xref: /linux/drivers/base/regmap/regmap-spi-avmm.c (revision 24bce201d79807b668bf9d9e0aca801c5c0d5f78)
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // Register map access API - SPI AVMM support
4 //
5 // Copyright (C) 2018-2020 Intel Corporation. All rights reserved.
6 
7 #include <linux/module.h>
8 #include <linux/regmap.h>
9 #include <linux/spi/spi.h>
10 
11 /*
12  * This driver implements the regmap operations for a generic SPI
13  * master to access the registers of the spi slave chip which has an
14  * Avalone bus in it.
15  *
16  * The "SPI slave to Avalon Master Bridge" (spi-avmm) IP should be integrated
17  * in the spi slave chip. The IP acts as a bridge to convert encoded streams of
18  * bytes from the host to the internal register read/write on Avalon bus. In
19  * order to issue register access requests to the slave chip, the host should
20  * send formatted bytes that conform to the transfer protocol.
21  * The transfer protocol contains 3 layers: transaction layer, packet layer
22  * and physical layer.
23  *
24  * Reference Documents could be found at:
25  * https://www.intel.com/content/www/us/en/programmable/documentation/sfo1400787952932.html
26  *
27  * Chapter "SPI Slave/JTAG to Avalon Master Bridge Cores" is a general
28  * introduction to the protocol.
29  *
30  * Chapter "Avalon Packets to Transactions Converter Core" describes
31  * the transaction layer.
32  *
33  * Chapter "Avalon-ST Bytes to Packets and Packets to Bytes Converter Cores"
34  * describes the packet layer.
35  *
36  * Chapter "Avalon-ST Serial Peripheral Interface Core" describes the
37  * physical layer.
38  *
39  *
40  * When host issues a regmap read/write, the driver will transform the request
41  * to byte stream layer by layer. It formats the register addr, value and
42  * length to the transaction layer request, then converts the request to packet
43  * layer bytes stream and then to physical layer bytes stream. Finally the
44  * driver sends the formatted byte stream over SPI bus to the slave chip.
45  *
46  * The spi-avmm IP on the slave chip decodes the byte stream and initiates
47  * register read/write on its internal Avalon bus, and then encodes the
48  * response to byte stream and sends back to host.
49  *
50  * The driver receives the byte stream, reverses the 3 layers transformation,
51  * and finally gets the response value (read out data for register read,
52  * successful written size for register write).
53  */
54 
55 #define PKT_SOP			0x7a
56 #define PKT_EOP			0x7b
57 #define PKT_CHANNEL		0x7c
58 #define PKT_ESC			0x7d
59 
60 #define PHY_IDLE		0x4a
61 #define PHY_ESC			0x4d
62 
63 #define TRANS_CODE_WRITE	0x0
64 #define TRANS_CODE_SEQ_WRITE	0x4
65 #define TRANS_CODE_READ		0x10
66 #define TRANS_CODE_SEQ_READ	0x14
67 #define TRANS_CODE_NO_TRANS	0x7f
68 
69 #define SPI_AVMM_XFER_TIMEOUT	(msecs_to_jiffies(200))
70 
71 /* slave's register addr is 32 bits */
72 #define SPI_AVMM_REG_SIZE		4UL
73 /* slave's register value is 32 bits */
74 #define SPI_AVMM_VAL_SIZE		4UL
75 
76 /*
77  * max rx size could be larger. But considering the buffer consuming,
78  * it is proper that we limit 1KB xfer at max.
