xref: /linux/drivers/base/regmap/regmap-irq.c (revision a8fe58cec351c25e09c393bf46117c0c47b5a17c)
1 /*
2  * regmap based irq_chip
3  *
4  * Copyright 2011 Wolfson Microelectronics plc
5  *
6  * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #include <linux/device.h>
14 #include <linux/export.h>
15 #include <linux/interrupt.h>
16 #include <linux/irq.h>
17 #include <linux/irqdomain.h>
18 #include <linux/pm_runtime.h>
19 #include <linux/regmap.h>
20 #include <linux/slab.h>
21 
22 #include "internal.h"
23 
24 struct regmap_irq_chip_data {
25 	struct mutex lock;
26 	struct irq_chip irq_chip;
27 
28 	struct regmap *map;
29 	const struct regmap_irq_chip *chip;
30 
31 	int irq_base;
32 	struct irq_domain *domain;
33 
34 	int irq;
35 	int wake_count;
36 
37 	void *status_reg_buf;
38 	unsigned int *status_buf;
39 	unsigned int *mask_buf;
40 	unsigned int *mask_buf_def;
41 	unsigned int *wake_buf;
42 	unsigned int *type_buf;
43 	unsigned int *type_buf_def;
44 
45 	unsigned int irq_reg_stride;
46 	unsigned int type_reg_stride;
47 };
48 
49 static inline const
50 struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data,
51 				     int irq)
52 {
53 	return &data->chip->irqs[irq];
54 }
55 
56 static void regmap_irq_lock(struct irq_data *data)
57 {
58 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
59 
60 	mutex_lock(&d->lock);
61 }
62 
63 static void regmap_irq_sync_unlock(struct irq_data *data)
64 {
65 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
66 	struct regmap *map = d->map;
67 	int i, ret;
68 	u32 reg;
69 	u32 unmask_offset;
70 
71 	if (d->chip->runtime_pm) {
72 		ret = pm_runtime_get_sync(map->dev);
73 		if (ret < 0)
74 			dev_err(map->dev, "IRQ sync failed to resume: %d\n",
75 				ret);
76 	}
77 
78 	/*
79 	 * If there's been a change in the mask write it back to the
80 	 * hardware.  We rely on the use of the regmap core cache to
81 	 * suppress pointless writes.
82 	 */
83 	for (i = 0; i < d->chip->num_regs; i++) {
84 		reg = d->chip->mask_base +
85 			(i * map->reg_stride * d->irq_reg_stride);
86 		if (d->chip->mask_invert) {
87 			ret = regmap_update_bits(d->map, reg,
88 					 d->mask_buf_def[i], ~d->mask_buf[i]);
89 		} else if (d->chip->unmask_base) {
90 			/* set mask with mask_base register */
91 			ret = regmap_update_bits(d->map, reg,
92 					d->mask_buf_def[i], ~d->mask_buf[i]);
93 			if (ret < 0)
94 				dev_err(d->map->dev,
95 					"Failed to sync unmasks in %x\n",
96 					reg);
97 			unmask_offset = d->chip->unmask_base -
98 							d->chip->mask_base;
99 			/* clear mask with unmask_base register */
100 			ret = regmap_update_bits(d->map,
101 					reg + unmask_offset,
102 					d->mask_buf_def[i],
103 					d->mask_buf[i]);
104 		} else {
105 			ret = regmap_update_bits(d->map, reg,
106 					 d->mask_buf_def[i], d->mask_buf[i]);
107 		}
108 		if (ret != 0)
109 			dev_err(d->map->dev, "Failed to sync masks in %x\n",
110 				reg);
111 
112 		reg = d->chip->wake_base +
113 			(i * map->reg_stride * d->irq_reg_stride);
114 		if (d->wake_buf) {
115 			if (d->chip->wake_invert)
116 				ret = regmap_update_bits(d->map, reg,
117 							 d->mask_buf_def[i],
118 							 ~d->wake_buf[i]);
119 			else
120 				ret = regmap_update_bits(d->map, reg,
121 							 d->mask_buf_def[i],
