xref: /linux/drivers/base/regmap/regmap-irq.c (revision fcc79e1714e8c2b8e216dc3149812edd37884eef)
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // regmap based irq_chip
4 //
5 // Copyright 2011 Wolfson Microelectronics plc
6 //
7 // Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8 
9 #include <linux/device.h>
10 #include <linux/export.h>
11 #include <linux/interrupt.h>
12 #include <linux/irq.h>
13 #include <linux/irqdomain.h>
14 #include <linux/pm_runtime.h>
15 #include <linux/regmap.h>
16 #include <linux/slab.h>
17 
18 #include "internal.h"
19 
20 struct regmap_irq_chip_data {
21 	struct mutex lock;
22 	struct irq_chip irq_chip;
23 
24 	struct regmap *map;
25 	const struct regmap_irq_chip *chip;
26 
27 	int irq_base;
28 	struct irq_domain *domain;
29 
30 	int irq;
31 	int wake_count;
32 
33 	void *status_reg_buf;
34 	unsigned int *main_status_buf;
35 	unsigned int *status_buf;
36 	unsigned int *mask_buf;
37 	unsigned int *mask_buf_def;
38 	unsigned int *wake_buf;
39 	unsigned int *type_buf;
40 	unsigned int *type_buf_def;
41 	unsigned int **config_buf;
42 
43 	unsigned int irq_reg_stride;
44 
45 	unsigned int (*get_irq_reg)(struct regmap_irq_chip_data *data,
46 				    unsigned int base, int index);
47 
48 	unsigned int clear_status:1;
49 };
50 
51 static inline const
52 struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data,
53 				     int irq)
54 {
55 	return &data->chip->irqs[irq];
56 }
57 
58 static bool regmap_irq_can_bulk_read_status(struct regmap_irq_chip_data *data)
59 {
60 	struct regmap *map = data->map;
61 
62 	/*
63 	 * While possible that a user-defined ->get_irq_reg() callback might
64 	 * be linear enough to support bulk reads, most of the time it won't.
65 	 * Therefore only allow them if the default callback is being used.
66 	 */
67 	return data->irq_reg_stride == 1 && map->reg_stride == 1 &&
68 	       data->get_irq_reg == regmap_irq_get_irq_reg_linear &&
69 	       !map->use_single_read;
70 }
71 
72 static void regmap_irq_lock(struct irq_data *data)
73 {
74 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
75 
76 	mutex_lock(&d->lock);
77 }
78 
79 static void regmap_irq_sync_unlock(struct irq_data *data)
80 {
81 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
82 	struct regmap *map = d->map;
83 	int i, j, ret;
84 	u32 reg;
85 	u32 val;
86 
87 	if (d->chip->runtime_pm) {
88 		ret = pm_runtime_get_sync(map->dev);
89 		if (ret < 0)
90 			dev_err(map->dev, "IRQ sync failed to resume: %d\n",
91 				ret);
92 	}
93 
94 	if (d->clear_status) {
95 		for (i = 0; i < d->chip->num_regs; i++) {
96 			reg = d->get_irq_reg(d, d->chip->status_base, i);
97 
98 			ret = regmap_read(map, reg, &val);
99 			if (ret)
100 				dev_err(d->map->dev,
101 					"Failed to clear the interrupt status bits\n");
102 		}
103 
104 		d->clear_status = false;
105 	}
106 
107 	/*
108 	 * If there's been a change in the mask write it back to the
109 	 * hardware.  We rely on the use of the regmap core cache to
110 	 * suppress pointless writes.
111 	 */
112 	for (i = 0; i < d->chip->num_regs; i++) {
113 		if (d->chip->handle_mask_sync)
114 			d->chip->handle_mask_sync(i, d->mask_buf_def[i],
115 						  d->mask_buf[i],
116 						  d->chip->irq_drv_data);
117 
118 		if (d->chip->mask_base && !d->chip->handle_mask_sync) {
119 			reg = d->get_irq_reg(d, d->chip->mask_base, i);
120 			ret = regmap_update_bits(d->map, reg,
121 						 d->mask_buf_def[i],
122 						 d->mask_buf[i]);
123 			if (ret)
124 				dev_err(d->map->dev, "Failed to sync masks in %x\n", reg);
125 		}
126 
127 		if (d->chip->unmask_base && !d->chip->handle_mask_sync) {
128 			reg = d->get_irq_reg(d, d->chip->unmask_base, i);
129 			ret = regmap_update_bits(d->map, reg,
130 					d->mask_buf_def[i], ~d->mask_buf[i]);
131 			if (ret)
132 				dev_err(d->map->dev, "Failed to sync masks in %x\n",
133 					reg);
134 		}
135 
136 		reg = d->get_irq_reg(d, d->chip->wake_base, i);
137 		if (d->wake_buf) {
138 			if (d->chip->wake_invert)
139 				ret = regmap_update_bits(d->map, reg,
140 							 d->mask_buf_def[i],
141 							 ~d->wake_buf[i]);
142 			else
143 				ret = regmap_update_bits(d->map, reg,
144 							 d->mask_buf_def[i],
145 							 d->wake_buf[i]);
146 			if (ret != 0)
147 				dev_err(d->map->dev,
148 					"Failed to sync wakes in %x: %d\n",
149 					reg, ret);
150 		}
151 
152 		if (!d->chip->init_ack_masked)
153 			continue;
154 		/*
155 		 * Ack all the masked interrupts unconditionally,
156 		 * OR if there is masked interrupt which hasn't been Acked,
157 		 * it'll be ignored in irq handler, then may introduce irq storm
158 		 */
159 		if (d->mask_buf[i] && (d->chip->ack_base || d->chip->use_ack)) {
160 			reg = d->get_irq_reg(d, d->chip->ack_base, i);
161 
162 			/* some chips ack by write 0 */
163 			if (d->chip->ack_invert)
164 				ret = regmap_write(map, reg, ~d->mask_buf[i]);
165 			else
