1 /* 2 * regmap based irq_chip 3 * 4 * Copyright 2011 Wolfson Microelectronics plc 5 * 6 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License version 2 as 10 * published by the Free Software Foundation. 11 */ 12 13 #include <linux/export.h> 14 #include <linux/device.h> 15 #include <linux/regmap.h> 16 #include <linux/irq.h> 17 #include <linux/interrupt.h> 18 #include <linux/irqdomain.h> 19 #include <linux/slab.h> 20 21 #include "internal.h" 22 23 struct regmap_irq_chip_data { 24 struct mutex lock; 25 26 struct regmap *map; 27 struct regmap_irq_chip *chip; 28 29 int irq_base; 30 struct irq_domain *domain; 31 32 unsigned int *status_buf; 33 unsigned int *mask_buf; 34 unsigned int *mask_buf_def; 35 36 unsigned int irq_reg_stride; 37 }; 38 39 static inline const 40 struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data, 41 int irq) 42 { 43 return &data->chip->irqs[irq]; 44 } 45 46 static void regmap_irq_lock(struct irq_data *data) 47 { 48 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data); 49 50 mutex_lock(&d->lock); 51 } 52 53 static void regmap_irq_sync_unlock(struct irq_data *data) 54 { 55 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data); 56 struct regmap *map = d->map; 57 int i, ret; 58 59 /* 60 * If there's been a change in the mask write it back to the 61 * hardware. We rely on the use of the regmap core cache to 62 * suppress pointless writes. 63 */ 64 for (i = 0; i < d->chip->num_regs; i++) { 65 ret = regmap_update_bits(d->map, d->chip->mask_base + 66 (i * map->reg_stride * 67 d->irq_reg_stride), 68 d->mask_buf_def[i], d->mask_buf[i]); 69 if (ret != 0) 70 dev_err(d->map->dev, "Failed to sync masks in %x\n", 71 d->chip->mask_base + (i * map->reg_stride)); 72 } 73 74 mutex_unlock(&d->lock); 75 } 76 77 static void regmap_irq_enable(struct irq_data *data) 78 { 79 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data); 80 struct regmap *map = d->map; 81 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq); 82 83 d->mask_buf[irq_data->reg_offset / map->reg_stride] &= ~irq_data->mask; 84 } 85 86 static void regmap_irq_disable(struct irq_data *data) 87 { 88 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data); 89 struct regmap *map = d->map; 90 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq); 91 92 d->mask_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask; 93 } 94 95 static struct irq_chip regmap_irq_chip = { 96 .name = "regmap", 97 .irq_bus_lock = regmap_irq_lock, 98 .irq_bus_sync_unlock = regmap_irq_sync_unlock, 99 .irq_disable = regmap_irq_disable, 100 .irq_enable = regmap_irq_enable, 101 }; 102 103 static irqreturn_t regmap_irq_thread(int irq, void *d) 104 { 105 struct regmap_irq_chip_data *data = d; 106 struct regmap_irq_chip *chip = data->chip; 107 struct regmap *map = data->map; 108 int ret, i; 109 bool handled = false; 110 111 /* 112 * Ignore masked IRQs and ack if we need to; we ack early so 113 * there is no race between handling and acknowleding the 114 * interrupt. We assume that typically few of the interrupts 115 * will fire simultaneously so don't worry about overhead from 116 * doing a write per register. 117 */ 118 for (i = 0; i < data->chip->num_regs; i++) { 119 ret = regmap_read(map, chip->status_base + (i * map->reg_stride 120 * data->irq_reg_stride), 121 &data->status_buf[i]); 122 123 if (ret != 0) { 124 dev_err(map->dev, "Failed to read IRQ status: %d\n", 125 ret); 126 return IRQ_NONE; 127 } 128 129 data->status_buf[i] &= ~data->mask_buf[i]; 130 131 if (data->status_buf[i] && chip->ack_base) { 132 ret = regmap_write(map, chip->ack_base + 133 (i * map->reg_stride * 134 data->irq_reg_stride), 135 data->status_buf[i]); 136 if (ret != 0) 137 dev_err(map->dev, "Failed to ack 0x%x: %d\n", 138 chip->ack_base + (i * map->reg_stride), 139 ret); 140 } 141 } 142 143 for (i = 0; i < chip->num_irqs; i++) { 144 if (data->status_buf[chip->irqs[i].reg_offset / 145 map->reg_stride] & chip->irqs[i].mask) { 146 handle_nested_irq(irq_find_mapping(data->domain, i)); 147 handled = true; 148 } 149 } 150 151 if (handled) 152 return IRQ_HANDLED; 153 else 154 return IRQ_NONE; 155 } 156 157 static int regmap_irq_map(struct irq_domain *h, unsigned int virq, 158 irq_hw_number_t hw) 159 { 160 struct regmap_irq_chip_data *data = h->host_data; 161 162 irq_set_chip_data(virq, data); 163 irq_set_chip_and_handler(virq, ®map_irq_chip, handle_edge_irq); 164 irq_set_nested_thread(virq, 1); 165 166 /* ARM needs us to explicitly flag the IRQ as valid 167 * and will set them noprobe when we do so. */ 168 #ifdef CONFIG_ARM 169 set_irq_flags(virq, IRQF_VALID); 170 #else 171 irq_set_noprobe(virq); 172 #endif 173 174 return 0; 175 } 176 177 static struct irq_domain_ops regmap_domain_ops = { 178 .map = regmap_irq_map, 179 .xlate = irq_domain_xlate_twocell, 180 }; 181 182 /** 183 * regmap_add_irq_chip(): Use standard regmap IRQ controller handling 184 * 185 * map: The regmap for the device. 