79  */
80 #define MAX_READ_CNT		256UL
81 #define MAX_WRITE_CNT		1UL
82 
83 struct trans_req_header {
84 	u8 code;
85 	u8 rsvd;
86 	__be16 size;
87 	__be32 addr;
88 } __packed;
89 
90 struct trans_resp_header {
91 	u8 r_code;
92 	u8 rsvd;
93 	__be16 size;
94 } __packed;
95 
96 #define TRANS_REQ_HD_SIZE	(sizeof(struct trans_req_header))
97 #define TRANS_RESP_HD_SIZE	(sizeof(struct trans_resp_header))
98 
99 /*
100  * In transaction layer,
101  * the write request format is: Transaction request header + data
102  * the read request format is: Transaction request header
103  * the write response format is: Transaction response header
104  * the read response format is: pure data, no Transaction response header
105  */
106 #define TRANS_WR_TX_SIZE(n)	(TRANS_REQ_HD_SIZE + SPI_AVMM_VAL_SIZE * (n))
107 #define TRANS_RD_TX_SIZE	TRANS_REQ_HD_SIZE
108 #define TRANS_TX_MAX		TRANS_WR_TX_SIZE(MAX_WRITE_CNT)
109 
110 #define TRANS_RD_RX_SIZE(n)	(SPI_AVMM_VAL_SIZE * (n))
111 #define TRANS_WR_RX_SIZE	TRANS_RESP_HD_SIZE
112 #define TRANS_RX_MAX		TRANS_RD_RX_SIZE(MAX_READ_CNT)
113 
114 /* tx & rx share one transaction layer buffer */
115 #define TRANS_BUF_SIZE		((TRANS_TX_MAX > TRANS_RX_MAX) ?	\
116 				 TRANS_TX_MAX : TRANS_RX_MAX)
117 
118 /*
119  * In tx phase, the host prepares all the phy layer bytes of a request in the
120  * phy buffer and sends them in a batch.
121  *
122  * The packet layer and physical layer defines several special chars for
123  * various purpose, when a transaction layer byte hits one of these special
124  * chars, it should be escaped. The escape rule is, "Escape char first,
125  * following the byte XOR'ed with 0x20".
126  *
127  * This macro defines the max possible length of the phy data. In the worst
128  * case, all transaction layer bytes need to be escaped (so the data length
129  * doubles), plus 4 special chars (SOP, CHANNEL, CHANNEL_NUM, EOP). Finally
130  * we should make sure the length is aligned to SPI BPW.
131  */
132 #define PHY_TX_MAX		ALIGN(2 * TRANS_TX_MAX + 4, 4)
133 
134 /*
135  * Unlike tx, phy rx is affected by possible PHY_IDLE bytes from slave, the max
136  * length of the rx bit stream is unpredictable. So the driver reads the words
137  * one by one, and parses each word immediately into transaction layer buffer.
138  * Only one word length of phy buffer is used for rx.
139  */
140 #define PHY_BUF_SIZE		PHY_TX_MAX
141 
142 /**
143  * struct spi_avmm_bridge - SPI slave to AVMM bus master bridge
144  *
145  * @spi: spi slave associated with this bridge.
146  * @word_len: bytes of word for spi transfer.
147  * @trans_len: length of valid data in trans_buf.
148  * @phy_len: length of valid data in phy_buf.
149  * @trans_buf: the bridge buffer for transaction layer data.
150  * @phy_buf: the bridge buffer for physical layer data.
151  * @swap_words: the word swapping cb for phy data. NULL if not needed.
152  *
153  * As a device's registers are implemented on the AVMM bus address space, it
154  * requires the driver to issue formatted requests to spi slave to AVMM bus
155  * master bridge to perform register access.
156  */
157 struct spi_avmm_bridge {
158 	struct spi_device *spi;
159 	unsigned char word_len;
160 	unsigned int trans_len;
161 	unsigned int phy_len;
162 	/* bridge buffer used in translation between protocol layers */
163 	char trans_buf[TRANS_BUF_SIZE];
164 	char phy_buf[PHY_BUF_SIZE];
165 	void (*swap_words)(char *buf, unsigned int len);
166 };
167 
168 static void br_swap_words_32(char *buf, unsigned int len)
169 {
170 	u32 *p = (u32 *)buf;
171 	unsigned int count;
172 
173 	count = len / 4;
174 	while (count--) {
175 		*p = swab32p(p);
176 		p++;
177 	}
178 }
179 
180 /*
181  * Format transaction layer data in br->trans_buf according to the register
182  * access request, Store valid transaction layer data length in br->trans_len.
