xref: /linux/drivers/base/regmap/regmap.c (revision 02091cbe9cc4f18167208eec1d6de636cc731817)
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // Register map access API
4 //
5 // Copyright 2011 Wolfson Microelectronics plc
6 //
7 // Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8 
9 #include <linux/device.h>
10 #include <linux/slab.h>
11 #include <linux/export.h>
12 #include <linux/mutex.h>
13 #include <linux/err.h>
14 #include <linux/property.h>
15 #include <linux/rbtree.h>
16 #include <linux/sched.h>
17 #include <linux/delay.h>
18 #include <linux/log2.h>
19 #include <linux/hwspinlock.h>
20 #include <asm/unaligned.h>
21 
22 #define CREATE_TRACE_POINTS
23 #include "trace.h"
24 
25 #include "internal.h"
26 
27 /*
28  * Sometimes for failures during very early init the trace
29  * infrastructure isn't available early enough to be used.  For this
30  * sort of problem defining LOG_DEVICE will add printks for basic
31  * register I/O on a specific device.
32  */
33 #undef LOG_DEVICE
34 
35 #ifdef LOG_DEVICE
36 static inline bool regmap_should_log(struct regmap *map)
37 {
38 	return (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0);
39 }
40 #else
41 static inline bool regmap_should_log(struct regmap *map) { return false; }
42 #endif
43 
44 
45 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
46 			       unsigned int mask, unsigned int val,
47 			       bool *change, bool force_write);
48 
49 static int _regmap_bus_reg_read(void *context, unsigned int reg,
50 				unsigned int *val);
51 static int _regmap_bus_read(void *context, unsigned int reg,
52 			    unsigned int *val);
53 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
54 				       unsigned int val);
55 static int _regmap_bus_reg_write(void *context, unsigned int reg,
56 				 unsigned int val);
57 static int _regmap_bus_raw_write(void *context, unsigned int reg,
58 				 unsigned int val);
59 
60 bool regmap_reg_in_ranges(unsigned int reg,
61 			  const struct regmap_range *ranges,
62 			  unsigned int nranges)
63 {
64 	const struct regmap_range *r;
65 	int i;
66 
67 	for (i = 0, r = ranges; i < nranges; i++, r++)
68 		if (regmap_reg_in_range(reg, r))
69 			return true;
70 	return false;
71 }
72 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
73 
74 bool regmap_check_range_table(struct regmap *map, unsigned int reg,
75 			      const struct regmap_access_table *table)
76 {
77 	/* Check "no ranges" first */
78 	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
79 		return false;
80 
81 	/* In case zero "yes ranges" are supplied, any reg is OK */
82 	if (!table->n_yes_ranges)
83 		return true;
84 
85 	return regmap_reg_in_ranges(reg, table->yes_ranges,
86 				    table->n_yes_ranges);
87 }
88 EXPORT_SYMBOL_GPL(regmap_check_range_table);
89 
90 bool regmap_writeable(struct regmap *map, unsigned int reg)
91 {
92 	if (map->max_register && reg > map->max_register)
93 		return false;
94 
95 	if (map->writeable_reg)
96 		return map->writeable_reg(map->dev, reg);
97 
98 	if (map->wr_table)
99 		return regmap_check_range_table(map, reg, map->wr_table);
100 
101 	return true;
102 }
103 
104 bool regmap_cached(struct regmap *map, unsigned int reg)
105 {
106 	int ret;
107 	unsigned int val;
108 
109 	if (map->cache_type == REGCACHE_NONE)
110 		return false;
111 
112 	if (!map->cache_ops)
113 		return false;
114 
115 	if (map->max_register && reg > map->max_register)
116 		return false;
117 
118 	map->lock(map->lock_arg);
119 	ret = regcache_read(map, reg, &val);
120 	map->unlock(map->lock_arg);
121 	if (ret)
122 		return false;
123 
124 	return true;
125 }
126 
127 bool regmap_readable(struct regmap *map, unsigned int reg)
128 {
129 	if (!map->reg_read)
130 		return false;
131 
132 	if (map->max_register && reg > map->max_register)
133 		return false;
134 
135 	if (map->format.format_write)
136 		return false;
137 
138 	if (map->readable_reg)
139 		return map->readable_reg(map->dev, reg);
140 
141 	if (map->rd_table)
142 		return regmap_check_range_table(map, reg, map->rd_table);
143 
144 	return true;
145 }
146 
147 bool regmap_volatile(struct regmap *map, unsigned int reg)
148 {
149 	if (!map->format.format_write && !regmap_readable(map, reg))
150 		return false;
151 
152 	if (map->volatile_reg)
153 		return map->volatile_reg(map->dev, reg);
154 
155 	if (map->volatile_table)
156 		return regmap_check_range_table(map, reg, map->volatile_table);
157 
158 	if (map->cache_ops)
159 		return false;
160 	else
161 		return true;
162 }
163 
164 bool regmap_precious(struct regmap *map, unsigned int reg)
165 {
166 	if (!regmap_readable(map, reg))
167 		return false;
168 
169 	if (map->precious_reg)
170 		return map->precious_reg(map->dev, reg);
171 
172 	if (map->precious_table)
173 		return regmap_check_range_table(map, reg, map->precious_table);
174 
175 	return false;
176 }
177 
178 bool regmap_writeable_noinc(struct regmap *map, unsigned int reg)
179 {
180 	if (map->writeable_noinc_reg)
181 		return map->writeable_noinc_reg(map->dev, reg);
182 
183 	if (map->wr_noinc_table)
184 		return regmap_check_range_table(map, reg, map->wr_noinc_table);
185 
186 	return true;
187 }
188 
189 bool regmap_readable_noinc(struct regmap *map, unsigned int reg)
190 {
191 	if (map->readable_noinc_reg)
192 		return map->readable_noinc_reg(map->dev, reg);
193 
194 	if (map->rd_noinc_table)
195 		return regmap_check_range_table(map, reg, map->rd_noinc_table);
196 
197 	return true;
198 }
199 
200 static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
201 	size_t num)
202 {
203 	unsigned int i;
204 
205 	for (i = 0; i < num; i++)
206 		if (!regmap_volatile(map, reg + regmap_get_offset(map, i)))
207 			return false;
208 
209 	return true;
210 }
211 
212 static void regmap_format_12_20_write(struct regmap *map,
213 				     unsigned int reg, unsigned int val)
214 {
215 	u8 *out = map->work_buf;
216 
217 	out[0] = reg >> 4;
218 	out[1] = (reg << 4) | (val >> 16);
219 	out[2] = val >> 8;
220 	out[3] = val;
221 }
222 
223 
224 static void regmap_format_2_6_write(struct regmap *map,
225 				     unsigned int reg, unsigned int val)
226 {
227 	u8 *out = map->work_buf;
228 
229 	*out = (reg << 6) | val;
230 }
231 
232 static void regmap_format_4_12_write(struct regmap *map,
233 				     unsigned int reg, unsigned int val)
234 {
235 	__be16 *out = map->work_buf;
236 	*out = cpu_to_be16((reg << 12) | val);
237 }
238 
239 static void regmap_format_7_9_write(struct regmap *map,
240 				    unsigned int reg, unsigned int val)
241 {
242 	__be16 *out = map->work_buf;
243 	*out = cpu_to_be16((reg << 9) | val);
244 }
245 
246 static void regmap_format_7_17_write(struct regmap *map,
247 				    unsigned int reg, unsigned int val)
248 {
249 	u8 *out = map->work_buf;
250 
251 	out[2] = val;
252 	out[1] = val >> 8;
253 	out[0] = (val >> 16) | (reg << 1);
254 }
255 
256 static void regmap_format_10_14_write(struct regmap *map,
257 				    unsigned int reg, unsigned int val)
258 {
259 	u8 *out = map->work_buf;
260 
261 	out[2] = val;
262 	out[1] = (val >> 8) | (reg << 6);
263 	out[0] = reg >> 2;
264 }
265 
266 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
267 {
268 	u8 *b = buf;
269 
270 	b[0] = val << shift;
271 }
272 
273 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
274 {
275 	put_unaligned_be16(val << shift, buf);
276 }
277 
278 static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
279 {
280 	put_unaligned_le16(val << shift, buf);
281 }
282 
283 static void regmap_format_16_native(void *buf, unsigned int val,
284 				    unsigned int shift)
285 {
286 	u16 v = val << shift;
287 
288 	memcpy(buf, &v, sizeof(v));
289 }
290 
291 static void regmap_format_24_be(void *buf, unsigned int val, unsigned int shift)
292 {
293 	put_unaligned_be24(val << shift, buf);
294 }
295 
296 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
297 {
298 	put_unaligned_be32(val << shift, buf);
299 }
300 
301 static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
302 {
303 	put_unaligned_le32(val << shift, buf);
304 }
305 
306 static void regmap_format_32_native(void *buf, unsigned int val,
307 				    unsigned int shift)
308 {
309 	u32 v = val << shift;
310 
311 	memcpy(buf, &v, sizeof(v));
312 }
313 
314 static void regmap_parse_inplace_noop(void *buf)
315 {
316 }
317 
318 static unsigned int regmap_parse_8(const void *buf)
319 {
320 	const u8 *b = buf;
321 
322 	return b[0];
323 }
324 
325 static unsigned int regmap_parse_16_be(const void *buf)
326 {
327 	return get_unaligned_be16(buf);
328 }
329 
330 static unsigned int regmap_parse_16_le(const void *buf)
331 {
332 	return get_unaligned_le16(buf);
333 }
334 
335 static void regmap_parse_16_be_inplace(void *buf)
336 {
337 	u16 v = get_unaligned_be16(buf);
338 
339 	memcpy(buf, &v, sizeof(v));
340 }
341 
342 static void regmap_parse_16_le_inplace(void *buf)
343 {
344 	u16 v = get_unaligned_le16(buf);
345 
346 	memcpy(buf, &v, sizeof(v));
347 }
348 
349 static unsigned int regmap_parse_16_native(const void *buf)
350 {
351 	u16 v;
352 
353 	memcpy(&v, buf, sizeof(v));
354 	return v;
355 }
356 
357 static unsigned int regmap_parse_24_be(const void *buf)
358 {
359 	return get_unaligned_be24(buf);
360 }
361 
362 static unsigned int regmap_parse_32_be(const void *buf)
363 {
364 	return get_unaligned_be32(buf);
365 }
366 
367 static unsigned int regmap_parse_32_le(const void *buf)
368 {
369 	return get_unaligned_le32(buf);
370 }
371 
372 static void regmap_parse_32_be_inplace(void *buf)
373 {
374 	u32 v = get_unaligned_be32(buf);
375 
376 	memcpy(buf, &v, sizeof(v));
377 }
378 
379 static void regmap_parse_32_le_inplace(void *buf)
380 {
381 	u32 v = get_unaligned_le32(buf);
382 
383 	memcpy(buf, &v, sizeof(v));
384 }
385 
386 static unsigned int regmap_parse_32_native(const void *buf)
387 {
388 	u32 v;
389 
390 	memcpy(&v, buf, sizeof(v));
391 	return v;
392 }
393 
394 static void regmap_lock_hwlock(void *__map)
395 {
396 	struct regmap *map = __map;
397 
398 	hwspin_lock_timeout(map->hwlock, UINT_MAX);
399 }
400 
401 static void regmap_lock_hwlock_irq(void *__map)
402 {
403 	struct regmap *map = __map;
404 
405 	hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
406 }
407 
408 static void regmap_lock_hwlock_irqsave(void *__map)
409 {
410 	struct regmap *map = __map;
411 
412 	hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
413 				    &map->spinlock_flags);
414 }
415 
416 static void regmap_unlock_hwlock(void *__map)
417 {
418 	struct regmap *map = __map;
419 
420 	hwspin_unlock(map->hwlock);
421 }
422 
423 static void regmap_unlock_hwlock_irq(void *__map)
424 {
425 	struct regmap *map = __map;
426 
427 	hwspin_unlock_irq(map->hwlock);
428 }
429 
430 static void regmap_unlock_hwlock_irqrestore(void *__map)
431 {
432 	struct regmap *map = __map;
433 
434 	hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
435 }
436 
437 static void regmap_lock_unlock_none(void *__map)
438 {
439 
440 }
441 
442 static void regmap_lock_mutex(void *__map)
443 {
444 	struct regmap *map = __map;
445 	mutex_lock(&map->mutex);
446 }
447 
448 static void regmap_unlock_mutex(void *__map)
449 {
450 	struct regmap *map = __map;
451 	mutex_unlock(&map->mutex);
452 }
453 
454 static void regmap_lock_spinlock(void *__map)
455 __acquires(&map->spinlock)
456 {
457 	struct regmap *map = __map;
458 	unsigned long flags;
459 
460 	spin_lock_irqsave(&map->spinlock, flags);
461 	map->spinlock_flags = flags;
462 }
463 
464 static void regmap_unlock_spinlock(void *__map)
465 __releases(&map->spinlock)
466 {
467 	struct regmap *map = __map;
468 	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
469 }
470 
471 static void regmap_lock_raw_spinlock(void *__map)
472 __acquires(&map->raw_spinlock)
473 {
474 	struct regmap *map = __map;
475 	unsigned long flags;
476 
477 	raw_spin_lock_irqsave(&map->raw_spinlock, flags);
478 	map->raw_spinlock_flags = flags;
479 }
480 
481 static void regmap_unlock_raw_spinlock(void *__map)
482 __releases(&map->raw_spinlock)
483 {
484 	struct regmap *map = __map;
485 	raw_spin_unlock_irqrestore(&map->raw_spinlock, map->raw_spinlock_flags);
486 }
487 
488 static void dev_get_regmap_release(struct device *dev, void *res)
489 {
490 	/*
491 	 * We don't actually have anything to do here; the goal here
492 	 * is not to manage the regmap but to provide a simple way to
493 	 * get the regmap back given a struct device.
