xref: /linux/drivers/base/regmap/regmap.c (revision afb923b8198aa71e5b8e65268e598026faf43f12)
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // Register map access API
4 //
5 // Copyright 2011 Wolfson Microelectronics plc
6 //
7 // Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8 
9 #include <linux/device.h>
10 #include <linux/slab.h>
11 #include <linux/export.h>
12 #include <linux/mutex.h>
13 #include <linux/err.h>
14 #include <linux/property.h>
15 #include <linux/rbtree.h>
16 #include <linux/sched.h>
17 #include <linux/delay.h>
18 #include <linux/log2.h>
19 #include <linux/hwspinlock.h>
20 #include <linux/unaligned.h>
21 
22 #define CREATE_TRACE_POINTS
23 #include "trace.h"
24 
25 #include "internal.h"
26 
27 /*
28  * Sometimes for failures during very early init the trace
29  * infrastructure isn't available early enough to be used.  For this
30  * sort of problem defining LOG_DEVICE will add printks for basic
31  * register I/O on a specific device.
32  */
33 #undef LOG_DEVICE
34 
35 #ifdef LOG_DEVICE
regmap_should_log(struct regmap * map)36 static inline bool regmap_should_log(struct regmap *map)
37 {
38 	return (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0);
39 }
40 #else
regmap_should_log(struct regmap * map)41 static inline bool regmap_should_log(struct regmap *map) { return false; }
42 #endif
43 
44 
45 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
46 			       unsigned int mask, unsigned int val,
47 			       bool *change, bool force_write);
48 
49 static int _regmap_bus_reg_read(void *context, unsigned int reg,
50 				unsigned int *val);
51 static int _regmap_bus_read(void *context, unsigned int reg,
52 			    unsigned int *val);
53 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
54 				       unsigned int val);
55 static int _regmap_bus_reg_write(void *context, unsigned int reg,
56 				 unsigned int val);
57 static int _regmap_bus_raw_write(void *context, unsigned int reg,
58 				 unsigned int val);
59 
regmap_reg_in_ranges(unsigned int reg,const struct regmap_range * ranges,unsigned int nranges)60 bool regmap_reg_in_ranges(unsigned int reg,
61 			  const struct regmap_range *ranges,
62 			  unsigned int nranges)
63 {
64 	const struct regmap_range *r;
65 	int i;
66 
67 	for (i = 0, r = ranges; i < nranges; i++, r++)
68 		if (regmap_reg_in_range(reg, r))
69 			return true;
70 	return false;
71 }
72 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
73 
regmap_check_range_table(struct regmap * map,unsigned int reg,const struct regmap_access_table * table)74 bool regmap_check_range_table(struct regmap *map, unsigned int reg,
75 			      const struct regmap_access_table *table)
76 {
77 	/* Check "no ranges" first */
78 	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
79 		return false;
80 
81 	/* In case zero "yes ranges" are supplied, any reg is OK */
82 	if (!table->n_yes_ranges)
83 		return true;
84 
85 	return regmap_reg_in_ranges(reg, table->yes_ranges,
86 				    table->n_yes_ranges);
87 }
88 EXPORT_SYMBOL_GPL(regmap_check_range_table);
89 
regmap_writeable(struct regmap * map,unsigned int reg)90 bool regmap_writeable(struct regmap *map, unsigned int reg)
91 {
92 	if (map->max_register_is_set && reg > map->max_register)
93 		return false;
94 
95 	if (map->writeable_reg)
96 		return map->writeable_reg(map->dev, reg);
97 
98 	if (map->wr_table)
99 		return regmap_check_range_table(map, reg, map->wr_table);
100 
101 	return true;
102 }
103 
regmap_cached(struct regmap * map,unsigned int reg)104 bool regmap_cached(struct regmap *map, unsigned int reg)
105 {
106 	int ret;
107 	unsigned int val;
108 
109 	if (map->cache_type == REGCACHE_NONE)
110 		return false;
111 
112 	if (!map->cache_ops)
113 		return false;
114 
115 	if (map->max_register_is_set && reg > map->max_register)
116 		return false;
117 
118 	map->lock(map->lock_arg);
119 	ret = regcache_read(map, reg, &val);
120 	map->unlock(map->lock_arg);
121 	if (ret)
122 		return false;
123 
124 	return true;
125 }
126 
regmap_readable(struct regmap * map,unsigned int reg)127 bool regmap_readable(struct regmap *map, unsigned int reg)
128 {
129 	if (!map->reg_read)
130 		return false;
131 
132 	if (map->max_register_is_set && reg > map->max_register)
133 		return false;
134 
135 	if (map->format.format_write)
136 		return false;
137 
138 	if (map->readable_reg)
139 		return map->readable_reg(map->dev, reg);
140 
141 	if (map->rd_table)
142 		return regmap_check_range_table(map, reg, map->rd_table);
143 
144 	return true;
145 }
146 
regmap_volatile(struct regmap * map,unsigned int reg)147 bool regmap_volatile(struct regmap *map, unsigned int reg)
148 {
149 	if (!map->format.format_write && !regmap_readable(map, reg))
150 		return false;
151 
152 	if (map->volatile_reg)
153 		return map->volatile_reg(map->dev, reg);
154 
155 	if (map->volatile_table)
156 		return regmap_check_range_table(map, reg, map->volatile_table);
157 
158 	if (map->cache_ops)
159 		return false;
160 	else
161 		return true;
162 }
163 
regmap_precious(struct regmap * map,unsigned int reg)164 bool regmap_precious(struct regmap *map, unsigned int reg)
165 {
166 	if (!regmap_readable(map, reg))
167 		return false;
168 
169 	if (map->precious_reg)
170 		return map->precious_reg(map->dev, reg);
171 
172 	if (map->precious_table)
173 		return regmap_check_range_table(map, reg, map->precious_table);
174 
175 	return false;
176 }
177 
regmap_writeable_noinc(struct regmap * map,unsigned int reg)178 bool regmap_writeable_noinc(struct regmap *map, unsigned int reg)
179 {
180 	if (map->writeable_noinc_reg)
181 		return map->writeable_noinc_reg(map->dev, reg);
182 
183 	if (map->wr_noinc_table)
184 		return regmap_check_range_table(map, reg, map->wr_noinc_table);
185 
186 	return true;
187 }
188 
regmap_readable_noinc(struct regmap * map,unsigned int reg)189 bool regmap_readable_noinc(struct regmap *map, unsigned int reg)
190 {
191 	if (map->readable_noinc_reg)
192 		return map->readable_noinc_reg(map->dev, reg);
193 
194 	if (map->rd_noinc_table)
195 		return regmap_check_range_table(map, reg, map->rd_noinc_table);
196 
197 	return true;
198 }
199 
regmap_volatile_range(struct regmap * map,unsigned int reg,size_t num)200 static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
201 	size_t num)
202 {
203 	unsigned int i;
204 
205 	for (i = 0; i < num; i++)
206 		if (!regmap_volatile(map, reg + regmap_get_offset(map, i)))
207 			return false;
208 
209 	return true;
210 }
211 
regmap_format_12_20_write(struct regmap * map,unsigned int reg,unsigned int val)212 static void regmap_format_12_20_write(struct regmap *map,
213 				     unsigned int reg, unsigned int val)
214 {
215 	u8 *out = map->work_buf;
216 
217 	out[0] = reg >> 4;
218 	out[1] = (reg << 4) | (val >> 16);
219 	out[2] = val >> 8;
220 	out[3] = val;
221 }
222 
223 
regmap_format_2_6_write(struct regmap * map,unsigned int reg,unsigned int val)224 static void regmap_format_2_6_write(struct regmap *map,
225 				     unsigned int reg, unsigned int val)
226 {
227 	u8 *out = map->work_buf;
228 
229 	*out = (reg << 6) | val;
230 }
231 
regmap_format_4_12_write(struct regmap * map,unsigned int reg,unsigned int val)232 static void regmap_format_4_12_write(struct regmap *map,
233 				     unsigned int reg, unsigned int val)
234 {
235 	__be16 *out = map->work_buf;
236 	*out = cpu_to_be16((reg << 12) | val);
237 }
238 
regmap_format_7_9_write(struct regmap * map,unsigned int reg,unsigned int val)239 static void regmap_format_7_9_write(struct regmap *map,
240 				    unsigned int reg, unsigned int val)
241 {
242 	__be16 *out = map->work_buf;
243 	*out = cpu_to_be16((reg << 9) | val);
244 }
245 
regmap_format_7_17_write(struct regmap * map,unsigned int reg,unsigned int val)246 static void regmap_format_7_17_write(struct regmap *map,
247 				    unsigned int reg, unsigned int val)
248 {
249 	u8 *out = map->work_buf;
250 
251 	out[2] = val;
252 	out[1] = val >> 8;
253 	out[0] = (val >> 16) | (reg << 1);
254 }
255 
regmap_format_10_14_write(struct regmap * map,unsigned int reg,unsigned int val)256 static void regmap_format_10_14_write(struct regmap *map,
257 				    unsigned int reg, unsigned int val)
258 {
259 	u8 *out = map->work_buf;
260 
261 	out[2] = val;
262 	out[1] = (val >> 8) | (reg << 6);
263 	out[0] = reg >> 2;
264 }
265 
regmap_format_8(void * buf,unsigned int val,unsigned int shift)266 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
267 {
268 	u8 *b = buf;
269 
270 	b[0] = val << shift;
271 }
272 
regmap_format_16_be(void * buf,unsigned int val,unsigned int shift)273 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
274 {
275 	put_unaligned_be16(val << shift, buf);
276 }
277 
regmap_format_16_le(void * buf,unsigned int val,unsigned int shift)278 static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
279 {
280 	put_unaligned_le16(val << shift, buf);
281 }
282 
regmap_format_16_native(void * buf,unsigned int val,unsigned int shift)283 static void regmap_format_16_native(void *buf, unsigned int val,
284 				    unsigned int shift)
285 {
286 	u16 v = val << shift;
287 
288 	memcpy(buf, &v, sizeof(v));
289 }
290 
regmap_format_24_be(void * buf,unsigned int val,unsigned int shift)291 static void regmap_format_24_be(void *buf, unsigned int val, unsigned int shift)
292 {
293 	put_unaligned_be24(val << shift, buf);
294 }
295 
regmap_format_32_be(void * buf,unsigned int val,unsigned int shift)296 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
297 {
298 	put_unaligned_be32(val << shift, buf);
299 }
300 
regmap_format_32_le(void * buf,unsigned int val,unsigned int shift)301 static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
302 {
303 	put_unaligned_le32(val << shift, buf);
304 }
305 
regmap_format_32_native(void * buf,unsigned int val,unsigned int shift)306 static void regmap_format_32_native(void *buf, unsigned int val,
307 				    unsigned int shift)
308 {
309 	u32 v = val << shift;
310 
311 	memcpy(buf, &v, sizeof(v));
312 }
313 
regmap_parse_inplace_noop(void * buf)314 static void regmap_parse_inplace_noop(void *buf)
315 {
316 }
317 
regmap_parse_8(const void * buf)318 static unsigned int regmap_parse_8(const void *buf)
319 {
320 	const u8 *b = buf;
321 
322 	return b[0];
323 }
324 
regmap_parse_16_be(const void * buf)325 static unsigned int regmap_parse_16_be(const void *buf)
326 {
327 	return get_unaligned_be16(buf);
328 }
329 
regmap_parse_16_le(const void * buf)330 static unsigned int regmap_parse_16_le(const void *buf)
331 {
332 	return get_unaligned_le16(buf);
333 }
334 
regmap_parse_16_be_inplace(void * buf)335 static void regmap_parse_16_be_inplace(void *buf)
336 {
337 	u16 v = get_unaligned_be16(buf);
338 
339 	memcpy(buf, &v, sizeof(v));
340 }
341 
regmap_parse_16_le_inplace(void * buf)342 static void regmap_parse_16_le_inplace(void *buf)
343 {
344 	u16 v = get_unaligned_le16(buf);
345 
346 	memcpy(buf, &v, sizeof(v));
347 }
348 
regmap_parse_16_native(const void * buf)349 static unsigned int regmap_parse_16_native(const void *buf)
350 {
351 	u16 v;
352 
353 	memcpy(&v, buf, sizeof(v));
354 	return v;
355 }
356 
regmap_parse_24_be(const void * buf)357 static unsigned int regmap_parse_24_be(const void *buf)
358 {
359 	return get_unaligned_be24(buf);
360 }
361 
regmap_parse_32_be(const void * buf)362 static unsigned int regmap_parse_32_be(const void *buf)
363 {
364 	return get_unaligned_be32(buf);
365 }
366 
regmap_parse_32_le(const void * buf)367 static unsigned int regmap_parse_32_le(const void *buf)
368 {
369 	return get_unaligned_le32(buf);
370 }
371 
regmap_parse_32_be_inplace(void * buf)372 static void regmap_parse_32_be_inplace(void *buf)
373 {
374 	u32 v = get_unaligned_be32(buf);
375 
376 	memcpy(buf, &v, sizeof(v));
377 }
378 
regmap_parse_32_le_inplace(void * buf)379 static void regmap_parse_32_le_inplace(void *buf)
380 {
381 	u32 v = get_unaligned_le32(buf);
382 
383 	memcpy(buf, &v, sizeof(v));
384 }
385 
regmap_parse_32_native(const void * buf)386 static unsigned int regmap_parse_32_native(const void *buf)
387 {
388 	u32 v;
389 
390 	memcpy(&v, buf, sizeof(v));
391 	return v;
392 }
393 
regmap_lock_hwlock(void * __map)394 static void regmap_lock_hwlock(void *__map)
395 {
396 	struct regmap *map = __map;
397 
398 	hwspin_lock_timeout(map->hwlock, UINT_MAX);
399 }
400 
regmap_lock_hwlock_irq(void * __map)401 static void regmap_lock_hwlock_irq(void *__map)
402 {
403 	struct regmap *map = __map;
404 
405 	hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
406 }
407 
regmap_lock_hwlock_irqsave(void * __map)408 static void regmap_lock_hwlock_irqsave(void *__map)
409 {
410 	struct regmap *map = __map;
411 	unsigned long flags = 0;
412 
413 	hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
414 				    &flags);
415 	map->spinlock_flags = flags;
416 }
417 
regmap_unlock_hwlock(void * __map)418 static void regmap_unlock_hwlock(void *__map)
419 {
420 	struct regmap *map = __map;
421 
422 	hwspin_unlock(map->hwlock);
423 }
424 
regmap_unlock_hwlock_irq(void * __map)425 static void regmap_unlock_hwlock_irq(void *__map)
426 {
427 	struct regmap *map = __map;
428 
429 	hwspin_unlock_irq(map->hwlock);
430 }
431 
regmap_unlock_hwlock_irqrestore(void * __map)432 static void regmap_unlock_hwlock_irqrestore(void *__map)
433 {
434 	struct regmap *map = __map;
435 
436 	hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
437 }
438 
regmap_lock_unlock_none(void * __map)439 static void regmap_lock_unlock_none(void *__map)
440 {
441 
442 }
443 
regmap_lock_mutex(void * __map)444 static void regmap_lock_mutex(void *__map)
445 {
446 	struct regmap *map = __map;
447 	mutex_lock(&map->mutex);
448 }
449 
regmap_unlock_mutex(void * __map)450 static void regmap_unlock_mutex(void *__map)
451 {
452 	struct regmap *map = __map;
453 	mutex_unlock(&map->mutex);
454 }
455 
regmap_lock_spinlock(void * __map)456 static void regmap_lock_spinlock(void *__map)
457 __acquires(&map->spinlock)
458 {
459 	struct regmap *map = __map;
460 	unsigned long flags;
461 
462 	spin_lock_irqsave(&map->spinlock, flags);
463 	map->spinlock_flags = flags;
464 }
465 
regmap_unlock_spinlock(void * __map)466 static void regmap_unlock_spinlock(void *__map)
467 __releases(&map->spinlock)
468 {
469 	struct regmap *map = __map;
470 	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
471 }
472 
regmap_lock_raw_spinlock(void * __map)473 static void regmap_lock_raw_spinlock(void *__map)
474 __acquires(&map->raw_spinlock)
475 {
476 	struct regmap *map = __map;
477 	unsigned long flags;
478 
479 	raw_spin_lock_irqsave(&map->raw_spinlock, flags);
480 	map->raw_spinlock_flags = flags;
481 }
482 
regmap_unlock_raw_spinlock(void * __map)483 static void regmap_unlock_raw_spinlock(void *__map)
484 __releases(&map->raw_spinlock)
485 {
486 	struct regmap *map = __map;
487 	raw_spin_unlock_irqrestore(&map->raw_spinlock, map->raw_spinlock_flags);
488 }
489 
dev_get_regmap_release(struct device * dev,void * res)490 static void dev_get_regmap_release(struct device *dev, void *res)
491 {
492 	/*
493 	 * We don't actually have anything to do here; the goal here
494 	 * is not to manage the regmap but to provide a simple way to
495 	 * get the regmap back given a struct device.