183  */
184 static int br_trans_tx_prepare(struct spi_avmm_bridge *br, bool is_read, u32 reg,
185 			       u32 *wr_val, u32 count)
186 {
187 	struct trans_req_header *header;
188 	unsigned int trans_len;
189 	u8 code;
190 	__le32 *data;
191 	int i;
192 
193 	if (is_read) {
194 		if (count == 1)
195 			code = TRANS_CODE_READ;
196 		else
197 			code = TRANS_CODE_SEQ_READ;
198 	} else {
199 		if (count == 1)
200 			code = TRANS_CODE_WRITE;
201 		else
202 			code = TRANS_CODE_SEQ_WRITE;
203 	}
204 
205 	header = (struct trans_req_header *)br->trans_buf;
206 	header->code = code;
207 	header->rsvd = 0;
208 	header->size = cpu_to_be16((u16)count * SPI_AVMM_VAL_SIZE);
209 	header->addr = cpu_to_be32(reg);
210 
211 	trans_len = TRANS_REQ_HD_SIZE;
212 
213 	if (!is_read) {
214 		trans_len += SPI_AVMM_VAL_SIZE * count;
215 		if (trans_len > sizeof(br->trans_buf))
216 			return -ENOMEM;
217 
218 		data = (__le32 *)(br->trans_buf + TRANS_REQ_HD_SIZE);
219 
220 		for (i = 0; i < count; i++)
221 			*data++ = cpu_to_le32(*wr_val++);
222 	}
223 
224 	/* Store valid trans data length for next layer */
225 	br->trans_len = trans_len;
226 
227 	return 0;
228 }
229 
230 /*
231  * Convert transaction layer data (in br->trans_buf) to phy layer data, store
232  * them in br->phy_buf. Pad the phy_buf aligned with SPI's BPW. Store valid phy
233  * layer data length in br->phy_len.
234  *
235  * phy_buf len should be aligned with SPI's BPW. Spare bytes should be padded
236  * with PHY_IDLE, then the slave will just drop them.
237  *
238  * The driver will not simply pad 4a at the tail. The concern is that driver
239  * will not store MISO data during tx phase, if the driver pads 4a at the tail,
240  * it is possible that if the slave is fast enough to response at the padding
241  * time. As a result these rx bytes are lost. In the following case, 7a,7c,00
242  * will lost.
243  * MOSI ...|7a|7c|00|10| |00|00|04|02| |4b|7d|5a|7b| |40|4a|4a|4a| |XX|XX|...
244  * MISO ...|4a|4a|4a|4a| |4a|4a|4a|4a| |4a|4a|4a|4a| |4a|7a|7c|00| |78|56|...
245  *
246  * So the driver moves EOP and bytes after EOP to the end of the aligned size,
247  * then fill the hole with PHY_IDLE. As following:
248  * before pad ...|7a|7c|00|10| |00|00|04|02| |4b|7d|5a|7b| |40|
249  * after pad  ...|7a|7c|00|10| |00|00|04|02| |4b|7d|5a|4a| |4a|4a|7b|40|
250  * Then if the slave will not get the entire packet before the tx phase is
251  * over, it can't responsed to anything either.
252  */
253 static int br_pkt_phy_tx_prepare(struct spi_avmm_bridge *br)
254 {
255 	char *tb, *tb_end, *pb, *pb_limit, *pb_eop = NULL;
256 	unsigned int aligned_phy_len, move_size;
257 	bool need_esc = false;
258 
259 	tb = br->trans_buf;
260 	tb_end = tb + br->trans_len;
261 	pb = br->phy_buf;
262 	pb_limit = pb + ARRAY_SIZE(br->phy_buf);
263 
264 	*pb++ = PKT_SOP;
265 
266 	/*
267 	 * The driver doesn't support multiple channels so the channel number
268 	 * is always 0.