494 	 */
495 }
496 
497 static bool _regmap_range_add(struct regmap *map,
498 			      struct regmap_range_node *data)
499 {
500 	struct rb_root *root = &map->range_tree;
501 	struct rb_node **new = &(root->rb_node), *parent = NULL;
502 
503 	while (*new) {
504 		struct regmap_range_node *this =
505 			rb_entry(*new, struct regmap_range_node, node);
506 
507 		parent = *new;
508 		if (data->range_max < this->range_min)
509 			new = &((*new)->rb_left);
510 		else if (data->range_min > this->range_max)
511 			new = &((*new)->rb_right);
512 		else
513 			return false;
514 	}
515 
516 	rb_link_node(&data->node, parent, new);
517 	rb_insert_color(&data->node, root);
518 
519 	return true;
520 }
521 
522 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
523 						      unsigned int reg)
524 {
525 	struct rb_node *node = map->range_tree.rb_node;
526 
527 	while (node) {
528 		struct regmap_range_node *this =
529 			rb_entry(node, struct regmap_range_node, node);
530 
531 		if (reg < this->range_min)
532 			node = node->rb_left;
533 		else if (reg > this->range_max)
534 			node = node->rb_right;
535 		else
536 			return this;
537 	}
538 
539 	return NULL;
540 }
541 
542 static void regmap_range_exit(struct regmap *map)
543 {
544 	struct rb_node *next;
545 	struct regmap_range_node *range_node;
546 
547 	next = rb_first(&map->range_tree);
548 	while (next) {
549 		range_node = rb_entry(next, struct regmap_range_node, node);
550 		next = rb_next(&range_node->node);
551 		rb_erase(&range_node->node, &map->range_tree);
552 		kfree(range_node);
553 	}
554 
555 	kfree(map->selector_work_buf);
556 }
557 
558 static int regmap_set_name(struct regmap *map, const struct regmap_config *config)
559 {
560 	if (config->name) {
561 		const char *name = kstrdup_const(config->name, GFP_KERNEL);
562 
563 		if (!name)
564 			return -ENOMEM;
565 
566 		kfree_const(map->name);
567 		map->name = name;
568 	}
569 
570 	return 0;
571 }
572 
573 int regmap_attach_dev(struct device *dev, struct regmap *map,
574 		      const struct regmap_config *config)
575 {
576 	struct regmap **m;
577 	int ret;
578 
579 	map->dev = dev;
580 
581 	ret = regmap_set_name(map, config);
582 	if (ret)
583 		return ret;
584 
585 	regmap_debugfs_exit(map);
586 	regmap_debugfs_init(map);
587 
588 	/* Add a devres resource for dev_get_regmap() */
589 	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
590 	if (!m) {
591 		regmap_debugfs_exit(map);
592 		return -ENOMEM;
593 	}
594 	*m = map;
595 	devres_add(dev, m);
596 
597 	return 0;
598 }
599 EXPORT_SYMBOL_GPL(regmap_attach_dev);
600 
601 static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
602 					const struct regmap_config *config)
603 {
604 	enum regmap_endian endian;
605 
606 	/* Retrieve the endianness specification from the regmap config */
607 	endian = config->reg_format_endian;
608 
609 	/* If the regmap config specified a non-default value, use that */
610 	if (endian != REGMAP_ENDIAN_DEFAULT)
611 		return endian;
612 
613 	/* Retrieve the endianness specification from the bus config */
614 	if (bus && bus->reg_format_endian_default)
615 		endian = bus->reg_format_endian_default;
616 
617 	/* If the bus specified a non-default value, use that */
618 	if (endian != REGMAP_ENDIAN_DEFAULT)
619 		return endian;
620 
621 	/* Use this if no other value was found */
622 	return REGMAP_ENDIAN_BIG;
623 }
624 
625 enum regmap_endian regmap_get_val_endian(struct device *dev,
626 					 const struct regmap_bus *bus,
627 					 const struct regmap_config *config)
628 {
629 	struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
630 	enum regmap_endian endian;
631 
632 	/* Retrieve the endianness specification from the regmap config */
633 	endian = config->val_format_endian;
634 
635 	/* If the regmap config specified a non-default value, use that */
636 	if (endian != REGMAP_ENDIAN_DEFAULT)
637 		return endian;
638 
639 	/* If the firmware node exist try to get endianness from it */
640 	if (fwnode_property_read_bool(fwnode, "big-endian"))
641 		endian = REGMAP_ENDIAN_BIG;
642 	else if (fwnode_property_read_bool(fwnode, "little-endian"))
643 		endian = REGMAP_ENDIAN_LITTLE;
644 	else if (fwnode_property_read_bool(fwnode, "native-endian"))
645 		endian = REGMAP_ENDIAN_NATIVE;
646 
647 	/* If the endianness was specified in fwnode, use that */
648 	if (endian != REGMAP_ENDIAN_DEFAULT)
649 		return endian;
650 
651 	/* Retrieve the endianness specification from the bus config */
652 	if (bus && bus->val_format_endian_default)
653 		endian = bus->val_format_endian_default;
654 
655 	/* If the bus specified a non-default value, use that */
656 	if (endian != REGMAP_ENDIAN_DEFAULT)
657 		return endian;
658 
659 	/* Use this if no other value was found */
660 	return REGMAP_ENDIAN_BIG;
661 }
662 EXPORT_SYMBOL_GPL(regmap_get_val_endian);
663 
664 struct regmap *__regmap_init(struct device *dev,
665 			     const struct regmap_bus *bus,
666 			     void *bus_context,
667 			     const struct regmap_config *config,
668 			     struct lock_class_key *lock_key,
669 			     const char *lock_name)
670 {
671 	struct regmap *map;
672 	int ret = -EINVAL;
673 	enum regmap_endian reg_endian, val_endian;
674 	int i, j;
675 
676 	if (!config)
677 		goto err;
678 
679 	map = kzalloc(sizeof(*map), GFP_KERNEL);
680 	if (map == NULL) {
681 		ret = -ENOMEM;
682 		goto err;
683 	}
684 
685 	ret = regmap_set_name(map, config);
686 	if (ret)
687 		goto err_map;
688 
689 	ret = -EINVAL; /* Later error paths rely on this */
690 
691 	if (config->disable_locking) {
692 		map->lock = map->unlock = regmap_lock_unlock_none;
693 		map->can_sleep = config->can_sleep;
694 		regmap_debugfs_disable(map);
695 	} else if (config->lock && config->unlock) {
696 		map->lock = config->lock;
697 		map->unlock = config->unlock;
698 		map->lock_arg = config->lock_arg;
699 		map->can_sleep = config->can_sleep;
700 	} else if (config->use_hwlock) {
701 		map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
702 		if (!map->hwlock) {
703 			ret = -ENXIO;
704 			goto err_name;
705 		}
706 
707 		switch (config->hwlock_mode) {
708 		case HWLOCK_IRQSTATE:
709 			map->lock = regmap_lock_hwlock_irqsave;
710 			map->unlock = regmap_unlock_hwlock_irqrestore;
711 			break;
712 		case HWLOCK_IRQ:
713 			map->lock = regmap_lock_hwlock_irq;
714 			map->unlock = regmap_unlock_hwlock_irq;
715 			break;
716 		default:
717 			map->lock = regmap_lock_hwlock;
718 			map->unlock = regmap_unlock_hwlock;
719 			break;
720 		}
721 
722 		map->lock_arg = map;
723 	} else {
724 		if ((bus && bus->fast_io) ||
725 		    config->fast_io) {
726 			if (config->use_raw_spinlock) {
727 				raw_spin_lock_init(&map->raw_spinlock);
728 				map->lock = regmap_lock_raw_spinlock;
729 				map->unlock = regmap_unlock_raw_spinlock;
730 				lockdep_set_class_and_name(&map->raw_spinlock,
731 							   lock_key, lock_name);
732 			} else {
733 				spin_lock_init(&map->spinlock);
734 				map->lock = regmap_lock_spinlock;
735 				map->unlock = regmap_unlock_spinlock;
736 				lockdep_set_class_and_name(&map->spinlock,
737 							   lock_key, lock_name);
738 			}
739 		} else {
740 			mutex_init(&map->mutex);
741 			map->lock = regmap_lock_mutex;
742 			map->unlock = regmap_unlock_mutex;
743 			map->can_sleep = true;
744 			lockdep_set_class_and_name(&map->mutex,
745 						   lock_key, lock_name);
746 		}
747 		map->lock_arg = map;
748 	}
749 
750 	/*
751 	 * When we write in fast-paths with regmap_bulk_write() don't allocate
752 	 * scratch buffers with sleeping allocations.
753 	 */
754 	if ((bus && bus->fast_io) || config->fast_io)
755 		map->alloc_flags = GFP_ATOMIC;
756 	else
757 		map->alloc_flags = GFP_KERNEL;
758 
759 	map->reg_base = config->reg_base;
760 
761 	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
762 	map->format.pad_bytes = config->pad_bits / 8;
763 	map->format.reg_shift = config->reg_shift;
764 	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
765 	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
766 			config->val_bits + config->pad_bits, 8);
767 	map->reg_shift = config->pad_bits % 8;
768 	if (config->reg_stride)
769 		map->reg_stride = config->reg_stride;
770 	else
771 		map->reg_stride = 1;
772 	if (is_power_of_2(map->reg_stride))
773 		map->reg_stride_order = ilog2(map->reg_stride);
774 	else
775 		map->reg_stride_order = -1;
776 	map->use_single_read = config->use_single_read || !(config->read || (bus && bus->read));
777 	map->use_single_write = config->use_single_write || !(config->write || (bus && bus->write));
778 	map->can_multi_write = config->can_multi_write && (config->write || (bus && bus->write));
779 	if (bus) {
780 		map->max_raw_read = bus->max_raw_read;
781 		map->max_raw_write = bus->max_raw_write;
782 	} else if (config->max_raw_read && config->max_raw_write) {
783 		map->max_raw_read = config->max_raw_read;
784 		map->max_raw_write = config->max_raw_write;
785 	}
786 	map->dev = dev;
787 	map->bus = bus;
788 	map->bus_context = bus_context;
789 	map->max_register = config->max_register;
790 	map->wr_table = config->wr_table;
791 	map->rd_table = config->rd_table;
792 	map->volatile_table = config->volatile_table;
793 	map->precious_table = config->precious_table;
794 	map->wr_noinc_table = config->wr_noinc_table;
795 	map->rd_noinc_table = config->rd_noinc_table;
796 	map->writeable_reg = config->writeable_reg;
797 	map->readable_reg = config->readable_reg;
798 	map->volatile_reg = config->volatile_reg;
799 	map->precious_reg = config->precious_reg;
800 	map->writeable_noinc_reg = config->writeable_noinc_reg;
801 	map->readable_noinc_reg = config->readable_noinc_reg;
802 	map->cache_type = config->cache_type;
803 
804 	spin_lock_init(&map->async_lock);
805 	INIT_LIST_HEAD(&map->async_list);
806 	INIT_LIST_HEAD(&map->async_free);
807 	init_waitqueue_head(&map->async_waitq);
808 
809 	if (config->read_flag_mask ||
810 	    config->write_flag_mask ||
811 	    config->zero_flag_mask) {
812 		map->read_flag_mask = config->read_flag_mask;
813 		map->write_flag_mask = config->write_flag_mask;
814 	} else if (bus) {
815 		map->read_flag_mask = bus->read_flag_mask;
816 	}
817 
818 	if (config && config->read && config->write) {
819 		map->reg_read  = _regmap_bus_read;
820 		if (config->reg_update_bits)
821 			map->reg_update_bits = config->reg_update_bits;
822 
823 		/* Bulk read/write */
824 		map->read = config->read;
825 		map->write = config->write;
826 
827 		reg_endian = REGMAP_ENDIAN_NATIVE;
828 		val_endian = REGMAP_ENDIAN_NATIVE;
829 	} else if (!bus) {
830 		map->reg_read  = config->reg_read;
831 		map->reg_write = config->reg_write;
832 		map->reg_update_bits = config->reg_update_bits;
833 
834 		map->defer_caching = false;
835 		goto skip_format_initialization;
836 	} else if (!bus->read || !bus->write) {
837 		map->reg_read = _regmap_bus_reg_read;
838 		map->reg_write = _regmap_bus_reg_write;
839 		map->reg_update_bits = bus->reg_update_bits;
840 
841 		map->defer_caching = false;
842 		goto skip_format_initialization;
843 	} else {
844 		map->reg_read  = _regmap_bus_read;
845 		map->reg_update_bits = bus->reg_update_bits;
846 		/* Bulk read/write */
847 		map->read = bus->read;
848 		map->write = bus->write;
849 
850 		reg_endian = regmap_get_reg_endian(bus, config);
851 		val_endian = regmap_get_val_endian(dev, bus, config);
852 	}
853 
854 	switch (config->reg_bits + map->reg_shift) {
855 	case 2:
856 		switch (config->val_bits) {
857 		case 6:
858 			map->format.format_write = regmap_format_2_6_write;
859 			break;
860 		default:
861 			goto err_hwlock;
862 		}
863 		break;
864 
865 	case 4:
866 		switch (config->val_bits) {
867 		case 12:
868 			map->format.format_write = regmap_format_4_12_write;
869 			break;
870 		default:
871 			goto err_hwlock;
872 		}
873 		break;
874 
875 	case 7:
876 		switch (config->val_bits) {
877 		case 9:
878 			map->format.format_write = regmap_format_7_9_write;
879 			break;
880 		case 17:
881 			map->format.format_write = regmap_format_7_17_write;
882 			break;
883 		default:
884 			goto err_hwlock;
885 		}
886 		break;
887 
888 	case 10:
889 		switch (config->val_bits) {
890 		case 14:
891 			map->format.format_write = regmap_format_10_14_write;
892 			break;
893 		default:
894 			goto err_hwlock;
895 		}
896 		break;
897 
898 	case 12:
899 		switch (config->val_bits) {