166 				ret = regmap_write(map, reg, d->mask_buf[i]);
167 			if (d->chip->clear_ack) {
168 				if (d->chip->ack_invert && !ret)
169 					ret = regmap_write(map, reg, UINT_MAX);
170 				else if (!ret)
171 					ret = regmap_write(map, reg, 0);
172 			}
173 			if (ret != 0)
174 				dev_err(d->map->dev, "Failed to ack 0x%x: %d\n",
175 					reg, ret);
176 		}
177 	}
178 
179 	for (i = 0; i < d->chip->num_config_bases; i++) {
180 		for (j = 0; j < d->chip->num_config_regs; j++) {
181 			reg = d->get_irq_reg(d, d->chip->config_base[i], j);
182 			ret = regmap_write(map, reg, d->config_buf[i][j]);
183 			if (ret)
184 				dev_err(d->map->dev,
185 					"Failed to write config %x: %d\n",
186 					reg, ret);
187 		}
188 	}
189 
190 	if (d->chip->runtime_pm)
191 		pm_runtime_put(map->dev);
192 
193 	/* If we've changed our wakeup count propagate it to the parent */
194 	if (d->wake_count < 0)
195 		for (i = d->wake_count; i < 0; i++)
196 			irq_set_irq_wake(d->irq, 0);
197 	else if (d->wake_count > 0)
198 		for (i = 0; i < d->wake_count; i++)
199 			irq_set_irq_wake(d->irq, 1);
200 
201 	d->wake_count = 0;
202 
203 	mutex_unlock(&d->lock);
204 }
205 
206 static void regmap_irq_enable(struct irq_data *data)
207 {
208 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
209 	struct regmap *map = d->map;
210 	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
211 	unsigned int reg = irq_data->reg_offset / map->reg_stride;
212 	unsigned int mask;
213 
214 	/*
215 	 * The type_in_mask flag means that the underlying hardware uses
216 	 * separate mask bits for each interrupt trigger type, but we want
217 	 * to have a single logical interrupt with a configurable type.
218 	 *
219 	 * If the interrupt we're enabling defines any supported types
220 	 * then instead of using the regular mask bits for this interrupt,
221 	 * use the value previously written to the type buffer at the
222 	 * corresponding offset in regmap_irq_set_type().
223 	 */
224 	if (d->chip->type_in_mask && irq_data->type.types_supported)
225 		mask = d->type_buf[reg] & irq_data->mask;
226 	else
227 		mask = irq_data->mask;
228 
229 	if (d->chip->clear_on_unmask)
230 		d->clear_status = true;
231 
232 	d->mask_buf[reg] &= ~mask;
233 }
234 
235 static void regmap_irq_disable(struct irq_data *data)
236 {
237 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
238 	struct regmap *map = d->map;
239 	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
240 
241 	d->mask_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask;
242 }
243 
244 static int regmap_irq_set_type(struct irq_data *data, unsigned int type)
245 {
246 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
247 	struct regmap *map = d->map;
248 	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
249 	int reg, ret;
250 	const struct regmap_irq_type *t = &irq_data->type;
251 
252 	if ((t->types_supported & type) != type)
253 		return 0;
254 
255 	reg = t->type_reg_offset / map->reg_stride;
256 
257 	if (d->chip->type_in_mask) {
258 		ret = regmap_irq_set_type_config_simple(&d->type_buf, type,
259 							irq_data, reg, d->chip->irq_drv_data);
260 		if (ret)
261 			return ret;
262 	}
263 
264 	if (d->chip->set_type_config) {
265 		ret = d->chip->set_type_config(d->config_buf, type, irq_data,
266 					       reg, d->chip->irq_drv_data);
267 		if (ret)
268 			return ret;
269 	}
270 
271 	return 0;
272 }
273 
274 static int regmap_irq_set_wake(struct irq_data *data, unsigned int on)
275 {
276 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
277 	struct regmap *map = d->map;
278 	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
279 
280 	if (on) {
281 		if (d->wake_buf)
282 			d->wake_buf[irq_data->reg_offset / map->reg_stride]
283 				&= ~irq_data->mask;
284 		d->wake_count++;
285 	} else {
286 		if (d->wake_buf)
287 			d->wake_buf[irq_data->reg_offset / map->reg_stride]
288 				|= irq_data->mask;
289 		d->wake_count--;
290 	}
291 
292 	return 0;
293 }
294 
295 static const struct irq_chip regmap_irq_chip = {
296 	.irq_bus_lock		= regmap_irq_lock,
297 	.irq_bus_sync_unlock	= regmap_irq_sync_unlock,
298 	.irq_disable		= regmap_irq_disable,
299 	.irq_enable		= regmap_irq_enable,
300 	.irq_set_type		= regmap_irq_set_type,
301 	.irq_set_wake		= regmap_irq_set_wake,
302 };
303 
304 static inline int read_sub_irq_data(struct regmap_irq_chip_data *data,
305 					   unsigned int b)
306 {
307 	const struct regmap_irq_chip *chip = data->chip;
308 	const struct regmap_irq_sub_irq_map *subreg;
309 	struct regmap *map = data->map;
310 	unsigned int reg;
311 	int i, ret = 0;
312 
313 	if (!chip->sub_reg_offsets) {
314 		reg = data->get_irq_reg(data, chip->status_base, b);
315 		ret = regmap_read(map, reg, &data->status_buf[b]);
316 	} else {
317 		/*
318 		 * Note we can't use ->get_irq_reg() here because the offsets
319 		 * in 'subreg' are *not* interchangeable with indices.
