg + regmap_get_offset(map, i), 2969 &v); 2970 if (ret != 0) 2971 goto out; 2972 2973 map->format.format_val(val + (i * val_bytes), v, 0); 2974 } 2975 } 2976 2977 out: 2978 map->unlock(map->lock_arg); 2979 2980 return ret; 2981 } 2982 EXPORT_SYMBOL_GPL(regmap_raw_read); 2983 2984 /** 2985 * regmap_noinc_read(): Read data from a register without incrementing the 2986 * register number 2987 * 2988 * @map: Register map to read from 2989 * @reg: Register to read from 2990 * @val: Pointer to data buffer 2991 * @val_len: Length of output buffer in bytes. 2992 * 2993 * The regmap API usually assumes that bulk read operations will read a 2994 * range of registers. Some devices have certain registers for which a read 2995 * operation read will read from an internal FIFO. 2996 * 2997 * The target register must be volatile but registers after it can be 2998 * completely unrelated cacheable registers. 2999 * 3000 * This will attempt multiple reads as required to read val_len bytes. 3001 * 3002 * A value of zero will be returned on success, a negative errno will be 3003 * returned in error cases. 3004 */ 3005 int regmap_noinc_read(struct regmap *map, unsigned int reg, 3006 void *val, size_t val_len) 3007 { 3008 size_t read_len; 3009 int ret; 3010 3011 if (!map->read) 3012 return -ENOTSUPP; 3013 3014 if (val_len % map->format.val_bytes) 3015 return -EINVAL; 3016 if (!IS_ALIGNED(reg, map->reg_stride)) 3017 return -EINVAL; 3018 if (val_len == 0) 3019 return -EINVAL; 3020 3021 map->lock(map->lock_arg); 3022 3023 if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) { 3024 ret = -EINVAL; 3025 goto out_unlock; 3026 } 3027 3028 /* 3029 * We have not defined the FIFO semantics for cache, as the 3030 * cache is just one value deep. Should we return the last 3031 * written value? Just avoid this by always reading the FIFO 3032 * even when using cache. Cache only will not work. 3033 */ 3034 if (!map->cache_bypass && map->cache_only) { 3035 ret = -EBUSY; 3036 goto out_unlock; 3037 } 3038 3039 /* Use the accelerated operation if we can */ 3040 if (map->bus->reg_noinc_read) { 3041 ret = regmap_noinc_readwrite(map, reg, val, val_len, false); 3042 goto out_unlock; 3043 } 3044 3045 while (val_len) { 3046 if (map->max_raw_read && map->max_raw_read < val_len) 3047 read_len = map->max_raw_read; 3048 else 3049 read_len = val_len; 3050 ret = _regmap_raw_read(map, reg, val, read_len, true); 3051 if (ret) 3052 goto out_unlock; 3053 val = ((u8 *)val) + read_len; 3054 val_len -= read_len; 3055 } 3056 3057 out_unlock: 3058 map->unlock(map->lock_arg); 3059 return ret; 3060 } 3061 EXPORT_SYMBOL_GPL(regmap_noinc_read); 3062 3063 /** 3064 * regmap_field_read(): Read a value to a single register field 3065 * 3066 * @field: Register field to read from 3067 * @val: Pointer to store read value 3068 * 3069 * A value of zero will be returned on success, a negative errno will 3070 * be returned in error cases. 3071 */ 3072 int regmap_field_read(struct regmap_field *field, unsigned int *val) 3073 { 3074 int ret; 3075 unsigned int reg_val; 3076 ret = regmap_read(field->regmap, field->reg, ®_val); 3077 if (ret != 0) 3078 return ret; 3079 3080 reg_val &= field->mask; 3081 reg_val >>= field->shift; 3082 *val = reg_val; 3083 3084 return ret; 3085 } 3086 EXPORT_SYMBOL_GPL(regmap_field_read); 3087 3088 /** 3089 * regmap_fields_read() - Read a value to a single register field with port ID 3090 * 3091 * @field: Register field to read from 3092 * @id: port ID 3093 * @val: Pointer to store read value 3094 * 3095 * A value of zero will be returned on success, a negative errno will 3096 * be returned in error cases. 