xref: /linux/drivers/base/regmap/regmap-irq.c (revision f2745dc0ba3dadd8fa2b2c33f48253d78e133a12)
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // regmap based irq_chip
4 //
5 // Copyright 2011 Wolfson Microelectronics plc
6 //
7 // Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8 
9 #include <linux/device.h>
10 #include <linux/export.h>
11 #include <linux/interrupt.h>
12 #include <linux/irq.h>
13 #include <linux/irqdomain.h>
14 #include <linux/pm_runtime.h>
15 #include <linux/regmap.h>
16 #include <linux/slab.h>
17 
18 #include "internal.h"
19 
20 struct regmap_irq_chip_data {
21 	struct mutex lock;
22 	struct irq_chip irq_chip;
23 
24 	struct regmap *map;
25 	const struct regmap_irq_chip *chip;
26 
27 	int irq_base;
28 	struct irq_domain *domain;
29 
30 	int irq;
31 	int wake_count;
32 
33 	void *status_reg_buf;
34 	unsigned int *main_status_buf;
35 	unsigned int *status_buf;
36 	unsigned int *mask_buf;
37 	unsigned int *mask_buf_def;
38 	unsigned int *wake_buf;
39 	unsigned int *type_buf;
40 	unsigned int *type_buf_def;
41 	unsigned int **virt_buf;
42 
43 	unsigned int irq_reg_stride;
44 	unsigned int type_reg_stride;
45 
46 	bool clear_status:1;
47 };
48 
49 static int sub_irq_reg(struct regmap_irq_chip_data *data,
50 		       unsigned int base_reg, int i)
51 {
52 	const struct regmap_irq_chip *chip = data->chip;
53 	struct regmap *map = data->map;
54 	struct regmap_irq_sub_irq_map *subreg;
55 	unsigned int offset;
56 	int reg = 0;
57 
58 	if (!chip->sub_reg_offsets || !chip->not_fixed_stride) {
59 		/* Assume linear mapping */
60 		reg = base_reg + (i * map->reg_stride * data->irq_reg_stride);
61 	} else {
62 		subreg = &chip->sub_reg_offsets[i];
63 		offset = subreg->offset[0];
64 		reg = base_reg + offset;
65 	}
66 
67 	return reg;
68 }
69 
70 static inline const
71 struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data,
72 				     int irq)
73 {
74 	return &data->chip->irqs[irq];
75 }
76 
77 static void regmap_irq_lock(struct irq_data *data)
78 {
79 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
80 
81 	mutex_lock(&d->lock);
82 }
83 
84 static int regmap_irq_update_bits(struct regmap_irq_chip_data *d,
85 				  unsigned int reg, unsigned int mask,
86 				  unsigned int val)
87 {
88 	if (d->chip->mask_writeonly)
89 		return regmap_write_bits(d->map, reg, mask, val);
90 	else
91 		return regmap_update_bits(d->map, reg, mask, val);
92 }
93 
94 static void regmap_irq_sync_unlock(struct irq_data *data)
95 {
96 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
97 	struct regmap *map = d->map;
98 	int i, j, ret;
99 	u32 reg;
100 	u32 unmask_offset;
101 	u32 val;
102 
103 	if (d->chip->runtime_pm) {
104 		ret = pm_runtime_get_sync(map->dev);
105 		if (ret < 0)
106 			dev_err(map->dev, "IRQ sync failed to resume: %d\n",
107 				ret);
108 	}
109 
110 	if (d->clear_status) {
111 		for (i = 0; i < d->chip->num_regs; i++) {
112 			reg = sub_irq_reg(d, d->chip->status_base, i);
113 
114 			ret = regmap_read(map, reg, &val);
115 			if (ret)
116 				dev_err(d->map->dev,
117 					"Failed to clear the interrupt status bits\n");
118 		}
119 
120 		d->clear_status = false;
121 	}
122 
123 	/*
124 	 * If there's been a change in the mask write it back to the
125 	 * hardware.  We rely on the use of the regmap core cache to
126 	 * suppress pointless writes.