900 		case 20:
901 			map->format.format_write = regmap_format_12_20_write;
902 			break;
903 		default:
904 			goto err_hwlock;
905 		}
906 		break;
907 
908 	case 8:
909 		map->format.format_reg = regmap_format_8;
910 		break;
911 
912 	case 16:
913 		switch (reg_endian) {
914 		case REGMAP_ENDIAN_BIG:
915 			map->format.format_reg = regmap_format_16_be;
916 			break;
917 		case REGMAP_ENDIAN_LITTLE:
918 			map->format.format_reg = regmap_format_16_le;
919 			break;
920 		case REGMAP_ENDIAN_NATIVE:
921 			map->format.format_reg = regmap_format_16_native;
922 			break;
923 		default:
924 			goto err_hwlock;
925 		}
926 		break;
927 
928 	case 24:
929 		switch (reg_endian) {
930 		case REGMAP_ENDIAN_BIG:
931 			map->format.format_reg = regmap_format_24_be;
932 			break;
933 		default:
934 			goto err_hwlock;
935 		}
936 		break;
937 
938 	case 32:
939 		switch (reg_endian) {
940 		case REGMAP_ENDIAN_BIG:
941 			map->format.format_reg = regmap_format_32_be;
942 			break;
943 		case REGMAP_ENDIAN_LITTLE:
944 			map->format.format_reg = regmap_format_32_le;
945 			break;
946 		case REGMAP_ENDIAN_NATIVE:
947 			map->format.format_reg = regmap_format_32_native;
948 			break;
949 		default:
950 			goto err_hwlock;
951 		}
952 		break;
953 
954 	default:
955 		goto err_hwlock;
956 	}
957 
958 	if (val_endian == REGMAP_ENDIAN_NATIVE)
959 		map->format.parse_inplace = regmap_parse_inplace_noop;
960 
961 	switch (config->val_bits) {
962 	case 8:
963 		map->format.format_val = regmap_format_8;
964 		map->format.parse_val = regmap_parse_8;
965 		map->format.parse_inplace = regmap_parse_inplace_noop;
966 		break;
967 	case 16:
968 		switch (val_endian) {
969 		case REGMAP_ENDIAN_BIG:
970 			map->format.format_val = regmap_format_16_be;
971 			map->format.parse_val = regmap_parse_16_be;
972 			map->format.parse_inplace = regmap_parse_16_be_inplace;
973 			break;
974 		case REGMAP_ENDIAN_LITTLE:
975 			map->format.format_val = regmap_format_16_le;
976 			map->format.parse_val = regmap_parse_16_le;
977 			map->format.parse_inplace = regmap_parse_16_le_inplace;
978 			break;
979 		case REGMAP_ENDIAN_NATIVE:
980 			map->format.format_val = regmap_format_16_native;
981 			map->format.parse_val = regmap_parse_16_native;
982 			break;
983 		default:
984 			goto err_hwlock;
985 		}
986 		break;
987 	case 24:
988 		switch (val_endian) {
989 		case REGMAP_ENDIAN_BIG:
990 			map->format.format_val = regmap_format_24_be;
991 			map->format.parse_val = regmap_parse_24_be;
992 			break;
993 		default:
994 			goto err_hwlock;
995 		}
996 		break;
997 	case 32:
998 		switch (val_endian) {
999 		case REGMAP_ENDIAN_BIG:
1000 			map->format.format_val = regmap_format_32_be;
1001 			map->format.parse_val = regmap_parse_32_be;
1002 			map->format.parse_inplace = regmap_parse_32_be_inplace;
1003 			break;
1004 		case REGMAP_ENDIAN_LITTLE:
1005 			map->format.format_val = regmap_format_32_le;
1006 			map->format.parse_val = regmap_parse_32_le;
1007 			map->format.parse_inplace = regmap_parse_32_le_inplace;
1008 			break;
1009 		case REGMAP_ENDIAN_NATIVE:
1010 			map->format.format_val = regmap_format_32_native;
1011 			map->format.parse_val = regmap_parse_32_native;
1012 			break;
1013 		default:
1014 			goto err_hwlock;
1015 		}
1016 		break;
1017 	}
1018 
1019 	if (map->format.format_write) {
1020 		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
1021 		    (val_endian != REGMAP_ENDIAN_BIG))
1022 			goto err_hwlock;
1023 		map->use_single_write = true;
1024 	}
1025 
1026 	if (!map->format.format_write &&
1027 	    !(map->format.format_reg && map->format.format_val))
1028 		goto err_hwlock;
1029 
1030 	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1031 	if (map->work_buf == NULL) {
1032 		ret = -ENOMEM;
1033 		goto err_hwlock;
1034 	}
1035 
1036 	if (map->format.format_write) {
1037 		map->defer_caching = false;
1038 		map->reg_write = _regmap_bus_formatted_write;
1039 	} else if (map->format.format_val) {
1040 		map->defer_caching = true;
1041 		map->reg_write = _regmap_bus_raw_write;
1042 	}
1043 
1044 skip_format_initialization:
1045 
1046 	map->range_tree = RB_ROOT;
1047 	for (i = 0; i < config->num_ranges; i++) {
1048 		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
1049 		struct regmap_range_node *new;
1050 
1051 		/* Sanity check */
1052 		if (range_cfg->range_max < range_cfg->range_min) {
1053 			dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
1054 				range_cfg->range_max, range_cfg->range_min);
1055 			goto err_range;
1056 		}
1057 
1058 		if (range_cfg->range_max > map->max_register) {
1059 			dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
1060 				range_cfg->range_max, map->max_register);
1061 			goto err_range;
1062 		}
1063 
1064 		if (range_cfg->selector_reg > map->max_register) {
1065 			dev_err(map->dev,
1066 				"Invalid range %d: selector out of map\n", i);
1067 			goto err_range;
1068 		}
1069 
1070 		if (range_cfg->window_len == 0) {
1071 			dev_err(map->dev, "Invalid range %d: window_len 0\n",
1072 				i);
1073 			goto err_range;
1074 		}
1075 
1076 		/* Make sure, that this register range has no selector
1077 		   or data window within its boundary */
1078 		for (j = 0; j < config->num_ranges; j++) {
1079 			unsigned int sel_reg = config->ranges[j].selector_reg;
1080 			unsigned int win_min = config->ranges[j].window_start;
1081 			unsigned int win_max = win_min +
1082 					       config->ranges[j].window_len - 1;
1083 
1084 			/* Allow data window inside its own virtual range */
1085 			if (j == i)
1086 				continue;
1087 
1088 			if (range_cfg->range_min <= sel_reg &&
1089 			    sel_reg <= range_cfg->range_max) {
1090 				dev_err(map->dev,
1091 					"Range %d: selector for %d in window\n",
1092 					i, j);
1093 				goto err_range;
1094 			}
1095 
1096 			if (!(win_max < range_cfg->range_min ||
1097 			      win_min > range_cfg->range_max)) {
1098 				dev_err(map->dev,
1099 					"Range %d: window for %d in window\n",
1100 					i, j);
1101 				goto err_range;
1102 			}
1103 		}
1104 
1105 		new = kzalloc(sizeof(*new), GFP_KERNEL);
1106 		if (new == NULL) {
1107 			ret = -ENOMEM;
1108 			goto err_range;
1109 		}
1110 
1111 		new->map = map;
1112 		new->name = range_cfg->name;
1113 		new->range_min = range_cfg->range_min;
1114 		new->range_max = range_cfg->range_max;
1115 		new->selector_reg = range_cfg->selector_reg;
1116 		new->selector_mask = range_cfg->selector_mask;
1117 		new->selector_shift = range_cfg->selector_shift;
1118 		new->window_start = range_cfg->window_start;
1119 		new->window_len = range_cfg->window_len;
1120 
1121 		if (!_regmap_range_add(map, new)) {
1122 			dev_err(map->dev, "Failed to add range %d\n", i);
1123 			kfree(new);
1124 			goto err_range;
1125 		}
1126 
1127 		if (map->selector_work_buf == NULL) {
1128 			map->selector_work_buf =
1129 				kzalloc(map->format.buf_size, GFP_KERNEL);
1130 			if (map->selector_work_buf == NULL) {
1131 				ret = -ENOMEM;
1132 				goto err_range;
1133 			}
1134 		}
1135 	}
1136 
1137 	ret = regcache_init(map, config);
1138 	if (ret != 0)
1139 		goto err_range;
1140 
1141 	if (dev) {
1142 		ret = regmap_attach_dev(dev, map, config);
1143 		if (ret != 0)
1144 			goto err_regcache;
1145 	} else {
1146 		regmap_debugfs_init(map);
1147 	}
1148 
1149 	return map;
1150 
1151 err_regcache:
1152 	regcache_exit(map);
1153 err_range:
1154 	regmap_range_exit(map);
1155 	kfree(map->work_buf);
1156 err_hwlock:
1157 	if (map->hwlock)
1158 		hwspin_lock_free(map->hwlock);
1159 err_name:
1160 	kfree_const(map->name);
1161 err_map:
1162 	kfree(map);
1163 err:
1164 	return ERR_PTR(ret);
1165 }
1166 EXPORT_SYMBOL_GPL(__regmap_init);
1167 
1168 static void devm_regmap_release(struct device *dev, void *res)
1169 {
1170 	regmap_exit(*(struct regmap **)res);
1171 }
1172 
1173 struct regmap *__devm_regmap_init(struct device *dev,
1174 				  const struct regmap_bus *bus,
1175 				  void *bus_context,
1176 				  const struct regmap_config *config,
1177 				  struct lock_class_key *lock_key,
1178 				  const char *lock_name)
1179 {
1180 	struct regmap **ptr, *regmap;
1181 
1182 	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1183 	if (!ptr)
1184 		return ERR_PTR(-ENOMEM);
1185 
1186 	regmap = __regmap_init(dev, bus, bus_context, config,
1187 			       lock_key, lock_name);
1188 	if (!IS_ERR(regmap)) {
1189 		*ptr = regmap;
1190 		devres_add(dev, ptr);
1191 	} else {
1192 		devres_free(ptr);
1193 	}
1194 
1195 	return regmap;
1196 }
1197 EXPORT_SYMBOL_GPL(__devm_regmap_init);
1198 
1199 static void regmap_field_init(struct regmap_field *rm_field,
1200 	struct regmap *regmap, struct reg_field reg_field)
1201 {
1202 	rm_field->regmap = regmap;
1203 	rm_field->reg = reg_field.reg;
1204 	rm_field->shift = reg_field.lsb;
1205 	rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1206 
1207 	WARN_ONCE(rm_field->mask == 0, "invalid empty mask defined\n");
1208 
1209 	rm_field->id_size = reg_field.id_size;
1210 	rm_field->id_offset = reg_field.id_offset;
1211 }
1212 
1213 /**
1214  * devm_regmap_field_alloc() - Allocate and initialise a register field.
1215  *
1216  * @dev: Device that will be interacted with
1217  * @regmap: regmap bank in which this register field is located.
1218  * @reg_field: Register field with in the bank.
1219  *
1220  * The return value will be an ERR_PTR() on error or a valid pointer
1221  * to a struct regmap_field. The regmap_field will be automatically freed
1222  * by the device management code.
1223  */
1224 struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1225 		struct regmap *regmap, struct reg_field reg_field)
1226 {
1227 	struct regmap_field *rm_field = devm_kzalloc(dev,
1228 					sizeof(*rm_field), GFP_KERNEL);
1229 	if (!rm_field)
1230 		return ERR_PTR(-ENOMEM);
1231 
1232 	regmap_field_init(rm_field, regmap, reg_field);
1233 
1234 	return rm_field;
1235 
1236 }
1237 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1238 
1239 
1240 /**
1241  * regmap_field_bulk_alloc() - Allocate and initialise a bulk register field.
1242  *
1243  * @regmap: regmap bank in which this register field is located.
1244  * @rm_field: regmap register fields within the bank.
1245  * @reg_field: Register fields within the bank.
1246  * @num_fields: Number of register fields.
1247  *
1248  * The return value will be an -ENOMEM on error or zero for success.
1249  * Newly allocated regmap_fields should be freed by calling
1250  * regmap_field_bulk_free()
1251  */
1252 int regmap_field_bulk_alloc(struct regmap *regmap,
1253 			    struct regmap_field **rm_field,
1254 			    const struct reg_field *reg_field,
1255 			    int num_fields)
1256 {
1257 	struct regmap_field *rf;
1258 	int i;
1259 
1260 	rf = kcalloc(num_fields, sizeof(*rf), GFP_KERNEL);
1261 	if (!rf)
1262 		return -ENOMEM;
1263 
1264 	for (i = 0; i < num_fields; i++) {
1265 		regmap_field_init(&rf[i], regmap, reg_field[i]);
1266 		rm_field[i] = &rf[i];
1267 	}
1268 
1269 	return 0;
1270 }
1271 EXPORT_SYMBOL_GPL(regmap_field_bulk_alloc);
1272 
1273 /**
1274  * devm_regmap_field_bulk_alloc() - Allocate and initialise a bulk register
1275  * fields.
1276  *
1277  * @dev: Device that will be interacted with
1278  * @regmap: regmap bank in which this register field is located.
1279  * @rm_field: regmap register fields within the bank.
1280  * @reg_field: Register fields within the bank.
1281  * @num_fields: Number of register fields.
1282  *
1283  * The return value will be an -ENOMEM on error or zero for success.
1284  * Newly allocated regmap_fields will be automatically freed by the
1285  * device management code.
1286  */
1287 int devm_regmap_field_bulk_alloc(struct device *dev,
1288 				 struct regmap *regmap,
1289 				 struct regmap_field **rm_field,
1290 				 const struct reg_field *reg_field,
1291 				 int num_fields)
1292 {
1293 	struct regmap_field *rf;
1294 	int i;
1295 
1296 	rf = devm_kcalloc(dev, num_fields, sizeof(*rf), GFP_KERNEL);
1297 	if (!rf)
1298 		return -ENOMEM;
1299 
1300 	for (i = 0; i < num_fields; i++) {
1301 		regmap_field_init(&rf[i], regmap, reg_field[i]);
1302 		rm_field[i] = &rf[i];
1303 	}
1304 
1305 	return 0;
1306 }
1307 EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_alloc);
1308 
1309 /**
1310  * regmap_field_bulk_free() - Free register field allocated using
1311  *                       regmap_field_bulk_alloc.