122 							 d->wake_buf[i]);
123 			if (ret != 0)
124 				dev_err(d->map->dev,
125 					"Failed to sync wakes in %x: %d\n",
126 					reg, ret);
127 		}
128 
129 		if (!d->chip->init_ack_masked)
130 			continue;
131 		/*
132 		 * Ack all the masked interrupts unconditionally,
133 		 * OR if there is masked interrupt which hasn't been Acked,
134 		 * it'll be ignored in irq handler, then may introduce irq storm
135 		 */
136 		if (d->mask_buf[i] && (d->chip->ack_base || d->chip->use_ack)) {
137 			reg = d->chip->ack_base +
138 				(i * map->reg_stride * d->irq_reg_stride);
139 			/* some chips ack by write 0 */
140 			if (d->chip->ack_invert)
141 				ret = regmap_write(map, reg, ~d->mask_buf[i]);
142 			else
143 				ret = regmap_write(map, reg, d->mask_buf[i]);
144 			if (ret != 0)
145 				dev_err(d->map->dev, "Failed to ack 0x%x: %d\n",
146 					reg, ret);
147 		}
148 	}
149 
150 	for (i = 0; i < d->chip->num_type_reg; i++) {
151 		if (!d->type_buf_def[i])
152 			continue;
153 		reg = d->chip->type_base +
154 			(i * map->reg_stride * d->type_reg_stride);
155 		if (d->chip->type_invert)
156 			ret = regmap_update_bits(d->map, reg,
157 				d->type_buf_def[i], ~d->type_buf[i]);
158 		else
159 			ret = regmap_update_bits(d->map, reg,
160 				d->type_buf_def[i], d->type_buf[i]);
161 		if (ret != 0)
162 			dev_err(d->map->dev, "Failed to sync type in %x\n",
163 				reg);
164 	}
165 
166 	if (d->chip->runtime_pm)
167 		pm_runtime_put(map->dev);
168 
169 	/* If we've changed our wakeup count propagate it to the parent */
170 	if (d->wake_count < 0)
171 		for (i = d->wake_count; i < 0; i++)
172 			irq_set_irq_wake(d->irq, 0);
173 	else if (d->wake_count > 0)
174 		for (i = 0; i < d->wake_count; i++)
175 			irq_set_irq_wake(d->irq, 1);
176 
177 	d->wake_count = 0;
178 
179 	mutex_unlock(&d->lock);
180 }
181 
182 static void regmap_irq_enable(struct irq_data *data)
183 {
184 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
185 	struct regmap *map = d->map;
186 	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
187 
188 	d->mask_buf[irq_data->reg_offset / map->reg_stride] &= ~irq_data->mask;
189 }
190 
191 static void regmap_irq_disable(struct irq_data *data)
192 {
193 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
194 	struct regmap *map = d->map;
195 	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
196 
197 	d->mask_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask;
198 }
199 
200 static int regmap_irq_set_type(struct irq_data *data, unsigned int type)
201 {
202 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
203 	struct regmap *map = d->map;
204 	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
205 	int reg = irq_data->type_reg_offset / map->reg_stride;
206 
207 	if (!(irq_data->type_rising_mask | irq_data->type_falling_mask))
208 		return 0;
209 
210 	d->type_buf[reg] &= ~(irq_data->type_falling_mask |
211 					irq_data->type_rising_mask);
212 	switch (type) {
213 	case IRQ_TYPE_EDGE_FALLING:
214 		d->type_buf[reg] |= irq_data->type_falling_mask;
215 		break;
216 
217 	case IRQ_TYPE_EDGE_RISING:
218 		d->type_buf[reg] |= irq_data->type_rising_mask;
219 		break;
220 
221 	case IRQ_TYPE_EDGE_BOTH:
222 		d->type_buf[reg] |= (irq_data->type_falling_mask |
223 					irq_data->type_rising_mask);