127 	 */
128 	for (i = 0; i < d->chip->num_regs; i++) {
129 		if (!d->chip->mask_base)
130 			continue;
131 
132 		reg = sub_irq_reg(d, d->chip->mask_base, i);
133 		if (d->chip->mask_invert) {
134 			ret = regmap_irq_update_bits(d, reg,
135 					 d->mask_buf_def[i], ~d->mask_buf[i]);
136 		} else if (d->chip->unmask_base) {
137 			/* set mask with mask_base register */
138 			ret = regmap_irq_update_bits(d, reg,
139 					d->mask_buf_def[i], ~d->mask_buf[i]);
140 			if (ret < 0)
141 				dev_err(d->map->dev,
142 					"Failed to sync unmasks in %x\n",
143 					reg);
144 			unmask_offset = d->chip->unmask_base -
145 							d->chip->mask_base;
146 			/* clear mask with unmask_base register */
147 			ret = regmap_irq_update_bits(d,
148 					reg + unmask_offset,
149 					d->mask_buf_def[i],
150 					d->mask_buf[i]);
151 		} else {
152 			ret = regmap_irq_update_bits(d, reg,
153 					 d->mask_buf_def[i], d->mask_buf[i]);
154 		}
155 		if (ret != 0)
156 			dev_err(d->map->dev, "Failed to sync masks in %x\n",
157 				reg);
158 
159 		reg = sub_irq_reg(d, d->chip->wake_base, i);
160 		if (d->wake_buf) {
161 			if (d->chip->wake_invert)
162 				ret = regmap_irq_update_bits(d, reg,
163 							 d->mask_buf_def[i],
164 							 ~d->wake_buf[i]);
165 			else
166 				ret = regmap_irq_update_bits(d, reg,
167 							 d->mask_buf_def[i],
168 							 d->wake_buf[i]);
169 			if (ret != 0)
170 				dev_err(d->map->dev,
171 					"Failed to sync wakes in %x: %d\n",
172 					reg, ret);
173 		}
174 
175 		if (!d->chip->init_ack_masked)
176 			continue;
177 		/*
178 		 * Ack all the masked interrupts unconditionally,
179 		 * OR if there is masked interrupt which hasn't been Acked,
180 		 * it'll be ignored in irq handler, then may introduce irq storm
181 		 */
182 		if (d->mask_buf[i] && (d->chip->ack_base || d->chip->use_ack)) {
183 			reg = sub_irq_reg(d, d->chip->ack_base, i);
184 
185 			/* some chips ack by write 0 */
186 			if (d->chip->ack_invert)
187 				ret = regmap_write(map, reg, ~d->mask_buf[i]);
188 			else
189 				ret = regmap_write(map, reg, d->mask_buf[i]);
190 			if (d->chip->clear_ack) {
191 				if (d->chip->ack_invert && !ret)
192 					ret = regmap_write(map, reg, UINT_MAX);
193 				else if (!ret)
194 					ret = regmap_write(map, reg, 0);
195 			}
196 			if (ret != 0)
197 				dev_err(d->map->dev, "Failed to ack 0x%x: %d\n",
198 					reg, ret);
199 		}
200 	}
201 
202 	/* Don't update the type bits if we're using mask bits for irq type. */
203 	if (!d->chip->type_in_mask) {
204 		for (i = 0; i < d->chip->num_type_reg; i++) {
205 			if (!d->type_buf_def[i])
206 				continue;
207 			reg = sub_irq_reg(d, d->chip->type_base, i);
208 			if (d->chip->type_invert)
209 				ret = regmap_irq_update_bits(d, reg,
210 					d->type_buf_def[i], ~d->type_buf[i]);
211 			else
212 				ret = regmap_irq_update_bits(d, reg,
213 					d->type_buf_def[i], d->type_buf[i]);
214 			if (ret != 0)
215 				dev_err(d->map->dev, "Failed to sync type in %x\n",
216 					reg);
217 		}
218 	}
219 
220 	if (d->chip->num_virt_regs) {
221 		for (i = 0; i < d->chip->num_virt_regs; i++) {
222 			for (j = 0; j < d->chip->num_regs; j++) {
223 				reg = sub_irq_reg(d, d->chip->virt_reg_base[i],
224 						  j);
225 				ret = regmap_write(map, reg, d->virt_buf[i][j]);
226 				if (ret != 0)
227 					dev_err(d->map->dev,
228 						"Failed to write virt 0x%x: %d\n",
229 						reg, ret);
230 			}
231 		}
232 	}
233 
234 	if (d->chip->runtime_pm)
235 		pm_runtime_put(map->dev);
236 
237 	/* If we've changed our wakeup count propagate it to the parent */
238 	if (d->wake_count < 0)
239 		for (i = d->wake_count; i < 0; i++)
240 			irq_set_irq_wake(d->irq, 0);
241 	else if (d->wake_count > 0)
242 		for (i = 0; i < d->wake_count; i++)
243 			irq_set_irq_wake(d->irq, 1);
244 
245 	d->wake_count = 0;
246 
247 	mutex_unlock(&d->lock);
248 }
249 
250 static void regmap_irq_enable(struct irq_data *data)
251 {
252 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
253 	struct regmap *map = d->map;
254 	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
255 	unsigned int reg = irq_data->reg_offset / map->reg_stride;
256 	unsigned int mask, type;
257 
258 	type = irq_data->type.type_falling_val | irq_data->type.type_rising_val;
259 
260 	/*
261 	 * The type_in_mask flag means that the underlying hardware uses
262 	 * separate mask bits for rising and falling edge interrupts, but
263 	 * we want to make them into a single virtual interrupt with
264 	 * configurable edge.
265 	 *
266 	 * If the interrupt we're enabling defines the falling or rising
267 	 * masks then instead of using the regular mask bits for this
268 	 * interrupt, use the value previously written to the type buffer
269 	 * at the corresponding offset in regmap_irq_set_type().