496 	 */
497 }
498 
_regmap_range_add(struct regmap * map,struct regmap_range_node * data)499 static bool _regmap_range_add(struct regmap *map,
500 			      struct regmap_range_node *data)
501 {
502 	struct rb_root *root = &map->range_tree;
503 	struct rb_node **new = &(root->rb_node), *parent = NULL;
504 
505 	while (*new) {
506 		struct regmap_range_node *this =
507 			rb_entry(*new, struct regmap_range_node, node);
508 
509 		parent = *new;
510 		if (data->range_max < this->range_min)
511 			new = &((*new)->rb_left);
512 		else if (data->range_min > this->range_max)
513 			new = &((*new)->rb_right);
514 		else
515 			return false;
516 	}
517 
518 	rb_link_node(&data->node, parent, new);
519 	rb_insert_color(&data->node, root);
520 
521 	return true;
522 }
523 
_regmap_range_lookup(struct regmap * map,unsigned int reg)524 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
525 						      unsigned int reg)
526 {
527 	struct rb_node *node = map->range_tree.rb_node;
528 
529 	while (node) {
530 		struct regmap_range_node *this =
531 			rb_entry(node, struct regmap_range_node, node);
532 
533 		if (reg < this->range_min)
534 			node = node->rb_left;
535 		else if (reg > this->range_max)
536 			node = node->rb_right;
537 		else
538 			return this;
539 	}
540 
541 	return NULL;
542 }
543 
regmap_range_exit(struct regmap * map)544 static void regmap_range_exit(struct regmap *map)
545 {
546 	struct rb_node *next;
547 	struct regmap_range_node *range_node;
548 
549 	next = rb_first(&map->range_tree);
550 	while (next) {
551 		range_node = rb_entry(next, struct regmap_range_node, node);
552 		next = rb_next(&range_node->node);
553 		rb_erase(&range_node->node, &map->range_tree);
554 		kfree(range_node);
555 	}
556 
557 	kfree(map->selector_work_buf);
558 }
559 
regmap_set_name(struct regmap * map,const struct regmap_config * config)560 static int regmap_set_name(struct regmap *map, const struct regmap_config *config)
561 {
562 	if (config->name) {
563 		const char *name = kstrdup_const(config->name, GFP_KERNEL);
564 
565 		if (!name)
566 			return -ENOMEM;
567 
568 		kfree_const(map->name);
569 		map->name = name;
570 	}
571 
572 	return 0;
573 }
574 
regmap_attach_dev(struct device * dev,struct regmap * map,const struct regmap_config * config)575 int regmap_attach_dev(struct device *dev, struct regmap *map,
576 		      const struct regmap_config *config)
577 {
578 	struct regmap **m;
579 	int ret;
580 
581 	map->dev = dev;
582 
583 	ret = regmap_set_name(map, config);
584 	if (ret)
585 		return ret;
586 
587 	regmap_debugfs_exit(map);
588 	regmap_debugfs_init(map);
589 
590 	/* Add a devres resource for dev_get_regmap() */
591 	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
592 	if (!m) {
593 		regmap_debugfs_exit(map);
594 		return -ENOMEM;
595 	}
596 	*m = map;
597 	devres_add(dev, m);
598 
599 	return 0;
600 }
601 EXPORT_SYMBOL_GPL(regmap_attach_dev);
602 
603 static int dev_get_regmap_match(struct device *dev, void *res, void *data);
604 
regmap_detach_dev(struct device * dev,struct regmap * map)605 static int regmap_detach_dev(struct device *dev, struct regmap *map)
606 {
607 	if (!dev)
608 		return 0;
609 
610 	return devres_release(dev, dev_get_regmap_release,
611 			      dev_get_regmap_match, (void *)map->name);
612 }
613 
regmap_get_reg_endian(const struct regmap_bus * bus,const struct regmap_config * config)614 static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
615 					const struct regmap_config *config)
616 {
617 	enum regmap_endian endian;
618 
619 	/* Retrieve the endianness specification from the regmap config */
620 	endian = config->reg_format_endian;
621 
622 	/* If the regmap config specified a non-default value, use that */
623 	if (endian != REGMAP_ENDIAN_DEFAULT)
624 		return endian;
625 
626 	/* Retrieve the endianness specification from the bus config */
627 	if (bus && bus->reg_format_endian_default)
628 		endian = bus->reg_format_endian_default;
629 
630 	/* If the bus specified a non-default value, use that */
631 	if (endian != REGMAP_ENDIAN_DEFAULT)
632 		return endian;
633 
634 	/* Use this if no other value was found */
635 	return REGMAP_ENDIAN_BIG;
636 }
637 
regmap_get_val_endian(struct device * dev,const struct regmap_bus * bus,const struct regmap_config * config)638 enum regmap_endian regmap_get_val_endian(struct device *dev,
639 					 const struct regmap_bus *bus,
640 					 const struct regmap_config *config)
641 {
642 	struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
643 	enum regmap_endian endian;
644 
645 	/* Retrieve the endianness specification from the regmap config */
646 	endian = config->val_format_endian;
647 
648 	/* If the regmap config specified a non-default value, use that */
649 	if (endian != REGMAP_ENDIAN_DEFAULT)
650 		return endian;
651 
652 	/* If the firmware node exist try to get endianness from it */
653 	if (fwnode_property_read_bool(fwnode, "big-endian"))
654 		endian = REGMAP_ENDIAN_BIG;
655 	else if (fwnode_property_read_bool(fwnode, "little-endian"))
656 		endian = REGMAP_ENDIAN_LITTLE;
657 	else if (fwnode_property_read_bool(fwnode, "native-endian"))
658 		endian = REGMAP_ENDIAN_NATIVE;
659 
660 	/* If the endianness was specified in fwnode, use that */
661 	if (endian != REGMAP_ENDIAN_DEFAULT)
662 		return endian;
663 
664 	/* Retrieve the endianness specification from the bus config */
665 	if (bus && bus->val_format_endian_default)
666 		endian = bus->val_format_endian_default;
667 
668 	/* If the bus specified a non-default value, use that */
669 	if (endian != REGMAP_ENDIAN_DEFAULT)
670 		return endian;
671 
672 	/* Use this if no other value was found */
673 	return REGMAP_ENDIAN_BIG;
674 }
675 EXPORT_SYMBOL_GPL(regmap_get_val_endian);
676 
__regmap_init(struct device * dev,const struct regmap_bus * bus,void * bus_context,const struct regmap_config * config,struct lock_class_key * lock_key,const char * lock_name)677 struct regmap *__regmap_init(struct device *dev,
678 			     const struct regmap_bus *bus,
679 			     void *bus_context,
680 			     const struct regmap_config *config,
681 			     struct lock_class_key *lock_key,
682 			     const char *lock_name)
683 {
684 	struct regmap *map;
685 	int ret = -EINVAL;
686 	enum regmap_endian reg_endian, val_endian;
687 	int i, j;
688 
689 	if (!config)
690 		goto err;
691 
692 	map = kzalloc(sizeof(*map), GFP_KERNEL);
693 	if (map == NULL) {
694 		ret = -ENOMEM;
695 		goto err;
696 	}
697 
698 	ret = regmap_set_name(map, config);
699 	if (ret)
700 		goto err_map;
701 
702 	ret = -EINVAL; /* Later error paths rely on this */
703 
704 	if (config->disable_locking) {
705 		map->lock = map->unlock = regmap_lock_unlock_none;
706 		map->can_sleep = config->can_sleep;
707 		regmap_debugfs_disable(map);
708 	} else if (config->lock && config->unlock) {
709 		map->lock = config->lock;
710 		map->unlock = config->unlock;
711 		map->lock_arg = config->lock_arg;
712 		map->can_sleep = config->can_sleep;
713 	} else if (config->use_hwlock) {
714 		map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
715 		if (!map->hwlock) {
716 			ret = -ENXIO;
717 			goto err_name;
718 		}
719 
720 		switch (config->hwlock_mode) {
721 		case HWLOCK_IRQSTATE:
722 			map->lock = regmap_lock_hwlock_irqsave;
723 			map->unlock = regmap_unlock_hwlock_irqrestore;
724 			break;
725 		case HWLOCK_IRQ:
726 			map->lock = regmap_lock_hwlock_irq;
727 			map->unlock = regmap_unlock_hwlock_irq;
728 			break;
729 		default:
730 			map->lock = regmap_lock_hwlock;
731 			map->unlock = regmap_unlock_hwlock;
732 			break;
733 		}
734 
735 		map->lock_arg = map;
736 	} else {
737 		if ((bus && bus->fast_io) ||
738 		    config->fast_io) {
739 			if (config->use_raw_spinlock) {
740 				raw_spin_lock_init(&map->raw_spinlock);
741 				map->lock = regmap_lock_raw_spinlock;
742 				map->unlock = regmap_unlock_raw_spinlock;
743 				lockdep_set_class_and_name(&map->raw_spinlock,
744 							   lock_key, lock_name);
745 			} else {
746 				spin_lock_init(&map->spinlock);
747 				map->lock = regmap_lock_spinlock;
748 				map->unlock = regmap_unlock_spinlock;
749 				lockdep_set_class_and_name(&map->spinlock,
750 							   lock_key, lock_name);
751 			}
752 		} else {
753 			mutex_init(&map->mutex);
754 			map->lock = regmap_lock_mutex;
755 			map->unlock = regmap_unlock_mutex;
756 			map->can_sleep = true;
757 			lockdep_set_class_and_name(&map->mutex,
758 						   lock_key, lock_name);
759 		}
760 		map->lock_arg = map;
761 		map->lock_key = lock_key;
762 	}
763 
764 	/*
765 	 * When we write in fast-paths with regmap_bulk_write() don't allocate
766 	 * scratch buffers with sleeping allocations.