224 		break;
225 
226 	default:
227 		return -EINVAL;
228 	}
229 	return 0;
230 }
231 
232 static int regmap_irq_set_wake(struct irq_data *data, unsigned int on)
233 {
234 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
235 	struct regmap *map = d->map;
236 	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
237 
238 	if (on) {
239 		if (d->wake_buf)
240 			d->wake_buf[irq_data->reg_offset / map->reg_stride]
241 				&= ~irq_data->mask;
242 		d->wake_count++;
243 	} else {
244 		if (d->wake_buf)
245 			d->wake_buf[irq_data->reg_offset / map->reg_stride]
246 				|= irq_data->mask;
247 		d->wake_count--;
248 	}
249 
250 	return 0;
251 }
252 
253 static const struct irq_chip regmap_irq_chip = {
254 	.irq_bus_lock		= regmap_irq_lock,
255 	.irq_bus_sync_unlock	= regmap_irq_sync_unlock,
256 	.irq_disable		= regmap_irq_disable,
257 	.irq_enable		= regmap_irq_enable,
258 	.irq_set_type		= regmap_irq_set_type,
259 	.irq_set_wake		= regmap_irq_set_wake,
260 };
261 
262 static irqreturn_t regmap_irq_thread(int irq, void *d)
263 {
264 	struct regmap_irq_chip_data *data = d;
265 	const struct regmap_irq_chip *chip = data->chip;
266 	struct regmap *map = data->map;
267 	int ret, i;
268 	bool handled = false;
269 	u32 reg;
270 
271 	if (chip->runtime_pm) {
272 		ret = pm_runtime_get_sync(map->dev);
273 		if (ret < 0) {
274 			dev_err(map->dev, "IRQ thread failed to resume: %d\n",
275 				ret);
276 			pm_runtime_put(map->dev);
277 			return IRQ_NONE;
278 		}
279 	}
280 
281 	/*
282 	 * Read in the statuses, using a single bulk read if possible
283 	 * in order to reduce the I/O overheads.
284 	 */
285 	if (!map->use_single_read && map->reg_stride == 1 &&
286 	    data->irq_reg_stride == 1) {
287 		u8 *buf8 = data->status_reg_buf;
288 		u16 *buf16 = data->status_reg_buf;
289 		u32 *buf32 = data->status_reg_buf;
290 
291 		BUG_ON(!data->status_reg_buf);
292 
293 		ret = regmap_bulk_read(map, chip->status_base,
294 				       data->status_reg_buf,
295 				       chip->num_regs);
296 		if (ret != 0) {
297 			dev_err(map->dev, "Failed to read IRQ status: %d\n",
298 				ret);
299 			return IRQ_NONE;
300 		}
301 
302 		for (i = 0; i < data->chip->num_regs; i++) {
303 			switch (map->format.val_bytes) {
304 			case 1:
305 				data->status_buf[i] = buf8[i];
306 				break;
307 			case 2:
308 				data->status_buf[i] = buf16[i];
309 				break;
310 			case 4:
311 				data->status_buf[i] = buf32[i];
312 				break;
313 			default:
314 				BUG();
315 				return IRQ_NONE;
316 			}
317 		}
318 
319 	} else {
320 		for (i = 0; i < data->chip->num_regs; i++) {
321 			ret = regmap_read(map, chip->status_base +
322 					  (i * map->reg_stride
323 					   * data->irq_reg_stride),
324 					  &data->status_buf[i]);
325 
326 			if (ret != 0) {
327 				dev_err(map->dev,
328 					"Failed to read IRQ status: %d\n",
329 					ret);
330 				if (chip->runtime_pm)
331 					pm_runtime_put(map->dev);
332 				return IRQ_NONE;
333 			}
334 		}
335 	}
336 
337 	/*
338 	 * Ignore masked IRQs and ack if we need to; we ack early so
339 	 * there is no race between handling and acknowleding the
340 	 * interrupt.  We assume that typically few of the interrupts
341 	 * will fire simultaneously so don't worry about overhead from
342 	 * doing a write per register.