1312  *
1313  * @field: regmap fields which should be freed.
1314  */
1315 void regmap_field_bulk_free(struct regmap_field *field)
1316 {
1317 	kfree(field);
1318 }
1319 EXPORT_SYMBOL_GPL(regmap_field_bulk_free);
1320 
1321 /**
1322  * devm_regmap_field_bulk_free() - Free a bulk register field allocated using
1323  *                            devm_regmap_field_bulk_alloc.
1324  *
1325  * @dev: Device that will be interacted with
1326  * @field: regmap field which should be freed.
1327  *
1328  * Free register field allocated using devm_regmap_field_bulk_alloc(). Usually
1329  * drivers need not call this function, as the memory allocated via devm
1330  * will be freed as per device-driver life-cycle.
1331  */
1332 void devm_regmap_field_bulk_free(struct device *dev,
1333 				 struct regmap_field *field)
1334 {
1335 	devm_kfree(dev, field);
1336 }
1337 EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_free);
1338 
1339 /**
1340  * devm_regmap_field_free() - Free a register field allocated using
1341  *                            devm_regmap_field_alloc.
1342  *
1343  * @dev: Device that will be interacted with
1344  * @field: regmap field which should be freed.
1345  *
1346  * Free register field allocated using devm_regmap_field_alloc(). Usually
1347  * drivers need not call this function, as the memory allocated via devm
1348  * will be freed as per device-driver life-cyle.
1349  */
1350 void devm_regmap_field_free(struct device *dev,
1351 	struct regmap_field *field)
1352 {
1353 	devm_kfree(dev, field);
1354 }
1355 EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1356 
1357 /**
1358  * regmap_field_alloc() - Allocate and initialise a register field.
1359  *
1360  * @regmap: regmap bank in which this register field is located.
1361  * @reg_field: Register field with in the bank.
1362  *
1363  * The return value will be an ERR_PTR() on error or a valid pointer
1364  * to a struct regmap_field. The regmap_field should be freed by the
1365  * user once its finished working with it using regmap_field_free().
1366  */
1367 struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1368 		struct reg_field reg_field)
1369 {
1370 	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1371 
1372 	if (!rm_field)
1373 		return ERR_PTR(-ENOMEM);
1374 
1375 	regmap_field_init(rm_field, regmap, reg_field);
1376 
1377 	return rm_field;
1378 }
1379 EXPORT_SYMBOL_GPL(regmap_field_alloc);
1380 
1381 /**
1382  * regmap_field_free() - Free register field allocated using
1383  *                       regmap_field_alloc.
1384  *
1385  * @field: regmap field which should be freed.
1386  */
1387 void regmap_field_free(struct regmap_field *field)
1388 {
1389 	kfree(field);
1390 }
1391 EXPORT_SYMBOL_GPL(regmap_field_free);
1392 
1393 /**
1394  * regmap_reinit_cache() - Reinitialise the current register cache
1395  *
1396  * @map: Register map to operate on.
1397  * @config: New configuration.  Only the cache data will be used.
1398  *
1399  * Discard any existing register cache for the map and initialize a
1400  * new cache.  This can be used to restore the cache to defaults or to
1401  * update the cache configuration to reflect runtime discovery of the
1402  * hardware.
1403  *
1404  * No explicit locking is done here, the user needs to ensure that
1405  * this function will not race with other calls to regmap.
1406  */
1407 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1408 {
1409 	int ret;
1410 
1411 	regcache_exit(map);
1412 	regmap_debugfs_exit(map);
1413 
1414 	map->max_register = config->max_register;
1415 	map->writeable_reg = config->writeable_reg;
1416 	map->readable_reg = config->readable_reg;
1417 	map->volatile_reg = config->volatile_reg;
1418 	map->precious_reg = config->precious_reg;
1419 	map->writeable_noinc_reg = config->writeable_noinc_reg;
1420 	map->readable_noinc_reg = config->readable_noinc_reg;
1421 	map->cache_type = config->cache_type;
1422 
1423 	ret = regmap_set_name(map, config);
1424 	if (ret)
1425 		return ret;
1426 
1427 	regmap_debugfs_init(map);
1428 
1429 	map->cache_bypass = false;
1430 	map->cache_only = false;
1431 
1432 	return regcache_init(map, config);
1433 }
1434 EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1435 
1436 /**
1437  * regmap_exit() - Free a previously allocated register map
1438  *
1439  * @map: Register map to operate on.
1440  */
1441 void regmap_exit(struct regmap *map)
1442 {
1443 	struct regmap_async *async;
1444 
1445 	regcache_exit(map);
1446 	regmap_debugfs_exit(map);
1447 	regmap_range_exit(map);
1448 	if (map->bus && map->bus->free_context)
1449 		map->bus->free_context(map->bus_context);
1450 	kfree(map->work_buf);
1451 	while (!list_empty(&map->async_free)) {
1452 		async = list_first_entry_or_null(&map->async_free,
1453 						 struct regmap_async,
1454 						 list);
1455 		list_del(&async->list);
1456 		kfree(async->work_buf);
1457 		kfree(async);
1458 	}
1459 	if (map->hwlock)
1460 		hwspin_lock_free(map->hwlock);
1461 	if (map->lock == regmap_lock_mutex)
1462 		mutex_destroy(&map->mutex);
1463 	kfree_const(map->name);
1464 	kfree(map->patch);
1465 	if (map->bus && map->bus->free_on_exit)
1466 		kfree(map->bus);
1467 	kfree(map);
1468 }
1469 EXPORT_SYMBOL_GPL(regmap_exit);
1470 
1471 static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1472 {
1473 	struct regmap **r = res;
1474 	if (!r || !*r) {
1475 		WARN_ON(!r || !*r);
1476 		return 0;
1477 	}
1478 
1479 	/* If the user didn't specify a name match any */
1480 	if (data)
1481 		return !strcmp((*r)->name, data);
1482 	else
1483 		return 1;
1484 }
1485 
1486 /**
1487  * dev_get_regmap() - Obtain the regmap (if any) for a device
1488  *
1489  * @dev: Device to retrieve the map for
1490  * @name: Optional name for the register map, usually NULL.
1491  *
1492  * Returns the regmap for the device if one is present, or NULL.  If
1493  * name is specified then it must match the name specified when
1494  * registering the device, if it is NULL then the first regmap found
1495  * will be used.  Devices with multiple register maps are very rare,
1496  * generic code should normally not need to specify a name.
1497  */
1498 struct regmap *dev_get_regmap(struct device *dev, const char *name)
1499 {
1500 	struct regmap **r = devres_find(dev, dev_get_regmap_release,
1501 					dev_get_regmap_match, (void *)name);
1502 
1503 	if (!r)
1504 		return NULL;
1505 	return *r;
1506 }
1507 EXPORT_SYMBOL_GPL(dev_get_regmap);
1508 
1509 /**
1510  * regmap_get_device() - Obtain the device from a regmap
1511  *
1512  * @map: Register map to operate on.
1513  *
1514  * Returns the underlying device that the regmap has been created for.
1515  */
1516 struct device *regmap_get_device(struct regmap *map)
1517 {
1518 	return map->dev;
1519 }
1520 EXPORT_SYMBOL_GPL(regmap_get_device);
1521 
1522 static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1523 			       struct regmap_range_node *range,
1524 			       unsigned int val_num)
1525 {
1526 	void *orig_work_buf;
1527 	unsigned int win_offset;
1528 	unsigned int win_page;
1529 	bool page_chg;
1530 	int ret;
1531 
1532 	win_offset = (*reg - range->range_min) % range->window_len;
1533 	win_page = (*reg - range->range_min) / range->window_len;
1534 
1535 	if (val_num > 1) {
1536 		/* Bulk write shouldn't cross range boundary */
1537 		if (*reg + val_num - 1 > range->range_max)
1538 			return -EINVAL;
1539 
1540 		/* ... or single page boundary */
1541 		if (val_num > range->window_len - win_offset)
1542 			return -EINVAL;
1543 	}
1544 
1545 	/* It is possible to have selector register inside data window.
1546 	   In that case, selector register is located on every page and
1547 	   it needs no page switching, when accessed alone. */
1548 	if (val_num > 1 ||
1549 	    range->window_start + win_offset != range->selector_reg) {
1550 		/* Use separate work_buf during page switching */
1551 		orig_work_buf = map->work_buf;
1552 		map->work_buf = map->selector_work_buf;
1553 
1554 		ret = _regmap_update_bits(map, range->selector_reg,
1555 					  range->selector_mask,
1556 					  win_page << range->selector_shift,
1557 					  &page_chg, false);
1558 
1559 		map->work_buf = orig_work_buf;
1560 
1561 		if (ret != 0)
1562 			return ret;
1563 	}
1564 
1565 	*reg = range->window_start + win_offset;
1566 
1567 	return 0;
1568 }
1569 
1570 static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1571 					  unsigned long mask)
1572 {
1573 	u8 *buf;
1574 	int i;
1575 
1576 	if (!mask || !map->work_buf)
1577 		return;
1578 
1579 	buf = map->work_buf;
1580 
1581 	for (i = 0; i < max_bytes; i++)
1582 		buf[i] |= (mask >> (8 * i)) & 0xff;
1583 }
1584 
1585 static unsigned int regmap_reg_addr(struct regmap *map, unsigned int reg)
1586 {
1587 	reg += map->reg_base;
1588 
1589 	if (map->format.reg_shift > 0)
1590 		reg >>= map->format.reg_shift;
1591 	else if (map->format.reg_shift < 0)
1592 		reg <<= -(map->format.reg_shift);
1593 
1594 	return reg;
1595 }
1596 
1597 static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg,
1598 				  const void *val, size_t val_len, bool noinc)
1599 {
1600 	struct regmap_range_node *range;
1601 	unsigned long flags;
1602 	void *work_val = map->work_buf + map->format.reg_bytes +
1603 		map->format.pad_bytes;
1604 	void *buf;
1605 	int ret = -ENOTSUPP;
1606 	size_t len;
1607 	int i;
1608 
1609 	/* Check for unwritable or noinc registers in range
1610 	 * before we start
1611 	 */
1612 	if (!regmap_writeable_noinc(map, reg)) {
1613 		for (i = 0; i < val_len / map->format.val_bytes; i++) {
1614 			unsigned int element =
1615 				reg + regmap_get_offset(map, i);
1616 			if (!regmap_writeable(map, element) ||
1617 				regmap_writeable_noinc(map, element))
1618 				return -EINVAL;
1619 		}
1620 	}
1621 
1622 	if (!map->cache_bypass && map->format.parse_val) {
1623 		unsigned int ival;
1624 		int val_bytes = map->format.val_bytes;
1625 		for (i = 0; i < val_len / val_bytes; i++) {
1626 			ival = map->format.parse_val(val + (i * val_bytes));
1627 			ret = regcache_write(map,
1628 					     reg + regmap_get_offset(map, i),
1629 					     ival);
1630 			if (ret) {
1631 				dev_err(map->dev,
1632 					"Error in caching of register: %x ret: %d\n",
1633 					reg + regmap_get_offset(map, i), ret);
1634 				return ret;
1635 			}
1636 		}
1637 		if (map->cache_only) {
1638 			map->cache_dirty = true;
1639 			return 0;
1640 		}
1641 	}
1642 
1643 	range = _regmap_range_lookup(map, reg);
1644 	if (range) {
1645 		int val_num = val_len / map->format.val_bytes;
1646 		int win_offset = (reg - range->range_min) % range->window_len;
1647 		int win_residue = range->window_len - win_offset;
1648 
1649 		/* If the write goes beyond the end of the window split it */
1650 		while (val_num > win_residue) {
1651 			dev_dbg(map->dev, "Writing window %d/%zu\n",
1652 				win_residue, val_len / map->format.val_bytes);
1653 			ret = _regmap_raw_write_impl(map, reg, val,
1654 						     win_residue *
1655 						     map->format.val_bytes, noinc);
1656 			if (ret != 0)
1657 				return ret;
1658 
1659 			reg += win_residue;
1660 			val_num -= win_residue;
1661 			val += win_residue * map->format.val_bytes;
1662 			val_len -= win_residue * map->format.val_bytes;
1663 
1664 			win_offset = (reg - range->range_min) %
1665 				range->window_len;
1666 			win_residue = range->window_len - win_offset;
1667 		}
1668 
1669 		ret = _regmap_select_page(map, &reg, range, noinc ? 1 : val_num);
1670 		if (ret != 0)
1671 			return ret;
1672 	}
1673 
1674 	reg = regmap_reg_addr(map, reg);
1675 	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1676 	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1677 				      map->write_flag_mask);
1678 
1679 	/*
1680 	 * Essentially all I/O mechanisms will be faster with a single
1681 	 * buffer to write.  Since register syncs often generate raw
1682 	 * writes of single registers optimise that case.