767 	 */
768 	if ((bus && bus->fast_io) || config->fast_io)
769 		map->alloc_flags = GFP_ATOMIC;
770 	else
771 		map->alloc_flags = GFP_KERNEL;
772 
773 	map->reg_base = config->reg_base;
774 	map->reg_shift = config->pad_bits % 8;
775 
776 	map->format.pad_bytes = config->pad_bits / 8;
777 	map->format.reg_shift = config->reg_shift;
778 	map->format.reg_bytes = BITS_TO_BYTES(config->reg_bits);
779 	map->format.val_bytes = BITS_TO_BYTES(config->val_bits);
780 	map->format.buf_size = BITS_TO_BYTES(config->reg_bits + config->val_bits + config->pad_bits);
781 	if (config->reg_stride)
782 		map->reg_stride = config->reg_stride;
783 	else
784 		map->reg_stride = 1;
785 	if (is_power_of_2(map->reg_stride))
786 		map->reg_stride_order = ilog2(map->reg_stride);
787 	else
788 		map->reg_stride_order = -1;
789 	map->use_single_read = config->use_single_read || !(config->read || (bus && bus->read));
790 	map->use_single_write = config->use_single_write || !(config->write || (bus && bus->write));
791 	map->can_multi_write = config->can_multi_write && (config->write || (bus && bus->write));
792 	if (bus) {
793 		map->max_raw_read = bus->max_raw_read;
794 		map->max_raw_write = bus->max_raw_write;
795 	} else if (config->max_raw_read && config->max_raw_write) {
796 		map->max_raw_read = config->max_raw_read;
797 		map->max_raw_write = config->max_raw_write;
798 	}
799 	map->dev = dev;
800 	map->bus = bus;
801 	map->bus_context = bus_context;
802 	map->max_register = config->max_register;
803 	map->max_register_is_set = map->max_register ?: config->max_register_is_0;
804 	map->wr_table = config->wr_table;
805 	map->rd_table = config->rd_table;
806 	map->volatile_table = config->volatile_table;
807 	map->precious_table = config->precious_table;
808 	map->wr_noinc_table = config->wr_noinc_table;
809 	map->rd_noinc_table = config->rd_noinc_table;
810 	map->writeable_reg = config->writeable_reg;
811 	map->readable_reg = config->readable_reg;
812 	map->volatile_reg = config->volatile_reg;
813 	map->precious_reg = config->precious_reg;
814 	map->writeable_noinc_reg = config->writeable_noinc_reg;
815 	map->readable_noinc_reg = config->readable_noinc_reg;
816 	map->cache_type = config->cache_type;
817 
818 	spin_lock_init(&map->async_lock);
819 	INIT_LIST_HEAD(&map->async_list);
820 	INIT_LIST_HEAD(&map->async_free);
821 	init_waitqueue_head(&map->async_waitq);
822 
823 	if (config->read_flag_mask ||
824 	    config->write_flag_mask ||
825 	    config->zero_flag_mask) {
826 		map->read_flag_mask = config->read_flag_mask;
827 		map->write_flag_mask = config->write_flag_mask;
828 	} else if (bus) {
829 		map->read_flag_mask = bus->read_flag_mask;
830 	}
831 
832 	if (config->read && config->write) {
833 		map->reg_read  = _regmap_bus_read;
834 		if (config->reg_update_bits)
835 			map->reg_update_bits = config->reg_update_bits;
836 
837 		/* Bulk read/write */
838 		map->read = config->read;
839 		map->write = config->write;
840 
841 		reg_endian = REGMAP_ENDIAN_NATIVE;
842 		val_endian = REGMAP_ENDIAN_NATIVE;
843 	} else if (!bus) {
844 		map->reg_read  = config->reg_read;
845 		map->reg_write = config->reg_write;
846 		map->reg_update_bits = config->reg_update_bits;
847 
848 		map->defer_caching = false;
849 		goto skip_format_initialization;
850 	} else if (!bus->read || !bus->write) {
851 		map->reg_read = _regmap_bus_reg_read;
852 		map->reg_write = _regmap_bus_reg_write;
853 		map->reg_update_bits = bus->reg_update_bits;
854 
855 		map->defer_caching = false;
856 		goto skip_format_initialization;
857 	} else {
858 		map->reg_read  = _regmap_bus_read;
859 		map->reg_update_bits = bus->reg_update_bits;
860 		/* Bulk read/write */
861 		map->read = bus->read;
862 		map->write = bus->write;
863 
864 		reg_endian = regmap_get_reg_endian(bus, config);
865 		val_endian = regmap_get_val_endian(dev, bus, config);
866 	}
867 
868 	switch (config->reg_bits + map->reg_shift) {
869 	case 2:
870 		switch (config->val_bits) {
871 		case 6:
872 			map->format.format_write = regmap_format_2_6_write;
873 			break;
874 		default:
875 			goto err_hwlock;
876 		}
877 		break;
878 
879 	case 4:
880 		switch (config->val_bits) {
881 		case 12:
882 			map->format.format_write = regmap_format_4_12_write;
883 			break;
884 		default:
885 			goto err_hwlock;
886 		}
887 		break;
888 
889 	case 7:
890 		switch (config->val_bits) {
891 		case 9:
892 			map->format.format_write = regmap_format_7_9_write;
893 			break;
894 		case 17:
895 			map->format.format_write = regmap_format_7_17_write;
896 			break;
897 		default:
898 			goto err_hwlock;
899 		}
900 		break;
901 
902 	case 10:
903 		switch (config->val_bits) {
904 		case 14:
905 			map->format.format_write = regmap_format_10_14_write;
906 			break;
907 		default:
908 			goto err_hwlock;
909 		}
910 		break;
911 
912 	case 12:
913 		switch (config->val_bits) {
914 		case 20:
915 			map->format.format_write = regmap_format_12_20_write;
916 			break;
917 		default:
918 			goto err_hwlock;
919 		}
920 		break;
921 
922 	case 8:
923 		map->format.format_reg = regmap_format_8;
924 		break;
925 
926 	case 16:
927 		switch (reg_endian) {
928 		case REGMAP_ENDIAN_BIG:
929 			map->format.format_reg = regmap_format_16_be;
930 			break;
931 		case REGMAP_ENDIAN_LITTLE:
932 			map->format.format_reg = regmap_format_16_le;
933 			break;
934 		case REGMAP_ENDIAN_NATIVE:
935 			map->format.format_reg = regmap_format_16_native;
936 			break;
937 		default:
938 			goto err_hwlock;
939 		}
940 		break;
941 
942 	case 24:
943 		switch (reg_endian) {
944 		case REGMAP_ENDIAN_BIG:
945 			map->format.format_reg = regmap_format_24_be;
946 			break;
947 		default:
948 			goto err_hwlock;
949 		}
950 		break;
951 
952 	case 32:
953 		switch (reg_endian) {
954 		case REGMAP_ENDIAN_BIG:
955 			map->format.format_reg = regmap_format_32_be;
956 			break;
957 		case REGMAP_ENDIAN_LITTLE:
958 			map->format.format_reg = regmap_format_32_le;
959 			break;
960 		case REGMAP_ENDIAN_NATIVE:
961 			map->format.format_reg = regmap_format_32_native;
962 			break;
963 		default:
964 			goto err_hwlock;
965 		}
966 		break;
967 
968 	default:
969 		goto err_hwlock;
970 	}
971 
972 	if (val_endian == REGMAP_ENDIAN_NATIVE)
973 		map->format.parse_inplace = regmap_parse_inplace_noop;
974 
975 	switch (config->val_bits) {
976 	case 8:
977 		map->format.format_val = regmap_format_8;
978 		map->format.parse_val = regmap_parse_8;
979 		map->format.parse_inplace = regmap_parse_inplace_noop;
980 		break;
981 	case 16:
982 		switch (val_endian) {
983 		case REGMAP_ENDIAN_BIG:
984 			map->format.format_val = regmap_format_16_be;
985 			map->format.parse_val = regmap_parse_16_be;
986 			map->format.parse_inplace = regmap_parse_16_be_inplace;
987 			break;
988 		case REGMAP_ENDIAN_LITTLE:
989 			map->format.format_val = regmap_format_16_le;
990 			map->format.parse_val = regmap_parse_16_le;
991 			map->format.parse_inplace = regmap_parse_16_le_inplace;
992 			break;
993 		case REGMAP_ENDIAN_NATIVE:
994 			map->format.format_val = regmap_format_16_native;
995 			map->format.parse_val = regmap_parse_16_native;
996 			break;
997 		default:
998 			goto err_hwlock;
999 		}
1000 		break;
1001 	case 24:
1002 		switch (val_endian) {
1003 		case REGMAP_ENDIAN_BIG:
1004 			map->format.format_val = regmap_format_24_be;
1005 			map->format.parse_val = regmap_parse_24_be;
1006 			break;
1007 		default:
1008 			goto err_hwlock;
1009 		}
1010 		break;
1011 	case 32:
1012 		switch (val_endian) {
1013 		case REGMAP_ENDIAN_BIG:
1014 			map->format.format_val = regmap_format_32_be;
1015 			map->format.parse_val = regmap_parse_32_be;
1016 			map->format.parse_inplace = regmap_parse_32_be_inplace;
1017 			break;
1018 		case REGMAP_ENDIAN_LITTLE:
1019 			map->format.format_val = regmap_format_32_le;
1020 			map->format.parse_val = regmap_parse_32_le;
1021 			map->format.parse_inplace = regmap_parse_32_le_inplace;
1022 			break;
1023 		case REGMAP_ENDIAN_NATIVE:
1024 			map->format.format_val = regmap_format_32_native;
1025 			map->format.parse_val = regmap_parse_32_native;
1026 			break;
1027 		default:
1028 			goto err_hwlock;
1029 		}
1030 		break;
1031 	}
1032 
1033 	if (map->format.format_write) {
1034 		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
1035 		    (val_endian != REGMAP_ENDIAN_BIG))
1036 			goto err_hwlock;
1037 		map->use_single_write = true;
1038 	}
1039 
1040 	if (!map->format.format_write &&
1041 	    !(map->format.format_reg && map->format.format_val))
1042 		goto err_hwlock;
1043 
1044 	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1045 	if (map->work_buf == NULL) {
1046 		ret = -ENOMEM;
1047 		goto err_hwlock;
1048 	}
1049 
1050 	if (map->format.format_write) {
1051 		map->defer_caching = false;
1052 		map->reg_write = _regmap_bus_formatted_write;
1053 	} else if (map->format.format_val) {
1054 		map->defer_caching = true;
1055 		map->reg_write = _regmap_bus_raw_write;
1056 	}
1057 
1058 skip_format_initialization:
1059 
1060 	map->range_tree = RB_ROOT;
1061 	for (i = 0; i < config->num_ranges; i++) {
1062 		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
1063 		struct regmap_range_node *new;
1064 
1065 		/* Sanity check */
1066 		if (range_cfg->range_max < range_cfg->range_min) {
1067 			dev_err(map->dev, "Invalid range %d: %u < %u\n", i,
1068 				range_cfg->range_max, range_cfg->range_min);
1069 			goto err_range;
1070 		}
1071 
1072 		if (range_cfg->range_max > map->max_register) {
1073 			dev_err(map->dev, "Invalid range %d: %u > %u\n", i,
1074 				range_cfg->range_max, map->max_register);
1075 			goto err_range;
1076 		}
1077 
1078 		if (range_cfg->selector_reg > map->max_register) {
1079 			dev_err(map->dev,
1080 				"Invalid range %d: selector out of map\n", i);
1081 			goto err_range;
1082 		}
1083 
1084 		if (range_cfg->window_len == 0) {
1085 			dev_err(map->dev, "Invalid range %d: window_len 0\n",
1086 				i);
1087 			goto err_range;
1088 		}
1089 
1090 		/* Make sure, that this register range has no selector
1091 		   or data window within its boundary */
1092 		for (j = 0; j < config->num_ranges; j++) {
1093 			unsigned int sel_reg = config->ranges[j].selector_reg;
1094 			unsigned int win_min = config->ranges[j].window_start;
1095 			unsigned int win_max = win_min +
1096 					       config->ranges[j].window_len - 1;
1097 
1098 			/* Allow data window inside its own virtual range */
1099 			if (j == i)
1100 				continue;
1101 
1102 			if (range_cfg->range_min <= sel_reg &&
1103 			    sel_reg <= range_cfg->range_max) {
1104 				dev_err(map->dev,
1105 					"Range %d: selector for %d in window\n",
1106 					i, j);
1107 				goto err_range;
1108 			}
1109 
1110 			if (!(win_max < range_cfg->range_min ||
1111 			      win_min > range_cfg->range_max)) {
1112 				dev_err(map->dev,
1113 					"Range %d: window for %d in window\n",
1114 					i, j);
1115 				goto err_range;
1116 			}
1117 		}
1118 
1119 		new = kzalloc(sizeof(*new), GFP_KERNEL);
1120 		if (new == NULL) {
1121 			ret = -ENOMEM;
1122 			goto err_range;
1123 		}
1124 
1125 		new->map = map;
1126 		new->name = range_cfg->name;
1127 		new->range_min = range_cfg->range_min;
1128 		new->range_max = range_cfg->range_max;
1129 		new->selector_reg = range_cfg->selector_reg;
1130 		new->selector_mask = range_cfg->selector_mask;
1131 		new->selector_shift = range_cfg->selector_shift;
1132 		new->window_start = range_cfg->window_start;
1133 		new->window_len = range_cfg->window_len;
1134 
1135 		if (!_regmap_range_add(map, new)) {
1136 			dev_err(map->dev, "Failed to add range %d\n", i);
1137 			kfree(new);
1138 			goto err_range;
1139 		}
1140 
1141 		if (map->selector_work_buf == NULL) {
1142 			map->selector_work_buf =
1143 				kzalloc(map->format.buf_size, GFP_KERNEL);
1144 			if (map->selector_work_buf == NULL) {
1145 				ret = -ENOMEM;
1146 				goto err_range;
1147 			}
1148 		}
1149 	}
1150 
1151 	ret = regcache_init(map, config);
1152 	if (ret != 0)
1153 		goto err_range;
1154 
1155 	if (dev) {
1156 		ret = regmap_attach_dev(dev, map, config);
1157 		if (ret != 0)
1158 			goto err_regcache;
1159 	} else {
1160 		regmap_debugfs_init(map);
1161 	}
1162 
1163 	return map;
1164 
1165 err_regcache:
1166 	regcache_exit(map);
1167 err_range:
1168 	regmap_range_exit(map);
1169 	kfree(map->work_buf);
1170 err_hwlock:
1171 	if (map->hwlock)
1172 		hwspin_lock_free(map->hwlock);
1173 err_name:
1174 	kfree_const(map->name);
1175 err_map:
1176 	kfree(map);
1177 err:
1178 	if (bus && bus->free_on_exit)
1179 		kfree(bus);
1180 	return ERR_PTR(ret);
1181 }
1182 EXPORT_SYMBOL_GPL(__regmap_init);
1183 
devm_regmap_release(struct device * dev,void * res)1184 static void devm_regmap_release(struct device *dev, void *res)
1185 {
1186 	regmap_exit(*(struct regmap **)res);
1187 }
1188 
__devm_regmap_init(struct device * dev,const struct regmap_bus * bus,void * bus_context,const struct regmap_config * config,struct lock_class_key * lock_key,const char * lock_name)1189 struct regmap *__devm_regmap_init(struct device *dev,
1190 				  const struct regmap_bus *bus,
1191 				  void *bus_context,
1192 				  const struct regmap_config *config,
1193 				  struct lock_class_key *lock_key,
1194 				  const char *lock_name)
1195 {
1196 	struct regmap **ptr, *regmap;
1197 
1198 	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1199 	if (!ptr)
1200 		return ERR_PTR(-ENOMEM);
1201 
1202 	regmap = __regmap_init(dev, bus, bus_context, config,
1203 			       lock_key, lock_name);
1204 	if (!IS_ERR(regmap)) {
1205 		*ptr = regmap;
1206 		devres_add(dev, ptr);
1207 	} else {
1208 		devres_free(ptr);
1209 	}
1210 
1211 	return regmap;
1212 }
1213 EXPORT_SYMBOL_GPL(__devm_regmap_init);
1214 
regmap_field_init(struct regmap_field * rm_field,struct regmap * regmap,struct reg_field reg_field)1215 static void regmap_field_init(struct regmap_field *rm_field,
1216 	struct regmap *regmap, struct reg_field reg_field)
1217 {
1218 	rm_field->regmap = regmap;
1219 	rm_field->reg = reg_field.reg;
1220 	rm_field->shift = reg_field.lsb;
1221 	rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1222 
1223 	WARN_ONCE(rm_field->mask == 0, "invalid empty mask defined\n");
1224 
1225 	rm_field->id_size = reg_field.id_size;
1226 	rm_field->id_offset = reg_field.id_offset;
1227 }
1228 
1229 /**
1230  * devm_regmap_field_alloc() - Allocate and initialise a register field.
1231  *
1232  * @dev: Device that will be interacted with
1233  * @regmap: regmap bank in which this register field is located.
1234  * @reg_field: Register field with in the bank.
1235  *
1236  * The return value will be an ERR_PTR() on error or a valid pointer
1237  * to a struct regmap_field. The regmap_field will be automatically freed
1238  * by the device management code.
1239  */
devm_regmap_field_alloc(struct device * dev,struct regmap * regmap,struct reg_field reg_field)1240 struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1241 		struct regmap *regmap, struct reg_field reg_field)
1242 {
1243 	struct regmap_field *rm_field = devm_kzalloc(dev,
1244 					sizeof(*rm_field), GFP_KERNEL);
1245 	if (!rm_field)
1246 		return ERR_PTR(-ENOMEM);
1247 
1248 	regmap_field_init(rm_field, regmap, reg_field);
1249 
1250 	return rm_field;
1251 
1252 }
1253 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1254 
1255 
1256 /**
1257  * regmap_field_bulk_alloc() - Allocate and initialise a bulk register field.
1258  *
1259  * @regmap: regmap bank in which this register field is located.
1260  * @rm_field: regmap register fields within the bank.
1261  * @reg_field: Register fields within the bank.
1262  * @num_fields: Number of register fields.
1263  *
1264  * The return value will be an -ENOMEM on error or zero for success.
1265  * Newly allocated regmap_fields should be freed by calling
1266  * regmap_field_bulk_free()
1267  */
regmap_field_bulk_alloc(struct regmap * regmap,struct regmap_field ** rm_field,const struct reg_field * reg_field,int num_fields)1268 int regmap_field_bulk_alloc(struct regmap *regmap,
1269 			    struct regmap_field **rm_field,
1270 			    const struct reg_field *reg_field,
1271 			    int num_fields)
1272 {
1273 	struct regmap_field *rf;
1274 	int i;
1275 
1276 	rf = kcalloc(num_fields, sizeof(*rf), GFP_KERNEL);
1277 	if (!rf)
1278 		return -ENOMEM;
1279 
1280 	for (i = 0; i < num_fields; i++) {
1281 		regmap_field_init(&rf[i], regmap, reg_field[i]);
1282 		rm_field[i] = &rf[i];
1283 	}
1284 
1285 	return 0;
1286 }
1287 EXPORT_SYMBOL_GPL(regmap_field_bulk_alloc);
1288 
1289 /**
1290  * devm_regmap_field_bulk_alloc() - Allocate and initialise a bulk register
1291  * fields.
1292  *
1293  * @dev: Device that will be interacted with
1294  * @regmap: regmap bank in which this register field is located.
1295  * @rm_field: regmap register fields within the bank.
1296  * @reg_field: Register fields within the bank.
1297  * @num_fields: Number of register fields.
1298  *
1299  * The return value will be an -ENOMEM on error or zero for success.
1300  * Newly allocated regmap_fields will be automatically freed by the
1301  * device management code.