269 	 */
270 	*pb++ = PKT_CHANNEL;
271 	*pb++ = 0x0;
272 
273 	for (; pb < pb_limit && tb < tb_end; pb++) {
274 		if (need_esc) {
275 			*pb = *tb++ ^ 0x20;
276 			need_esc = false;
277 			continue;
278 		}
279 
280 		/* EOP should be inserted before the last valid char */
281 		if (tb == tb_end - 1 && !pb_eop) {
282 			*pb = PKT_EOP;
283 			pb_eop = pb;
284 			continue;
285 		}
286 
287 		/*
288 		 * insert an ESCAPE char if the data value equals any special
289 		 * char.
290 		 */
291 		switch (*tb) {
292 		case PKT_SOP:
293 		case PKT_EOP:
294 		case PKT_CHANNEL:
295 		case PKT_ESC:
296 			*pb = PKT_ESC;
297 			need_esc = true;
298 			break;
299 		case PHY_IDLE:
300 		case PHY_ESC:
301 			*pb = PHY_ESC;
302 			need_esc = true;
303 			break;
304 		default:
305 			*pb = *tb++;
306 			break;
307 		}
308 	}
309 
310 	/* The phy buffer is used out but transaction layer data remains */
311 	if (tb < tb_end)
312 		return -ENOMEM;
313 
314 	/* Store valid phy data length for spi transfer */
315 	br->phy_len = pb - br->phy_buf;
316 
317 	if (br->word_len == 1)
318 		return 0;
319 
320 	/* Do phy buf padding if word_len > 1 byte. */
321 	aligned_phy_len = ALIGN(br->phy_len, br->word_len);
322 	if (aligned_phy_len > sizeof(br->phy_buf))
323 		return -ENOMEM;
324 
325 	if (aligned_phy_len == br->phy_len)
326 		return 0;
327 
328 	/* move EOP and bytes after EOP to the end of aligned size */
329 	move_size = pb - pb_eop;
330 	memmove(&br->phy_buf[aligned_phy_len - move_size], pb_eop, move_size);
331 
332 	/* fill the hole with PHY_IDLEs */
333 	memset(pb_eop, PHY_IDLE, aligned_phy_len - br->phy_len);
334 
335 	/* update the phy data length */
336 	br->phy_len = aligned_phy_len;
337 
338 	return 0;
339 }
340 
341 /*
342  * In tx phase, the slave only returns PHY_IDLE (0x4a). So the driver will
343  * ignore rx in tx phase.
344  */
345 static int br_do_tx(struct spi_avmm_bridge *br)
346 {
347 	/* reorder words for spi transfer */
348 	if (br->swap_words)
349 		br->swap_words(br->phy_buf, br->phy_len);
350 
351 	/* send all data in phy_buf  */
352 	return spi_write(br->spi, br->phy_buf, br->phy_len);
353 }
354 
355 /*
356  * This function read the rx byte stream from SPI word by word and convert
357  * them to transaction layer data in br->trans_buf. It also stores the length
358  * of rx transaction layer data in br->trans_len
359  *
360  * The slave may send an unknown number of PHY_IDLEs in rx phase, so we cannot
361  * prepare a fixed length buffer to receive all of the rx data in a batch. We
362  * have to read word by word and convert them to transaction layer data at
363  * once.
364  */
365 static int br_do_rx_and_pkt_phy_parse(struct spi_avmm_bridge *br)
366 {
367 	bool eop_found = false, channel_found = false, esc_found = false;
368 	bool valid_word = false, last_try = false;
369 	struct device *dev = &br->spi->dev;
370 	char *pb, *tb_limit, *tb = NULL;
371 	unsigned long poll_timeout;
372 	int ret, i;
373 
374 	tb_limit = br->trans_buf + ARRAY_SIZE(br->trans_buf);
375 	pb = br->phy_buf;
376 	poll_timeout = jiffies + SPI_AVMM_XFER_TIMEOUT;
377 	while (tb < tb_limit) {
378 		ret = spi_read(br->spi, pb, br->word_len);
379 		if (ret)
380 			return ret;
381 
382 		/* reorder the word back */
383 		if (br->swap_words)
384 			br->swap_words(pb, br->word_len);
385 
386 		valid_word = false;
387 		for (i = 0; i < br->word_len; i++) {
388 			/* drop everything before first SOP */
389 			if (!tb && pb[i] != PKT_SOP)
390 				continue;
391 
392 			/* drop PHY_IDLE */
393 			if (pb[i] == PHY_IDLE)
394 				continue;
395 
396 			valid_word = true;
397 
398 			/*
399 			 * We don't support multiple channels, so error out if
400 			 * a non-zero channel number is found.