320 		 */
321 		subreg = &chip->sub_reg_offsets[b];
322 		for (i = 0; i < subreg->num_regs; i++) {
323 			unsigned int offset = subreg->offset[i];
324 			unsigned int index = offset / map->reg_stride;
325 
326 			ret = regmap_read(map, chip->status_base + offset,
327 					  &data->status_buf[index]);
328 			if (ret)
329 				break;
330 		}
331 	}
332 	return ret;
333 }
334 
335 static irqreturn_t regmap_irq_thread(int irq, void *d)
336 {
337 	struct regmap_irq_chip_data *data = d;
338 	const struct regmap_irq_chip *chip = data->chip;
339 	struct regmap *map = data->map;
340 	int ret, i;
341 	bool handled = false;
342 	u32 reg;
343 
344 	if (chip->handle_pre_irq)
345 		chip->handle_pre_irq(chip->irq_drv_data);
346 
347 	if (chip->runtime_pm) {
348 		ret = pm_runtime_get_sync(map->dev);
349 		if (ret < 0) {
350 			dev_err(map->dev, "IRQ thread failed to resume: %d\n",
351 				ret);
352 			goto exit;
353 		}
354 	}
355 
356 	/*
357 	 * Read only registers with active IRQs if the chip has 'main status
358 	 * register'. Else read in the statuses, using a single bulk read if
359 	 * possible in order to reduce the I/O overheads.
360 	 */
361 
362 	if (chip->no_status) {
363 		/* no status register so default to all active */
364 		memset32(data->status_buf, GENMASK(31, 0), chip->num_regs);
365 	} else if (chip->num_main_regs) {
366 		unsigned int max_main_bits;
367 
368 		max_main_bits = (chip->num_main_status_bits) ?
369 				 chip->num_main_status_bits : chip->num_regs;
370 		/* Clear the status buf as we don't read all status regs */
371 		memset32(data->status_buf, 0, chip->num_regs);
372 
373 		/* We could support bulk read for main status registers
374 		 * but I don't expect to see devices with really many main
375 		 * status registers so let's only support single reads for the
376 		 * sake of simplicity. and add bulk reads only if needed
377 		 */
378 		for (i = 0; i < chip->num_main_regs; i++) {
379 			reg = data->get_irq_reg(data, chip->main_status, i);
380 			ret = regmap_read(map, reg, &data->main_status_buf[i]);
381 			if (ret) {
382 				dev_err(map->dev,
383 					"Failed to read IRQ status %d\n",
384 					ret);
385 				goto exit;
386 			}
387 		}
388 
389 		/* Read sub registers with active IRQs */
390 		for (i = 0; i < chip->num_main_regs; i++) {
391 			unsigned int b;
392 			const unsigned long mreg = data->main_status_buf[i];
393 
394 			for_each_set_bit(b, &mreg, map->format.val_bytes * 8) {
395 				if (i * map->format.val_bytes * 8 + b >
396 				    max_main_bits)
397 					break;
398 				ret = read_sub_irq_data(data, b);
399 
400 				if (ret != 0) {
401 					dev_err(map->dev,
402 						"Failed to read IRQ status %d\n",
403 						ret);
404 					goto exit;
405 				}
406 			}
407 
408 		}
409 	} else if (regmap_irq_can_bulk_read_status(data)) {
410 
411 		u8 *buf8 = data->status_reg_buf;
412 		u16 *buf16 = data->status_reg_buf;
413 		u32 *buf32 = data->status_reg_buf;
414 
415 		BUG_ON(!data->status_reg_buf);
416 
417 		ret = regmap_bulk_read(map, chip->status_base,
418 				       data->status_reg_buf,
419 				       chip->num_regs);
420 		if (ret != 0) {
421 			dev_err(map->dev, "Failed to read IRQ status: %d\n",
422 				ret);
423 			goto exit;
424 		}
425 
426 		for (i = 0; i < data->chip->num_regs; i++) {
427 			switch (map->format.val_bytes) {
428 			case 1:
429 				data->status_buf[i] = buf8[i];
430 				break;
431 			case 2:
432 				data->status_buf[i] = buf16[i];
433 				break;
434 			case 4:
435 				data->status_buf[i] = buf32[i];
436 				break;
437 			default:
438 				BUG();
439 				goto exit;
440 			}
441 		}
442 
443 	} else {
444 		for (i = 0; i < data->chip->num_regs; i++) {
445 			unsigned int reg = data->get_irq_reg(data,
446 					data->chip->status_base, i);
447 			ret = regmap_read(map, reg, &data->status_buf[i]);
448 
449 			if (ret != 0) {
450 				dev_err(map->dev,
451 					"Failed to read IRQ status: %d\n",
452 					ret);
453 				goto exit;
454 			}
455 		}
456 	}
457 
458 	if (chip->status_invert)
459 		for (i = 0; i < data->chip->num_regs; i++)
460 			data->status_buf[i] = ~data->status_buf[i];
461 
462 	/*
463 	 * Ignore masked IRQs and ack if we need to; we ack early so
464 	 * there is no race between handling and acknowledging the
465 	 * interrupt.  We assume that typically few of the interrupts
466 	 * will fire simultaneously so don't worry about overhead from
467 	 * doing a write per register.