270 	 */
271 	if (d->chip->type_in_mask && type)
272 		mask = d->type_buf[reg] & irq_data->mask;
273 	else
274 		mask = irq_data->mask;
275 
276 	if (d->chip->clear_on_unmask)
277 		d->clear_status = true;
278 
279 	d->mask_buf[reg] &= ~mask;
280 }
281 
282 static void regmap_irq_disable(struct irq_data *data)
283 {
284 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
285 	struct regmap *map = d->map;
286 	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
287 
288 	d->mask_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask;
289 }
290 
291 static int regmap_irq_set_type(struct irq_data *data, unsigned int type)
292 {
293 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
294 	struct regmap *map = d->map;
295 	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
296 	int reg;
297 	const struct regmap_irq_type *t = &irq_data->type;
298 
299 	if ((t->types_supported & type) != type)
300 		return 0;
301 
302 	reg = t->type_reg_offset / map->reg_stride;
303 
304 	if (t->type_reg_mask)
305 		d->type_buf[reg] &= ~t->type_reg_mask;
306 	else
307 		d->type_buf[reg] &= ~(t->type_falling_val |
308 				      t->type_rising_val |
309 				      t->type_level_low_val |
310 				      t->type_level_high_val);
311 	switch (type) {
312 	case IRQ_TYPE_EDGE_FALLING:
313 		d->type_buf[reg] |= t->type_falling_val;
314 		break;
315 
316 	case IRQ_TYPE_EDGE_RISING:
317 		d->type_buf[reg] |= t->type_rising_val;
318 		break;
319 
320 	case IRQ_TYPE_EDGE_BOTH:
321 		d->type_buf[reg] |= (t->type_falling_val |
322 					t->type_rising_val);
323 		break;
324 
325 	case IRQ_TYPE_LEVEL_HIGH:
326 		d->type_buf[reg] |= t->type_level_high_val;
327 		break;
328 
329 	case IRQ_TYPE_LEVEL_LOW:
330 		d->type_buf[reg] |= t->type_level_low_val;
331 		break;
332 	default:
333 		return -EINVAL;
334 	}
335 
336 	if (d->chip->set_type_virt)
337 		return d->chip->set_type_virt(d->virt_buf, type, data->hwirq,
338 					      reg);
339 
340 	return 0;
341 }
342 
343 static int regmap_irq_set_wake(struct irq_data *data, unsigned int on)
344 {
345 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
346 	struct regmap *map = d->map;
347 	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
348 
349 	if (on) {
350 		if (d->wake_buf)
351 			d->wake_buf[irq_data->reg_offset / map->reg_stride]
352 				&= ~irq_data->mask;
353 		d->wake_count++;
354 	} else {
355 		if (d->wake_buf)
356 			d->wake_buf[irq_data->reg_offset / map->reg_stride]
357 				|= irq_data->mask;
358 		d->wake_count--;
359 	}
360 
361 	return 0;
362 }
363 
364 static const struct irq_chip regmap_irq_chip = {
365 	.irq_bus_lock		= regmap_irq_lock,
366 	.irq_bus_sync_unlock	= regmap_irq_sync_unlock,
367 	.irq_disable		= regmap_irq_disable,
368 	.irq_enable		= regmap_irq_enable,
369 	.irq_set_type		= regmap_irq_set_type,
370 	.irq_set_wake		= regmap_irq_set_wake,
371 };
372 
373 static inline int read_sub_irq_data(struct regmap_irq_chip_data *data,
374 					   unsigned int b)
375 {
376 	const struct regmap_irq_chip *chip = data->chip;
377 	struct regmap *map = data->map;
378 	struct regmap_irq_sub_irq_map *subreg;
379 	int i, ret = 0;
380 
381 	if (!chip->sub_reg_offsets) {
382 		/* Assume linear mapping */
383 		ret = regmap_read(map, chip->status_base +
384 				  (b * map->reg_stride * data->irq_reg_stride),
385 				   &data->status_buf[b]);
386 	} else {
387 		subreg = &chip->sub_reg_offsets[b];
388 		for (i = 0; i < subreg->num_regs; i++) {
389 			unsigned int offset = subreg->offset[i];
390 			unsigned int index = offset / map->reg_stride;
391 
392 			if (chip->not_fixed_stride)
393 				ret = regmap_read(map,
394 						chip->status_base + offset,
395 						&data->status_buf[b]);
396 			else
397 				ret = regmap_read(map,
398 						chip->status_base + offset,
399 						&data->status_buf[index]);
400 
401 			if (ret)
402 				break;
403 		}
404 	}
405 	return ret;
406 }
407 
408 static irqreturn_t regmap_irq_thread(int irq, void *d)
409 {
410 	struct regmap_irq_chip_data *data = d;
411 	const struct regmap_irq_chip *chip = data->chip;
412 	struct regmap *map = data->map;
413 	int ret, i;
414 	bool handled = false;
415 	u32 reg;
416 
417 	if (chip->handle_pre_irq)
418 		chip->handle_pre_irq(chip->irq_drv_data);
419 
420 	if (chip->runtime_pm) {
421 		ret = pm_runtime_get_sync(map->dev);
422 		if (ret < 0) {
423 			dev_err(map->dev, "IRQ thread failed to resume: %d\n",
424 				ret);
425 			goto exit;
426 		}
427 	}
428 
429 	/*
430 	 * Read only registers with active IRQs if the chip has 'main status
431 	 * register'. Else read in the statuses, using a single bulk read if
432 	 * possible in order to reduce the I/O overheads.
433 	 */
434 
435 	if (chip->num_main_regs) {
436 		unsigned int max_main_bits;
437 		unsigned long size;
438 
439 		size = chip->num_regs * sizeof(unsigned int);
440 
441 		max_main_bits = (chip->num_main_status_bits) ?