3097 */ 3098 int regmap_fields_read(struct regmap_field *field, unsigned int id, 3099 unsigned int *val) 3100 { 3101 int ret; 3102 unsigned int reg_val; 3103 3104 if (id >= field->id_size) 3105 return -EINVAL; 3106 3107 ret = regmap_read(field->regmap, 3108 field->reg + (field->id_offset * id), 3109 ®_val); 3110 if (ret != 0) 3111 return ret; 3112 3113 reg_val &= field->mask; 3114 reg_val >>= field->shift; 3115 *val = reg_val; 3116 3117 return ret; 3118 } 3119 EXPORT_SYMBOL_GPL(regmap_fields_read); 3120 3121 static int _regmap_bulk_read(struct regmap *map, unsigned int reg, 3122 const unsigned int *regs, void *val, size_t val_count) 3123 { 3124 u32 *u32 = val; 3125 u16 *u16 = val; 3126 u8 *u8 = val; 3127 int ret, i; 3128 3129 map->lock(map->lock_arg); 3130 3131 for (i = 0; i < val_count; i++) { 3132 unsigned int ival; 3133 3134 if (regs) { 3135 if (!IS_ALIGNED(regs[i], map->reg_stride)) { 3136 ret = -EINVAL; 3137 goto out; 3138 } 3139 ret = _regmap_read(map, regs[i], &ival); 3140 } else { 3141 ret = _regmap_read(map, reg + regmap_get_offset(map, i), &ival); 3142 } 3143 if (ret != 0) 3144 goto out; 3145 3146 switch (map->format.val_bytes) { 3147 case 4: 3148 u32[i] = ival; 3149 break; 3150 case 2: 3151 u16[i] = ival; 3152 break; 3153 case 1: 3154 u8[i] = ival; 3155 break; 3156 default: 3157 ret = -EINVAL; 3158 goto out; 3159 } 3160 } 3161 out: 3162 map->unlock(map->lock_arg); 3163 return ret; 3164 } 3165 3166 /** 3167 * regmap_bulk_read() - Read multiple sequential registers from the device 3168 * 3169 * @map: Register map to read from 3170 * @reg: First register to be read from 3171 * @val: Pointer to store read value, in native register size for device 3172 * @val_count: Number of registers to read 3173 * 3174 * A value of zero will be returned on success, a negative errno will 3175 * be returned in error cases. 3176 */ 3177 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val, 3178 size_t val_count) 3179 { 3180 int ret, i; 3181 size_t val_bytes = map->format.val_bytes; 3182 bool vol = regmap_volatile_range(map, reg, val_count); 3183 3184 if (!IS_ALIGNED(reg, map->reg_stride)) 3185 return -EINVAL; 3186 if (val_count == 0) 3187 return -EINVAL; 3188 3189 if (map->read && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) { 3190 ret = regmap_raw_read(map, reg, val, val_bytes * val_count); 3191 if (ret != 0) 3192 return ret; 3193 3194 for (i = 0; i < val_count * val_bytes; i += val_bytes) 3195 map->format.parse_inplace(val + i); 3196 } else { 3197 ret = _regmap_bulk_read(map, reg, NULL, val, val_count); 3198 } 3199 if (!ret) 3200 trace_regmap_bulk_read(map, reg, val, val_bytes * val_count); 3201 return ret; 3202 } 3203 EXPORT_SYMBOL_GPL(regmap_bulk_read); 3204 3205 /** 3206 * regmap_multi_reg_read() - Read multiple non-sequential registers from the device 3207 * 3208 * @map: Register map to read from 3209 * @regs: Array of registers to read from 3210 * @val: Pointer to store read value, in native register size for device 3211 * @val_count: Number of registers to read 3212 * 3213 * A value of zero will be returned on success, a negative errno will 3214 * be returned in error cases. 3215 */ 3216 int regmap_multi_reg_read(struct regmap *map, const unsigned int *regs, void *val, 3217 size_t val_count) 3218 { 3219 if (val_count == 0) 3220 return -EINVAL; 3221 3222 return _regmap_bulk_read(map, 0, regs, val, val_count); 3223 } 3224 EXPORT_SYMBOL_GPL(regmap_multi_reg_read); 3225 3226 static int _regmap_update_bits(struct regmap *map, unsigned int reg, 3227 unsigned int mask, unsigned int val, 3228 bool *change, bool force_write) 3229 { 3230 int ret; 3231 unsigned int tmp, orig; 3232 3233 if (change) 3234 *change = false; 3235 3236 if (regmap_volatile(map, reg) && map->reg_update_bits) { 3237 reg = regmap_reg_addr(map, reg); 3238 ret = map->reg_update_bits(map->bus_context, reg, mask, val); 3239 if (ret == 0 && change) 3240 *change = true; 3241 } else { 3242 ret = _regmap_read(map, reg, &orig); 3243 if (ret != 0) 3244 return ret; 3245 3246 tmp = orig & ~mask; 3247 tmp |= val & mask; 3248 3249 