468 	 */
469 	for (i = 0; i < data->chip->num_regs; i++) {
470 		data->status_buf[i] &= ~data->mask_buf[i];
471 
472 		if (data->status_buf[i] && (chip->ack_base || chip->use_ack)) {
473 			reg = data->get_irq_reg(data, data->chip->ack_base, i);
474 
475 			if (chip->ack_invert)
476 				ret = regmap_write(map, reg,
477 						~data->status_buf[i]);
478 			else
479 				ret = regmap_write(map, reg,
480 						data->status_buf[i]);
481 			if (chip->clear_ack) {
482 				if (chip->ack_invert && !ret)
483 					ret = regmap_write(map, reg, UINT_MAX);
484 				else if (!ret)
485 					ret = regmap_write(map, reg, 0);
486 			}
487 			if (ret != 0)
488 				dev_err(map->dev, "Failed to ack 0x%x: %d\n",
489 					reg, ret);
490 		}
491 	}
492 
493 	for (i = 0; i < chip->num_irqs; i++) {
494 		if (data->status_buf[chip->irqs[i].reg_offset /
495 				     map->reg_stride] & chip->irqs[i].mask) {
496 			handle_nested_irq(irq_find_mapping(data->domain, i));
497 			handled = true;
498 		}
499 	}
500 
501 exit:
502 	if (chip->handle_post_irq)
503 		chip->handle_post_irq(chip->irq_drv_data);
504 
505 	if (chip->runtime_pm)
506 		pm_runtime_put(map->dev);
507 
508 	if (handled)
509 		return IRQ_HANDLED;
510 	else
511 		return IRQ_NONE;
512 }
513 
514 static struct lock_class_key regmap_irq_lock_class;
515 static struct lock_class_key regmap_irq_request_class;
516 
517 static int regmap_irq_map(struct irq_domain *h, unsigned int virq,
518 			  irq_hw_number_t hw)
519 {
520 	struct regmap_irq_chip_data *data = h->host_data;
521 
522 	irq_set_chip_data(virq, data);
523 	irq_set_lockdep_class(virq, &regmap_irq_lock_class, &regmap_irq_request_class);
524 	irq_set_chip(virq, &data->irq_chip);
525 	irq_set_nested_thread(virq, 1);
526 	irq_set_parent(virq, data->irq);
527 	irq_set_noprobe(virq);
528 
529 	return 0;
530 }
531 
532 static const struct irq_domain_ops regmap_domain_ops = {
533 	.map	= regmap_irq_map,
534 	.xlate	= irq_domain_xlate_onetwocell,
535 };
536 
537 /**
538  * regmap_irq_get_irq_reg_linear() - Linear IRQ register mapping callback.
539  * @data: Data for the &struct regmap_irq_chip
540  * @base: Base register
541  * @index: Register index
542  *
543  * Returns the register address corresponding to the given @base and @index
544  * by the formula ``base + index * regmap_stride * irq_reg_stride``.
545  */
546 unsigned int regmap_irq_get_irq_reg_linear(struct regmap_irq_chip_data *data,
547 					   unsigned int base, int index)
548 {
549 	struct regmap *map = data->map;
550 
551 	return base + index * map->reg_stride * data->irq_reg_stride;
552 }
553 EXPORT_SYMBOL_GPL(regmap_irq_get_irq_reg_linear);
554 
555 /**
556  * regmap_irq_set_type_config_simple() - Simple IRQ type configuration callback.
557  * @buf: Buffer containing configuration register values, this is a 2D array of
558  *       `num_config_bases` rows, each of `num_config_regs` elements.
559  * @type: The requested IRQ type.
560  * @irq_data: The IRQ being configured.
561  * @idx: Index of the irq's config registers within each array `buf[i]`
562  * @irq_drv_data: Driver specific IRQ data
563  *
564  * This is a &struct regmap_irq_chip->set_type_config callback suitable for
565  * chips with one config register. Register values are updated according to
566  * the &struct regmap_irq_type data associated with an IRQ.