442 				 chip->num_main_status_bits : chip->num_regs;
443 		/* Clear the status buf as we don't read all status regs */
444 		memset(data->status_buf, 0, size);
445 
446 		/* We could support bulk read for main status registers
447 		 * but I don't expect to see devices with really many main
448 		 * status registers so let's only support single reads for the
449 		 * sake of simplicity. and add bulk reads only if needed
450 		 */
451 		for (i = 0; i < chip->num_main_regs; i++) {
452 			ret = regmap_read(map, chip->main_status +
453 				  (i * map->reg_stride
454 				   * data->irq_reg_stride),
455 				  &data->main_status_buf[i]);
456 			if (ret) {
457 				dev_err(map->dev,
458 					"Failed to read IRQ status %d\n",
459 					ret);
460 				goto exit;
461 			}
462 		}
463 
464 		/* Read sub registers with active IRQs */
465 		for (i = 0; i < chip->num_main_regs; i++) {
466 			unsigned int b;
467 			const unsigned long mreg = data->main_status_buf[i];
468 
469 			for_each_set_bit(b, &mreg, map->format.val_bytes * 8) {
470 				if (i * map->format.val_bytes * 8 + b >
471 				    max_main_bits)
472 					break;
473 				ret = read_sub_irq_data(data, b);
474 
475 				if (ret != 0) {
476 					dev_err(map->dev,
477 						"Failed to read IRQ status %d\n",
478 						ret);
479 					goto exit;
480 				}
481 			}
482 
483 		}
484 	} else if (!map->use_single_read && map->reg_stride == 1 &&
485 		   data->irq_reg_stride == 1) {
486 
487 		u8 *buf8 = data->status_reg_buf;
488 		u16 *buf16 = data->status_reg_buf;
489 		u32 *buf32 = data->status_reg_buf;
490 
491 		BUG_ON(!data->status_reg_buf);
492 
493 		ret = regmap_bulk_read(map, chip->status_base,
494 				       data->status_reg_buf,
495 				       chip->num_regs);
496 		if (ret != 0) {
497 			dev_err(map->dev, "Failed to read IRQ status: %d\n",
498 				ret);
499 			goto exit;
500 		}
501 
502 		for (i = 0; i < data->chip->num_regs; i++) {
503 			switch (map->format.val_bytes) {
504 			case 1:
505 				data->status_buf[i] = buf8[i];
506 				break;
507 			case 2:
508 				data->status_buf[i] = buf16[i];
509 				break;
510 			case 4:
511 				data->status_buf[i] = buf32[i];
512 				break;
513 			default:
514 				BUG();
515 				goto exit;
516 			}
517 		}
518 
519 	} else {
520 		for (i = 0; i < data->chip->num_regs; i++) {
521 			unsigned int reg = sub_irq_reg(data,
522 					data->chip->status_base, i);
523 			ret = regmap_read(map, reg, &data->status_buf[i]);
524 
525 			if (ret != 0) {
526 				dev_err(map->dev,
527 					"Failed to read IRQ status: %d\n",
528 					ret);
529 				goto exit;
530 			}
531 		}
532 	}
533 
534 	if (chip->status_invert)
535 		for (i = 0; i < data->chip->num_regs; i++)
536 			data->status_buf[i] = ~data->status_buf[i];
537 
538 	/*
539 	 * Ignore masked IRQs and ack if we need to; we ack early so
540 	 * there is no race between handling and acknowledging the
541 	 * interrupt.  We assume that typically few of the interrupts
542 	 * will fire simultaneously so don't worry about overhead from
543 	 * doing a write per register.
544 	 */
545 	for (i = 0; i < data->chip->num_regs; i++) {
546 		data->status_buf[i] &= ~data->mask_buf[i];
547 
548 		if (data->status_buf[i] && (chip->ack_base || chip->use_ack)) {
549 			reg = sub_irq_reg(data, data->chip->ack_base, i);
550 
551 			if (chip->ack_invert)
552 				ret = regmap_write(map, reg,
553 						~data->status_buf[i]);
554 			else
555 				ret = regmap_write(map, reg,
556 						data->status_buf[i]);
557 			if (chip->clear_ack) {
558 				if (chip->ack_invert && !ret)
559 					ret = regmap_write(map, reg, UINT_MAX);
560 				else if (!ret)
561 					ret = regmap_write(map, reg, 0);
562 			}
563 			if (ret != 0)
564 				dev_err(map->dev, "Failed to ack 0x%x: %d\n",
565 					reg, ret);
566 		}
567 	}
568 
569 	for (i = 0; i < chip->num_irqs; i++) {
570 		if (data->status_buf[chip->irqs[i].reg_offset /
571 				     map->reg_stride] & chip->irqs[i].mask) {
572 			handle_nested_irq(irq_find_mapping(data->domain, i));
573 			handled = true;
574 		}
575 	}
576 
577 exit:
578 	if (chip->runtime_pm)
579 		pm_runtime_put(map->dev);
580 
581 	if (chip->handle_post_irq)
582 		chip->handle_post_irq(chip->irq_drv_data);
583 
584 	if (handled)
585 		return IRQ_HANDLED;
586 	else
587 		return IRQ_NONE;
588 }
589 
590 static int regmap_irq_map(struct irq_domain *h, unsigned int virq,
591 			  irq_hw_number_t hw)
592 {
593 	struct regmap_irq_chip_data *data = h->host_data;
594 
595 	irq_set_chip_data(virq, data);
596 	irq_set_chip(virq, &data->irq_chip);
597 	irq_set_nested_thread(virq, 1);
598 	irq_set_parent(virq, data->irq);
599 	irq_set_noprobe(virq);
600 
601 	return 0;
602 }
603 
604 static const struct irq_domain_ops regmap_domain_ops = {
605 	.map	= regmap_irq_map,
606 	.xlate	= irq_domain_xlate_onetwocell,
607 };
608 
609 /**
610  * regmap_add_irq_chip_fwnode() - Use standard regmap IRQ controller handling
611  *
612  * @fwnode: The firmware node where the IRQ domain should be added to.