343 	 */
344 	for (i = 0; i < data->chip->num_regs; i++) {
345 		data->status_buf[i] &= ~data->mask_buf[i];
346 
347 		if (data->status_buf[i] && (chip->ack_base || chip->use_ack)) {
348 			reg = chip->ack_base +
349 				(i * map->reg_stride * data->irq_reg_stride);
350 			ret = regmap_write(map, reg, data->status_buf[i]);
351 			if (ret != 0)
352 				dev_err(map->dev, "Failed to ack 0x%x: %d\n",
353 					reg, ret);
354 		}
355 	}
356 
357 	for (i = 0; i < chip->num_irqs; i++) {
358 		if (data->status_buf[chip->irqs[i].reg_offset /
359 				     map->reg_stride] & chip->irqs[i].mask) {
360 			handle_nested_irq(irq_find_mapping(data->domain, i));
361 			handled = true;
362 		}
363 	}
364 
365 	if (chip->runtime_pm)
366 		pm_runtime_put(map->dev);
367 
368 	if (handled)
369 		return IRQ_HANDLED;
370 	else
371 		return IRQ_NONE;
372 }
373 
374 static int regmap_irq_map(struct irq_domain *h, unsigned int virq,
375 			  irq_hw_number_t hw)
376 {
377 	struct regmap_irq_chip_data *data = h->host_data;
378 
379 	irq_set_chip_data(virq, data);
380 	irq_set_chip(virq, &data->irq_chip);
381 	irq_set_nested_thread(virq, 1);
382 	irq_set_noprobe(virq);
383 
384 	return 0;
385 }
386 
387 static const struct irq_domain_ops regmap_domain_ops = {
388 	.map	= regmap_irq_map,
389 	.xlate	= irq_domain_xlate_twocell,
390 };
391 
392 /**
393  * regmap_add_irq_chip(): Use standard regmap IRQ controller handling
394  *
395  * map:       The regmap for the device.
396  * irq:       The IRQ the device uses to signal interrupts
397  * irq_flags: The IRQF_ flags to use for the primary interrupt.
398  * chip:      Configuration for the interrupt controller.
399  * data:      Runtime data structure for the controller, allocated on success
400  *
401  * Returns 0 on success or an errno on failure.
402  *
403  * In order for this to be efficient the chip really should use a
404  * register cache.  The chip driver is responsible for restoring the
405  * register values used by the IRQ controller over suspend and resume.
406  */
407 int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags,
408 			int irq_base, const struct regmap_irq_chip *chip,
409 			struct regmap_irq_chip_data **data)
410 {
411 	struct regmap_irq_chip_data *d;
412 	int i;
413 	int ret = -ENOMEM;
414 	u32 reg;
415 	u32 unmask_offset;
416 
417 	if (chip->num_regs <= 0)
418 		return -EINVAL;
419 
420 	for (i = 0; i < chip->num_irqs; i++) {
421 		if (chip->irqs[i].reg_offset % map->reg_stride)
422 			return -EINVAL;
423 		if (chip->irqs[i].reg_offset / map->reg_stride >=
424 		    chip->num_regs)
425 			return -EINVAL;
426 	}
427 
428 	if (irq_base) {
429 		irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0);
430 		if (irq_base < 0) {
431 			dev_warn(map->dev, "Failed to allocate IRQs: %d\n",
432 				 irq_base);
433 			return irq_base;
434 		}
435 	}
436 
437 	d = kzalloc(sizeof(*d), GFP_KERNEL);
438 	if (!d)
439 		return -ENOMEM;
440 
441 	d->status_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
442 				GFP_KERNEL);
443 	if (!d->status_buf)
444 		goto err_alloc;
445 