567  */
568 int regmap_irq_set_type_config_simple(unsigned int **buf, unsigned int type,
569 				      const struct regmap_irq *irq_data,
570 				      int idx, void *irq_drv_data)
571 {
572 	const struct regmap_irq_type *t = &irq_data->type;
573 
574 	if (t->type_reg_mask)
575 		buf[0][idx] &= ~t->type_reg_mask;
576 	else
577 		buf[0][idx] &= ~(t->type_falling_val |
578 				 t->type_rising_val |
579 				 t->type_level_low_val |
580 				 t->type_level_high_val);
581 
582 	switch (type) {
583 	case IRQ_TYPE_EDGE_FALLING:
584 		buf[0][idx] |= t->type_falling_val;
585 		break;
586 
587 	case IRQ_TYPE_EDGE_RISING:
588 		buf[0][idx] |= t->type_rising_val;
589 		break;
590 
591 	case IRQ_TYPE_EDGE_BOTH:
592 		buf[0][idx] |= (t->type_falling_val |
593 				t->type_rising_val);
594 		break;
595 
596 	case IRQ_TYPE_LEVEL_HIGH:
597 		buf[0][idx] |= t->type_level_high_val;
598 		break;
599 
600 	case IRQ_TYPE_LEVEL_LOW:
601 		buf[0][idx] |= t->type_level_low_val;
602 		break;
603 
604 	default:
605 		return -EINVAL;
606 	}
607 
608 	return 0;
609 }
610 EXPORT_SYMBOL_GPL(regmap_irq_set_type_config_simple);
611 
612 static int regmap_irq_create_domain(struct fwnode_handle *fwnode, int irq_base,
613 				    const struct regmap_irq_chip *chip,
614 				    struct regmap_irq_chip_data *d)
615 {
616 	struct irq_domain_info info = {
617 		.fwnode = fwnode,
618 		.size = chip->num_irqs,
619 		.hwirq_max = chip->num_irqs,
620 		.virq_base = irq_base,
621 		.ops = &regmap_domain_ops,
622 		.host_data = d,
623 		.name_suffix = chip->domain_suffix,
624 	};
625 
626 	d->domain = irq_domain_instantiate(&info);
627 	if (IS_ERR(d->domain)) {
628 		dev_err(d->map->dev, "Failed to create IRQ domain\n");
629 		return PTR_ERR(d->domain);
630 	}
631 
632 	return 0;
633 }
634 
635 
636 /**
637  * regmap_add_irq_chip_fwnode() - Use standard regmap IRQ controller handling
638  *
639  * @fwnode: The firmware node where the IRQ domain should be added to.
640  * @map: The regmap for the device.
641  * @irq: The IRQ the device uses to signal interrupts.
642  * @irq_flags: The IRQF_ flags to use for the primary interrupt.
643  * @irq_base: Allocate at specific IRQ number if irq_base > 0.
644  * @chip: Configuration for the interrupt controller.
645  * @data: Runtime data structure for the controller, allocated on success.
646  *
647  * Returns 0 on success or an errno on failure.
648  *
649  * In order for this to be efficient the chip really should use a
650  * register cache.  The chip driver is responsible for restoring the
651  * register values used by the IRQ controller over suspend and resume.
652  */
653 int regmap_add_irq_chip_fwnode(struct fwnode_handle *fwnode,
654 			       struct regmap *map, int irq,
655 			       int irq_flags, int irq_base,
656 			       const struct regmap_irq_chip *chip,
657 			       struct regmap_irq_chip_data **data)
658 {
659 	struct regmap_irq_chip_data *d;
660 	int i;
661 	int ret = -ENOMEM;
662 	u32 reg;
663 
664 	if (chip->num_regs <= 0)
665 		return -EINVAL;
666 
667 	if (chip->clear_on_unmask && (chip->ack_base || chip->use_ack))
668 		return -EINVAL;
669 
670 	if (chip->mask_base && chip->unmask_base && !chip->mask_unmask_non_inverted)
671 		return -EINVAL;
672 
673 	for (i = 0; i < chip->num_irqs; i++) {
674 		if (chip->irqs[i].reg_offset % map->reg_stride)
675 			return -EINVAL;
676 		if (chip->irqs[i].reg_offset / map->reg_stride >=
677 		    chip->num_regs)
678 			return -EINVAL;
679 	}
680 
681 	if (irq_base) {
682 		irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0);
683 		if (irq_base < 0) {
684 			dev_warn(map->dev, "Failed to allocate IRQs: %d\n",
685 				 irq_base);
686 			return irq_base;
687 		}
688 	}
689 
690 	d = kzalloc(sizeof(*d), GFP_KERNEL);
691 	if (!d)
692 		return -ENOMEM;
693 
694 	if (chip->num_main_regs) {
695 		d->main_status_buf = kcalloc(chip->num_main_regs,
696 					     sizeof(*d->main_status_buf),
697 					     GFP_KERNEL);
698 
699 		if (!d->main_status_buf)
700 			goto err_alloc;
701 	}
702 
703 	d->status_buf = kcalloc(chip->num_regs, sizeof(*d->status_buf),
704 				GFP_KERNEL);
705 	if (!d->status_buf)
706 		goto err_alloc;
707 
708 	d->mask_buf = kcalloc(chip->num_regs, sizeof(*d->mask_buf),
709 			      GFP_KERNEL);
710 	if (!d->mask_buf)
711 		goto err_alloc;
712 
713 	d->mask_buf_def = kcalloc(chip->num_regs, sizeof(*d->mask_buf_def),
714 				  GFP_KERNEL);
715 	if (!d->mask_buf_def)
716 		goto err_alloc;
717 
718 	if (chip->wake_base) {
719 		d->wake_buf = kcalloc(chip->num_regs, sizeof(*d->wake_buf),
720 				      GFP_KERNEL);
721 		if (!d->wake_buf)
722 			goto err_alloc;
723 	}
724 
725 	if (chip->type_in_mask) {
726 		d->type_buf_def = kcalloc(chip->num_regs,
727 					  sizeof(*d->type_buf_def), GFP_KERNEL);
728 		if (!d->type_buf_def)
729 			goto err_alloc;
730 
731 		d->type_buf = kcalloc(chip->num_regs, sizeof(*d->type_buf), GFP_KERNEL);
732 		if (!d->type_buf)
733 			goto err_alloc;
734 	}
735 
736 	if (chip->num_config_bases && chip->num_config_regs) {
737 		/*
738 		 * Create config_buf[num_config_bases][num_config_regs]
739 		 */
740 		d->config_buf = kcalloc(chip->num_config_bases,