1302  */
devm_regmap_field_bulk_alloc(struct device * dev,struct regmap * regmap,struct regmap_field ** rm_field,const struct reg_field * reg_field,int num_fields)1303 int devm_regmap_field_bulk_alloc(struct device *dev,
1304 				 struct regmap *regmap,
1305 				 struct regmap_field **rm_field,
1306 				 const struct reg_field *reg_field,
1307 				 int num_fields)
1308 {
1309 	struct regmap_field *rf;
1310 	int i;
1311 
1312 	rf = devm_kcalloc(dev, num_fields, sizeof(*rf), GFP_KERNEL);
1313 	if (!rf)
1314 		return -ENOMEM;
1315 
1316 	for (i = 0; i < num_fields; i++) {
1317 		regmap_field_init(&rf[i], regmap, reg_field[i]);
1318 		rm_field[i] = &rf[i];
1319 	}
1320 
1321 	return 0;
1322 }
1323 EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_alloc);
1324 
1325 /**
1326  * regmap_field_bulk_free() - Free register field allocated using
1327  *                       regmap_field_bulk_alloc.
1328  *
1329  * @field: regmap fields which should be freed.
1330  */
regmap_field_bulk_free(struct regmap_field * field)1331 void regmap_field_bulk_free(struct regmap_field *field)
1332 {
1333 	kfree(field);
1334 }
1335 EXPORT_SYMBOL_GPL(regmap_field_bulk_free);
1336 
1337 /**
1338  * devm_regmap_field_bulk_free() - Free a bulk register field allocated using
1339  *                            devm_regmap_field_bulk_alloc.
1340  *
1341  * @dev: Device that will be interacted with
1342  * @field: regmap field which should be freed.
1343  *
1344  * Free register field allocated using devm_regmap_field_bulk_alloc(). Usually
1345  * drivers need not call this function, as the memory allocated via devm
1346  * will be freed as per device-driver life-cycle.
1347  */
devm_regmap_field_bulk_free(struct device * dev,struct regmap_field * field)1348 void devm_regmap_field_bulk_free(struct device *dev,
1349 				 struct regmap_field *field)
1350 {
1351 	devm_kfree(dev, field);
1352 }
1353 EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_free);
1354 
1355 /**
1356  * devm_regmap_field_free() - Free a register field allocated using
1357  *                            devm_regmap_field_alloc.
1358  *
1359  * @dev: Device that will be interacted with
1360  * @field: regmap field which should be freed.
1361  *
1362  * Free register field allocated using devm_regmap_field_alloc(). Usually
1363  * drivers need not call this function, as the memory allocated via devm
1364  * will be freed as per device-driver life-cyle.
1365  */
devm_regmap_field_free(struct device * dev,struct regmap_field * field)1366 void devm_regmap_field_free(struct device *dev,
1367 	struct regmap_field *field)
1368 {
1369 	devm_kfree(dev, field);
1370 }
1371 EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1372 
1373 /**
1374  * regmap_field_alloc() - Allocate and initialise a register field.
1375  *
1376  * @regmap: regmap bank in which this register field is located.
1377  * @reg_field: Register field with in the bank.
1378  *
1379  * The return value will be an ERR_PTR() on error or a valid pointer
1380  * to a struct regmap_field. The regmap_field should be freed by the
1381  * user once its finished working with it using regmap_field_free().
1382  */
regmap_field_alloc(struct regmap * regmap,struct reg_field reg_field)1383 struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1384 		struct reg_field reg_field)
1385 {
1386 	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1387 
1388 	if (!rm_field)
1389 		return ERR_PTR(-ENOMEM);
1390 
1391 	regmap_field_init(rm_field, regmap, reg_field);
1392 
1393 	return rm_field;
1394 }
1395 EXPORT_SYMBOL_GPL(regmap_field_alloc);
1396 
1397 /**
1398  * regmap_field_free() - Free register field allocated using
1399  *                       regmap_field_alloc.
1400  *
1401  * @field: regmap field which should be freed.
1402  */
regmap_field_free(struct regmap_field * field)1403 void regmap_field_free(struct regmap_field *field)
1404 {
1405 	kfree(field);
1406 }
1407 EXPORT_SYMBOL_GPL(regmap_field_free);
1408 
1409 /**
1410  * regmap_reinit_cache() - Reinitialise the current register cache
1411  *
1412  * @map: Register map to operate on.
1413  * @config: New configuration.  Only the cache data will be used.
1414  *
1415  * Discard any existing register cache for the map and initialize a
1416  * new cache.  This can be used to restore the cache to defaults or to
1417  * update the cache configuration to reflect runtime discovery of the
1418  * hardware.
1419  *
1420  * No explicit locking is done here, the user needs to ensure that
1421  * this function will not race with other calls to regmap.
1422  */
regmap_reinit_cache(struct regmap * map,const struct regmap_config * config)1423 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1424 {
1425 	int ret;
1426 
1427 	regcache_exit(map);
1428 	regmap_debugfs_exit(map);
1429 
1430 	map->max_register = config->max_register;
1431 	map->max_register_is_set = map->max_register ?: config->max_register_is_0;
1432 	map->writeable_reg = config->writeable_reg;
1433 	map->readable_reg = config->readable_reg;
1434 	map->volatile_reg = config->volatile_reg;
1435 	map->precious_reg = config->precious_reg;
1436 	map->writeable_noinc_reg = config->writeable_noinc_reg;
1437 	map->readable_noinc_reg = config->readable_noinc_reg;
1438 	map->cache_type = config->cache_type;
1439 
1440 	ret = regmap_set_name(map, config);
1441 	if (ret)
1442 		return ret;
1443 
1444 	regmap_debugfs_init(map);
1445 
1446 	map->cache_bypass = false;
1447 	map->cache_only = false;
1448 
1449 	return regcache_init(map, config);
1450 }
1451 EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1452 
1453 /**
1454  * regmap_exit() - Free a previously allocated register map
1455  *
1456  * @map: Register map to operate on.
1457  */
regmap_exit(struct regmap * map)1458 void regmap_exit(struct regmap *map)
1459 {
1460 	struct regmap_async *async;
1461 
1462 	regmap_detach_dev(map->dev, map);
1463 	regcache_exit(map);
1464 
1465 	regmap_debugfs_exit(map);
1466 	regmap_range_exit(map);
1467 	if (map->bus && map->bus->free_context)
1468 		map->bus->free_context(map->bus_context);
1469 	kfree(map->work_buf);
1470 	while (!list_empty(&map->async_free)) {
1471 		async = list_first_entry_or_null(&map->async_free,
1472 						 struct regmap_async,
1473 						 list);
1474 		list_del(&async->list);
1475 		kfree(async->work_buf);
1476 		kfree(async);
1477 	}
1478 	if (map->hwlock)
1479 		hwspin_lock_free(map->hwlock);
1480 	if (map->lock == regmap_lock_mutex)
1481 		mutex_destroy(&map->mutex);
1482 	kfree_const(map->name);
1483 	kfree(map->patch);
1484 	if (map->bus && map->bus->free_on_exit)
1485 		kfree(map->bus);
1486 	kfree(map);
1487 }
1488 EXPORT_SYMBOL_GPL(regmap_exit);
1489 
dev_get_regmap_match(struct device * dev,void * res,void * data)1490 static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1491 {
1492 	struct regmap **r = res;
1493 	if (!r || !*r) {
1494 		WARN_ON(!r || !*r);
1495 		return 0;
1496 	}
1497 
1498 	/* If the user didn't specify a name match any */
1499 	if (data)
1500 		return (*r)->name && !strcmp((*r)->name, data);
1501 	else
1502 		return 1;
1503 }
1504 
1505 /**
1506  * dev_get_regmap() - Obtain the regmap (if any) for a device
1507  *
1508  * @dev: Device to retrieve the map for
1509  * @name: Optional name for the register map, usually NULL.
1510  *
1511  * Returns the regmap for the device if one is present, or NULL.  If
1512  * name is specified then it must match the name specified when
1513  * registering the device, if it is NULL then the first regmap found
1514  * will be used.  Devices with multiple register maps are very rare,
1515  * generic code should normally not need to specify a name.
1516  */
dev_get_regmap(struct device * dev,const char * name)1517 struct regmap *dev_get_regmap(struct device *dev, const char *name)
1518 {
1519 	struct regmap **r = devres_find(dev, dev_get_regmap_release,
1520 					dev_get_regmap_match, (void *)name);
1521 
1522 	if (!r)
1523 		return NULL;
1524 	return *r;
1525 }
1526 EXPORT_SYMBOL_GPL(dev_get_regmap);
1527 
1528 /**
1529  * regmap_get_device() - Obtain the device from a regmap
1530  *
1531  * @map: Register map to operate on.
1532  *
1533  * Returns the underlying device that the regmap has been created for.
1534  */
regmap_get_device(struct regmap * map)1535 struct device *regmap_get_device(struct regmap *map)
1536 {
1537 	return map->dev;
1538 }
1539 EXPORT_SYMBOL_GPL(regmap_get_device);
1540 
_regmap_select_page(struct regmap * map,unsigned int * reg,struct regmap_range_node * range,unsigned int val_num)1541 static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1542 			       struct regmap_range_node *range,
1543 			       unsigned int val_num)
1544 {
1545 	void *orig_work_buf;
1546 	unsigned int win_offset;
1547 	unsigned int win_page;
1548 	bool page_chg;
1549 	int ret;
1550 
1551 	win_offset = (*reg - range->range_min) % range->window_len;
1552 	win_page = (*reg - range->range_min) / range->window_len;
1553 
1554 	if (val_num > 1) {
1555 		/* Bulk write shouldn't cross range boundary */
1556 		if (*reg + val_num - 1 > range->range_max)
1557 			return -EINVAL;
1558 
1559 		/* ... or single page boundary */
1560 		if (val_num > range->window_len - win_offset)
1561 			return -EINVAL;
1562 	}
1563 
1564 	/* It is possible to have selector register inside data window.
1565 	   In that case, selector register is located on every page and
1566 	   it needs no page switching, when accessed alone. */
1567 	if (val_num > 1 ||
1568 	    range->window_start + win_offset != range->selector_reg) {
1569 		/* Use separate work_buf during page switching */
1570 		orig_work_buf = map->work_buf;
1571 		map->work_buf = map->selector_work_buf;
1572 
1573 		ret = _regmap_update_bits(map, range->selector_reg,
1574 					  range->selector_mask,
1575 					  win_page << range->selector_shift,
1576 					  &page_chg, false);
1577 
1578 		map->work_buf = orig_work_buf;
1579 
1580 		if (ret != 0)
1581 			return ret;
1582 	}
1583 
1584 	*reg = range->window_start + win_offset;
1585 
1586 	return 0;
1587 }
1588 
regmap_set_work_buf_flag_mask(struct regmap * map,int max_bytes,unsigned long mask)1589 static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1590 					  unsigned long mask)
1591 {
1592 	u8 *buf;
1593 	int i;
1594 
1595 	if (!mask || !map->work_buf)
1596 		return;
1597 
1598 	buf = map->work_buf;
1599 
1600 	for (i = 0; i < max_bytes; i++)
1601 		buf[i] |= (mask >> (8 * i)) & 0xff;
1602 }
1603 
regmap_reg_addr(struct regmap * map,unsigned int reg)1604 static unsigned int regmap_reg_addr(struct regmap *map, unsigned int reg)
1605 {
1606 	reg += map->reg_base;
1607 
1608 	if (map->format.reg_shift > 0)
1609 		reg >>= map->format.reg_shift;
1610 	else if (map->format.reg_shift < 0)
1611 		reg <<= -(map->format.reg_shift);
1612 
1613 	return reg;
1614 }
1615 
_regmap_raw_write_impl(struct regmap * map,unsigned int reg,const void * val,size_t val_len,bool noinc)1616 static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg,
1617 				  const void *val, size_t val_len, bool noinc)
1618 {
1619 	struct regmap_range_node *range;
1620 	unsigned long flags;
1621 	void *work_val = map->work_buf + map->format.reg_bytes +
1622 		map->format.pad_bytes;
1623 	void *buf;
1624 	int ret = -ENOTSUPP;
1625 	size_t len;
1626 	int i;
1627 
1628 	/* Check for unwritable or noinc registers in range
1629 	 * before we start
1630 	 */
1631 	if (!regmap_writeable_noinc(map, reg)) {
1632 		for (i = 0; i < val_len / map->format.val_bytes; i++) {
1633 			unsigned int element =
1634 				reg + regmap_get_offset(map, i);
1635 			if (!regmap_writeable(map, element) ||
1636 				regmap_writeable_noinc(map, element))
1637 				return -EINVAL;
1638 		}
1639 	}
1640 
1641 	if (!map->cache_bypass && map->format.parse_val) {
1642 		unsigned int ival, offset;
1643 		int val_bytes = map->format.val_bytes;
1644 
1645 		/* Cache the last written value for noinc writes */
1646 		i = noinc ? val_len - val_bytes : 0;
1647 		for (; i < val_len; i += val_bytes) {
1648 			ival = map->format.parse_val(val + i);
1649 			offset = noinc ? 0 : regmap_get_offset(map, i / val_bytes);
1650 			ret = regcache_write(map, reg + offset, ival);
1651 			if (ret) {
1652 				dev_err(map->dev,
1653 					"Error in caching of register: %x ret: %d\n",
1654 					reg + offset, ret);
1655 				return ret;
1656 			}
1657 		}
1658 		if (map->cache_only) {
1659 			map->cache_dirty = true;
1660 			return 0;
1661 		}
1662 	}
1663 
1664 	range = _regmap_range_lookup(map, reg);
1665 	if (range) {
1666 		int val_num = val_len / map->format.val_bytes;
1667 		int win_offset = (reg - range->range_min) % range->window_len;
1668 		int win_residue = range->window_len - win_offset;
1669 
1670 		/* If the write goes beyond the end of the window split it */
1671 		while (val_num > win_residue) {
1672 			dev_dbg(map->dev, "Writing window %d/%zu\n",
1673 				win_residue, val_len / map->format.val_bytes);
1674 			ret = _regmap_raw_write_impl(map, reg, val,
1675 						     win_residue *
1676 						     map->format.val_bytes, noinc);
1677 			if (ret != 0)
1678 				return ret;
1679 
1680 			reg += win_residue;
1681 			val_num -= win_residue;
1682 			val += win_residue * map->format.val_bytes;
1683 			val_len -= win_residue * map->format.val_bytes;
1684 
1685 			win_offset = (reg - range->range_min) %
1686 				range->window_len;
1687 			win_residue = range->window_len - win_offset;
1688 		}
1689 
1690 		ret = _regmap_select_page(map, &reg, range, noinc ? 1 : val_num);
1691 		if (ret != 0)
1692 			return ret;
1693 	}
1694 
1695 	reg = regmap_reg_addr(map, reg);
1696 	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1697 	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1698 				      map->write_flag_mask);
1699 
1700 	/*
1701 	 * Essentially all I/O mechanisms will be faster with a single
1702 	 * buffer to write.  Since register syncs often generate raw
1703 	 * writes of single registers optimise that case.