446 	d->mask_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
447 			      GFP_KERNEL);
448 	if (!d->mask_buf)
449 		goto err_alloc;
450 
451 	d->mask_buf_def = kcalloc(chip->num_regs, sizeof(unsigned int),
452 				  GFP_KERNEL);
453 	if (!d->mask_buf_def)
454 		goto err_alloc;
455 
456 	if (chip->wake_base) {
457 		d->wake_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
458 				      GFP_KERNEL);
459 		if (!d->wake_buf)
460 			goto err_alloc;
461 	}
462 
463 	if (chip->num_type_reg) {
464 		d->type_buf_def = kcalloc(chip->num_type_reg,
465 					sizeof(unsigned int), GFP_KERNEL);
466 		if (!d->type_buf_def)
467 			goto err_alloc;
468 
469 		d->type_buf = kcalloc(chip->num_type_reg, sizeof(unsigned int),
470 				      GFP_KERNEL);
471 		if (!d->type_buf)
472 			goto err_alloc;
473 	}
474 
475 	d->irq_chip = regmap_irq_chip;
476 	d->irq_chip.name = chip->name;
477 	d->irq = irq;
478 	d->map = map;
479 	d->chip = chip;
480 	d->irq_base = irq_base;
481 
482 	if (chip->irq_reg_stride)
483 		d->irq_reg_stride = chip->irq_reg_stride;
484 	else
485 		d->irq_reg_stride = 1;
486 
487 	if (chip->type_reg_stride)
488 		d->type_reg_stride = chip->type_reg_stride;
489 	else
490 		d->type_reg_stride = 1;
491 
492 	if (!map->use_single_read && map->reg_stride == 1 &&
493 	    d->irq_reg_stride == 1) {
494 		d->status_reg_buf = kmalloc_array(chip->num_regs,
495 						  map->format.val_bytes,
496 						  GFP_KERNEL);
497 		if (!d->status_reg_buf)
498 			goto err_alloc;
499 	}
500 
501 	mutex_init(&d->lock);
502 
503 	for (i = 0; i < chip->num_irqs; i++)
504 		d->mask_buf_def[chip->irqs[i].reg_offset / map->reg_stride]
505 			|= chip->irqs[i].mask;
506 
507 	/* Mask all the interrupts by default */
508 	for (i = 0; i < chip->num_regs; i++) {
509 		d->mask_buf[i] = d->mask_buf_def[i];
510 		reg = chip->mask_base +
511 			(i * map->reg_stride * d->irq_reg_stride);
512 		if (chip->mask_invert)
513 			ret = regmap_update_bits(map, reg,
514 					 d->mask_buf[i], ~d->mask_buf[i]);
515 		else if (d->chip->unmask_base) {
516 			unmask_offset = d->chip->unmask_base -
517 					d->chip->mask_base;
518 			ret = regmap_update_bits(d->map,
519 					reg + unmask_offset,
520 					d->mask_buf[i],
521 					d->mask_buf[i]);
522 		} else
523 			ret = regmap_update_bits(map, reg,
524 					 d->mask_buf[i], d->mask_buf[i]);
525 		if (ret != 0) {
526 			dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
527 				reg, ret);
528 			goto err_alloc;
529 		}
530 
531 		if (!chip->init_ack_masked)
532 			continue;
533 
534 		/* Ack masked but set interrupts */
535 		reg = chip->status_base +
536 			(i * map->reg_stride * d->irq_reg_stride);
537 		ret = regmap_read(map, reg, &d->status_buf[i]);
538 		if (ret != 0) {
539 			dev_err(map->dev, "Failed to read IRQ status: %d\n",
540 				ret);
541 			goto err_alloc;
542 		}
543 
544 		if (d->status_buf[i] && (chip->ack_base || chip->use_ack)) {
545 			reg = chip->ack_base +
546 				(i * map->reg_stride * d->irq_reg_stride);
547 			if (chip->ack_invert)
548 				ret = regmap_write(map, reg,
549 					~(d->status_buf[i] & d->mask_buf[i]));
550 			else