613  * @map: The regmap for the device.
614  * @irq: The IRQ the device uses to signal interrupts.
615  * @irq_flags: The IRQF_ flags to use for the primary interrupt.
616  * @irq_base: Allocate at specific IRQ number if irq_base > 0.
617  * @chip: Configuration for the interrupt controller.
618  * @data: Runtime data structure for the controller, allocated on success.
619  *
620  * Returns 0 on success or an errno on failure.
621  *
622  * In order for this to be efficient the chip really should use a
623  * register cache.  The chip driver is responsible for restoring the
624  * register values used by the IRQ controller over suspend and resume.
625  */
626 int regmap_add_irq_chip_fwnode(struct fwnode_handle *fwnode,
627 			       struct regmap *map, int irq,
628 			       int irq_flags, int irq_base,
629 			       const struct regmap_irq_chip *chip,
630 			       struct regmap_irq_chip_data **data)
631 {
632 	struct regmap_irq_chip_data *d;
633 	int i;
634 	int ret = -ENOMEM;
635 	int num_type_reg;
636 	u32 reg;
637 	u32 unmask_offset;
638 
639 	if (chip->num_regs <= 0)
640 		return -EINVAL;
641 
642 	if (chip->clear_on_unmask && (chip->ack_base || chip->use_ack))
643 		return -EINVAL;
644 
645 	for (i = 0; i < chip->num_irqs; i++) {
646 		if (chip->irqs[i].reg_offset % map->reg_stride)
647 			return -EINVAL;
648 		if (chip->irqs[i].reg_offset / map->reg_stride >=
649 		    chip->num_regs)
650 			return -EINVAL;
651 	}
652 
653 	if (chip->not_fixed_stride) {
654 		for (i = 0; i < chip->num_regs; i++)
655 			if (chip->sub_reg_offsets[i].num_regs != 1)
656 				return -EINVAL;
657 	}
658 
659 	if (irq_base) {
660 		irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0);
661 		if (irq_base < 0) {
662 			dev_warn(map->dev, "Failed to allocate IRQs: %d\n",
663 				 irq_base);
664 			return irq_base;
665 		}
666 	}
667 
668 	d = kzalloc(sizeof(*d), GFP_KERNEL);
669 	if (!d)
670 		return -ENOMEM;
671 
672 	if (chip->num_main_regs) {
673 		d->main_status_buf = kcalloc(chip->num_main_regs,
674 					     sizeof(unsigned int),
675 					     GFP_KERNEL);
676 
677 		if (!d->main_status_buf)
678 			goto err_alloc;
679 	}
680 
681 	d->status_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
682 				GFP_KERNEL);
683 	if (!d->status_buf)
684 		goto err_alloc;
685 
686 	d->mask_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
687 			      GFP_KERNEL);
688 	if (!d->mask_buf)
689 		goto err_alloc;
690 
691 	d->mask_buf_def = kcalloc(chip->num_regs, sizeof(unsigned int),
692 				  GFP_KERNEL);
693 	if (!d->mask_buf_def)
694 		goto err_alloc;
695 
696 	if (chip->wake_base) {
697 		d->wake_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
698 				      GFP_KERNEL);
699 		if (!d->wake_buf)
700 			goto err_alloc;
701 	}
702 
703 	num_type_reg = chip->type_in_mask ? chip->num_regs : chip->num_type_reg;
704 	if (num_type_reg) {
705 		d->type_buf_def = kcalloc(num_type_reg,
706 					  sizeof(unsigned int), GFP_KERNEL);
707 		if (!d->type_buf_def)
708 			goto err_alloc;
709 
710 		d->type_buf = kcalloc(num_type_reg, sizeof(unsigned int),
711 				      GFP_KERNEL);
712 		if (!d->type_buf)
713 			goto err_alloc;
714 	}
715 
716 	if (chip->num_virt_regs) {
717 		/*
718 		 * Create virt_buf[chip->num_extra_config_regs][chip->num_regs]
719 		 */
720 		d->virt_buf = kcalloc(chip->num_virt_regs, sizeof(*d->virt_buf),
721 				      GFP_KERNEL);
722 		if (!d->virt_buf)
723 			goto err_alloc;
724 
725 		for (i = 0; i < chip->num_virt_regs; i++) {
726 			d->virt_buf[i] = kcalloc(chip->num_regs,
727 						 sizeof(unsigned int),
728 						 GFP_KERNEL);
729 			if (!d->virt_buf[i])
730 				goto err_alloc;
731 		}
732 	}
733 
734 	d->irq_chip = regmap_irq_chip;
735 	d->irq_chip.name = chip->name;
736 	d->irq = irq;
737 	d->map = map;
738 	d->chip = chip;
739 	d->irq_base = irq_base;
740 
741 	if (chip->irq_reg_stride)
742 		d->irq_reg_stride = chip->irq_reg_stride;
743 	else
744 		d->irq_reg_stride = 1;
745 
746 	if (chip->type_reg_stride)
747 		d->type_reg_stride = chip->type_reg_stride;
748 	else
749 		d->type_reg_stride = 1;
750 
751 	if (!map->use_single_read && map->reg_stride == 1 &&
752 	    d->irq_reg_stride == 1) {
753 		d->status_reg_buf = kmalloc_array(chip->num_regs,
754 						  map->format.val_bytes,
755 						  GFP_KERNEL);
756 		if (!d->status_reg_buf)
757 			goto err_alloc;
758 	}
759 
760 	mutex_init(&d->lock);
761 
762 	for (i = 0; i < chip->num_irqs; i++)