1704 	 */
1705 	if (val != work_val && val_len == map->format.val_bytes) {
1706 		memcpy(work_val, val, map->format.val_bytes);
1707 		val = work_val;
1708 	}
1709 
1710 	if (map->async && map->bus && map->bus->async_write) {
1711 		struct regmap_async *async;
1712 
1713 		trace_regmap_async_write_start(map, reg, val_len);
1714 
1715 		spin_lock_irqsave(&map->async_lock, flags);
1716 		async = list_first_entry_or_null(&map->async_free,
1717 						 struct regmap_async,
1718 						 list);
1719 		if (async)
1720 			list_del(&async->list);
1721 		spin_unlock_irqrestore(&map->async_lock, flags);
1722 
1723 		if (!async) {
1724 			async = map->bus->async_alloc();
1725 			if (!async)
1726 				return -ENOMEM;
1727 
1728 			async->work_buf = kzalloc(map->format.buf_size,
1729 						  GFP_KERNEL | GFP_DMA);
1730 			if (!async->work_buf) {
1731 				kfree(async);
1732 				return -ENOMEM;
1733 			}
1734 		}
1735 
1736 		async->map = map;
1737 
1738 		/* If the caller supplied the value we can use it safely. */
1739 		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1740 		       map->format.reg_bytes + map->format.val_bytes);
1741 
1742 		spin_lock_irqsave(&map->async_lock, flags);
1743 		list_add_tail(&async->list, &map->async_list);
1744 		spin_unlock_irqrestore(&map->async_lock, flags);
1745 
1746 		if (val != work_val)
1747 			ret = map->bus->async_write(map->bus_context,
1748 						    async->work_buf,
1749 						    map->format.reg_bytes +
1750 						    map->format.pad_bytes,
1751 						    val, val_len, async);
1752 		else
1753 			ret = map->bus->async_write(map->bus_context,
1754 						    async->work_buf,
1755 						    map->format.reg_bytes +
1756 						    map->format.pad_bytes +
1757 						    val_len, NULL, 0, async);
1758 
1759 		if (ret != 0) {
1760 			dev_err(map->dev, "Failed to schedule write: %d\n",
1761 				ret);
1762 
1763 			spin_lock_irqsave(&map->async_lock, flags);
1764 			list_move(&async->list, &map->async_free);
1765 			spin_unlock_irqrestore(&map->async_lock, flags);
1766 		}
1767 
1768 		return ret;
1769 	}
1770 
1771 	trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1772 
1773 	/* If we're doing a single register write we can probably just
1774 	 * send the work_buf directly, otherwise try to do a gather
1775 	 * write.
1776 	 */
1777 	if (val == work_val)
1778 		ret = map->write(map->bus_context, map->work_buf,
1779 				 map->format.reg_bytes +
1780 				 map->format.pad_bytes +
1781 				 val_len);
1782 	else if (map->bus && map->bus->gather_write)
1783 		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1784 					     map->format.reg_bytes +
1785 					     map->format.pad_bytes,
1786 					     val, val_len);
1787 	else
1788 		ret = -ENOTSUPP;
1789 
1790 	/* If that didn't work fall back on linearising by hand. */
1791 	if (ret == -ENOTSUPP) {
1792 		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1793 		buf = kzalloc(len, GFP_KERNEL);
1794 		if (!buf)
1795 			return -ENOMEM;
1796 
1797 		memcpy(buf, map->work_buf, map->format.reg_bytes);
1798 		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1799 		       val, val_len);
1800 		ret = map->write(map->bus_context, buf, len);
1801 
1802 		kfree(buf);
1803 	} else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1804 		/* regcache_drop_region() takes lock that we already have,
1805 		 * thus call map->cache_ops->drop() directly
1806 		 */
1807 		if (map->cache_ops && map->cache_ops->drop)
1808 			map->cache_ops->drop(map, reg, reg + 1);
1809 	}
1810 
1811 	trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1812 
1813 	return ret;
1814 }
1815 
1816 /**
1817  * regmap_can_raw_write - Test if regmap_raw_write() is supported
1818  *
1819  * @map: Map to check.
1820  */
regmap_can_raw_write(struct regmap * map)1821 bool regmap_can_raw_write(struct regmap *map)
1822 {
1823 	return map->write && map->format.format_val && map->format.format_reg;
1824 }
1825 EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1826 
1827 /**
1828  * regmap_get_raw_read_max - Get the maximum size we can read
1829  *
1830  * @map: Map to check.
1831  */
regmap_get_raw_read_max(struct regmap * map)1832 size_t regmap_get_raw_read_max(struct regmap *map)
1833 {
1834 	return map->max_raw_read;
1835 }
1836 EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1837 
1838 /**
1839  * regmap_get_raw_write_max - Get the maximum size we can read
1840  *
1841  * @map: Map to check.
1842  */
regmap_get_raw_write_max(struct regmap * map)1843 size_t regmap_get_raw_write_max(struct regmap *map)
1844 {
1845 	return map->max_raw_write;
1846 }
1847 EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1848 
_regmap_bus_formatted_write(void * context,unsigned int reg,unsigned int val)1849 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1850 				       unsigned int val)
1851 {
1852 	int ret;
1853 	struct regmap_range_node *range;
1854 	struct regmap *map = context;
1855 
1856 	WARN_ON(!map->format.format_write);
1857 
1858 	range = _regmap_range_lookup(map, reg);
1859 	if (range) {
1860 		ret = _regmap_select_page(map, &reg, range, 1);
1861 		if (ret != 0)
1862 			return ret;
1863 	}
1864 
1865 	reg = regmap_reg_addr(map, reg);
1866 	map->format.format_write(map, reg, val);
1867 
1868 	trace_regmap_hw_write_start(map, reg, 1);
1869 
1870 	ret = map->write(map->bus_context, map->work_buf, map->format.buf_size);
1871 
1872 	trace_regmap_hw_write_done(map, reg, 1);
1873 
1874 	return ret;
1875 }
1876 
_regmap_bus_reg_write(void * context,unsigned int reg,unsigned int val)1877 static int _regmap_bus_reg_write(void *context, unsigned int reg,
1878 				 unsigned int val)
1879 {
1880 	struct regmap *map = context;
1881 	struct regmap_range_node *range;
1882 	int ret;
1883 
1884 	range = _regmap_range_lookup(map, reg);
1885 	if (range) {
1886 		ret = _regmap_select_page(map, &reg, range, 1);
1887 		if (ret != 0)
1888 			return ret;
1889 	}
1890 
1891 	reg = regmap_reg_addr(map, reg);
1892 	return map->bus->reg_write(map->bus_context, reg, val);
1893 }
1894 
_regmap_bus_raw_write(void * context,unsigned int reg,unsigned int val)1895 static int _regmap_bus_raw_write(void *context, unsigned int reg,
1896 				 unsigned int val)
1897 {
1898 	struct regmap *map = context;
1899 
1900 	WARN_ON(!map->format.format_val);
1901 
1902 	map->format.format_val(map->work_buf + map->format.reg_bytes
1903 			       + map->format.pad_bytes, val, 0);
1904 	return _regmap_raw_write_impl(map, reg,
1905 				      map->work_buf +
1906 				      map->format.reg_bytes +
1907 				      map->format.pad_bytes,
1908 				      map->format.val_bytes,
1909 				      false);
1910 }
1911 
_regmap_map_get_context(struct regmap * map)1912 static inline void *_regmap_map_get_context(struct regmap *map)
1913 {
1914 	return (map->bus || (!map->bus && map->read)) ? map : map->bus_context;
1915 }
1916 
_regmap_write(struct regmap * map,unsigned int reg,unsigned int val)1917 int _regmap_write(struct regmap *map, unsigned int reg,
1918 		  unsigned int val)
1919 {
1920 	int ret;
1921 	void *context = _regmap_map_get_context(map);
1922 
1923 	if (!regmap_writeable(map, reg))
1924 		return -EIO;
1925 
1926 	if (!map->cache_bypass && !map->defer_caching) {
1927 		ret = regcache_write(map, reg, val);
1928 		if (ret != 0)
1929 			return ret;
1930 		if (map->cache_only) {
1931 			map->cache_dirty = true;
1932 			return 0;
1933 		}
1934 	}
1935 
1936 	ret = map->reg_write(context, reg, val);
1937 	if (ret == 0) {
1938 		if (regmap_should_log(map))
1939 			dev_info(map->dev, "%x <= %x\n", reg, val);
1940 
1941 		trace_regmap_reg_write(map, reg, val);
1942 	}
1943 
1944 	return ret;
1945 }
1946 
1947 /**
1948  * regmap_write() - Write a value to a single register
1949  *
1950  * @map: Register map to write to
1951  * @reg: Register to write to
1952  * @val: Value to be written
1953  *
1954  * A value of zero will be returned on success, a negative errno will
1955  * be returned in error cases.
1956  */
regmap_write(struct regmap * map,unsigned int reg,unsigned int val)1957 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1958 {
1959 	int ret;
1960 
1961 	if (!IS_ALIGNED(reg, map->reg_stride))
1962 		return -EINVAL;
1963 
1964 	map->lock(map->lock_arg);
1965 
1966 	ret = _regmap_write(map, reg, val);
1967 
1968 	map->unlock(map->lock_arg);
1969 
1970 	return ret;
1971 }
1972 EXPORT_SYMBOL_GPL(regmap_write);
1973 
1974 /**
1975  * regmap_write_async() - Write a value to a single register asynchronously
1976  *
1977  * @map: Register map to write to
1978  * @reg: Register to write to
1979  * @val: Value to be written
1980  *
1981  * A value of zero will be returned on success, a negative errno will
1982  * be returned in error cases.
1983  */
regmap_write_async(struct regmap * map,unsigned int reg,unsigned int val)1984 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1985 {
1986 	int ret;
1987 
1988 	if (!IS_ALIGNED(reg, map->reg_stride))
1989 		return -EINVAL;
1990 
1991 	map->lock(map->lock_arg);
1992 
1993 	map->async = true;
1994 
1995 	ret = _regmap_write(map, reg, val);
1996 
1997 	map->async = false;
1998 
1999 	map->unlock(map->lock_arg);
2000 
2001 	return ret;
2002 }
2003 EXPORT_SYMBOL_GPL(regmap_write_async);
2004 
_regmap_raw_write(struct regmap * map,unsigned int reg,const void * val,size_t val_len,bool noinc)2005 int _regmap_raw_write(struct regmap *map, unsigned int reg,
2006 		      const void *val, size_t val_len, bool noinc)
2007 {
2008 	size_t val_bytes = map->format.val_bytes;
2009 	size_t val_count = val_len / val_bytes;
2010 	size_t chunk_count, chunk_bytes;
2011 	size_t chunk_regs = val_count;
2012 	int ret, i;
2013 
2014 	if (!val_count)
2015 		return -EINVAL;
2016 
2017 	if (map->use_single_write)
2018 		chunk_regs = 1;
2019 	else if (map->max_raw_write && val_len > map->max_raw_write)
2020 		chunk_regs = map->max_raw_write / val_bytes;
2021 
2022 	chunk_count = val_count / chunk_regs;
2023 	chunk_bytes = chunk_regs * val_bytes;
2024 
2025 	/* Write as many bytes as possible with chunk_size */
2026 	for (i = 0; i < chunk_count; i++) {
2027 		ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes, noinc);
2028 		if (ret)
2029 			return ret;
2030 
2031 		reg += regmap_get_offset(map, chunk_regs);
2032 		val += chunk_bytes;
2033 		val_len -= chunk_bytes;
2034 	}
2035 
2036 	/* Write remaining bytes */
2037 	if (val_len)
2038 		ret = _regmap_raw_write_impl(map, reg, val, val_len, noinc);
2039 
2040 	return ret;
2041 }
2042 
2043 /**
2044  * regmap_raw_write() - Write raw values to one or more registers
2045  *
2046  * @map: Register map to write to
2047  * @reg: Initial register to write to
2048  * @val: Block of data to be written, laid out for direct transmission to the
2049  *       device
2050  * @val_len: Length of data pointed to by val.
2051  *
2052  * This function is intended to be used for things like firmware
2053  * download where a large block of data needs to be transferred to the
2054  * device.  No formatting will be done on the data provided.
2055  *
2056  * A value of zero will be returned on success, a negative errno will
2057  * be returned in error cases.
2058  */
regmap_raw_write(struct regmap * map,unsigned int reg,const void * val,size_t val_len)2059 int regmap_raw_write(struct regmap *map, unsigned int reg,
2060 		     const void *val, size_t val_len)
2061 {
2062 	int ret;
2063 
2064 	if (!regmap_can_raw_write(map))
2065 		return -EINVAL;
2066 	if (val_len % map->format.val_bytes)
2067 		return -EINVAL;
2068 
2069 	map->lock(map->lock_arg);
2070 
2071 	ret = _regmap_raw_write(map, reg, val, val_len, false);
2072 
2073 	map->unlock(map->lock_arg);
2074 
2075 	return ret;
2076 }
2077 EXPORT_SYMBOL_GPL(regmap_raw_write);
2078 
regmap_noinc_readwrite(struct regmap * map,unsigned int reg,void * val,unsigned int val_len,bool write)2079 static int regmap_noinc_readwrite(struct regmap *map, unsigned int reg,
2080 				  void *val, unsigned int val_len, bool write)
2081 {
2082 	size_t val_bytes = map->format.val_bytes;
2083 	size_t val_count = val_len / val_bytes;
2084 	unsigned int lastval;
2085 	u8 *u8p;
2086 	u16 *u16p;
2087 	u32 *u32p;
2088 	int ret;
2089 	int i;
2090 
2091 	switch (val_bytes) {
2092 	case 1:
2093 		u8p = val;
2094 		if (write)
2095 			lastval = (unsigned int)u8p[val_count - 1];
2096 		break;
2097 	case 2:
2098 		u16p = val;
2099 		if (write)
2100 			lastval = (unsigned int)u16p[val_count - 1];
2101 		break;
2102 	case 4:
2103 		u32p = val;
2104 		if (write)
2105 			lastval = (unsigned int)u32p[val_count - 1];
2106 		break;
2107 	default:
2108 		return -EINVAL;
2109 	}
2110 
2111 	/*
2112 	 * Update the cache with the last value we write, the rest is just
2113 	 * gone down in the hardware FIFO. We can't cache FIFOs. This makes
2114 	 * sure a single read from the cache will work.
2115 	 */
2116 	if (write) {
2117 		if (!map->cache_bypass && !map->defer_caching) {
2118 			ret = regcache_write(map, reg, lastval);
2119 			if (ret != 0)
2120 				return ret;
2121 			if (map->cache_only) {
2122 				map->cache_dirty = true;
2123 				return 0;
2124 			}
2125 		}
2126 		ret = map->bus->reg_noinc_write(map->bus_context, reg, val, val_count);
2127 	} else {
2128 		ret = map->bus->reg_noinc_read(map->bus_context, reg, val, val_count);
2129 	}
2130 
2131 	if (!ret && regmap_should_log(map)) {
2132 		dev_info(map->dev, "%x %s [", reg, write ? "<=" : "=>");
2133 		for (i = 0; i < val_count; i++) {
2134 			switch (val_bytes) {
2135 			case 1:
2136 				pr_cont("%x", u8p[i]);
2137 				break;
2138 			case 2:
2139 				pr_cont("%x", u16p[i]);
2140 				break;
2141 			case 4:
2142 				pr_cont("%x", u32p[i]);
2143 				break;
2144 			default:
2145 				break;
2146 			}
2147 			if (i == (val_count - 1))
2148 				pr_cont("]\n");
2149 			else
2150 				pr_cont(",");
2151 		}
2152 	}
2153 
2154 	return 0;
2155 }
2156 
2157 /**
2158  * regmap_noinc_write(): Write data to a register without incrementing the
2159  *			register number
2160  *
2161  * @map: Register map to write to
2162  * @reg: Register to write to
2163  * @val: Pointer to data buffer
2164  * @val_len: Length of output buffer in bytes.
2165  *
2166  * The regmap API usually assumes that bulk bus write operations will write a
2167  * range of registers. Some devices have certain registers for which a write
2168  * operation can write to an internal FIFO.
2169  *
2170  * The target register must be volatile but registers after it can be
2171  * completely unrelated cacheable registers.
2172  *
2173  * This will attempt multiple writes as required to write val_len bytes.
2174  *
2175  * A value of zero will be returned on success, a negative errno will be
2176  * returned in error cases.