401 			 */
402 			if (channel_found) {
403 				if (pb[i] != 0) {
404 					dev_err(dev, "%s channel num != 0\n",
405 						__func__);
406 					return -EFAULT;
407 				}
408 
409 				channel_found = false;
410 				continue;
411 			}
412 
413 			switch (pb[i]) {
414 			case PKT_SOP:
415 				/*
416 				 * reset the parsing if a second SOP appears.
417 				 */
418 				tb = br->trans_buf;
419 				eop_found = false;
420 				channel_found = false;
421 				esc_found = false;
422 				break;
423 			case PKT_EOP:
424 				/*
425 				 * No special char is expected after ESC char.
426 				 * No special char (except ESC & PHY_IDLE) is
427 				 * expected after EOP char.
428 				 *
429 				 * The special chars are all dropped.
430 				 */
431 				if (esc_found || eop_found)
432 					return -EFAULT;
433 
434 				eop_found = true;
435 				break;
436 			case PKT_CHANNEL:
437 				if (esc_found || eop_found)
438 					return -EFAULT;
439 
440 				channel_found = true;
441 				break;
442 			case PKT_ESC:
443 			case PHY_ESC:
444 				if (esc_found)
445 					return -EFAULT;
446 
447 				esc_found = true;
448 				break;
449 			default:
450 				/* Record the normal byte in trans_buf. */
451 				if (esc_found) {
452 					*tb++ = pb[i] ^ 0x20;
453 					esc_found = false;
454 				} else {
455 					*tb++ = pb[i];
456 				}
457 
458 				/*
459 				 * We get the last normal byte after EOP, it is
460 				 * time we finish. Normally the function should
461 				 * return here.
462 				 */
463 				if (eop_found) {
464 					br->trans_len = tb - br->trans_buf;
465 					return 0;
466 				}
467 			}
468 		}
469 
470 		if (valid_word) {
471 			/* update poll timeout when we get valid word */
472 			poll_timeout = jiffies + SPI_AVMM_XFER_TIMEOUT;
473 			last_try = false;
474 		} else {
475 			/*
476 			 * We timeout when rx keeps invalid for some time. But
477 			 * it is possible we are scheduled out for long time
478 			 * after a spi_read. So when we are scheduled in, a SW
479 			 * timeout happens. But actually HW may have worked fine and
480 			 * has been ready long time ago. So we need to do an extra
481 			 * read, if we get a valid word then we could continue rx,
482 			 * otherwise real a HW issue happens.
483 			 */
484 			if (last_try)
485 				return -ETIMEDOUT;
486 
487 			if (time_after(jiffies, poll_timeout))
488 				last_try = true;
489 		}
490 	}
491 
492 	/*
493 	 * We have used out all transfer layer buffer but cannot find the end
494 	 * of the byte stream.
495 	 */
496 	dev_err(dev, "%s transfer buffer is full but rx doesn't end\n",
497 		__func__);
498 
499 	return -EFAULT;
500 }
501 
502 /*
503  * For read transactions, the avmm bus will directly return register values
504  * without transaction response header.