741 					sizeof(*d->config_buf), GFP_KERNEL);
742 		if (!d->config_buf)
743 			goto err_alloc;
744 
745 		for (i = 0; i < chip->num_config_bases; i++) {
746 			d->config_buf[i] = kcalloc(chip->num_config_regs,
747 						   sizeof(**d->config_buf),
748 						   GFP_KERNEL);
749 			if (!d->config_buf[i])
750 				goto err_alloc;
751 		}
752 	}
753 
754 	d->irq_chip = regmap_irq_chip;
755 	d->irq_chip.name = chip->name;
756 	d->irq = irq;
757 	d->map = map;
758 	d->chip = chip;
759 	d->irq_base = irq_base;
760 
761 	if (chip->irq_reg_stride)
762 		d->irq_reg_stride = chip->irq_reg_stride;
763 	else
764 		d->irq_reg_stride = 1;
765 
766 	if (chip->get_irq_reg)
767 		d->get_irq_reg = chip->get_irq_reg;
768 	else
769 		d->get_irq_reg = regmap_irq_get_irq_reg_linear;
770 
771 	if (regmap_irq_can_bulk_read_status(d)) {
772 		d->status_reg_buf = kmalloc_array(chip->num_regs,
773 						  map->format.val_bytes,
774 						  GFP_KERNEL);
775 		if (!d->status_reg_buf)
776 			goto err_alloc;
777 	}
778 
779 	mutex_init(&d->lock);
780 
781 	for (i = 0; i < chip->num_irqs; i++)
782 		d->mask_buf_def[chip->irqs[i].reg_offset / map->reg_stride]
783 			|= chip->irqs[i].mask;
784 
785 	/* Mask all the interrupts by default */
786 	for (i = 0; i < chip->num_regs; i++) {
787 		d->mask_buf[i] = d->mask_buf_def[i];
788 
789 		if (chip->handle_mask_sync) {
790 			ret = chip->handle_mask_sync(i, d->mask_buf_def[i],
791 						     d->mask_buf[i],
792 						     chip->irq_drv_data);
793 			if (ret)
794 				goto err_alloc;
795 		}
796 
797 		if (chip->mask_base && !chip->handle_mask_sync) {
798 			reg = d->get_irq_reg(d, chip->mask_base, i);
799 			ret = regmap_update_bits(d->map, reg,
800 						 d->mask_buf_def[i],
801 						 d->mask_buf[i]);
802 			if (ret) {
803 				dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
804 					reg, ret);
805 				goto err_alloc;
806 			}
807 		}
808 
809 		if (chip->unmask_base && !chip->handle_mask_sync) {
810 			reg = d->get_irq_reg(d, chip->unmask_base, i);
811 			ret = regmap_update_bits(d->map, reg,
812 					d->mask_buf_def[i], ~d->mask_buf[i]);
813 			if (ret) {
814 				dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
815 					reg, ret);
816 				goto err_alloc;
817 			}
818 		}
819 
820 		if (!chip->init_ack_masked)
821 			continue;
822 
823 		/* Ack masked but set interrupts */
824 		if (d->chip->no_status) {
825 			/* no status register so default to all active */
826 			d->status_buf[i] = GENMASK(31, 0);
827 		} else {
828 			reg = d->get_irq_reg(d, d->chip->status_base, i);
829 			ret = regmap_read(map, reg, &d->status_buf[i]);
830 			if (ret != 0) {
831 				dev_err(map->dev, "Failed to read IRQ status: %d\n",
832 					ret);
833 				goto err_alloc;
834 			}
835 		}
836 
837 		if (chip->status_invert)
838 			d->status_buf[i] = ~d->status_buf[i];
839 
840 		if (d->status_buf[i] && (chip->ack_base || chip->use_ack)) {
841 			reg = d->get_irq_reg(d, d->chip->ack_base, i);
842 			if (chip->ack_invert)
843 				ret = regmap_write(map, reg,
844 					~(d->status_buf[i] & d->mask_buf[i]));
845 			else
846 				ret = regmap_write(map, reg,
847 					d->status_buf[i] & d->mask_buf[i]);
848 			if (chip->clear_ack) {
849 				if (chip->ack_invert && !ret)
850 					ret = regmap_write(map, reg, UINT_MAX);
851 				else if (!ret)
852 					ret = regmap_write(map, reg, 0);
853 			}
854 			if (ret != 0) {
855 				dev_err(map->dev, "Failed to ack 0x%x: %d\n",
856 					reg, ret);
857 				goto err_alloc;
858 			}
859 		}
860 	}
861 
862 	/* Wake is disabled by default */
863 	if (d->wake_buf) {
864 		for (i = 0; i < chip->num_regs; i++) {
865 			d->wake_buf[i] = d->mask_buf_def[i];
866 			reg = d->get_irq_reg(d, d->chip->wake_base, i);
867 
868 			if (chip->wake_invert)
869 				ret = regmap_update_bits(d->map, reg,
870 							 d->mask_buf_def[i],
871 							 0);
872 			else
873 				ret = regmap_update_bits(d->map, reg,
874 							 d->mask_buf_def[i],
875 							 d->wake_buf[i]);
876 			if (ret != 0) {
877 				dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
878 					reg, ret);
879 				goto err_alloc;
880 			}
881 		}
882 	}
883 
884 	ret = regmap_irq_create_domain(fwnode, irq_base, chip, d);
885 	if (ret)
886 		goto err_alloc;
887 
888 	ret = request_threaded_irq(irq, NULL, regmap_irq_thread,
889 				   irq_flags | IRQF_ONESHOT,
890 				   chip->name, d);
891 	if (ret != 0) {
892 		dev_err(map->dev, "Failed to request IRQ %d for %s: %d\n",
893 			irq, chip->name, ret);
894 		goto err_domain;
895 	}
896 
897 	*data = d;
898 
899 	return 0;
900 
901 err_domain:
902 	/* Should really dispose of the domain but... */
903 err_alloc:
904 	kfree(d->type_buf);
905 	kfree(d->type_buf_def);
906 	kfree(d->wake_buf);
907 	kfree(d->mask_buf_def);
908 	kfree(d->mask_buf);
909 	kfree(d->status_buf);
910 	kfree(d->status_reg_buf);
911 	if (d->config_buf) {
912 		for (i = 0; i < chip->num_config_bases; i++)
913 			kfree(d->config_buf[i]);
914 		kfree(d->config_buf);
915 	}
916 	kfree(d);
917 	return ret;
918 }
919 EXPORT_SYMBOL_GPL(regmap_add_irq_chip_fwnode);
920 
921 /**
922  * regmap_add_irq_chip() - Use standard regmap IRQ controller handling
923  *
924  * @map: The regmap for the device.