2177  */
regmap_noinc_write(struct regmap * map,unsigned int reg,const void * val,size_t val_len)2178 int regmap_noinc_write(struct regmap *map, unsigned int reg,
2179 		      const void *val, size_t val_len)
2180 {
2181 	size_t write_len;
2182 	int ret;
2183 
2184 	if (!map->write && !(map->bus && map->bus->reg_noinc_write))
2185 		return -EINVAL;
2186 	if (val_len % map->format.val_bytes)
2187 		return -EINVAL;
2188 	if (!IS_ALIGNED(reg, map->reg_stride))
2189 		return -EINVAL;
2190 	if (val_len == 0)
2191 		return -EINVAL;
2192 
2193 	map->lock(map->lock_arg);
2194 
2195 	if (!regmap_volatile(map, reg) || !regmap_writeable_noinc(map, reg)) {
2196 		ret = -EINVAL;
2197 		goto out_unlock;
2198 	}
2199 
2200 	/*
2201 	 * Use the accelerated operation if we can. The val drops the const
2202 	 * typing in order to facilitate code reuse in regmap_noinc_readwrite().
2203 	 */
2204 	if (map->bus->reg_noinc_write) {
2205 		ret = regmap_noinc_readwrite(map, reg, (void *)val, val_len, true);
2206 		goto out_unlock;
2207 	}
2208 
2209 	while (val_len) {
2210 		if (map->max_raw_write && map->max_raw_write < val_len)
2211 			write_len = map->max_raw_write;
2212 		else
2213 			write_len = val_len;
2214 		ret = _regmap_raw_write(map, reg, val, write_len, true);
2215 		if (ret)
2216 			goto out_unlock;
2217 		val = ((u8 *)val) + write_len;
2218 		val_len -= write_len;
2219 	}
2220 
2221 out_unlock:
2222 	map->unlock(map->lock_arg);
2223 	return ret;
2224 }
2225 EXPORT_SYMBOL_GPL(regmap_noinc_write);
2226 
2227 /**
2228  * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
2229  *                                   register field.
2230  *
2231  * @field: Register field to write to
2232  * @mask: Bitmask to change
2233  * @val: Value to be written
2234  * @change: Boolean indicating if a write was done
2235  * @async: Boolean indicating asynchronously
2236  * @force: Boolean indicating use force update
2237  *
2238  * Perform a read/modify/write cycle on the register field with change,
2239  * async, force option.
2240  *
2241  * A value of zero will be returned on success, a negative errno will
2242  * be returned in error cases.
2243  */
regmap_field_update_bits_base(struct regmap_field * field,unsigned int mask,unsigned int val,bool * change,bool async,bool force)2244 int regmap_field_update_bits_base(struct regmap_field *field,
2245 				  unsigned int mask, unsigned int val,
2246 				  bool *change, bool async, bool force)
2247 {
2248 	mask = (mask << field->shift) & field->mask;
2249 
2250 	return regmap_update_bits_base(field->regmap, field->reg,
2251 				       mask, val << field->shift,
2252 				       change, async, force);
2253 }
2254 EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
2255 
2256 /**
2257  * regmap_field_test_bits() - Check if all specified bits are set in a
2258  *                            register field.
2259  *
2260  * @field: Register field to operate on
2261  * @bits: Bits to test
2262  *
2263  * Returns negative errno if the underlying regmap_field_read() fails,
2264  * 0 if at least one of the tested bits is not set and 1 if all tested
2265  * bits are set.
2266  */
regmap_field_test_bits(struct regmap_field * field,unsigned int bits)2267 int regmap_field_test_bits(struct regmap_field *field, unsigned int bits)
2268 {
2269 	unsigned int val;
2270 	int ret;
2271 
2272 	ret = regmap_field_read(field, &val);
2273 	if (ret)
2274 		return ret;
2275 
2276 	return (val & bits) == bits;
2277 }
2278 EXPORT_SYMBOL_GPL(regmap_field_test_bits);
2279 
2280 /**
2281  * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
2282  *                                    register field with port ID
2283  *
2284  * @field: Register field to write to
2285  * @id: port ID
2286  * @mask: Bitmask to change
2287  * @val: Value to be written
2288  * @change: Boolean indicating if a write was done
2289  * @async: Boolean indicating asynchronously
2290  * @force: Boolean indicating use force update
2291  *
2292  * A value of zero will be returned on success, a negative errno will
2293  * be returned in error cases.
2294  */
regmap_fields_update_bits_base(struct regmap_field * field,unsigned int id,unsigned int mask,unsigned int val,bool * change,bool async,bool force)2295 int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id,
2296 				   unsigned int mask, unsigned int val,
2297 				   bool *change, bool async, bool force)
2298 {
2299 	if (id >= field->id_size)
2300 		return -EINVAL;
2301 
2302 	mask = (mask << field->shift) & field->mask;
2303 
2304 	return regmap_update_bits_base(field->regmap,
2305 				       field->reg + (field->id_offset * id),
2306 				       mask, val << field->shift,
2307 				       change, async, force);
2308 }
2309 EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
2310 
2311 /**
2312  * regmap_bulk_write() - Write multiple registers to the device
2313  *
2314  * @map: Register map to write to
2315  * @reg: First register to be write from
2316  * @val: Block of data to be written, in native register size for device
2317  * @val_count: Number of registers to write
2318  *
2319  * This function is intended to be used for writing a large block of
2320  * data to the device either in single transfer or multiple transfer.
2321  *
2322  * A value of zero will be returned on success, a negative errno will
2323  * be returned in error cases.
2324  */
regmap_bulk_write(struct regmap * map,unsigned int reg,const void * val,size_t val_count)2325 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
2326 		     size_t val_count)
2327 {
2328 	int ret = 0, i;
2329 	size_t val_bytes = map->format.val_bytes;
2330 
2331 	if (!IS_ALIGNED(reg, map->reg_stride))
2332 		return -EINVAL;
2333 
2334 	/*
2335 	 * Some devices don't support bulk write, for them we have a series of
2336 	 * single write operations.
2337 	 */
2338 	if (!map->write || !map->format.parse_inplace) {
2339 		map->lock(map->lock_arg);
2340 		for (i = 0; i < val_count; i++) {
2341 			unsigned int ival;
2342 
2343 			switch (val_bytes) {
2344 			case 1:
2345 				ival = *(u8 *)(val + (i * val_bytes));
2346 				break;
2347 			case 2:
2348 				ival = *(u16 *)(val + (i * val_bytes));
2349 				break;
2350 			case 4:
2351 				ival = *(u32 *)(val + (i * val_bytes));
2352 				break;
2353 			default:
2354 				ret = -EINVAL;
2355 				goto out;
2356 			}
2357 
2358 			ret = _regmap_write(map,
2359 					    reg + regmap_get_offset(map, i),
2360 					    ival);
2361 			if (ret != 0)
2362 				goto out;
2363 		}
2364 out:
2365 		map->unlock(map->lock_arg);
2366 	} else {
2367 		void *wval;
2368 
2369 		wval = kmemdup_array(val, val_count, val_bytes, map->alloc_flags);
2370 		if (!wval)
2371 			return -ENOMEM;
2372 
2373 		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2374 			map->format.parse_inplace(wval + i);
2375 
2376 		ret = regmap_raw_write(map, reg, wval, val_bytes * val_count);
2377 
2378 		kfree(wval);
2379 	}
2380 
2381 	if (!ret)
2382 		trace_regmap_bulk_write(map, reg, val, val_bytes * val_count);
2383 
2384 	return ret;
2385 }
2386 EXPORT_SYMBOL_GPL(regmap_bulk_write);
2387 
2388 /*
2389  * _regmap_raw_multi_reg_write()
2390  *
2391  * the (register,newvalue) pairs in regs have not been formatted, but
2392  * they are all in the same page and have been changed to being page
2393  * relative. The page register has been written if that was necessary.
2394  */
_regmap_raw_multi_reg_write(struct regmap * map,const struct reg_sequence * regs,size_t num_regs)2395 static int _regmap_raw_multi_reg_write(struct regmap *map,
2396 				       const struct reg_sequence *regs,
2397 				       size_t num_regs)
2398 {
2399 	int ret;
2400 	void *buf;
2401 	int i;
2402 	u8 *u8;
2403 	size_t val_bytes = map->format.val_bytes;
2404 	size_t reg_bytes = map->format.reg_bytes;
2405 	size_t pad_bytes = map->format.pad_bytes;
2406 	size_t pair_size = reg_bytes + pad_bytes + val_bytes;
2407 	size_t len = pair_size * num_regs;
2408 
2409 	if (!len)
2410 		return -EINVAL;
2411 
2412 	buf = kzalloc(len, GFP_KERNEL);
2413 	if (!buf)
2414 		return -ENOMEM;
2415 
2416 	/* We have to linearise by hand. */
2417 
2418 	u8 = buf;
2419 
2420 	for (i = 0; i < num_regs; i++) {
2421 		unsigned int reg = regs[i].reg;
2422 		unsigned int val = regs[i].def;
2423 		trace_regmap_hw_write_start(map, reg, 1);
2424 		reg = regmap_reg_addr(map, reg);
2425 		map->format.format_reg(u8, reg, map->reg_shift);
2426 		u8 += reg_bytes + pad_bytes;
2427 		map->format.format_val(u8, val, 0);
2428 		u8 += val_bytes;
2429 	}
2430 	u8 = buf;
2431 	*u8 |= map->write_flag_mask;
2432 
2433 	ret = map->write(map->bus_context, buf, len);
2434 
2435 	kfree(buf);
2436 
2437 	for (i = 0; i < num_regs; i++) {
2438 		int reg = regs[i].reg;
2439 		trace_regmap_hw_write_done(map, reg, 1);
2440 	}
2441 	return ret;
2442 }
2443 
_regmap_register_page(struct regmap * map,unsigned int reg,struct regmap_range_node * range)2444 static unsigned int _regmap_register_page(struct regmap *map,
2445 					  unsigned int reg,
2446 					  struct regmap_range_node *range)
2447 {
2448 	unsigned int win_page = (reg - range->range_min) / range->window_len;
2449 
2450 	return win_page;
2451 }
2452 
_regmap_range_multi_paged_reg_write(struct regmap * map,struct reg_sequence * regs,size_t num_regs)2453 static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2454 					       struct reg_sequence *regs,
2455 					       size_t num_regs)
2456 {
2457 	int ret;
2458 	int i, n;
2459 	struct reg_sequence *base;
2460 	unsigned int this_page = 0;
2461 	unsigned int page_change = 0;
2462 	/*
2463 	 * the set of registers are not neccessarily in order, but
2464 	 * since the order of write must be preserved this algorithm
2465 	 * chops the set each time the page changes. This also applies
2466 	 * if there is a delay required at any point in the sequence.
2467 	 */
2468 	base = regs;
2469 	for (i = 0, n = 0; i < num_regs; i++, n++) {
2470 		unsigned int reg = regs[i].reg;
2471 		struct regmap_range_node *range;
2472 
2473 		range = _regmap_range_lookup(map, reg);
2474 		if (range) {
2475 			unsigned int win_page = _regmap_register_page(map, reg,
2476 								      range);
2477 
2478 			if (i == 0)
2479 				this_page = win_page;
2480 			if (win_page != this_page) {
2481 				this_page = win_page;
2482 				page_change = 1;
2483 			}
2484 		}
2485 
2486 		/* If we have both a page change and a delay make sure to
2487 		 * write the regs and apply the delay before we change the
2488 		 * page.
2489 		 */
2490 
2491 		if (page_change || regs[i].delay_us) {
2492 
2493 				/* For situations where the first write requires
2494 				 * a delay we need to make sure we don't call
2495 				 * raw_multi_reg_write with n=0
2496 				 * This can't occur with page breaks as we
2497 				 * never write on the first iteration
2498 				 */
2499 				if (regs[i].delay_us && i == 0)
2500 					n = 1;
2501 
2502 				ret = _regmap_raw_multi_reg_write(map, base, n);
2503 				if (ret != 0)
2504 					return ret;
2505 
2506 				if (regs[i].delay_us) {
2507 					if (map->can_sleep)
2508 						fsleep(regs[i].delay_us);
2509 					else
2510 						udelay(regs[i].delay_us);
2511 				}
2512 
2513 				base += n;
2514 				n = 0;
2515 
2516 				if (page_change) {
2517 					ret = _regmap_select_page(map,
2518 								  &base[n].reg,
2519 								  range, 1);
2520 					if (ret != 0)
2521 						return ret;
2522 
2523 					page_change = 0;
2524 				}
2525 
2526 		}
2527 
2528 	}
2529 	if (n > 0)
2530 		return _regmap_raw_multi_reg_write(map, base, n);
2531 	return 0;
2532 }
2533 
_regmap_multi_reg_write(struct regmap * map,const struct reg_sequence * regs,size_t num_regs)2534 static int _regmap_multi_reg_write(struct regmap *map,
2535 				   const struct reg_sequence *regs,
2536 				   size_t num_regs)
2537 {
2538 	int i;
2539 	int ret;
2540 
2541 	if (!map->can_multi_write) {
2542 		for (i = 0; i < num_regs; i++) {
2543 			ret = _regmap_write(map, regs[i].reg, regs[i].def);
2544 			if (ret != 0)
2545 				return ret;
2546 
2547 			if (regs[i].delay_us) {
2548 				if (map->can_sleep)
2549 					fsleep(regs[i].delay_us);
2550 				else
2551 					udelay(regs[i].delay_us);
2552 			}
2553 		}
2554 		return 0;
2555 	}
2556 
2557 	if (!map->format.parse_inplace)
2558 		return -EINVAL;
2559 
2560 	if (map->writeable_reg)
2561 		for (i = 0; i < num_regs; i++) {
2562 			int reg = regs[i].reg;
2563 			if (!map->writeable_reg(map->dev, reg))
2564 				return -EINVAL;
2565 			if (!IS_ALIGNED(reg, map->reg_stride))
2566 				return -EINVAL;
2567 		}
2568 
2569 	if (!map->cache_bypass) {
2570 		for (i = 0; i < num_regs; i++) {
2571 			unsigned int val = regs[i].def;
2572 			unsigned int reg = regs[i].reg;
2573 			ret = regcache_write(map, reg, val);
2574 			if (ret) {
2575 				dev_err(map->dev,
2576 				"Error in caching of register: %x ret: %d\n",
2577 								reg, ret);
2578 				return ret;
2579 			}
2580 		}
2581 		if (map->cache_only) {
2582 			map->cache_dirty = true;
2583 			return 0;
2584 		}
2585 	}
2586 
2587 	WARN_ON(!map->bus);
2588 
2589 	for (i = 0; i < num_regs; i++) {
2590 		unsigned int reg = regs[i].reg;
2591 		struct regmap_range_node *range;
2592 
2593 		/* Coalesce all the writes between a page break or a delay
2594 		 * in a sequence
2595 		 */
2596 		range = _regmap_range_lookup(map, reg);
2597 		if (range || regs[i].delay_us) {
2598 			size_t len = sizeof(struct reg_sequence)*num_regs;
2599 			struct reg_sequence *base = kmemdup(regs, len,
2600 							   GFP_KERNEL);
2601 			if (!base)
2602 				return -ENOMEM;
2603 			ret = _regmap_range_multi_paged_reg_write(map, base,
2604 								  num_regs);
2605 			kfree(base);
2606 
2607 			return ret;
2608 		}
2609 	}
2610 	return _regmap_raw_multi_reg_write(map, regs, num_regs);
2611 }
2612 
2613 /**
2614  * regmap_multi_reg_write() - Write multiple registers to the device
2615  *
2616  * @map: Register map to write to
2617  * @regs: Array of structures containing register,value to be written
2618  * @num_regs: Number of registers to write
2619  *
2620  * Write multiple registers to the device where the set of register, value
2621  * pairs are supplied in any order, possibly not all in a single range.