505  */
506 static int br_rd_trans_rx_parse(struct spi_avmm_bridge *br,
507 				u32 *val, unsigned int expected_count)
508 {
509 	unsigned int i, trans_len = br->trans_len;
510 	__le32 *data;
511 
512 	if (expected_count * SPI_AVMM_VAL_SIZE != trans_len)
513 		return -EFAULT;
514 
515 	data = (__le32 *)br->trans_buf;
516 	for (i = 0; i < expected_count; i++)
517 		*val++ = le32_to_cpu(*data++);
518 
519 	return 0;
520 }
521 
522 /*
523  * For write transactions, the slave will return a transaction response
524  * header.
525  */
526 static int br_wr_trans_rx_parse(struct spi_avmm_bridge *br,
527 				unsigned int expected_count)
528 {
529 	unsigned int trans_len = br->trans_len;
530 	struct trans_resp_header *resp;
531 	u8 code;
532 	u16 val_len;
533 
534 	if (trans_len != TRANS_RESP_HD_SIZE)
535 		return -EFAULT;
536 
537 	resp = (struct trans_resp_header *)br->trans_buf;
538 
539 	code = resp->r_code ^ 0x80;
540 	val_len = be16_to_cpu(resp->size);
541 	if (!val_len || val_len != expected_count * SPI_AVMM_VAL_SIZE)
542 		return -EFAULT;
543 
544 	/* error out if the trans code doesn't align with the val size */
545 	if ((val_len == SPI_AVMM_VAL_SIZE && code != TRANS_CODE_WRITE) ||
546 	    (val_len > SPI_AVMM_VAL_SIZE && code != TRANS_CODE_SEQ_WRITE))
547 		return -EFAULT;
548 
549 	return 0;
550 }
551 
552 static int do_reg_access(void *context, bool is_read, unsigned int reg,
553 			 unsigned int *value, unsigned int count)
554 {
555 	struct spi_avmm_bridge *br = context;
556 	int ret;
557 
558 	/* invalidate bridge buffers first */
559 	br->trans_len = 0;
560 	br->phy_len = 0;
561 
562 	ret = br_trans_tx_prepare(br, is_read, reg, value, count);
563 	if (ret)
564 		return ret;
565 
566 	ret = br_pkt_phy_tx_prepare(br);
567 	if (ret)
568 		return ret;
569 
570 	ret = br_do_tx(br);
571 	if (ret)
572 		return ret;
573 
574 	ret = br_do_rx_and_pkt_phy_parse(br);
575 	if (ret)
576 		return ret;
577 
578 	if (is_read)
579 		return br_rd_trans_rx_parse(br, value, count);
580 	else
581 		return br_wr_trans_rx_parse(br, count);
582 }
583 
584 static int regmap_spi_avmm_gather_write(void *context,
585 					const void *reg_buf, size_t reg_len,
586 					const void *val_buf, size_t val_len)
587 {
588 	if (reg_len != SPI_AVMM_REG_SIZE)
589 		return -EINVAL;
590 
591 	if (!IS_ALIGNED(val_len, SPI_AVMM_VAL_SIZE))
592 		return -EINVAL;
593 
594 	return do_reg_access(context, false, *(u32 *)reg_buf, (u32 *)val_buf,
595 			     val_len / SPI_AVMM_VAL_SIZE);
596 }
597 
598 static int regmap_spi_avmm_write(void *context, const void *data, size_t bytes)
599 {
600 	if (bytes < SPI_AVMM_REG_SIZE + SPI_AVMM_VAL_SIZE)
601 		return -EINVAL;
602 
603 	return regmap_spi_avmm_gather_write(context, data, SPI_AVMM_REG_SIZE,
604 					    data + SPI_AVMM_REG_SIZE,
605 					    bytes - SPI_AVMM_REG_SIZE);
606 }
607 
608 static int regmap_spi_avmm_read(void *context,
609 				const void *reg_buf, size_t reg_len,
610 				void *val_buf, size_t val_len)
611 {
612 	if (reg_len != SPI_AVMM_REG_SIZE)
613 		return -EINVAL;
614 
615 	if (!IS_ALIGNED(val_len, SPI_AVMM_VAL_SIZE))
616 		return -EINVAL;
617 
618 	return do_reg_access(context, true, *(u32 *)reg_buf, val_buf,
619 			     (val_len / SPI_AVMM_VAL_SIZE));
620 }
621 
622 static struct spi_avmm_bridge *
623 spi_avmm_bridge_ctx_gen(struct spi_device *spi)
624 {
625 	struct spi_avmm_bridge *br;
626 
627 	if (!spi)
628 		return ERR_PTR(-ENODEV);
629 
630 	/* Only support BPW == 8 or 32 now. Try 32 BPW first. */
631 	spi->mode = SPI_MODE_1;
632 	spi->bits_per_word = 32;
633 	if (spi_setup(spi)) {
634 		spi->bits_per_word = 8;
635 		if (spi_setup(spi))
636 			return ERR_PTR(-EINVAL);
637 	}
638 
639 	br = kzalloc(sizeof(*br), GFP_KERNEL);
640 	if (!br)
641 		return ERR_PTR(-ENOMEM);
642 
643 	br->spi = spi;
644 	br->word_len = spi->bits_per_word / 8;
645 	if (br->word_len == 4) {
646 		/*
647 		 * The protocol requires little endian byte order but MSB
648 		 * first. So driver needs to swap the byte order word by word
649 		 * if word length > 1.