763 		d->mask_buf_def[chip->irqs[i].reg_offset / map->reg_stride]
764 			|= chip->irqs[i].mask;
765 
766 	/* Mask all the interrupts by default */
767 	for (i = 0; i < chip->num_regs; i++) {
768 		d->mask_buf[i] = d->mask_buf_def[i];
769 		if (!chip->mask_base)
770 			continue;
771 
772 		reg = sub_irq_reg(d, d->chip->mask_base, i);
773 
774 		if (chip->mask_invert)
775 			ret = regmap_irq_update_bits(d, reg,
776 					 d->mask_buf[i], ~d->mask_buf[i]);
777 		else if (d->chip->unmask_base) {
778 			unmask_offset = d->chip->unmask_base -
779 					d->chip->mask_base;
780 			ret = regmap_irq_update_bits(d,
781 					reg + unmask_offset,
782 					d->mask_buf[i],
783 					d->mask_buf[i]);
784 		} else
785 			ret = regmap_irq_update_bits(d, reg,
786 					 d->mask_buf[i], d->mask_buf[i]);
787 		if (ret != 0) {
788 			dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
789 				reg, ret);
790 			goto err_alloc;
791 		}
792 
793 		if (!chip->init_ack_masked)
794 			continue;
795 
796 		/* Ack masked but set interrupts */
797 		reg = sub_irq_reg(d, d->chip->status_base, i);
798 		ret = regmap_read(map, reg, &d->status_buf[i]);
799 		if (ret != 0) {
800 			dev_err(map->dev, "Failed to read IRQ status: %d\n",
801 				ret);
802 			goto err_alloc;
803 		}
804 
805 		if (chip->status_invert)
806 			d->status_buf[i] = ~d->status_buf[i];
807 
808 		if (d->status_buf[i] && (chip->ack_base || chip->use_ack)) {
809 			reg = sub_irq_reg(d, d->chip->ack_base, i);
810 			if (chip->ack_invert)
811 				ret = regmap_write(map, reg,
812 					~(d->status_buf[i] & d->mask_buf[i]));
813 			else
814 				ret = regmap_write(map, reg,
815 					d->status_buf[i] & d->mask_buf[i]);
816 			if (chip->clear_ack) {
817 				if (chip->ack_invert && !ret)
818 					ret = regmap_write(map, reg, UINT_MAX);
819 				else if (!ret)
820 					ret = regmap_write(map, reg, 0);
821 			}
822 			if (ret != 0) {
823 				dev_err(map->dev, "Failed to ack 0x%x: %d\n",
824 					reg, ret);
825 				goto err_alloc;
826 			}
827 		}
828 	}
829 
830 	/* Wake is disabled by default */
831 	if (d->wake_buf) {
832 		for (i = 0; i < chip->num_regs; i++) {
833 			d->wake_buf[i] = d->mask_buf_def[i];
834 			reg = sub_irq_reg(d, d->chip->wake_base, i);
835 
836 			if (chip->wake_invert)
837 				ret = regmap_irq_update_bits(d, reg,
838 							 d->mask_buf_def[i],
839 							 0);
840 			else
841 				ret = regmap_irq_update_bits(d, reg,
842 							 d->mask_buf_def[i],
843 							 d->wake_buf[i]);
844 			if (ret != 0) {
845 				dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
846 					reg, ret);
847 				goto err_alloc;
848 			}
849 		}
850 	}
851 
852 	if (chip->num_type_reg && !chip->type_in_mask) {
853 		for (i = 0; i < chip->num_type_reg; ++i) {
854 			reg = sub_irq_reg(d, d->chip->type_base, i);
855 
856 			ret = regmap_read(map, reg, &d->type_buf_def[i]);
857 
858 			if (d->chip->type_invert)
859 				d->type_buf_def[i] = ~d->type_buf_def[i];
860 
861 			if (ret) {
862 				dev_err(map->dev, "Failed to get type defaults at 0x%x: %d\n",
863 					reg, ret);
864 				goto err_alloc;
865 			}
866 		}
867 	}
868 
869 	if (irq_base)
870 		d->domain = irq_domain_create_legacy(fwnode, chip->num_irqs,
871 						     irq_base, 0,
872 						     &regmap_domain_ops, d);
873 	else
874 		d->domain = irq_domain_create_linear(fwnode, chip->num_irqs,
875 						     &regmap_domain_ops, d);
876 	if (!d->domain) {
877 		dev_err(map->dev, "Failed to create IRQ domain\n");
878 		ret = -ENOMEM;
879 		goto err_alloc;
880 	}
881 
882 	ret = request_threaded_irq(irq, NULL, regmap_irq_thread,
883 				   irq_flags | IRQF_ONESHOT,
884 				   chip->name, d);
885 	if (ret != 0) {
886 		dev_err(map->dev, "Failed to request IRQ %d for %s: %d\n",
887 			irq, chip->name, ret);
888 		goto err_domain;
889 	}
890 
891 	*data = d;
892 
893 	return 0;
894 
895 err_domain:
896 	/* Should really dispose of the domain but... */
897 err_alloc:
898 	kfree(d->type_buf);
899 	kfree(d->type_buf_def);
900 	kfree(d->wake_buf);
901 	kfree(d->mask_buf_def);
902 	kfree(d->mask_buf);
903 	kfree(d->status_buf);
904 	kfree(d->status_reg_buf);
905 	if (d->virt_buf) {
906 		for (i = 0; i < chip->num_virt_regs; i++)
907 			kfree(d->virt_buf[i]);
908 		kfree(d->virt_buf);
909 	}
910 	kfree(d);
911 	return ret;
912 }
913 EXPORT_SYMBOL_GPL(regmap_add_irq_chip_fwnode);
914 
915 /**
916  * regmap_add_irq_chip() - Use standard regmap IRQ controller handling
917  *
918  * @map: The regmap for the device.