2622  *
2623  * The 'normal' block write mode will send ultimately send data on the
2624  * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2625  * addressed. However, this alternative block multi write mode will send
2626  * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2627  * must of course support the mode.
2628  *
2629  * A value of zero will be returned on success, a negative errno will be
2630  * returned in error cases.
2631  */
regmap_multi_reg_write(struct regmap * map,const struct reg_sequence * regs,int num_regs)2632 int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2633 			   int num_regs)
2634 {
2635 	int ret;
2636 
2637 	map->lock(map->lock_arg);
2638 
2639 	ret = _regmap_multi_reg_write(map, regs, num_regs);
2640 
2641 	map->unlock(map->lock_arg);
2642 
2643 	return ret;
2644 }
2645 EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2646 
2647 /**
2648  * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2649  *                                     device but not the cache
2650  *
2651  * @map: Register map to write to
2652  * @regs: Array of structures containing register,value to be written
2653  * @num_regs: Number of registers to write
2654  *
2655  * Write multiple registers to the device but not the cache where the set
2656  * of register are supplied in any order.
2657  *
2658  * This function is intended to be used for writing a large block of data
2659  * atomically to the device in single transfer for those I2C client devices
2660  * that implement this alternative block write mode.
2661  *
2662  * A value of zero will be returned on success, a negative errno will
2663  * be returned in error cases.
2664  */
regmap_multi_reg_write_bypassed(struct regmap * map,const struct reg_sequence * regs,int num_regs)2665 int regmap_multi_reg_write_bypassed(struct regmap *map,
2666 				    const struct reg_sequence *regs,
2667 				    int num_regs)
2668 {
2669 	int ret;
2670 	bool bypass;
2671 
2672 	map->lock(map->lock_arg);
2673 
2674 	bypass = map->cache_bypass;
2675 	map->cache_bypass = true;
2676 
2677 	ret = _regmap_multi_reg_write(map, regs, num_regs);
2678 
2679 	map->cache_bypass = bypass;
2680 
2681 	map->unlock(map->lock_arg);
2682 
2683 	return ret;
2684 }
2685 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2686 
2687 /**
2688  * regmap_raw_write_async() - Write raw values to one or more registers
2689  *                            asynchronously
2690  *
2691  * @map: Register map to write to
2692  * @reg: Initial register to write to
2693  * @val: Block of data to be written, laid out for direct transmission to the
2694  *       device.  Must be valid until regmap_async_complete() is called.
2695  * @val_len: Length of data pointed to by val.
2696  *
2697  * This function is intended to be used for things like firmware
2698  * download where a large block of data needs to be transferred to the
2699  * device.  No formatting will be done on the data provided.
2700  *
2701  * If supported by the underlying bus the write will be scheduled
2702  * asynchronously, helping maximise I/O speed on higher speed buses
2703  * like SPI.  regmap_async_complete() can be called to ensure that all
2704  * asynchrnous writes have been completed.
2705  *
2706  * A value of zero will be returned on success, a negative errno will
2707  * be returned in error cases.
2708  */
regmap_raw_write_async(struct regmap * map,unsigned int reg,const void * val,size_t val_len)2709 int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2710 			   const void *val, size_t val_len)
2711 {
2712 	int ret;
2713 
2714 	if (val_len % map->format.val_bytes)
2715 		return -EINVAL;
2716 	if (!IS_ALIGNED(reg, map->reg_stride))
2717 		return -EINVAL;
2718 
2719 	map->lock(map->lock_arg);
2720 
2721 	map->async = true;
2722 
2723 	ret = _regmap_raw_write(map, reg, val, val_len, false);
2724 
2725 	map->async = false;
2726 
2727 	map->unlock(map->lock_arg);
2728 
2729 	return ret;
2730 }
2731 EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2732 
_regmap_raw_read(struct regmap * map,unsigned int reg,void * val,unsigned int val_len,bool noinc)2733 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2734 			    unsigned int val_len, bool noinc)
2735 {
2736 	struct regmap_range_node *range;
2737 	int ret;
2738 
2739 	if (!map->read)
2740 		return -EINVAL;
2741 
2742 	range = _regmap_range_lookup(map, reg);
2743 	if (range) {
2744 		ret = _regmap_select_page(map, &reg, range,
2745 					  noinc ? 1 : val_len / map->format.val_bytes);
2746 		if (ret != 0)
2747 			return ret;
2748 	}
2749 
2750 	reg = regmap_reg_addr(map, reg);
2751 	map->format.format_reg(map->work_buf, reg, map->reg_shift);
2752 	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2753 				      map->read_flag_mask);
2754 	trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2755 
2756 	ret = map->read(map->bus_context, map->work_buf,
2757 			map->format.reg_bytes + map->format.pad_bytes,
2758 			val, val_len);
2759 
2760 	trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2761 
2762 	return ret;
2763 }
2764 
_regmap_bus_reg_read(void * context,unsigned int reg,unsigned int * val)2765 static int _regmap_bus_reg_read(void *context, unsigned int reg,
2766 				unsigned int *val)
2767 {
2768 	struct regmap *map = context;
2769 	struct regmap_range_node *range;
2770 	int ret;
2771 
2772 	range = _regmap_range_lookup(map, reg);
2773 	if (range) {
2774 		ret = _regmap_select_page(map, &reg, range, 1);
2775 		if (ret != 0)
2776 			return ret;
2777 	}
2778 
2779 	reg = regmap_reg_addr(map, reg);
2780 	return map->bus->reg_read(map->bus_context, reg, val);
2781 }
2782 
_regmap_bus_read(void * context,unsigned int reg,unsigned int * val)2783 static int _regmap_bus_read(void *context, unsigned int reg,
2784 			    unsigned int *val)
2785 {
2786 	int ret;
2787 	struct regmap *map = context;
2788 	void *work_val = map->work_buf + map->format.reg_bytes +
2789 		map->format.pad_bytes;
2790 
2791 	if (!map->format.parse_val)
2792 		return -EINVAL;
2793 
2794 	ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes, false);
2795 	if (ret == 0)
2796 		*val = map->format.parse_val(work_val);
2797 
2798 	return ret;
2799 }
2800 
_regmap_read(struct regmap * map,unsigned int reg,unsigned int * val)2801 static int _regmap_read(struct regmap *map, unsigned int reg,
2802 			unsigned int *val)
2803 {
2804 	int ret;
2805 	void *context = _regmap_map_get_context(map);
2806 
2807 	if (!map->cache_bypass) {
2808 		ret = regcache_read(map, reg, val);
2809 		if (ret == 0)
2810 			return 0;
2811 	}
2812 
2813 	if (map->cache_only)
2814 		return -EBUSY;
2815 
2816 	if (!regmap_readable(map, reg))
2817 		return -EIO;
2818 
2819 	ret = map->reg_read(context, reg, val);
2820 	if (ret == 0) {
2821 		if (regmap_should_log(map))
2822 			dev_info(map->dev, "%x => %x\n", reg, *val);
2823 
2824 		trace_regmap_reg_read(map, reg, *val);
2825 
2826 		if (!map->cache_bypass)
2827 			regcache_write(map, reg, *val);
2828 	}
2829 
2830 	return ret;
2831 }
2832 
2833 /**
2834  * regmap_read() - Read a value from a single register
2835  *
2836  * @map: Register map to read from
2837  * @reg: Register to be read from
2838  * @val: Pointer to store read value
2839  *
2840  * A value of zero will be returned on success, a negative errno will
2841  * be returned in error cases.
2842  */
regmap_read(struct regmap * map,unsigned int reg,unsigned int * val)2843 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2844 {
2845 	int ret;
2846 
2847 	if (!IS_ALIGNED(reg, map->reg_stride))
2848 		return -EINVAL;
2849 
2850 	map->lock(map->lock_arg);
2851 
2852 	ret = _regmap_read(map, reg, val);
2853 
2854 	map->unlock(map->lock_arg);
2855 
2856 	return ret;
2857 }
2858 EXPORT_SYMBOL_GPL(regmap_read);
2859 
2860 /**
2861  * regmap_read_bypassed() - Read a value from a single register direct
2862  *			    from the device, bypassing the cache
2863  *
2864  * @map: Register map to read from
2865  * @reg: Register to be read from
2866  * @val: Pointer to store read value
2867  *
2868  * A value of zero will be returned on success, a negative errno will
2869  * be returned in error cases.
2870  */
regmap_read_bypassed(struct regmap * map,unsigned int reg,unsigned int * val)2871 int regmap_read_bypassed(struct regmap *map, unsigned int reg, unsigned int *val)
2872 {
2873 	int ret;
2874 	bool bypass, cache_only;
2875 
2876 	if (!IS_ALIGNED(reg, map->reg_stride))
2877 		return -EINVAL;
2878 
2879 	map->lock(map->lock_arg);
2880 
2881 	bypass = map->cache_bypass;
2882 	cache_only = map->cache_only;
2883 	map->cache_bypass = true;
2884 	map->cache_only = false;
2885 
2886 	ret = _regmap_read(map, reg, val);
2887 
2888 	map->cache_bypass = bypass;
2889 	map->cache_only = cache_only;
2890 
2891 	map->unlock(map->lock_arg);
2892 
2893 	return ret;
2894 }
2895 EXPORT_SYMBOL_GPL(regmap_read_bypassed);
2896 
2897 /**
2898  * regmap_raw_read() - Read raw data from the device
2899  *
2900  * @map: Register map to read from
2901  * @reg: First register to be read from
2902  * @val: Pointer to store read value
2903  * @val_len: Size of data to read
2904  *
2905  * A value of zero will be returned on success, a negative errno will
2906  * be returned in error cases.
2907  */
regmap_raw_read(struct regmap * map,unsigned int reg,void * val,size_t val_len)2908 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2909 		    size_t val_len)
2910 {
2911 	size_t val_bytes = map->format.val_bytes;
2912 	size_t val_count = val_len / val_bytes;
2913 	unsigned int v;
2914 	int ret, i;
2915 
2916 	if (val_len % map->format.val_bytes)
2917 		return -EINVAL;
2918 	if (!IS_ALIGNED(reg, map->reg_stride))
2919 		return -EINVAL;
2920 	if (val_count == 0)
2921 		return -EINVAL;
2922 
2923 	map->lock(map->lock_arg);
2924 
2925 	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2926 	    map->cache_type == REGCACHE_NONE) {
2927 		size_t chunk_count, chunk_bytes;
2928 		size_t chunk_regs = val_count;
2929 
2930 		if (!map->cache_bypass && map->cache_only) {
2931 			ret = -EBUSY;
2932 			goto out;
2933 		}
2934 
2935 		if (!map->read) {
2936 			ret = -ENOTSUPP;
2937 			goto out;
2938 		}
2939 
2940 		if (map->use_single_read)
2941 			chunk_regs = 1;
2942 		else if (map->max_raw_read && val_len > map->max_raw_read)
2943 			chunk_regs = map->max_raw_read / val_bytes;
2944 
2945 		chunk_count = val_count / chunk_regs;
2946 		chunk_bytes = chunk_regs * val_bytes;
2947 
2948 		/* Read bytes that fit into whole chunks */
2949 		for (i = 0; i < chunk_count; i++) {
2950 			ret = _regmap_raw_read(map, reg, val, chunk_bytes, false);
2951 			if (ret != 0)
2952 				goto out;
2953 
2954 			reg += regmap_get_offset(map, chunk_regs);
2955 			val += chunk_bytes;
2956 			val_len -= chunk_bytes;
2957 		}
2958 
2959 		/* Read remaining bytes */
2960 		if (val_len) {
2961 			ret = _regmap_raw_read(map, reg, val, val_len, false);
2962 			if (ret != 0)
2963 				goto out;
2964 		}
2965 	} else {
2966 		/* Otherwise go word by word for the cache; should be low
2967 		 * cost as we expect to hit the cache.
2968 		 */
2969 		for (i = 0; i < val_count; i++) {
2970 			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2971 					   &v);
2972 			if (ret != 0)
2973 				goto out;
2974 
2975 			map->format.format_val(val + (i * val_bytes), v, 0);
2976 		}
2977 	}
2978 
2979  out:
2980 	map->unlock(map->lock_arg);
2981 
2982 	return ret;
2983 }
2984 EXPORT_SYMBOL_GPL(regmap_raw_read);
2985 
2986 /**
2987  * regmap_noinc_read(): Read data from a register without incrementing the
2988  *			register number
2989  *
2990  * @map: Register map to read from
2991  * @reg: Register to read from
2992  * @val: Pointer to data buffer
2993  * @val_len: Length of output buffer in bytes.
2994  *
2995  * The regmap API usually assumes that bulk read operations will read a
2996  * range of registers. Some devices have certain registers for which a read
2997  * operation read will read from an internal FIFO.
2998  *
2999  * The target register must be volatile but registers after it can be
3000  * completely unrelated cacheable registers.
3001  *
3002  * This will attempt multiple reads as required to read val_len bytes.
3003  *
3004  * A value of zero will be returned on success, a negative errno will be
3005  * returned in error cases.
3006  */
regmap_noinc_read(struct regmap * map,unsigned int reg,void * val,size_t val_len)3007 int regmap_noinc_read(struct regmap *map, unsigned int reg,
3008 		      void *val, size_t val_len)
3009 {
3010 	size_t read_len;
3011 	int ret;
3012 
3013 	if (!map->read)
3014 		return -ENOTSUPP;
3015 
3016 	if (val_len % map->format.val_bytes)
3017 		return -EINVAL;
3018 	if (!IS_ALIGNED(reg, map->reg_stride))
3019 		return -EINVAL;
3020 	if (val_len == 0)
3021 		return -EINVAL;
3022 
3023 	map->lock(map->lock_arg);
3024 
3025 	if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) {
3026 		ret = -EINVAL;
3027 		goto out_unlock;
3028 	}
3029 
3030 	/*
3031 	 * We have not defined the FIFO semantics for cache, as the
3032 	 * cache is just one value deep. Should we return the last
3033 	 * written value? Just avoid this by always reading the FIFO
3034 	 * even when using cache. Cache only will not work.
3035 	 */
3036 	if (!map->cache_bypass && map->cache_only) {
3037 		ret = -EBUSY;
3038 		goto out_unlock;
3039 	}
3040 
3041 	/* Use the accelerated operation if we can */
3042 	if (map->bus->reg_noinc_read) {
3043 		ret = regmap_noinc_readwrite(map, reg, val, val_len, false);
3044 		goto out_unlock;
3045 	}
3046 
3047 	while (val_len) {
3048 		if (map->max_raw_read && map->max_raw_read < val_len)
3049 			read_len = map->max_raw_read;
3050 		else
3051 			read_len = val_len;
3052 		ret = _regmap_raw_read(map, reg, val, read_len, true);
3053 		if (ret)
3054 			goto out_unlock;
3055 		val = ((u8 *)val) + read_len;
3056 		val_len -= read_len;
3057 	}
3058 
3059 out_unlock:
3060 	map->unlock(map->lock_arg);
3061 	return ret;
3062 }
3063 EXPORT_SYMBOL_GPL(regmap_noinc_read);
3064 
3065 /**
3066  * regmap_field_read(): Read a value to a single register field
3067  *
3068  * @field: Register field to read from
3069  * @val: Pointer to store read value
3070  *
3071  * A value of zero will be returned on success, a negative errno will
3072  * be returned in error cases.