186 * irq: The IRQ the device uses to signal interrupts 187 * irq_flags: The IRQF_ flags to use for the primary interrupt. 188 * chip: Configuration for the interrupt controller. 189 * data: Runtime data structure for the controller, allocated on success 190 * 191 * Returns 0 on success or an errno on failure. 192 * 193 * In order for this to be efficient the chip really should use a 194 * register cache. The chip driver is responsible for restoring the 195 * register values used by the IRQ controller over suspend and resume. 196 */ 197 int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags, 198 int irq_base, struct regmap_irq_chip *chip, 199 struct regmap_irq_chip_data **data) 200 { 201 struct regmap_irq_chip_data *d; 202 int i; 203 int ret = -ENOMEM; 204 205 for (i = 0; i < chip->num_irqs; i++) { 206 if (chip->irqs[i].reg_offset % map->reg_stride) 207 return -EINVAL; 208 if (chip->irqs[i].reg_offset / map->reg_stride >= 209 chip->num_regs) 210 return -EINVAL; 211 } 212 213 if (irq_base) { 214 irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0); 215 if (irq_base < 0) { 216 dev_warn(map->dev, "Failed to allocate IRQs: %d\n", 217 irq_base); 218 return irq_base; 219 } 220 } 221 222 d = kzalloc(sizeof(*d), GFP_KERNEL); 223 if (!d) 224 return -ENOMEM; 225 226 *data = d; 227 228 d->status_buf = kzalloc(sizeof(unsigned int) * chip->num_regs, 229 GFP_KERNEL); 230 if (!d->status_buf) 231 goto err_alloc; 232 233 d->mask_buf = kzalloc(sizeof(unsigned int) * chip->num_regs, 234 GFP_KERNEL); 235 if (!d->mask_buf) 236 goto err_alloc; 237 238 d->mask_buf_def = kzalloc(sizeof(unsigned int) * chip->num_regs, 239 GFP_KERNEL); 240 if (!d->mask_buf_def) 241 goto err_alloc; 242 243 d->map = map; 244 d->chip = chip; 245 d->irq_base = irq_base; 246 247 if (chip->irq_reg_stride) 248 d->irq_reg_stride = chip->irq_reg_stride; 249 else 250 d->irq_reg_stride = 1; 251 252 mutex_init(&d->lock); 253 254 for (i = 0; i < chip->num_irqs; i++) 255 d->mask_buf_def[chip->irqs[i].reg_offset / map->reg_stride] 256 |= chip->irqs[i].mask; 257 258 /* Mask all the interrupts by default */ 259 for (i = 0; i < chip->num_regs; i++) { 260 d->mask_buf[i] = d->mask_buf_def[i]; 261 ret = regmap_write(map, chip->mask_base + (i * map->reg_stride 262 * d->irq_reg_stride), 263 d->mask_buf[i]); 264 if (ret != 0) { 265 dev_err(map->dev, "Failed to set masks in 0x%x: %d\n", 266 chip->mask_base + (i * map->reg_stride), ret); 267 goto err_alloc; 268 } 269 } 270 271 if (irq_base) 272 d->domain = irq_domain_add_legacy(map->dev->of_node, 273 chip->num_irqs, irq_base, 0, 274 ®map_domain_ops, d); 275 else 276 d->domain = irq_domain_add_linear(map->dev->of_node, 277 chip->num_irqs, 278 ®map_domain_ops, d); 279 if (!d->domain) { 280 dev_err(map->dev, "Failed to create IRQ domain\n"); 281 ret = -ENOMEM; 282 goto err_alloc; 283 } 284 285 ret = request_threaded_irq(irq, NULL, regmap_irq_thread, irq_flags, 286 chip->name, d); 287 if (ret != 0) { 288 dev_err(map->dev, "Failed to request IRQ %d: %d\n", irq, ret); 289 goto err_domain; 290 } 291 292 return 0; 293 294 err_domain: 295 /* Should really dispose of the domain but... */ 296 err_alloc: 297 kfree(d->mask_buf_def); 298 kfree(d->mask_buf); 299 kfree(d->status_buf); 300 kfree(d); 301 return ret; 302 } 303 EXPORT_SYMBOL_GPL(regmap_add_irq_chip); 304 305 /** 306 * regmap_del_irq_chip(): Stop interrupt handling for a regmap IRQ chip 307 * 308 * @irq: Primary IRQ for the device 309 * @d: regmap_irq_chip_data allocated by regmap_add_irq_chip() 310 */ 311 void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d) 312 { 313 if (!d) 314 return; 315 316 free_irq(irq, d); 317 /* We should unmap the domain but... */ 318 kfree(d->mask_buf_def); 319 kfree(d->mask_buf); 320 kfree(d->status_buf); 321 kfree(d); 322 } 323 EXPORT_SYMBOL_GPL(regmap_del_irq_chip); 324 325 /** 326 * regmap_irq_chip_get_base(): Retrieve interrupt base for a regmap IRQ chip 327 * 328 * Useful for drivers to request their own IRQs. 329 * 330 * @data: regmap_irq controller to operate on. 331 */ 332 int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data) 333 { 334 WARN_ON(!data->irq_base); 335 return data->irq_base; 336 } 337 EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base); 338 339 /** 340 * regmap_irq_get_virq(): Map an interrupt on a chip to a virtual IRQ 341 * 342 * Useful for drivers to request their own IRQs. 343 * 344 * @data: regmap_irq controller to operate on. 345 * @irq: index of the interrupt requested in the chip IRQs 346 */ 347 int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq) 348 { 349 return irq_create_mapping(data->domain, irq); 350 } 351 EXPORT_SYMBOL_GPL(regmap_irq_get_virq); 352