919  * @irq: The IRQ the device uses to signal interrupts.
920  * @irq_flags: The IRQF_ flags to use for the primary interrupt.
921  * @irq_base: Allocate at specific IRQ number if irq_base > 0.
922  * @chip: Configuration for the interrupt controller.
923  * @data: Runtime data structure for the controller, allocated on success.
924  *
925  * Returns 0 on success or an errno on failure.
926  *
927  * This is the same as regmap_add_irq_chip_fwnode, except that the firmware
928  * node of the regmap is used.
929  */
930 int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags,
931 			int irq_base, const struct regmap_irq_chip *chip,
932 			struct regmap_irq_chip_data **data)
933 {
934 	return regmap_add_irq_chip_fwnode(dev_fwnode(map->dev), map, irq,
935 					  irq_flags, irq_base, chip, data);
936 }
937 EXPORT_SYMBOL_GPL(regmap_add_irq_chip);
938 
939 /**
940  * regmap_del_irq_chip() - Stop interrupt handling for a regmap IRQ chip
941  *
942  * @irq: Primary IRQ for the device
943  * @d: &regmap_irq_chip_data allocated by regmap_add_irq_chip()
944  *
945  * This function also disposes of all mapped IRQs on the chip.
946  */
947 void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d)
948 {
949 	unsigned int virq;
950 	int hwirq;
951 
952 	if (!d)
953 		return;
954 
955 	free_irq(irq, d);
956 
957 	/* Dispose all virtual irq from irq domain before removing it */
958 	for (hwirq = 0; hwirq < d->chip->num_irqs; hwirq++) {
959 		/* Ignore hwirq if holes in the IRQ list */
960 		if (!d->chip->irqs[hwirq].mask)
961 			continue;
962 
963 		/*
964 		 * Find the virtual irq of hwirq on chip and if it is
965 		 * there then dispose it
966 		 */
967 		virq = irq_find_mapping(d->domain, hwirq);
968 		if (virq)
969 			irq_dispose_mapping(virq);
970 	}
971 
972 	irq_domain_remove(d->domain);
973 	kfree(d->type_buf);
974 	kfree(d->type_buf_def);
975 	kfree(d->wake_buf);
976 	kfree(d->mask_buf_def);
977 	kfree(d->mask_buf);
978 	kfree(d->status_reg_buf);
979 	kfree(d->status_buf);
980 	kfree(d);
981 }
982 EXPORT_SYMBOL_GPL(regmap_del_irq_chip);
983 
984 static void devm_regmap_irq_chip_release(struct device *dev, void *res)
985 {
986 	struct regmap_irq_chip_data *d = *(struct regmap_irq_chip_data **)res;
987 
988 	regmap_del_irq_chip(d->irq, d);
989 }
990 
991 static int devm_regmap_irq_chip_match(struct device *dev, void *res, void *data)
992 
993 {
994 	struct regmap_irq_chip_data **r = res;
995 
996 	if (!r || !*r) {
997 		WARN_ON(!r || !*r);
998 		return 0;
999 	}
1000 	return *r == data;
1001 }
1002 
1003 /**
1004  * devm_regmap_add_irq_chip_fwnode() - Resource managed regmap_add_irq_chip_fwnode()
1005  *
1006  * @dev: The device pointer on which irq_chip belongs to.
1007  * @fwnode: The firmware node where the IRQ domain should be added to.
1008  * @map: The regmap for the device.
1009  * @irq: The IRQ the device uses to signal interrupts
1010  * @irq_flags: The IRQF_ flags to use for the primary interrupt.
1011  * @irq_base: Allocate at specific IRQ number if irq_base > 0.
1012  * @chip: Configuration for the interrupt controller.