3073  */
regmap_field_read(struct regmap_field * field,unsigned int * val)3074 int regmap_field_read(struct regmap_field *field, unsigned int *val)
3075 {
3076 	int ret;
3077 	unsigned int reg_val;
3078 	ret = regmap_read(field->regmap, field->reg, &reg_val);
3079 	if (ret != 0)
3080 		return ret;
3081 
3082 	reg_val &= field->mask;
3083 	reg_val >>= field->shift;
3084 	*val = reg_val;
3085 
3086 	return ret;
3087 }
3088 EXPORT_SYMBOL_GPL(regmap_field_read);
3089 
3090 /**
3091  * regmap_fields_read() - Read a value to a single register field with port ID
3092  *
3093  * @field: Register field to read from
3094  * @id: port ID
3095  * @val: Pointer to store read value
3096  *
3097  * A value of zero will be returned on success, a negative errno will
3098  * be returned in error cases.
3099  */
regmap_fields_read(struct regmap_field * field,unsigned int id,unsigned int * val)3100 int regmap_fields_read(struct regmap_field *field, unsigned int id,
3101 		       unsigned int *val)
3102 {
3103 	int ret;
3104 	unsigned int reg_val;
3105 
3106 	if (id >= field->id_size)
3107 		return -EINVAL;
3108 
3109 	ret = regmap_read(field->regmap,
3110 			  field->reg + (field->id_offset * id),
3111 			  &reg_val);
3112 	if (ret != 0)
3113 		return ret;
3114 
3115 	reg_val &= field->mask;
3116 	reg_val >>= field->shift;
3117 	*val = reg_val;
3118 
3119 	return ret;
3120 }
3121 EXPORT_SYMBOL_GPL(regmap_fields_read);
3122 
_regmap_bulk_read(struct regmap * map,unsigned int reg,const unsigned int * regs,void * val,size_t val_count)3123 static int _regmap_bulk_read(struct regmap *map, unsigned int reg,
3124 			     const unsigned int *regs, void *val, size_t val_count)
3125 {
3126 	u32 *u32 = val;
3127 	u16 *u16 = val;
3128 	u8 *u8 = val;
3129 	int ret, i;
3130 
3131 	map->lock(map->lock_arg);
3132 
3133 	for (i = 0; i < val_count; i++) {
3134 		unsigned int ival;
3135 
3136 		if (regs) {
3137 			if (!IS_ALIGNED(regs[i], map->reg_stride)) {
3138 				ret = -EINVAL;
3139 				goto out;
3140 			}
3141 			ret = _regmap_read(map, regs[i], &ival);
3142 		} else {
3143 			ret = _regmap_read(map, reg + regmap_get_offset(map, i), &ival);
3144 		}
3145 		if (ret != 0)
3146 			goto out;
3147 
3148 		switch (map->format.val_bytes) {
3149 		case 4:
3150 			u32[i] = ival;
3151 			break;
3152 		case 2:
3153 			u16[i] = ival;
3154 			break;
3155 		case 1:
3156 			u8[i] = ival;
3157 			break;
3158 		default:
3159 			ret = -EINVAL;
3160 			goto out;
3161 		}
3162 	}
3163 out:
3164 	map->unlock(map->lock_arg);
3165 	return ret;
3166 }
3167 
3168 /**
3169  * regmap_bulk_read() - Read multiple sequential registers from the device
3170  *
3171  * @map: Register map to read from
3172  * @reg: First register to be read from
3173  * @val: Pointer to store read value, in native register size for device
3174  * @val_count: Number of registers to read
3175  *
3176  * A value of zero will be returned on success, a negative errno will
3177  * be returned in error cases.
3178  */
regmap_bulk_read(struct regmap * map,unsigned int reg,void * val,size_t val_count)3179 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
3180 		     size_t val_count)
3181 {
3182 	int ret, i;
3183 	size_t val_bytes = map->format.val_bytes;
3184 	bool vol = regmap_volatile_range(map, reg, val_count);
3185 
3186 	if (!IS_ALIGNED(reg, map->reg_stride))
3187 		return -EINVAL;
3188 	if (val_count == 0)
3189 		return -EINVAL;
3190 
3191 	if (map->read && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
3192 		ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
3193 		if (ret != 0)
3194 			return ret;
3195 
3196 		for (i = 0; i < val_count * val_bytes; i += val_bytes)
3197 			map->format.parse_inplace(val + i);
3198 	} else {
3199 		ret = _regmap_bulk_read(map, reg, NULL, val, val_count);
3200 	}
3201 	if (!ret)
3202 		trace_regmap_bulk_read(map, reg, val, val_bytes * val_count);
3203 	return ret;
3204 }
3205 EXPORT_SYMBOL_GPL(regmap_bulk_read);
3206 
3207 /**
3208  * regmap_multi_reg_read() - Read multiple non-sequential registers from the device
3209  *
3210  * @map: Register map to read from
3211  * @regs: Array of registers to read from
3212  * @val: Pointer to store read value, in native register size for device
3213  * @val_count: Number of registers to read
3214  *
3215  * A value of zero will be returned on success, a negative errno will
3216  * be returned in error cases.
3217  */
regmap_multi_reg_read(struct regmap * map,const unsigned int * regs,void * val,size_t val_count)3218 int regmap_multi_reg_read(struct regmap *map, const unsigned int *regs, void *val,
3219 			  size_t val_count)
3220 {
3221 	if (val_count == 0)
3222 		return -EINVAL;
3223 
3224 	return _regmap_bulk_read(map, 0, regs, val, val_count);
3225 }
3226 EXPORT_SYMBOL_GPL(regmap_multi_reg_read);
3227 
_regmap_update_bits(struct regmap * map,unsigned int reg,unsigned int mask,unsigned int val,bool * change,bool force_write)3228 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
3229 			       unsigned int mask, unsigned int val,
3230 			       bool *change, bool force_write)
3231 {
3232 	int ret;
3233 	unsigned int tmp, orig;
3234 
3235 	if (change)
3236 		*change = false;
3237 
3238 	if (regmap_volatile(map, reg) && map->reg_update_bits) {
3239 		reg = regmap_reg_addr(map, reg);
3240 		ret = map->reg_update_bits(map->bus_context, reg, mask, val);
3241 		if (ret == 0 && change)
3242 			*change = true;
3243 	} else {
3244 		ret = _regmap_read(map, reg, &orig);
3245 		if (ret != 0)
3246 			return ret;
3247 
3248 		tmp = orig & ~mask;
3249 		tmp |= val & mask;
3250 
3251 		if (force_write || (tmp != orig) || map->force_write_field) {
3252 			ret = _regmap_write(map, reg, tmp);
3253 			if (ret == 0 && change)
3254 				*change = true;
3255 		}
3256 	}
3257 
3258 	return ret;
3259 }
3260 
3261 /**
3262  * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
3263  *
3264  * @map: Register map to update
3265  * @reg: Register to update
3266  * @mask: Bitmask to change
3267  * @val: New value for bitmask
3268  * @change: Boolean indicating if a write was done
3269  * @async: Boolean indicating asynchronously
3270  * @force: Boolean indicating use force update
3271  *
3272  * Perform a read/modify/write cycle on a register map with change, async, force
3273  * options.
3274  *
3275  * If async is true:
3276  *
3277  * With most buses the read must be done synchronously so this is most useful
3278  * for devices with a cache which do not need to interact with the hardware to
3279  * determine the current register value.
3280  *
3281  * Returns zero for success, a negative number on error.
3282  */
regmap_update_bits_base(struct regmap * map,unsigned int reg,unsigned int mask,unsigned int val,bool * change,bool async,bool force)3283 int regmap_update_bits_base(struct regmap *map, unsigned int reg,
3284 			    unsigned int mask, unsigned int val,
3285 			    bool *change, bool async, bool force)
3286 {
3287 	int ret;
3288 
3289 	map->lock(map->lock_arg);
3290 
3291 	map->async = async;
3292 
3293 	ret = _regmap_update_bits(map, reg, mask, val, change, force);
3294 
3295 	map->async = false;
3296 
3297 	map->unlock(map->lock_arg);
3298 
3299 	return ret;
3300 }
3301 EXPORT_SYMBOL_GPL(regmap_update_bits_base);
3302 
3303 /**
3304  * regmap_test_bits() - Check if all specified bits are set in a register.
3305  *
3306  * @map: Register map to operate on
3307  * @reg: Register to read from
3308  * @bits: Bits to test
3309  *
3310  * Returns 0 if at least one of the tested bits is not set, 1 if all tested
3311  * bits are set and a negative error number if the underlying regmap_read()
3312  * fails.
3313  */
regmap_test_bits(struct regmap * map,unsigned int reg,unsigned int bits)3314 int regmap_test_bits(struct regmap *map, unsigned int reg, unsigned int bits)
3315 {
3316 	unsigned int val;
3317 	int ret;
3318 
3319 	ret = regmap_read(map, reg, &val);
3320 	if (ret)
3321 		return ret;
3322 
3323 	return (val & bits) == bits;
3324 }
3325 EXPORT_SYMBOL_GPL(regmap_test_bits);
3326 
regmap_async_complete_cb(struct regmap_async * async,int ret)3327 void regmap_async_complete_cb(struct regmap_async *async, int ret)
3328 {
3329 	struct regmap *map = async->map;
3330 	bool wake;
3331 
3332 	trace_regmap_async_io_complete(map);
3333 
3334 	spin_lock(&map->async_lock);
3335 	list_move(&async->list, &map->async_free);
3336 	wake = list_empty(&map->async_list);
3337 
3338 	if (ret != 0)
3339 		map->async_ret = ret;
3340 
3341 	spin_unlock(&map->async_lock);
3342 
3343 	if (wake)
3344 		wake_up(&map->async_waitq);
3345 }
3346 EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
3347 
regmap_async_is_done(struct regmap * map)3348 static int regmap_async_is_done(struct regmap *map)
3349 {
3350 	unsigned long flags;
3351 	int ret;
3352 
3353 	spin_lock_irqsave(&map->async_lock, flags);
3354 	ret = list_empty(&map->async_list);
3355 	spin_unlock_irqrestore(&map->async_lock, flags);
3356 
3357 	return ret;
3358 }
3359 
3360 /**
3361  * regmap_async_complete - Ensure all asynchronous I/O has completed.
3362  *
3363  * @map: Map to operate on.
3364  *
3365  * Blocks until any pending asynchronous I/O has completed.  Returns
3366  * an error code for any failed I/O operations.
3367  */
regmap_async_complete(struct regmap * map)3368 int regmap_async_complete(struct regmap *map)
3369 {
3370 	unsigned long flags;
3371 	int ret;
3372 
3373 	/* Nothing to do with no async support */
3374 	if (!map->bus || !map->bus->async_write)
3375 		return 0;
3376 
3377 	trace_regmap_async_complete_start(map);
3378 
3379 	wait_event(map->async_waitq, regmap_async_is_done(map));
3380 
3381 	spin_lock_irqsave(&map->async_lock, flags);
3382 	ret = map->async_ret;
3383 	map->async_ret = 0;
3384 	spin_unlock_irqrestore(&map->async_lock, flags);
3385 
3386 	trace_regmap_async_complete_done(map);
3387 
3388 	return ret;
3389 }
3390 EXPORT_SYMBOL_GPL(regmap_async_complete);
3391 
3392 /**
3393  * regmap_register_patch - Register and apply register updates to be applied
3394  *                         on device initialistion
3395  *
3396  * @map: Register map to apply updates to.
3397  * @regs: Values to update.
3398  * @num_regs: Number of entries in regs.
3399  *
3400  * Register a set of register updates to be applied to the device
3401  * whenever the device registers are synchronised with the cache and
3402  * apply them immediately.  Typically this is used to apply
3403  * corrections to be applied to the device defaults on startup, such
3404  * as the updates some vendors provide to undocumented registers.
3405  *
3406  * The caller must ensure that this function cannot be called
3407  * concurrently with either itself or regcache_sync().
3408  */
regmap_register_patch(struct regmap * map,const struct reg_sequence * regs,int num_regs)3409 int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
3410 			  int num_regs)
3411 {
3412 	struct reg_sequence *p;
3413 	int ret;
3414 	bool bypass;
3415 
3416 	if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
3417 	    num_regs))
3418 		return 0;
3419 
3420 	p = krealloc(map->patch,
3421 		     sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
3422 		     GFP_KERNEL);
3423 	if (p) {
3424 		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
3425 		map->patch = p;
3426 		map->patch_regs += num_regs;
3427 	} else {
3428 		return -ENOMEM;
3429 	}
3430 
3431 	map->lock(map->lock_arg);
3432 
3433 	bypass = map->cache_bypass;
3434 
3435 	map->cache_bypass = true;
3436 	map->async = true;
3437 
3438 	ret = _regmap_multi_reg_write(map, regs, num_regs);
3439 
3440 	map->async = false;
3441 	map->cache_bypass = bypass;
3442 
3443 	map->unlock(map->lock_arg);
3444 
3445 	regmap_async_complete(map);
3446 
3447 	return ret;
3448 }
3449 EXPORT_SYMBOL_GPL(regmap_register_patch);
3450 
3451 /**
3452  * regmap_get_val_bytes() - Report the size of a register value
3453  *
3454  * @map: Register map to operate on.
3455  *
3456  * Report the size of a register value, mainly intended to for use by
3457  * generic infrastructure built on top of regmap.
3458  */
regmap_get_val_bytes(struct regmap * map)3459 int regmap_get_val_bytes(struct regmap *map)
3460 {
3461 	if (map->format.format_write)
3462 		return -EINVAL;
3463 
3464 	return map->format.val_bytes;
3465 }
3466 EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
3467 
3468 /**
3469  * regmap_get_max_register() - Report the max register value
3470  *
3471  * @map: Register map to operate on.
3472  *
3473  * Report the max register value, mainly intended to for use by
3474  * generic infrastructure built on top of regmap.
3475  */
regmap_get_max_register(struct regmap * map)3476 int regmap_get_max_register(struct regmap *map)
3477 {
3478 	return map->max_register_is_set ? map->max_register : -EINVAL;
3479 }
3480 EXPORT_SYMBOL_GPL(regmap_get_max_register);
3481 
3482 /**
3483  * regmap_get_reg_stride() - Report the register address stride
3484  *
3485  * @map: Register map to operate on.
3486  *
3487  * Report the register address stride, mainly intended to for use by
3488  * generic infrastructure built on top of regmap.
3489  */
regmap_get_reg_stride(struct regmap * map)3490 int regmap_get_reg_stride(struct regmap *map)
3491 {
3492 	return map->reg_stride;
3493 }
3494 EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
3495 
3496 /**
3497  * regmap_might_sleep() - Returns whether a regmap access might sleep.
3498  *
3499  * @map: Register map to operate on.
3500  *
3501  * Returns true if an access to the register might sleep, else false.
3502  */
regmap_might_sleep(struct regmap * map)3503 bool regmap_might_sleep(struct regmap *map)
3504 {
3505 	return map->can_sleep;
3506 }
3507 EXPORT_SYMBOL_GPL(regmap_might_sleep);
3508 
regmap_parse_val(struct regmap * map,const void * buf,unsigned int * val)3509 int regmap_parse_val(struct regmap *map, const void *buf,
3510 			unsigned int *val)
3511 {
3512 	if (!map->format.parse_val)
3513 		return -EINVAL;
3514 
3515 	*val = map->format.parse_val(buf);
3516 
3517 	return 0;
3518 }
3519 EXPORT_SYMBOL_GPL(regmap_parse_val);
3520 
regmap_initcall(void)3521 static int __init regmap_initcall(void)
3522 {
3523 	regmap_debugfs_initcall();
3524 
3525 	return 0;
3526 }
3527 postcore_initcall(regmap_initcall);
3528