1683 	 */
1684 	if (val != work_val && val_len == map->format.val_bytes) {
1685 		memcpy(work_val, val, map->format.val_bytes);
1686 		val = work_val;
1687 	}
1688 
1689 	if (map->async && map->bus && map->bus->async_write) {
1690 		struct regmap_async *async;
1691 
1692 		trace_regmap_async_write_start(map, reg, val_len);
1693 
1694 		spin_lock_irqsave(&map->async_lock, flags);
1695 		async = list_first_entry_or_null(&map->async_free,
1696 						 struct regmap_async,
1697 						 list);
1698 		if (async)
1699 			list_del(&async->list);
1700 		spin_unlock_irqrestore(&map->async_lock, flags);
1701 
1702 		if (!async) {
1703 			async = map->bus->async_alloc();
1704 			if (!async)
1705 				return -ENOMEM;
1706 
1707 			async->work_buf = kzalloc(map->format.buf_size,
1708 						  GFP_KERNEL | GFP_DMA);
1709 			if (!async->work_buf) {
1710 				kfree(async);
1711 				return -ENOMEM;
1712 			}
1713 		}
1714 
1715 		async->map = map;
1716 
1717 		/* If the caller supplied the value we can use it safely. */
1718 		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1719 		       map->format.reg_bytes + map->format.val_bytes);
1720 
1721 		spin_lock_irqsave(&map->async_lock, flags);
1722 		list_add_tail(&async->list, &map->async_list);
1723 		spin_unlock_irqrestore(&map->async_lock, flags);
1724 
1725 		if (val != work_val)
1726 			ret = map->bus->async_write(map->bus_context,
1727 						    async->work_buf,
1728 						    map->format.reg_bytes +
1729 						    map->format.pad_bytes,
1730 						    val, val_len, async);
1731 		else
1732 			ret = map->bus->async_write(map->bus_context,
1733 						    async->work_buf,
1734 						    map->format.reg_bytes +
1735 						    map->format.pad_bytes +
1736 						    val_len, NULL, 0, async);
1737 
1738 		if (ret != 0) {
1739 			dev_err(map->dev, "Failed to schedule write: %d\n",
1740 				ret);
1741 
1742 			spin_lock_irqsave(&map->async_lock, flags);
1743 			list_move(&async->list, &map->async_free);
1744 			spin_unlock_irqrestore(&map->async_lock, flags);
1745 		}
1746 
1747 		return ret;
1748 	}
1749 
1750 	trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1751 
1752 	/* If we're doing a single register write we can probably just
1753 	 * send the work_buf directly, otherwise try to do a gather
1754 	 * write.
1755 	 */
1756 	if (val == work_val)
1757 		ret = map->write(map->bus_context, map->work_buf,
1758 				 map->format.reg_bytes +
1759 				 map->format.pad_bytes +
1760 				 val_len);
1761 	else if (map->bus && map->bus->gather_write)
1762 		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1763 					     map->format.reg_bytes +
1764 					     map->format.pad_bytes,
1765 					     val, val_len);
1766 	else
1767 		ret = -ENOTSUPP;
1768 
1769 	/* If that didn't work fall back on linearising by hand. */
1770 	if (ret == -ENOTSUPP) {
1771 		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1772 		buf = kzalloc(len, GFP_KERNEL);
1773 		if (!buf)
1774 			return -ENOMEM;
1775 
1776 		memcpy(buf, map->work_buf, map->format.reg_bytes);
1777 		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1778 		       val, val_len);
1779 		ret = map->write(map->bus_context, buf, len);
1780 
1781 		kfree(buf);
1782 	} else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1783 		/* regcache_drop_region() takes lock that we already have,
1784 		 * thus call map->cache_ops->drop() directly
1785 		 */
1786 		if (map->cache_ops && map->cache_ops->drop)
1787 			map->cache_ops->drop(map, reg, reg + 1);
1788 	}
1789 
1790 	trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1791 
1792 	return ret;
1793 }
1794 
1795 /**
1796  * regmap_can_raw_write - Test if regmap_raw_write() is supported
1797  *
1798  * @map: Map to check.
1799  */
1800 bool regmap_can_raw_write(struct regmap *map)
1801 {
1802 	return map->write && map->format.format_val && map->format.format_reg;
1803 }
1804 EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1805 
1806 /**
1807  * regmap_get_raw_read_max - Get the maximum size we can read
1808  *
1809  * @map: Map to check.
1810  */
1811 size_t regmap_get_raw_read_max(struct regmap *map)
1812 {
1813 	return map->max_raw_read;
1814 }
1815 EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1816 
1817 /**
1818  * regmap_get_raw_write_max - Get the maximum size we can read
1819  *
1820  * @map: Map to check.
1821  */
1822 size_t regmap_get_raw_write_max(struct regmap *map)
1823 {
1824 	return map->max_raw_write;
1825 }
1826 EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1827 
1828 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1829 				       unsigned int val)
1830 {
1831 	int ret;
1832 	struct regmap_range_node *range;
1833 	struct regmap *map = context;
1834 
1835 	WARN_ON(!map->format.format_write);
1836 
1837 	range = _regmap_range_lookup(map, reg);
1838 	if (range) {
1839 		ret = _regmap_select_page(map, &reg, range, 1);
1840 		if (ret != 0)
1841 			return ret;
1842 	}
1843 
1844 	reg = regmap_reg_addr(map, reg);
1845 	map->format.format_write(map, reg, val);
1846 
1847 	trace_regmap_hw_write_start(map, reg, 1);
1848 
1849 	ret = map->write(map->bus_context, map->work_buf, map->format.buf_size);
1850 
1851 	trace_regmap_hw_write_done(map, reg, 1);
1852 
1853 	return ret;
1854 }
1855 
1856 static int _regmap_bus_reg_write(void *context, unsigned int reg,
1857 				 unsigned int val)
1858 {
1859 	struct regmap *map = context;
1860 	struct regmap_range_node *range;
1861 	int ret;
1862 
1863 	range = _regmap_range_lookup(map, reg);
1864 	if (range) {
1865 		ret = _regmap_select_page(map, &reg, range, 1);
1866 		if (ret != 0)
1867 			return ret;
1868 	}
1869 
1870 	reg = regmap_reg_addr(map, reg);
1871 	return map->bus->reg_write(map->bus_context, reg, val);
1872 }
1873 
1874 static int _regmap_bus_raw_write(void *context, unsigned int reg,
1875 				 unsigned int val)
1876 {
1877 	struct regmap *map = context;
1878 
1879 	WARN_ON(!map->format.format_val);
1880 
1881 	map->format.format_val(map->work_buf + map->format.reg_bytes
1882 			       + map->format.pad_bytes, val, 0);
1883 	return _regmap_raw_write_impl(map, reg,
1884 				      map->work_buf +
1885 				      map->format.reg_bytes +
1886 				      map->format.pad_bytes,
1887 				      map->format.val_bytes,
1888 				      false);
1889 }
1890 
1891 static inline void *_regmap_map_get_context(struct regmap *map)
1892 {
1893 	return (map->bus || (!map->bus && map->read)) ? map : map->bus_context;
1894 }
1895 
1896 int _regmap_write(struct regmap *map, unsigned int reg,
1897 		  unsigned int val)
1898 {
1899 	int ret;
1900 	void *context = _regmap_map_get_context(map);
1901 
1902 	if (!regmap_writeable(map, reg))
1903 		return -EIO;
1904 
1905 	if (!map->cache_bypass && !map->defer_caching) {
1906 		ret = regcache_write(map, reg, val);
1907 		if (ret != 0)
1908 			return ret;
1909 		if (map->cache_only) {
1910 			map->cache_dirty = true;
1911 			return 0;
1912 		}
1913 	}
1914 
1915 	ret = map->reg_write(context, reg, val);
1916 	if (ret == 0) {
1917 		if (regmap_should_log(map))
1918 			dev_info(map->dev, "%x <= %x\n", reg, val);
1919 
1920 		trace_regmap_reg_write(map, reg, val);
1921 	}
1922 
1923 	return ret;
1924 }
1925 
1926 /**
1927  * regmap_write() - Write a value to a single register
1928  *
1929  * @map: Register map to write to
1930  * @reg: Register to write to
1931  * @val: Value to be written
1932  *
1933  * A value of zero will be returned on success, a negative errno will
1934  * be returned in error cases.
1935  */
1936 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1937 {
1938 	int ret;
1939 
1940 	if (!IS_ALIGNED(reg, map->reg_stride))
1941 		return -EINVAL;
1942 
1943 	map->lock(map->lock_arg);
1944 
1945 	ret = _regmap_write(map, reg, val);
1946 
1947 	map->unlock(map->lock_arg);
1948 
1949 	return ret;
1950 }
1951 EXPORT_SYMBOL_GPL(regmap_write);
1952 
1953 /**
1954  * regmap_write_async() - Write a value to a single register asynchronously
1955  *
1956  * @map: Register map to write to
1957  * @reg: Register to write to
1958  * @val: Value to be written
1959  *
1960  * A value of zero will be returned on success, a negative errno will
1961  * be returned in error cases.
1962  */
1963 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1964 {
1965 	int ret;
1966 
1967 	if (!IS_ALIGNED(reg, map->reg_stride))
1968 		return -EINVAL;
1969 
1970 	map->lock(map->lock_arg);
1971 
1972 	map->async = true;
1973 
1974 	ret = _regmap_write(map, reg, val);
1975 
1976 	map->async = false;
1977 
1978 	map->unlock(map->lock_arg);
1979 
1980 	return ret;
1981 }
1982 EXPORT_SYMBOL_GPL(regmap_write_async);
1983 
1984 int _regmap_raw_write(struct regmap *map, unsigned int reg,
1985 		      const void *val, size_t val_len, bool noinc)
1986 {
1987 	size_t val_bytes = map->format.val_bytes;
1988 	size_t val_count = val_len / val_bytes;
1989 	size_t chunk_count, chunk_bytes;
1990 	size_t chunk_regs = val_count;
1991 	int ret, i;
1992 
1993 	if (!val_count)
1994 		return -EINVAL;
1995 
1996 	if (map->use_single_write)
1997 		chunk_regs = 1;
1998 	else if (map->max_raw_write && val_len > map->max_raw_write)
1999 		chunk_regs = map->max_raw_write / val_bytes;
2000 
2001 	chunk_count = val_count / chunk_regs;
2002 	chunk_bytes = chunk_regs * val_bytes;
2003 
2004 	/* Write as many bytes as possible with chunk_size */
2005 	for (i = 0; i < chunk_count; i++) {
2006 		ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes, noinc);
2007 		if (ret)
2008 			return ret;
2009 
2010 		reg += regmap_get_offset(map, chunk_regs);
2011 		val += chunk_bytes;
2012 		val_len -= chunk_bytes;
2013 	}
2014 
2015 	/* Write remaining bytes */
2016 	if (val_len)
2017 		ret = _regmap_raw_write_impl(map, reg, val, val_len, noinc);
2018 
2019 	return ret;
2020 }
2021 
2022 /**
2023  * regmap_raw_write() - Write raw values to one or more registers
2024  *
2025  * @map: Register map to write to
2026  * @reg: Initial register to write to
2027  * @val: Block of data to be written, laid out for direct transmission to the
2028  *       device
2029  * @val_len: Length of data pointed to by val.
2030  *
2031  * This function is intended to be used for things like firmware
2032  * download where a large block of data needs to be transferred to the
2033  * device.  No formatting will be done on the data provided.
2034  *
2035  * A value of zero will be returned on success, a negative errno will
2036  * be returned in error cases.
2037  */
2038 int regmap_raw_write(struct regmap *map, unsigned int reg,
2039 		     const void *val, size_t val_len)
2040 {
2041 	int ret;
2042 
2043 	if (!regmap_can_raw_write(map))
2044 		return -EINVAL;
2045 	if (val_len % map->format.val_bytes)
2046 		return -EINVAL;
2047 
2048 	map->lock(map->lock_arg);
2049 
2050 	ret = _regmap_raw_write(map, reg, val, val_len, false);
2051 
2052 	map->unlock(map->lock_arg);
2053 
2054 	return ret;
2055 }
2056 EXPORT_SYMBOL_GPL(regmap_raw_write);
2057 
2058 static int regmap_noinc_readwrite(struct regmap *map, unsigned int reg,
2059 				  void *val, unsigned int val_len, bool write)
2060 {
2061 	size_t val_bytes = map->format.val_bytes;
2062 	size_t val_count = val_len / val_bytes;
2063 	unsigned int lastval;
2064 	u8 *u8p;
2065 	u16 *u16p;
2066 	u32 *u32p;
2067 	int ret;
2068 	int i;
2069 
2070 	switch (val_bytes) {
2071 	case 1:
2072 		u8p = val;
2073 		if (write)
2074 			lastval = (unsigned int)u8p[val_count - 1];
2075 		break;
2076 	case 2:
2077 		u16p = val;
2078 		if (write)
2079 			lastval = (unsigned int)u16p[val_count - 1];
2080 		break;
2081 	case 4:
2082 		u32p = val;
2083 		if (write)
2084 			lastval = (unsigned int)u32p[val_count - 1];
2085 		break;
2086 	default:
2087 		return -EINVAL;
2088 	}
2089 
2090 	/*
2091 	 * Update the cache with the last value we write, the rest is just
2092 	 * gone down in the hardware FIFO. We can't cache FIFOs. This makes
2093 	 * sure a single read from the cache will work.
2094 	 */
2095 	if (write) {
2096 		if (!map->cache_bypass && !map->defer_caching) {
2097 			ret = regcache_write(map, reg, lastval);
2098 			if (ret != 0)
2099 				return ret;
2100 			if (map->cache_only) {
2101 				map->cache_dirty = true;
2102 				return 0;
2103 			}
2104 		}
2105 		ret = map->bus->reg_noinc_write(map->bus_context, reg, val, val_count);
2106 	} else {
2107 		ret = map->bus->reg_noinc_read(map->bus_context, reg, val, val_count);
2108 	}
2109 
2110 	if (!ret && regmap_should_log(map)) {
2111 		dev_info(map->dev, "%x %s [", reg, write ? "<=" : "=>");
2112 		for (i = 0; i < val_count; i++) {
2113 			switch (val_bytes) {
2114 			case 1:
2115 				pr_cont("%x", u8p[i]);
2116 				break;
2117 			case 2:
2118 				pr_cont("%x", u16p[i]);
2119 				break;
2120 			case 4:
2121 				pr_cont("%x", u32p[i]);
2122 				break;
2123 			default:
2124 				break;
2125 			}
2126 			if (i == (val_count - 1))
2127 				pr_cont("]\n");
2128 			else
2129 				pr_cont(",");
2130 		}
2131 	}
2132 
2133 	return 0;
2134 }
2135 
2136 /**
2137  * regmap_noinc_write(): Write data from a register without incrementing the
2138  *			register number
2139  *
2140  * @map: Register map to write to
2141  * @reg: Register to write to
2142  * @val: Pointer to data buffer
2143  * @val_len: Length of output buffer in bytes.