1013  * @data: Runtime data structure for the controller, allocated on success
1014  *
1015  * Returns 0 on success or an errno on failure.
1016  *
1017  * The &regmap_irq_chip_data will be automatically released when the device is
1018  * unbound.
1019  */
1020 int devm_regmap_add_irq_chip_fwnode(struct device *dev,
1021 				    struct fwnode_handle *fwnode,
1022 				    struct regmap *map, int irq,
1023 				    int irq_flags, int irq_base,
1024 				    const struct regmap_irq_chip *chip,
1025 				    struct regmap_irq_chip_data **data)
1026 {
1027 	struct regmap_irq_chip_data **ptr, *d;
1028 	int ret;
1029 
1030 	ptr = devres_alloc(devm_regmap_irq_chip_release, sizeof(*ptr),
1031 			   GFP_KERNEL);
1032 	if (!ptr)
1033 		return -ENOMEM;
1034 
1035 	ret = regmap_add_irq_chip_fwnode(fwnode, map, irq, irq_flags, irq_base,
1036 					 chip, &d);
1037 	if (ret < 0) {
1038 		devres_free(ptr);
1039 		return ret;
1040 	}
1041 
1042 	*ptr = d;
1043 	devres_add(dev, ptr);
1044 	*data = d;
1045 	return 0;
1046 }
1047 EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip_fwnode);
1048 
1049 /**
1050  * devm_regmap_add_irq_chip() - Resource managed regmap_add_irq_chip()
1051  *
1052  * @dev: The device pointer on which irq_chip belongs to.
1053  * @map: The regmap for the device.
1054  * @irq: The IRQ the device uses to signal interrupts
1055  * @irq_flags: The IRQF_ flags to use for the primary interrupt.
1056  * @irq_base: Allocate at specific IRQ number if irq_base > 0.
1057  * @chip: Configuration for the interrupt controller.
1058  * @data: Runtime data structure for the controller, allocated on success
1059  *
1060  * Returns 0 on success or an errno on failure.
1061  *
1062  * The &regmap_irq_chip_data will be automatically released when the device is
1063  * unbound.
1064  */
1065 int devm_regmap_add_irq_chip(struct device *dev, struct regmap *map, int irq,
1066 			     int irq_flags, int irq_base,
1067 			     const struct regmap_irq_chip *chip,
1068 			     struct regmap_irq_chip_data **data)
1069 {
1070 	return devm_regmap_add_irq_chip_fwnode(dev, dev_fwnode(map->dev), map,
1071 					       irq, irq_flags, irq_base, chip,
1072 					       data);
1073 }
1074 EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip);
1075 
1076 /**
1077  * devm_regmap_del_irq_chip() - Resource managed regmap_del_irq_chip()
1078  *
1079  * @dev: Device for which the resource was allocated.
1080  * @irq: Primary IRQ for the device.
1081  * @data: &regmap_irq_chip_data allocated by regmap_add_irq_chip().
1082  *
1083  * A resource managed version of regmap_del_irq_chip().
1084  */
1085 void devm_regmap_del_irq_chip(struct device *dev, int irq,
1086 			      struct regmap_irq_chip_data *data)
1087 {
1088 	int rc;
1089 
1090 	WARN_ON(irq != data->irq);
1091 	rc = devres_release(dev, devm_regmap_irq_chip_release,
1092 			    devm_regmap_irq_chip_match, data);
1093 
1094 	if (rc != 0)
1095 		WARN_ON(rc);
1096 }
1097 EXPORT_SYMBOL_GPL(devm_regmap_del_irq_chip);
1098 
1099 /**
1100  * regmap_irq_chip_get_base() - Retrieve interrupt base for a regmap IRQ chip
1101  *
1102  * @data: regmap irq controller to operate on.
1103  *
1104  * Useful for drivers to request their own IRQs.
1105  */
1106 int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data)
1107 {
1108 	WARN_ON(!data->irq_base);
1109 	return data->irq_base;
1110 }
1111 EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base);
1112 
1113 /**
1114  * regmap_irq_get_virq() - Map an interrupt on a chip to a virtual IRQ
1115  *
1116  * @data: regmap irq controller to operate on.
1117  * @irq: index of the interrupt requested in the chip IRQs.
1118  *
1119  * Useful for drivers to request their own IRQs.
1120  */
1121 int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq)
1122 {
1123 	/* Handle holes in the IRQ list */
1124 	if (!data->chip->irqs[irq].mask)
1125 		return -EINVAL;
1126 
1127 	return irq_create_mapping(data->domain, irq);
1128 }
1129 EXPORT_SYMBOL_GPL(regmap_irq_get_virq);
1130 
1131 /**
1132  * regmap_irq_get_domain() - Retrieve the irq_domain for the chip
1133  *
1134  * @data: regmap_irq controller to operate on.
1135  *
1136  * Useful for drivers to request their own IRQs and for integration
1137  * with subsystems.  For ease of integration NULL is accepted as a
1138  * domain, allowing devices to just call this even if no domain is
1139  * allocated.
1140  */
1141 struct irq_domain *regmap_irq_get_domain(struct regmap_irq_chip_data *data)
1142 {
1143 	if (data)
1144 		return data->domain;
1145 	else
1146 		return NULL;
1147 }
1148 EXPORT_SYMBOL_GPL(regmap_irq_get_domain);
1149