if (force_write || (tmp != orig) || map->force_write_field) { 3250 ret = _regmap_write(map, reg, tmp); 3251 if (ret == 0 && change) 3252 *change = true; 3253 } 3254 } 3255 3256 return ret; 3257 } 3258 3259 /** 3260 * regmap_update_bits_base() - Perform a read/modify/write cycle on a register 3261 * 3262 * @map: Register map to update 3263 * @reg: Register to update 3264 * @mask: Bitmask to change 3265 * @val: New value for bitmask 3266 * @change: Boolean indicating if a write was done 3267 * @async: Boolean indicating asynchronously 3268 * @force: Boolean indicating use force update 3269 * 3270 * Perform a read/modify/write cycle on a register map with change, async, force 3271 * options. 3272 * 3273 * If async is true: 3274 * 3275 * With most buses the read must be done synchronously so this is most useful 3276 * for devices with a cache which do not need to interact with the hardware to 3277 * determine the current register value. 3278 * 3279 * Returns zero for success, a negative number on error. 3280 */ 3281 int regmap_update_bits_base(struct regmap *map, unsigned int reg, 3282 unsigned int mask, unsigned int val, 3283 bool *change, bool async, bool force) 3284 { 3285 int ret; 3286 3287 map->lock(map->lock_arg); 3288 3289 map->async = async; 3290 3291 ret = _regmap_update_bits(map, reg, mask, val, change, force); 3292 3293 map->async = false; 3294 3295 map->unlock(map->lock_arg); 3296 3297 return ret; 3298 } 3299 EXPORT_SYMBOL_GPL(regmap_update_bits_base); 3300 3301 /** 3302 * regmap_test_bits() - Check if all specified bits are set in a register. 3303 * 3304 * @map: Register map to operate on 3305 * @reg: Register to read from 3306 * @bits: Bits to test 3307 * 3308 * Returns 0 if at least one of the tested bits is not set, 1 if all tested 3309 * bits are set and a negative error number if the underlying regmap_read() 3310 * fails. 3311 */ 3312 int regmap_test_bits(struct regmap *map, unsigned int reg, unsigned int bits) 3313 { 3314 unsigned int val; 3315 int ret; 3316 3317 ret = regmap_read(map, reg, &val); 3318 if (ret) 3319 return ret; 3320 3321 return (val & bits) == bits; 3322 } 3323 EXPORT_SYMBOL_GPL(regmap_test_bits); 3324 3325 void regmap_async_complete_cb(struct regmap_async *async, int ret) 3326 { 3327 struct regmap *map = async->map; 3328 bool wake; 3329 3330 trace_regmap_async_io_complete(map); 3331 3332 spin_lock(&map->async_lock); 3333 list_move(&async->list, &map->async_free); 3334 wake = list_empty(&map->async_list); 3335 3336 if (ret != 0) 3337 map->async_ret = ret; 3338 3339 spin_unlock(&map->async_lock); 3340 3341 if (wake) 3342 wake_up(&map->async_waitq); 3343 } 3344 EXPORT_SYMBOL_GPL(regmap_async_complete_cb); 3345 3346 static int regmap_async_is_done(struct regmap *map) 3347 { 3348 unsigned long flags; 3349 int ret; 3350 3351 spin_lock_irqsave(&map->async_lock, flags); 3352 ret = list_empty(&map->async_list); 3353 spin_unlock_irqrestore(&map->async_lock, flags); 3354 3355 return ret; 3356 } 3357 3358 /** 3359 * regmap_async_complete - Ensure all asynchronous I/O has completed. 3360 * 3361 * @map: Map to operate on. 3362 * 3363 * Blocks until any pending asynchronous I/O has completed. Returns 3364 * an error code for any failed I/O operations. 3365 */ 3366 int regmap_async_complete(struct regmap *map) 3367 { 3368 unsigned long flags; 3369 int ret; 3370 3371 /* Nothing to do with no async support */ 3372 if (!map->bus || !map->bus->async_write) 3373 return 0; 3374 3375 trace_regmap_async_complete_start(map); 3376 3377 wait_event(map->async_waitq, regmap_async_is_done(map)); 3378 3379 spin_lock_irqsave(&map->async_lock, flags); 3380 ret = map->async_ret; 3381 map->async_ret = 0; 3382 spin_unlock_irqrestore(&map->async_lock, flags); 3383 3384 trace_regmap_async_complete_done(map); 3385 3386 return ret; 3387 } 3388 EXPORT_SYMBOL_GPL(regmap_async_complete); 3389 3390 /** 3391 * regmap_register_patch - Register and apply register updates to be applied 3392 * on device initialistion 3393 * 3394 * @map: Register map to apply updates to. 3395 * @regs: Values to update. 