650 		 */
651 		br->swap_words = br_swap_words_32;
652 	}
653 
654 	return br;
655 }
656 
657 static void spi_avmm_bridge_ctx_free(void *context)
658 {
659 	kfree(context);
660 }
661 
662 static const struct regmap_bus regmap_spi_avmm_bus = {
663 	.write = regmap_spi_avmm_write,
664 	.gather_write = regmap_spi_avmm_gather_write,
665 	.read = regmap_spi_avmm_read,
666 	.reg_format_endian_default = REGMAP_ENDIAN_NATIVE,
667 	.val_format_endian_default = REGMAP_ENDIAN_NATIVE,
668 	.max_raw_read = SPI_AVMM_VAL_SIZE * MAX_READ_CNT,
669 	.max_raw_write = SPI_AVMM_VAL_SIZE * MAX_WRITE_CNT,
670 	.free_context = spi_avmm_bridge_ctx_free,
671 };
672 
673 struct regmap *__regmap_init_spi_avmm(struct spi_device *spi,
674 				      const struct regmap_config *config,
675 				      struct lock_class_key *lock_key,
676 				      const char *lock_name)
677 {
678 	struct spi_avmm_bridge *bridge;
679 	struct regmap *map;
680 
681 	bridge = spi_avmm_bridge_ctx_gen(spi);
682 	if (IS_ERR(bridge))
683 		return ERR_CAST(bridge);
684 
685 	map = __regmap_init(&spi->dev, &regmap_spi_avmm_bus,
686 			    bridge, config, lock_key, lock_name);
687 	if (IS_ERR(map)) {
688 		spi_avmm_bridge_ctx_free(bridge);
689 		return ERR_CAST(map);
690 	}
691 
692 	return map;
693 }
694 EXPORT_SYMBOL_GPL(__regmap_init_spi_avmm);
695 
696 struct regmap *__devm_regmap_init_spi_avmm(struct spi_device *spi,
697 					   const struct regmap_config *config,
698 					   struct lock_class_key *lock_key,
699 					   const char *lock_name)
700 {
701 	struct spi_avmm_bridge *bridge;
702 	struct regmap *map;
703 
704 	bridge = spi_avmm_bridge_ctx_gen(spi);
705 	if (IS_ERR(bridge))
706 		return ERR_CAST(bridge);
707 
708 	map = __devm_regmap_init(&spi->dev, &regmap_spi_avmm_bus,
709 				 bridge, config, lock_key, lock_name);
710 	if (IS_ERR(map)) {
711 		spi_avmm_bridge_ctx_free(bridge);
712 		return ERR_CAST(map);
713 	}
714 
715 	return map;
716 }
717 EXPORT_SYMBOL_GPL(__devm_regmap_init_spi_avmm);
718 
719 MODULE_LICENSE("GPL v2");
720