2144  *
2145  * The regmap API usually assumes that bulk bus write operations will write a
2146  * range of registers. Some devices have certain registers for which a write
2147  * operation can write to an internal FIFO.
2148  *
2149  * The target register must be volatile but registers after it can be
2150  * completely unrelated cacheable registers.
2151  *
2152  * This will attempt multiple writes as required to write val_len bytes.
2153  *
2154  * A value of zero will be returned on success, a negative errno will be
2155  * returned in error cases.
2156  */
2157 int regmap_noinc_write(struct regmap *map, unsigned int reg,
2158 		      const void *val, size_t val_len)
2159 {
2160 	size_t write_len;
2161 	int ret;
2162 
2163 	if (!map->write && !(map->bus && map->bus->reg_noinc_write))
2164 		return -EINVAL;
2165 	if (val_len % map->format.val_bytes)
2166 		return -EINVAL;
2167 	if (!IS_ALIGNED(reg, map->reg_stride))
2168 		return -EINVAL;
2169 	if (val_len == 0)
2170 		return -EINVAL;
2171 
2172 	map->lock(map->lock_arg);
2173 
2174 	if (!regmap_volatile(map, reg) || !regmap_writeable_noinc(map, reg)) {
2175 		ret = -EINVAL;
2176 		goto out_unlock;
2177 	}
2178 
2179 	/*
2180 	 * Use the accelerated operation if we can. The val drops the const
2181 	 * typing in order to facilitate code reuse in regmap_noinc_readwrite().
2182 	 */
2183 	if (map->bus->reg_noinc_write) {
2184 		ret = regmap_noinc_readwrite(map, reg, (void *)val, val_len, true);
2185 		goto out_unlock;
2186 	}
2187 
2188 	while (val_len) {
2189 		if (map->max_raw_write && map->max_raw_write < val_len)
2190 			write_len = map->max_raw_write;
2191 		else
2192 			write_len = val_len;
2193 		ret = _regmap_raw_write(map, reg, val, write_len, true);
2194 		if (ret)
2195 			goto out_unlock;
2196 		val = ((u8 *)val) + write_len;
2197 		val_len -= write_len;
2198 	}
2199 
2200 out_unlock:
2201 	map->unlock(map->lock_arg);
2202 	return ret;
2203 }
2204 EXPORT_SYMBOL_GPL(regmap_noinc_write);
2205 
2206 /**
2207  * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
2208  *                                   register field.
2209  *
2210  * @field: Register field to write to
2211  * @mask: Bitmask to change
2212  * @val: Value to be written
2213  * @change: Boolean indicating if a write was done
2214  * @async: Boolean indicating asynchronously
2215  * @force: Boolean indicating use force update
2216  *
2217  * Perform a read/modify/write cycle on the register field with change,
2218  * async, force option.
2219  *
2220  * A value of zero will be returned on success, a negative errno will
2221  * be returned in error cases.
2222  */
2223 int regmap_field_update_bits_base(struct regmap_field *field,
2224 				  unsigned int mask, unsigned int val,
2225 				  bool *change, bool async, bool force)
2226 {
2227 	mask = (mask << field->shift) & field->mask;
2228 
2229 	return regmap_update_bits_base(field->regmap, field->reg,
2230 				       mask, val << field->shift,
2231 				       change, async, force);
2232 }
2233 EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
2234 
2235 /**
2236  * regmap_field_test_bits() - Check if all specified bits are set in a
2237  *                            register field.
2238  *
2239  * @field: Register field to operate on
2240  * @bits: Bits to test
2241  *
2242  * Returns -1 if the underlying regmap_field_read() fails, 0 if at least one of the
2243  * tested bits is not set and 1 if all tested bits are set.
2244  */
2245 int regmap_field_test_bits(struct regmap_field *field, unsigned int bits)
2246 {
2247 	unsigned int val, ret;
2248 
2249 	ret = regmap_field_read(field, &val);
2250 	if (ret)
2251 		return ret;
2252 
2253 	return (val & bits) == bits;
2254 }
2255 EXPORT_SYMBOL_GPL(regmap_field_test_bits);
2256 
2257 /**
2258  * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
2259  *                                    register field with port ID
2260  *
2261  * @field: Register field to write to
2262  * @id: port ID
2263  * @mask: Bitmask to change
2264  * @val: Value to be written
2265  * @change: Boolean indicating if a write was done
2266  * @async: Boolean indicating asynchronously
2267  * @force: Boolean indicating use force update
2268  *
2269  * A value of zero will be returned on success, a negative errno will
2270  * be returned in error cases.
2271  */
2272 int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id,
2273 				   unsigned int mask, unsigned int val,
2274 				   bool *change, bool async, bool force)
2275 {
2276 	if (id >= field->id_size)
2277 		return -EINVAL;
2278 
2279 	mask = (mask << field->shift) & field->mask;
2280 
2281 	return regmap_update_bits_base(field->regmap,
2282 				       field->reg + (field->id_offset * id),
2283 				       mask, val << field->shift,
2284 				       change, async, force);
2285 }
2286 EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
2287 
2288 /**
2289  * regmap_bulk_write() - Write multiple registers to the device
2290  *
2291  * @map: Register map to write to
2292  * @reg: First register to be write from
2293  * @val: Block of data to be written, in native register size for device
2294  * @val_count: Number of registers to write
2295  *
2296  * This function is intended to be used for writing a large block of
2297  * data to the device either in single transfer or multiple transfer.
2298  *
2299  * A value of zero will be returned on success, a negative errno will
2300  * be returned in error cases.
2301  */
2302 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
2303 		     size_t val_count)
2304 {
2305 	int ret = 0, i;
2306 	size_t val_bytes = map->format.val_bytes;
2307 
2308 	if (!IS_ALIGNED(reg, map->reg_stride))
2309 		return -EINVAL;
2310 
2311 	/*
2312 	 * Some devices don't support bulk write, for them we have a series of
2313 	 * single write operations.
2314 	 */
2315 	if (!map->write || !map->format.parse_inplace) {
2316 		map->lock(map->lock_arg);
2317 		for (i = 0; i < val_count; i++) {
2318 			unsigned int ival;
2319 
2320 			switch (val_bytes) {
2321 			case 1:
2322 				ival = *(u8 *)(val + (i * val_bytes));
2323 				break;
2324 			case 2:
2325 				ival = *(u16 *)(val + (i * val_bytes));
2326 				break;
2327 			case 4:
2328 				ival = *(u32 *)(val + (i * val_bytes));
2329 				break;
2330 			default:
2331 				ret = -EINVAL;
2332 				goto out;
2333 			}
2334 
2335 			ret = _regmap_write(map,
2336 					    reg + regmap_get_offset(map, i),
2337 					    ival);
2338 			if (ret != 0)
2339 				goto out;
2340 		}
2341 out:
2342 		map->unlock(map->lock_arg);
2343 	} else {
2344 		void *wval;
2345 
2346 		wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
2347 		if (!wval)
2348 			return -ENOMEM;
2349 
2350 		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2351 			map->format.parse_inplace(wval + i);
2352 
2353 		ret = regmap_raw_write(map, reg, wval, val_bytes * val_count);
2354 
2355 		kfree(wval);
2356 	}
2357 
2358 	if (!ret)
2359 		trace_regmap_bulk_write(map, reg, val, val_bytes * val_count);
2360 
2361 	return ret;
2362 }
2363 EXPORT_SYMBOL_GPL(regmap_bulk_write);
2364 
2365 /*
2366  * _regmap_raw_multi_reg_write()
2367  *
2368  * the (register,newvalue) pairs in regs have not been formatted, but
2369  * they are all in the same page and have been changed to being page
2370  * relative. The page register has been written if that was necessary.
2371  */
2372 static int _regmap_raw_multi_reg_write(struct regmap *map,
2373 				       const struct reg_sequence *regs,
2374 				       size_t num_regs)
2375 {
2376 	int ret;
2377 	void *buf;
2378 	int i;
2379 	u8 *u8;
2380 	size_t val_bytes = map->format.val_bytes;
2381 	size_t reg_bytes = map->format.reg_bytes;
2382 	size_t pad_bytes = map->format.pad_bytes;
2383 	size_t pair_size = reg_bytes + pad_bytes + val_bytes;
2384 	size_t len = pair_size * num_regs;
2385 
2386 	if (!len)
2387 		return -EINVAL;
2388 
2389 	buf = kzalloc(len, GFP_KERNEL);
2390 	if (!buf)
2391 		return -ENOMEM;
2392 
2393 	/* We have to linearise by hand. */
2394 
2395 	u8 = buf;
2396 
2397 	for (i = 0; i < num_regs; i++) {
2398 		unsigned int reg = regs[i].reg;
2399 		unsigned int val = regs[i].def;
2400 		trace_regmap_hw_write_start(map, reg, 1);
2401 		reg = regmap_reg_addr(map, reg);
2402 		map->format.format_reg(u8, reg, map->reg_shift);
2403 		u8 += reg_bytes + pad_bytes;
2404 		map->format.format_val(u8, val, 0);
2405 		u8 += val_bytes;
2406 	}
2407 	u8 = buf;
2408 	*u8 |= map->write_flag_mask;
2409 
2410 	ret = map->write(map->bus_context, buf, len);
2411 
2412 	kfree(buf);
2413 
2414 	for (i = 0; i < num_regs; i++) {
2415 		int reg = regs[i].reg;
2416 		trace_regmap_hw_write_done(map, reg, 1);
2417 	}
2418 	return ret;
2419 }
2420 
2421 static unsigned int _regmap_register_page(struct regmap *map,
2422 					  unsigned int reg,
2423 					  struct regmap_range_node *range)
2424 {
2425 	unsigned int win_page = (reg - range->range_min) / range->window_len;
2426 
2427 	return win_page;
2428 }
2429 
2430 static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2431 					       struct reg_sequence *regs,
2432 					       size_t num_regs)
2433 {
2434 	int ret;
2435 	int i, n;
2436 	struct reg_sequence *base;
2437 	unsigned int this_page = 0;
2438 	unsigned int page_change = 0;
2439 	/*
2440 	 * the set of registers are not neccessarily in order, but
2441 	 * since the order of write must be preserved this algorithm
2442 	 * chops the set each time the page changes. This also applies
2443 	 * if there is a delay required at any point in the sequence.
2444 	 */
2445 	base = regs;
2446 	for (i = 0, n = 0; i < num_regs; i++, n++) {
2447 		unsigned int reg = regs[i].reg;
2448 		struct regmap_range_node *range;
2449 
2450 		range = _regmap_range_lookup(map, reg);
2451 		if (range) {
2452 			unsigned int win_page = _regmap_register_page(map, reg,
2453 								      range);
2454 
2455 			if (i == 0)
2456 				this_page = win_page;
2457 			if (win_page != this_page) {
2458 				this_page = win_page;
2459 				page_change = 1;
2460 			}
2461 		}
2462 
2463 		/* If we have both a page change and a delay make sure to
2464 		 * write the regs and apply the delay before we change the
2465 		 * page.
2466 		 */
2467 
2468 		if (page_change || regs[i].delay_us) {
2469 
2470 				/* For situations where the first write requires
2471 				 * a delay we need to make sure we don't call
2472 				 * raw_multi_reg_write with n=0
2473 				 * This can't occur with page breaks as we
2474 				 * never write on the first iteration
2475 				 */
2476 				if (regs[i].delay_us && i == 0)
2477 					n = 1;
2478 
2479 				ret = _regmap_raw_multi_reg_write(map, base, n);
2480 				if (ret != 0)
2481 					return ret;
2482 
2483 				if (regs[i].delay_us) {
2484 					if (map->can_sleep)
2485 						fsleep(regs[i].delay_us);
2486 					else
2487 						udelay(regs[i].delay_us);
2488 				}
2489 
2490 				base += n;
2491 				n = 0;
2492 
2493 				if (page_change) {
2494 					ret = _regmap_select_page(map,
2495 								  &base[n].reg,
2496 								  range, 1);
2497 					if (ret != 0)
2498 						return ret;
2499 
2500 					page_change = 0;
2501 				}
2502 
2503 		}
2504 
2505 	}
2506 	if (n > 0)
2507 		return _regmap_raw_multi_reg_write(map, base, n);
2508 	return 0;
2509 }
2510 
2511 static int _regmap_multi_reg_write(struct regmap *map,
2512 				   const struct reg_sequence *regs,
2513 				   size_t num_regs)
2514 {
2515 	int i;
2516 	int ret;
2517 
2518 	if (!map->can_multi_write) {
2519 		for (i = 0; i < num_regs; i++) {
2520 			ret = _regmap_write(map, regs[i].reg, regs[i].def);
2521 			if (ret != 0)
2522 				return ret;
2523 
2524 			if (regs[i].delay_us) {
2525 				if (map->can_sleep)
2526 					fsleep(regs[i].delay_us);
2527 				else
2528 					udelay(regs[i].delay_us);
2529 			}
2530 		}
2531 		return 0;
2532 	}
2533 
2534 	if (!map->format.parse_inplace)
2535 		return -EINVAL;
2536 
2537 	if (map->writeable_reg)
2538 		for (i = 0; i < num_regs; i++) {
2539 			int reg = regs[i].reg;
2540 			if (!map->writeable_reg(map->dev, reg))
2541 				return -EINVAL;
2542 			if (!IS_ALIGNED(reg, map->reg_stride))
2543 				return -EINVAL;
2544 		}
2545 
2546 	if (!map->cache_bypass) {
2547 		for (i = 0; i < num_regs; i++) {
2548 			unsigned int val = regs[i].def;
2549 			unsigned int reg = regs[i].reg;
2550 			ret = regcache_write(map, reg, val);
2551 			if (ret) {
2552 				dev_err(map->dev,
2553 				"Error in caching of register: %x ret: %d\n",
2554 								reg, ret);
2555 				return ret;
2556 			}
2557 		}
2558 		if (map->cache_only) {
2559 			map->cache_dirty = true;
2560 			return 0;
2561 		}
2562 	}
2563 
2564 	WARN_ON(!map->bus);
2565 
2566 	for (i = 0; i < num_regs; i++) {
2567 		unsigned int reg = regs[i].reg;
2568 		struct regmap_range_node *range;
2569 
2570 		/* Coalesce all the writes between a page break or a delay
2571 		 * in a sequence
2572 		 */
2573 		range = _regmap_range_lookup(map, reg);
2574 		if (range || regs[i].delay_us) {
2575 			size_t len = sizeof(struct reg_sequence)*num_regs;
2576 			struct reg_sequence *base = kmemdup(regs, len,
2577 							   GFP_KERNEL);
2578 			if (!base)
2579 				return -ENOMEM;
2580 			ret = _regmap_range_multi_paged_reg_write(map, base,
2581 								  num_regs);
2582 			kfree(base);
2583 
2584 			return ret;
2585 		}
2586 	}
2587 	return _regmap_raw_multi_reg_write(map, regs, num_regs);
2588 }
2589 
2590 /**
2591  * regmap_multi_reg_write() - Write multiple registers to the device
2592  *
2593  * @map: Register map to write to
2594  * @regs: Array of structures containing register,value to be written
2595  * @num_regs: Number of registers to write
2596  *
2597  * Write multiple registers to the device where the set of register, value
2598  * pairs are supplied in any order, possibly not all in a single range.