3396 * @num_regs: Number of entries in regs. 3397 * 3398 * Register a set of register updates to be applied to the device 3399 * whenever the device registers are synchronised with the cache and 3400 * apply them immediately. Typically this is used to apply 3401 * corrections to be applied to the device defaults on startup, such 3402 * as the updates some vendors provide to undocumented registers. 3403 * 3404 * The caller must ensure that this function cannot be called 3405 * concurrently with either itself or regcache_sync(). 3406 */ 3407 int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs, 3408 int num_regs) 3409 { 3410 struct reg_sequence *p; 3411 int ret; 3412 bool bypass; 3413 3414 if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n", 3415 num_regs)) 3416 return 0; 3417 3418 p = krealloc(map->patch, 3419 sizeof(struct reg_sequence) * (map->patch_regs + num_regs), 3420 GFP_KERNEL); 3421 if (p) { 3422 memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs)); 3423 map->patch = p; 3424 map->patch_regs += num_regs; 3425 } else { 3426 return -ENOMEM; 3427 } 3428 3429 map->lock(map->lock_arg); 3430 3431 bypass = map->cache_bypass; 3432 3433 map->cache_bypass = true; 3434 map->async = true; 3435 3436 ret = _regmap_multi_reg_write(map, regs, num_regs); 3437 3438 map->async = false; 3439 map->cache_bypass = bypass; 3440 3441 map->unlock(map->lock_arg); 3442 3443 regmap_async_complete(map); 3444 3445 return ret; 3446 } 3447 EXPORT_SYMBOL_GPL(regmap_register_patch); 3448 3449 /** 3450 * regmap_get_val_bytes() - Report the size of a register value 3451 * 3452 * @map: Register map to operate on. 3453 * 3454 * Report the size of a register value, mainly intended to for use by 3455 * generic infrastructure built on top of regmap. 3456 */ 3457 int regmap_get_val_bytes(struct regmap *map) 3458 { 3459 if (map->format.format_write) 3460 return -EINVAL; 3461 3462 return map->format.val_bytes; 3463 } 3464 EXPORT_SYMBOL_GPL(regmap_get_val_bytes); 3465 3466 /** 3467 * regmap_get_max_register() - Report the max register value 3468 * 3469 * @map: Register map to operate on. 3470 * 3471 * Report the max register value, mainly intended to for use by 3472 * generic infrastructure built on top of regmap. 3473 */ 3474 int regmap_get_max_register(struct regmap *map) 3475 { 3476 return map->max_register_is_set ? map->max_register : -EINVAL; 3477 } 3478 EXPORT_SYMBOL_GPL(regmap_get_max_register); 3479 3480 /** 3481 * regmap_get_reg_stride() - Report the register address stride 3482 * 3483 * @map: Register map to operate on. 3484 * 3485 * Report the register address stride, mainly intended to for use by 3486 * generic infrastructure built on top of regmap. 3487 */ 3488 int regmap_get_reg_stride(struct regmap *map) 3489 { 3490 return map->reg_stride; 3491 } 3492 EXPORT_SYMBOL_GPL(regmap_get_reg_stride); 3493 3494 /** 3495 * regmap_might_sleep() - Returns whether a regmap access might sleep. 3496 * 3497 * @map: Register map to operate on. 3498 * 3499 * Returns true if an access to the register might sleep, else false. 3500 */ 3501 bool regmap_might_sleep(struct regmap *map) 3502 { 3503 return map->can_sleep; 3504 } 3505 EXPORT_SYMBOL_GPL(regmap_might_sleep); 3506 3507 int regmap_parse_val(struct regmap *map, const void *buf, 3508 unsigned int *val) 3509 { 3510 if (!map->format.parse_val) 3511 return -EINVAL; 3512 3513 *val = map->format.parse_val(buf); 3514 3515 return 0; 3516 } 3517 EXPORT_SYMBOL_GPL(regmap_parse_val); 3518 3519 static int __init regmap_initcall(void) 3520 { 3521 regmap_debugfs_initcall(); 3522 3523 return 0; 3524 } 3525 postcore_initcall(regmap_initcall); 3526