925  * @irq: The IRQ the device uses to signal interrupts.
926  * @irq_flags: The IRQF_ flags to use for the primary interrupt.
927  * @irq_base: Allocate at specific IRQ number if irq_base > 0.
928  * @chip: Configuration for the interrupt controller.
929  * @data: Runtime data structure for the controller, allocated on success.
930  *
931  * Returns 0 on success or an errno on failure.
932  *
933  * This is the same as regmap_add_irq_chip_fwnode, except that the firmware
934  * node of the regmap is used.
935  */
936 int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags,
937 			int irq_base, const struct regmap_irq_chip *chip,
938 			struct regmap_irq_chip_data **data)
939 {
940 	return regmap_add_irq_chip_fwnode(dev_fwnode(map->dev), map, irq,
941 					  irq_flags, irq_base, chip, data);
942 }
943 EXPORT_SYMBOL_GPL(regmap_add_irq_chip);
944 
945 /**
946  * regmap_del_irq_chip() - Stop interrupt handling for a regmap IRQ chip
947  *
948  * @irq: Primary IRQ for the device
949  * @d: &regmap_irq_chip_data allocated by regmap_add_irq_chip()
950  *
951  * This function also disposes of all mapped IRQs on the chip.
952  */
953 void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d)
954 {
955 	unsigned int virq;
956 	int i, hwirq;
957 
958 	if (!d)
959 		return;
960 
961 	free_irq(irq, d);
962 
963 	/* Dispose all virtual irq from irq domain before removing it */
964 	for (hwirq = 0; hwirq < d->chip->num_irqs; hwirq++) {
965 		/* Ignore hwirq if holes in the IRQ list */
966 		if (!d->chip->irqs[hwirq].mask)
967 			continue;
968 
969 		/*
970 		 * Find the virtual irq of hwirq on chip and if it is
971 		 * there then dispose it
972 		 */
973 		virq = irq_find_mapping(d->domain, hwirq);
974 		if (virq)
975 			irq_dispose_mapping(virq);
976 	}
977 
978 	irq_domain_remove(d->domain);
979 	kfree(d->type_buf);
980 	kfree(d->type_buf_def);
981 	kfree(d->wake_buf);
982 	kfree(d->mask_buf_def);
983 	kfree(d->mask_buf);
984 	kfree(d->status_reg_buf);
985 	kfree(d->status_buf);
986 	if (d->config_buf) {
987 		for (i = 0; i < d->chip->num_config_bases; i++)
988 			kfree(d->config_buf[i]);
989 		kfree(d->config_buf);
990 	}
991 	kfree(d);
992 }
993 EXPORT_SYMBOL_GPL(regmap_del_irq_chip);
994 
995 static void devm_regmap_irq_chip_release(struct device *dev, void *res)
996 {
997 	struct regmap_irq_chip_data *d = *(struct regmap_irq_chip_data **)res;
998 
999 	regmap_del_irq_chip(d->irq, d);
1000 }
1001 
1002 static int devm_regmap_irq_chip_match(struct device *dev, void *res, void *data)
1003 
1004 {
1005 	struct regmap_irq_chip_data **r = res;
1006 
1007 	if (!r || !*r) {
1008 		WARN_ON(!r || !*r);
1009 		return 0;
1010 	}
1011 	return *r == data;
1012 }
1013 
1014 /**
1015  * devm_regmap_add_irq_chip_fwnode() - Resource managed regmap_add_irq_chip_fwnode()
1016  *
1017  * @dev: The device pointer on which irq_chip belongs to.
1018  * @fwnode: The firmware node where the IRQ domain should be added to.
1019  * @map: The regmap for the device.
1020  * @irq: The IRQ the device uses to signal interrupts
1021  * @irq_flags: The IRQF_ flags to use for the primary interrupt.
1022  * @irq_base: Allocate at specific IRQ number if irq_base > 0.