2599  *
2600  * The 'normal' block write mode will send ultimately send data on the
2601  * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2602  * addressed. However, this alternative block multi write mode will send
2603  * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2604  * must of course support the mode.
2605  *
2606  * A value of zero will be returned on success, a negative errno will be
2607  * returned in error cases.
2608  */
2609 int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2610 			   int num_regs)
2611 {
2612 	int ret;
2613 
2614 	map->lock(map->lock_arg);
2615 
2616 	ret = _regmap_multi_reg_write(map, regs, num_regs);
2617 
2618 	map->unlock(map->lock_arg);
2619 
2620 	return ret;
2621 }
2622 EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2623 
2624 /**
2625  * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2626  *                                     device but not the cache
2627  *
2628  * @map: Register map to write to
2629  * @regs: Array of structures containing register,value to be written
2630  * @num_regs: Number of registers to write
2631  *
2632  * Write multiple registers to the device but not the cache where the set
2633  * of register are supplied in any order.
2634  *
2635  * This function is intended to be used for writing a large block of data
2636  * atomically to the device in single transfer for those I2C client devices
2637  * that implement this alternative block write mode.
2638  *
2639  * A value of zero will be returned on success, a negative errno will
2640  * be returned in error cases.
2641  */
2642 int regmap_multi_reg_write_bypassed(struct regmap *map,
2643 				    const struct reg_sequence *regs,
2644 				    int num_regs)
2645 {
2646 	int ret;
2647 	bool bypass;
2648 
2649 	map->lock(map->lock_arg);
2650 
2651 	bypass = map->cache_bypass;
2652 	map->cache_bypass = true;
2653 
2654 	ret = _regmap_multi_reg_write(map, regs, num_regs);
2655 
2656 	map->cache_bypass = bypass;
2657 
2658 	map->unlock(map->lock_arg);
2659 
2660 	return ret;
2661 }
2662 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2663 
2664 /**
2665  * regmap_raw_write_async() - Write raw values to one or more registers
2666  *                            asynchronously
2667  *
2668  * @map: Register map to write to
2669  * @reg: Initial register to write to
2670  * @val: Block of data to be written, laid out for direct transmission to the
2671  *       device.  Must be valid until regmap_async_complete() is called.
2672  * @val_len: Length of data pointed to by val.
2673  *
2674  * This function is intended to be used for things like firmware
2675  * download where a large block of data needs to be transferred to the
2676  * device.  No formatting will be done on the data provided.
2677  *
2678  * If supported by the underlying bus the write will be scheduled
2679  * asynchronously, helping maximise I/O speed on higher speed buses
2680  * like SPI.  regmap_async_complete() can be called to ensure that all
2681  * asynchrnous writes have been completed.
2682  *
2683  * A value of zero will be returned on success, a negative errno will
2684  * be returned in error cases.
2685  */
2686 int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2687 			   const void *val, size_t val_len)
2688 {
2689 	int ret;
2690 
2691 	if (val_len % map->format.val_bytes)
2692 		return -EINVAL;
2693 	if (!IS_ALIGNED(reg, map->reg_stride))
2694 		return -EINVAL;
2695 
2696 	map->lock(map->lock_arg);
2697 
2698 	map->async = true;
2699 
2700 	ret = _regmap_raw_write(map, reg, val, val_len, false);
2701 
2702 	map->async = false;
2703 
2704 	map->unlock(map->lock_arg);
2705 
2706 	return ret;
2707 }
2708 EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2709 
2710 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2711 			    unsigned int val_len, bool noinc)
2712 {
2713 	struct regmap_range_node *range;
2714 	int ret;
2715 
2716 	if (!map->read)
2717 		return -EINVAL;
2718 
2719 	range = _regmap_range_lookup(map, reg);
2720 	if (range) {
2721 		ret = _regmap_select_page(map, &reg, range,
2722 					  noinc ? 1 : val_len / map->format.val_bytes);
2723 		if (ret != 0)
2724 			return ret;
2725 	}
2726 
2727 	reg = regmap_reg_addr(map, reg);
2728 	map->format.format_reg(map->work_buf, reg, map->reg_shift);
2729 	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2730 				      map->read_flag_mask);
2731 	trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2732 
2733 	ret = map->read(map->bus_context, map->work_buf,
2734 			map->format.reg_bytes + map->format.pad_bytes,
2735 			val, val_len);
2736 
2737 	trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2738 
2739 	return ret;
2740 }
2741 
2742 static int _regmap_bus_reg_read(void *context, unsigned int reg,
2743 				unsigned int *val)
2744 {
2745 	struct regmap *map = context;
2746 	struct regmap_range_node *range;
2747 	int ret;
2748 
2749 	range = _regmap_range_lookup(map, reg);
2750 	if (range) {
2751 		ret = _regmap_select_page(map, &reg, range, 1);
2752 		if (ret != 0)
2753 			return ret;
2754 	}
2755 
2756 	reg = regmap_reg_addr(map, reg);
2757 	return map->bus->reg_read(map->bus_context, reg, val);
2758 }
2759 
2760 static int _regmap_bus_read(void *context, unsigned int reg,
2761 			    unsigned int *val)
2762 {
2763 	int ret;
2764 	struct regmap *map = context;
2765 	void *work_val = map->work_buf + map->format.reg_bytes +
2766 		map->format.pad_bytes;
2767 
2768 	if (!map->format.parse_val)
2769 		return -EINVAL;
2770 
2771 	ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes, false);
2772 	if (ret == 0)
2773 		*val = map->format.parse_val(work_val);
2774 
2775 	return ret;
2776 }
2777 
2778 static int _regmap_read(struct regmap *map, unsigned int reg,
2779 			unsigned int *val)
2780 {
2781 	int ret;
2782 	void *context = _regmap_map_get_context(map);
2783 
2784 	if (!map->cache_bypass) {
2785 		ret = regcache_read(map, reg, val);
2786 		if (ret == 0)
2787 			return 0;
2788 	}
2789 
2790 	if (map->cache_only)
2791 		return -EBUSY;
2792 
2793 	if (!regmap_readable(map, reg))
2794 		return -EIO;
2795 
2796 	ret = map->reg_read(context, reg, val);
2797 	if (ret == 0) {
2798 		if (regmap_should_log(map))
2799 			dev_info(map->dev, "%x => %x\n", reg, *val);
2800 
2801 		trace_regmap_reg_read(map, reg, *val);
2802 
2803 		if (!map->cache_bypass)
2804 			regcache_write(map, reg, *val);
2805 	}
2806 
2807 	return ret;
2808 }
2809 
2810 /**
2811  * regmap_read() - Read a value from a single register
2812  *
2813  * @map: Register map to read from
2814  * @reg: Register to be read from
2815  * @val: Pointer to store read value
2816  *
2817  * A value of zero will be returned on success, a negative errno will
2818  * be returned in error cases.
2819  */
2820 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2821 {
2822 	int ret;
2823 
2824 	if (!IS_ALIGNED(reg, map->reg_stride))
2825 		return -EINVAL;
2826 
2827 	map->lock(map->lock_arg);
2828 
2829 	ret = _regmap_read(map, reg, val);
2830 
2831 	map->unlock(map->lock_arg);
2832 
2833 	return ret;
2834 }
2835 EXPORT_SYMBOL_GPL(regmap_read);
2836 
2837 /**
2838  * regmap_raw_read() - Read raw data from the device
2839  *
2840  * @map: Register map to read from
2841  * @reg: First register to be read from
2842  * @val: Pointer to store read value
2843  * @val_len: Size of data to read
2844  *
2845  * A value of zero will be returned on success, a negative errno will
2846  * be returned in error cases.
2847  */
2848 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2849 		    size_t val_len)
2850 {
2851 	size_t val_bytes = map->format.val_bytes;
2852 	size_t val_count = val_len / val_bytes;
2853 	unsigned int v;
2854 	int ret, i;
2855 
2856 	if (val_len % map->format.val_bytes)
2857 		return -EINVAL;
2858 	if (!IS_ALIGNED(reg, map->reg_stride))
2859 		return -EINVAL;
2860 	if (val_count == 0)
2861 		return -EINVAL;
2862 
2863 	map->lock(map->lock_arg);
2864 
2865 	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2866 	    map->cache_type == REGCACHE_NONE) {
2867 		size_t chunk_count, chunk_bytes;
2868 		size_t chunk_regs = val_count;
2869 
2870 		if (!map->cache_bypass && map->cache_only) {
2871 			ret = -EBUSY;
2872 			goto out;
2873 		}
2874 
2875 		if (!map->read) {
2876 			ret = -ENOTSUPP;
2877 			goto out;
2878 		}
2879 
2880 		if (map->use_single_read)
2881 			chunk_regs = 1;
2882 		else if (map->max_raw_read && val_len > map->max_raw_read)
2883 			chunk_regs = map->max_raw_read / val_bytes;
2884 
2885 		chunk_count = val_count / chunk_regs;
2886 		chunk_bytes = chunk_regs * val_bytes;
2887 
2888 		/* Read bytes that fit into whole chunks */
2889 		for (i = 0; i < chunk_count; i++) {
2890 			ret = _regmap_raw_read(map, reg, val, chunk_bytes, false);
2891 			if (ret != 0)
2892 				goto out;
2893 
2894 			reg += regmap_get_offset(map, chunk_regs);
2895 			val += chunk_bytes;
2896 			val_len -= chunk_bytes;
2897 		}
2898 
2899 		/* Read remaining bytes */
2900 		if (val_len) {
2901 			ret = _regmap_raw_read(map, reg, val, val_len, false);
2902 			if (ret != 0)
2903 				goto out;
2904 		}
2905 	} else {
2906 		/* Otherwise go word by word for the cache; should be low
2907 		 * cost as we expect to hit the cache.
2908 		 */
2909 		for (i = 0; i < val_count; i++) {
2910 			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2911 					   &v);
2912 			if (ret != 0)
2913 				goto out;
2914 
2915 			map->format.format_val(val + (i * val_bytes), v, 0);
2916 		}
2917 	}
2918 
2919  out:
2920 	map->unlock(map->lock_arg);
2921 
2922 	return ret;
2923 }
2924 EXPORT_SYMBOL_GPL(regmap_raw_read);
2925 
2926 /**
2927  * regmap_noinc_read(): Read data from a register without incrementing the
2928  *			register number
2929  *
2930  * @map: Register map to read from
2931  * @reg: Register to read from
2932  * @val: Pointer to data buffer
2933  * @val_len: Length of output buffer in bytes.
2934  *
2935  * The regmap API usually assumes that bulk read operations will read a
2936  * range of registers. Some devices have certain registers for which a read
2937  * operation read will read from an internal FIFO.
2938  *
2939  * The target register must be volatile but registers after it can be
2940  * completely unrelated cacheable registers.
2941  *
2942  * This will attempt multiple reads as required to read val_len bytes.
2943  *
2944  * A value of zero will be returned on success, a negative errno will be
2945  * returned in error cases.
2946  */
2947 int regmap_noinc_read(struct regmap *map, unsigned int reg,
2948 		      void *val, size_t val_len)
2949 {
2950 	size_t read_len;
2951 	int ret;
2952 
2953 	if (!map->read)
2954 		return -ENOTSUPP;
2955 
2956 	if (val_len % map->format.val_bytes)
2957 		return -EINVAL;
2958 	if (!IS_ALIGNED(reg, map->reg_stride))
2959 		return -EINVAL;
2960 	if (val_len == 0)
2961 		return -EINVAL;
2962 
2963 	map->lock(map->lock_arg);
2964 
2965 	if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) {
2966 		ret = -EINVAL;
2967 		goto out_unlock;
2968 	}
2969 
2970 	/*
2971 	 * We have not defined the FIFO semantics for cache, as the
2972 	 * cache is just one value deep. Should we return the last
2973 	 * written value? Just avoid this by always reading the FIFO
2974 	 * even when using cache. Cache only will not work.
2975 	 */
2976 	if (!map->cache_bypass && map->cache_only) {
2977 		ret = -EBUSY;
2978 		goto out_unlock;
2979 	}
2980 
2981 	/* Use the accelerated operation if we can */
2982 	if (map->bus->reg_noinc_read) {
2983 		ret = regmap_noinc_readwrite(map, reg, val, val_len, false);
2984 		goto out_unlock;
2985 	}
2986 
2987 	while (val_len) {
2988 		if (map->max_raw_read && map->max_raw_read < val_len)
2989 			read_len = map->max_raw_read;
2990 		else
2991 			read_len = val_len;
2992 		ret = _regmap_raw_read(map, reg, val, read_len, true);
2993 		if (ret)
2994 			goto out_unlock;
2995 		val = ((u8 *)val) + read_len;
2996 		val_len -= read_len;
2997 	}
2998 
2999 out_unlock:
3000 	map->unlock(map->lock_arg);
3001 	return ret;
3002 }
3003 EXPORT_SYMBOL_GPL(regmap_noinc_read);
3004 
3005 /**
3006  * regmap_field_read(): Read a value to a single register field
3007  *
3008  * @field: Register field to read from
3009  * @val: Pointer to store read value
3010  *
3011  * A value of zero will be returned on success, a negative errno will
3012  * be returned in error cases.
3013  */
3014 int regmap_field_read(struct regmap_field *field, unsigned int *val)
3015 {
3016 	int ret;
3017 	unsigned int reg_val;
3018 	ret = regmap_read(field->regmap, field->reg, &reg_val);
3019 	if (ret != 0)
3020 		return ret;
3021 
3022 	reg_val &= field->mask;
3023 	reg_val >>= field->shift;
3024 	*val = reg_val;
3025 
3026 	return ret;
3027 }
3028 EXPORT_SYMBOL_GPL(regmap_field_read);
3029 
3030 /**
3031  * regmap_fields_read() - Read a value to a single register field with port ID
3032  *
3033  * @field: Register field to read from
3034  * @id: port ID
3035  * @val: Pointer to store read value
3036  *
3037  * A value of zero will be returned on success, a negative errno will
3038  * be returned in error cases.
3039  */
3040 int regmap_fields_read(struct regmap_field *field, unsigned int id,
3041 		       unsigned int *val)
3042 {
3043 	int ret;
3044 	unsigned int reg_val;
3045 
3046 	if (id >= field->id_size)
3047 		return -EINVAL;
3048 
3049 	ret = regmap_read(field->regmap,
3050 			  field->reg + (field->id_offset * id),
3051 			  &reg_val);
3052 	if (ret != 0)
3053 		return ret;
3054 
3055 	reg_val &= field->mask;
3056 	reg_val >>= field->shift;
3057 	*val = reg_val;
3058 
3059 	return ret;
3060 }
3061 EXPORT_SYMBOL_GPL(regmap_fields_read);
3062 
3063 /**
3064  * regmap_bulk_read() - Read multiple registers from the device
3065  *
3066  * @map: Register map to read from
3067  * @reg: First register to be read from
3068  * @val: Pointer to store read value, in native register size for device
3069  * @val_count: Number of registers to read
3070  *
3071  * A value of zero will be returned on success, a negative errno will
3072  * be returned in error cases.
3073  */
3074 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
3075 		     size_t val_count)
3076 {
3077 	int ret, i;
3078 	size_t val_bytes = map->format.val_bytes;
3079 	bool vol = regmap_volatile_range(map, reg, val_count);
3080 
3081 	if (!IS_ALIGNED(reg, map->reg_stride))
3082 		return -EINVAL;
3083 	if (val_count == 0)
3084 		return -EINVAL;
3085 
3086 	if (map->read && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
3087 		ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
3088 		if (ret != 0)
3089 			return ret;
3090 
3091 		for (i = 0; i < val_count * val_bytes; i += val_bytes)
3092 			map->format.parse_inplace(val + i);
3093 	} else {
3094 		u32 *u32 = val;
3095 		u16 *u16 = val;
3096 		u8 *u8 = val;
3097 
3098 		map->lock(map->lock_arg);
3099 
3100 		for (i = 0; i < val_count; i++) {
3101 			unsigned int ival;
3102 
3103 			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
3104 					   &ival);
3105 			if (ret != 0)
3106 				goto out;
3107 
3108 			switch (map->format.val_bytes) {
3109 			case 4:
3110 				u32[i] = ival;
3111 				break;
3112 			case 2:
3113 				u16[i] = ival;
3114 				break;
3115 			case 1:
3116 				u8[i] = ival;
3117 				break;
3118 			default:
3119 				ret = -EINVAL;
3120 				goto out;
3121 			}
3122 		}
3123 
3124 out:
3125 		map->unlock(map->lock_arg);
3126 	}
3127 
3128 	if (!ret)
3129 		trace_regmap_bulk_read(map, reg, val, val_bytes * val_count);
3130 
3131 	return ret;
3132 }
3133 EXPORT_SYMBOL_GPL(regmap_bulk_read);
3134 
3135 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
3136 			       unsigned int mask, unsigned int val,
3137 			       bool *change, bool force_write)
3138 {
3139 	int ret;
3140 	unsigned int tmp, orig;
3141 
3142 	if (change)
3143 		*change = false;
3144 
3145 	if (regmap_volatile(map, reg) && map->reg_update_bits) {
3146 		reg = regmap_reg_addr(map, reg);
3147 		ret = map->reg_update_bits(map->bus_context, reg, mask, val);
3148 		if (ret == 0 && change)
3149 			*change = true;
3150 	} else {
3151 		ret = _regmap_read(map, reg, &orig);
3152 		if (ret != 0)
3153 			return ret;
3154 
3155 		tmp = orig & ~mask;
3156 		tmp |= val & mask;
3157 
3158 		if (force_write || (tmp != orig) || map->force_write_field) {
3159 			ret = _regmap_write(map, reg, tmp);
3160 			if (ret == 0 && change)
3161 				*change = true;
3162 		}
3163 	}
3164 
3165 	return ret;
3166 }
3167 
3168 /**
3169  * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
3170  *
3171  * @map: Register map to update
3172  * @reg: Register to update
3173  * @mask: Bitmask to change
3174  * @val: New value for bitmask
3175  * @change: Boolean indicating if a write was done
3176  * @async: Boolean indicating asynchronously
3177  * @force: Boolean indicating use force update
3178  *
3179  * Perform a read/modify/write cycle on a register map with change, async, force
3180  * options.
3181  *
3182  * If async is true:
3183  *
3184  * With most buses the read must be done synchronously so this is most useful
3185  * for devices with a cache which do not need to interact with the hardware to
3186  * determine the current register value.
3187  *
3188  * Returns zero for success, a negative number on error.
3189  */
3190 int regmap_update_bits_base(struct regmap *map, unsigned int reg,
3191 			    unsigned int mask, unsigned int val,
3192 			    bool *change, bool async, bool force)
3193 {
3194 	int ret;
3195 
3196 	map->lock(map->lock_arg);
3197 
3198 	map->async = async;
3199 
3200 	ret = _regmap_update_bits(map, reg, mask, val, change, force);
3201 
3202 	map->async = false;
3203 
3204 	map->unlock(map->lock_arg);
3205 
3206 	return ret;
3207 }
3208 EXPORT_SYMBOL_GPL(regmap_update_bits_base);
3209 
3210 /**
3211  * regmap_test_bits() - Check if all specified bits are set in a register.
3212  *
3213  * @map: Register map to operate on
3214  * @reg: Register to read from
3215  * @bits: Bits to test
3216  *
3217  * Returns 0 if at least one of the tested bits is not set, 1 if all tested
3218  * bits are set and a negative error number if the underlying regmap_read()
3219  * fails.
3220  */
3221 int regmap_test_bits(struct regmap *map, unsigned int reg, unsigned int bits)
3222 {
3223 	unsigned int val, ret;
3224 
3225 	ret = regmap_read(map, reg, &val);
3226 	if (ret)
3227 		return ret;
3228 
3229 	return (val & bits) == bits;
3230 }
3231 EXPORT_SYMBOL_GPL(regmap_test_bits);
3232 
3233 void regmap_async_complete_cb(struct regmap_async *async, int ret)
3234 {
3235 	struct regmap *map = async->map;
3236 	bool wake;
3237 
3238 	trace_regmap_async_io_complete(map);
3239 
3240 	spin_lock(&map->async_lock);
3241 	list_move(&async->list, &map->async_free);
3242 	wake = list_empty(&map->async_list);
3243 
3244 	if (ret != 0)
3245 		map->async_ret = ret;
3246 
3247 	spin_unlock(&map->async_lock);
3248 
3249 	if (wake)
3250 		wake_up(&map->async_waitq);
3251 }
3252 EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
3253 
3254 static int regmap_async_is_done(struct regmap *map)
3255 {
3256 	unsigned long flags;
3257 	int ret;
3258 
3259 	spin_lock_irqsave(&map->async_lock, flags);
3260 	ret = list_empty(&map->async_list);
3261 	spin_unlock_irqrestore(&map->async_lock, flags);
3262 
3263 	return ret;
3264 }
3265 
3266 /**
3267  * regmap_async_complete - Ensure all asynchronous I/O has completed.
3268  *
3269  * @map: Map to operate on.
3270  *
3271  * Blocks until any pending asynchronous I/O has completed.  Returns
3272  * an error code for any failed I/O operations.
3273  */
3274 int regmap_async_complete(struct regmap *map)
3275 {
3276 	unsigned long flags;
3277 	int ret;
3278 
3279 	/* Nothing to do with no async support */
3280 	if (!map->bus || !map->bus->async_write)
3281 		return 0;
3282 
3283 	trace_regmap_async_complete_start(map);
3284 
3285 	wait_event(map->async_waitq, regmap_async_is_done(map));
3286 
3287 	spin_lock_irqsave(&map->async_lock, flags);
3288 	ret = map->async_ret;
3289 	map->async_ret = 0;
3290 	spin_unlock_irqrestore(&map->async_lock, flags);
3291 
3292 	trace_regmap_async_complete_done(map);
3293 
3294 	return ret;
3295 }
3296 EXPORT_SYMBOL_GPL(regmap_async_complete);
3297 
3298 /**
3299  * regmap_register_patch - Register and apply register updates to be applied
3300  *                         on device initialistion
3301  *
3302  * @map: Register map to apply updates to.
3303  * @regs: Values to update.
3304  * @num_regs: Number of entries in regs.
3305  *
3306  * Register a set of register updates to be applied to the device
3307  * whenever the device registers are synchronised with the cache and
3308  * apply them immediately.  Typically this is used to apply
3309  * corrections to be applied to the device defaults on startup, such
3310  * as the updates some vendors provide to undocumented registers.
3311  *
3312  * The caller must ensure that this function cannot be called
3313  * concurrently with either itself or regcache_sync().
3314  */
3315 int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
3316 			  int num_regs)
3317 {
3318 	struct reg_sequence *p;
3319 	int ret;
3320 	bool bypass;
3321 
3322 	if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
3323 	    num_regs))
3324 		return 0;
3325 
3326 	p = krealloc(map->patch,
3327 		     sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
3328 		     GFP_KERNEL);
3329 	if (p) {
3330 		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
3331 		map->patch = p;
3332 		map->patch_regs += num_regs;
3333 	} else {
3334 		return -ENOMEM;
3335 	}
3336 
3337 	map->lock(map->lock_arg);
3338 
3339 	bypass = map->cache_bypass;
3340 
3341 	map->cache_bypass = true;
3342 	map->async = true;
3343 
3344 	ret = _regmap_multi_reg_write(map, regs, num_regs);
3345 
3346 	map->async = false;
3347 	map->cache_bypass = bypass;
3348 
3349 	map->unlock(map->lock_arg);
3350 
3351 	regmap_async_complete(map);
3352 
3353 	return ret;
3354 }
3355 EXPORT_SYMBOL_GPL(regmap_register_patch);
3356 
3357 /**
3358  * regmap_get_val_bytes() - Report the size of a register value
3359  *
3360  * @map: Register map to operate on.
3361  *
3362  * Report the size of a register value, mainly intended to for use by
3363  * generic infrastructure built on top of regmap.
3364  */
3365 int regmap_get_val_bytes(struct regmap *map)
3366 {
3367 	if (map->format.format_write)
3368 		return -EINVAL;
3369 
3370 	return map->format.val_bytes;
3371 }
3372 EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
3373 
3374 /**
3375  * regmap_get_max_register() - Report the max register value
3376  *
3377  * @map: Register map to operate on.
3378  *
3379  * Report the max register value, mainly intended to for use by
3380  * generic infrastructure built on top of regmap.
3381  */
3382 int regmap_get_max_register(struct regmap *map)
3383 {
3384 	return map->max_register ? map->max_register : -EINVAL;
3385 }
3386 EXPORT_SYMBOL_GPL(regmap_get_max_register);
3387 
3388 /**
3389  * regmap_get_reg_stride() - Report the register address stride
3390  *
3391  * @map: Register map to operate on.
3392  *
3393  * Report the register address stride, mainly intended to for use by
3394  * generic infrastructure built on top of regmap.
3395  */
3396 int regmap_get_reg_stride(struct regmap *map)
3397 {
3398 	return map->reg_stride;
3399 }
3400 EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
3401 
3402 /**
3403  * regmap_might_sleep() - Returns whether a regmap access might sleep.
3404  *
3405  * @map: Register map to operate on.
3406  *
3407  * Returns true if an access to the register might sleep, else false.
3408  */
3409 bool regmap_might_sleep(struct regmap *map)
3410 {
3411 	return map->can_sleep;
3412 }
3413 EXPORT_SYMBOL_GPL(regmap_might_sleep);
3414 
3415 int regmap_parse_val(struct regmap *map, const void *buf,
3416 			unsigned int *val)
3417 {
3418 	if (!map->format.parse_val)
3419 		return -EINVAL;
3420 
3421 	*val = map->format.parse_val(buf);
3422 
3423 	return 0;
3424 }
3425 EXPORT_SYMBOL_GPL(regmap_parse_val);
3426 
3427 static int __init regmap_initcall(void)
3428 {
3429 	regmap_debugfs_initcall();
3430 
3431 	return 0;
3432 }
3433 postcore_initcall(regmap_initcall);
3434