1023  * @chip: Configuration for the interrupt controller.
1024  * @data: Runtime data structure for the controller, allocated on success
1025  *
1026  * Returns 0 on success or an errno on failure.
1027  *
1028  * The &regmap_irq_chip_data will be automatically released when the device is
1029  * unbound.
1030  */
1031 int devm_regmap_add_irq_chip_fwnode(struct device *dev,
1032 				    struct fwnode_handle *fwnode,
1033 				    struct regmap *map, int irq,
1034 				    int irq_flags, int irq_base,
1035 				    const struct regmap_irq_chip *chip,
1036 				    struct regmap_irq_chip_data **data)
1037 {
1038 	struct regmap_irq_chip_data **ptr, *d;
1039 	int ret;
1040 
1041 	ptr = devres_alloc(devm_regmap_irq_chip_release, sizeof(*ptr),
1042 			   GFP_KERNEL);
1043 	if (!ptr)
1044 		return -ENOMEM;
1045 
1046 	ret = regmap_add_irq_chip_fwnode(fwnode, map, irq, irq_flags, irq_base,
1047 					 chip, &d);
1048 	if (ret < 0) {
1049 		devres_free(ptr);
1050 		return ret;
1051 	}
1052 
1053 	*ptr = d;
1054 	devres_add(dev, ptr);
1055 	*data = d;
1056 	return 0;
1057 }
1058 EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip_fwnode);
1059 
1060 /**
1061  * devm_regmap_add_irq_chip() - Resource managed regmap_add_irq_chip()
1062  *
1063  * @dev: The device pointer on which irq_chip belongs to.
1064  * @map: The regmap for the device.
1065  * @irq: The IRQ the device uses to signal interrupts
1066  * @irq_flags: The IRQF_ flags to use for the primary interrupt.
1067  * @irq_base: Allocate at specific IRQ number if irq_base > 0.
1068  * @chip: Configuration for the interrupt controller.
1069  * @data: Runtime data structure for the controller, allocated on success
1070  *
1071  * Returns 0 on success or an errno on failure.
1072  *
1073  * The &regmap_irq_chip_data will be automatically released when the device is
1074  * unbound.
1075  */
1076 int devm_regmap_add_irq_chip(struct device *dev, struct regmap *map, int irq,
1077 			     int irq_flags, int irq_base,
1078 			     const struct regmap_irq_chip *chip,
1079 			     struct regmap_irq_chip_data **data)
1080 {
1081 	return devm_regmap_add_irq_chip_fwnode(dev, dev_fwnode(map->dev), map,
1082 					       irq, irq_flags, irq_base, chip,
1083 					       data);
1084 }
1085 EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip);
1086 
1087 /**
1088  * devm_regmap_del_irq_chip() - Resource managed regmap_del_irq_chip()
1089  *
1090  * @dev: Device for which the resource was allocated.
1091  * @irq: Primary IRQ for the device.
1092  * @data: &regmap_irq_chip_data allocated by regmap_add_irq_chip().
1093  *
1094  * A resource managed version of regmap_del_irq_chip().
1095  */
1096 void devm_regmap_del_irq_chip(struct device *dev, int irq,
1097 			      struct regmap_irq_chip_data *data)
1098 {
1099 	int rc;
1100 
1101 	WARN_ON(irq != data->irq);
1102 	rc = devres_release(dev, devm_regmap_irq_chip_release,
1103 			    devm_regmap_irq_chip_match, data);
1104 
1105 	if (rc != 0)
1106 		WARN_ON(rc);
1107 }
1108 EXPORT_SYMBOL_GPL(devm_regmap_del_irq_chip);
1109 
1110 /**
1111  * regmap_irq_chip_get_base() - Retrieve interrupt base for a regmap IRQ chip
1112  *
1113  * @data: regmap irq controller to operate on.
1114  *
1115  * Useful for drivers to request their own IRQs.
1116  */
1117 int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data)
1118 {
1119 	WARN_ON(!data->irq_base);
1120 	return data->irq_base;
1121 }
1122 EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base);
1123 
1124 /**
1125  * regmap_irq_get_virq() - Map an interrupt on a chip to a virtual IRQ
1126  *
1127  * @data: regmap irq controller to operate on.
1128  * @irq: index of the interrupt requested in the chip IRQs.
1129  *
1130  * Useful for drivers to request their own IRQs.
1131  */
1132 int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq)
1133 {
1134 	/* Handle holes in the IRQ list */
1135 	if (!data->chip->irqs[irq].mask)
1136 		return -EINVAL;
1137 
1138 	return irq_create_mapping(data->domain, irq);
1139 }
1140 EXPORT_SYMBOL_GPL(regmap_irq_get_virq);
1141 
1142 /**
1143  * regmap_irq_get_domain() - Retrieve the irq_domain for the chip
1144  *
1145  * @data: regmap_irq controller to operate on.
1146  *
1147  * Useful for drivers to request their own IRQs and for integration
1148  * with subsystems.  For ease of integration NULL is accepted as a
1149  * domain, allowing devices to just call this even if no domain is
1150  * allocated.
1151  */
1152 struct irq_domain *regmap_irq_get_domain(struct regmap_irq_chip_data *data)
1153 {
1154 	if (data)
1155 		return data->domain;
1156 	else
1157 		return NULL;
1158 }
1159 EXPORT_SYMBOL_GPL(regmap_irq_get_domain);
1160