551 				ret = regmap_write(map, reg,
552 					d->status_buf[i] & d->mask_buf[i]);
553 			if (ret != 0) {
554 				dev_err(map->dev, "Failed to ack 0x%x: %d\n",
555 					reg, ret);
556 				goto err_alloc;
557 			}
558 		}
559 	}
560 
561 	/* Wake is disabled by default */
562 	if (d->wake_buf) {
563 		for (i = 0; i < chip->num_regs; i++) {
564 			d->wake_buf[i] = d->mask_buf_def[i];
565 			reg = chip->wake_base +
566 				(i * map->reg_stride * d->irq_reg_stride);
567 
568 			if (chip->wake_invert)
569 				ret = regmap_update_bits(map, reg,
570 							 d->mask_buf_def[i],
571 							 0);
572 			else
573 				ret = regmap_update_bits(map, reg,
574 							 d->mask_buf_def[i],
575 							 d->wake_buf[i]);
576 			if (ret != 0) {
577 				dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
578 					reg, ret);
579 				goto err_alloc;
580 			}
581 		}
582 	}
583 
584 	if (chip->num_type_reg) {
585 		for (i = 0; i < chip->num_irqs; i++) {
586 			reg = chip->irqs[i].type_reg_offset / map->reg_stride;
587 			d->type_buf_def[reg] |= chip->irqs[i].type_rising_mask |
588 					chip->irqs[i].type_falling_mask;
589 		}
590 		for (i = 0; i < chip->num_type_reg; ++i) {
591 			if (!d->type_buf_def[i])
592 				continue;
593 
594 			reg = chip->type_base +
595 				(i * map->reg_stride * d->type_reg_stride);
596 			if (chip->type_invert)
597 				ret = regmap_update_bits(map, reg,
598 					d->type_buf_def[i], 0xFF);
599 			else
600 				ret = regmap_update_bits(map, reg,
601 					d->type_buf_def[i], 0x0);
602 			if (ret != 0) {
603 				dev_err(map->dev,
604 					"Failed to set type in 0x%x: %x\n",
605 					reg, ret);
606 				goto err_alloc;
607 			}
608 		}
609 	}
610 
611 	if (irq_base)
612 		d->domain = irq_domain_add_legacy(map->dev->of_node,
613 						  chip->num_irqs, irq_base, 0,
614 						  &regmap_domain_ops, d);
615 	else
616 		d->domain = irq_domain_add_linear(map->dev->of_node,
617 						  chip->num_irqs,
618 						  &regmap_domain_ops, d);
619 	if (!d->domain) {
620 		dev_err(map->dev, "Failed to create IRQ domain\n");
621 		ret = -ENOMEM;
622 		goto err_alloc;
623 	}
624 
625 	ret = request_threaded_irq(irq, NULL, regmap_irq_thread,
626 				   irq_flags | IRQF_ONESHOT,
627 				   chip->name, d);
628 	if (ret != 0) {
629 		dev_err(map->dev, "Failed to request IRQ %d for %s: %d\n",
630 			irq, chip->name, ret);
631 		goto err_domain;
632 	}
633 
634 	*data = d;
635 
636 	return 0;
637 
638 err_domain:
639 	/* Should really dispose of the domain but... */
640 err_alloc:
641 	kfree(d->type_buf);
642 	kfree(d->type_buf_def);
643 	kfree(d->wake_buf);
644 	kfree(d->mask_buf_def);
645 	kfree(d->mask_buf);
646 	kfree(d->status_buf);
647 	kfree(d->status_reg_buf);
648 	kfree(d);
649 	return ret;
650 }
651 EXPORT_SYMBOL_GPL(regmap_add_irq_chip);
652 
653 /**
654  * regmap_del_irq_chip(): Stop interrupt handling for a regmap IRQ chip
655  *
656  * @irq: Primary IRQ for the device
657  * @d:   regmap_irq_chip_data allocated by regmap_add_irq_chip()
658  */
659 void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d)
660 {
661 	if (!d)
662 		return;
663 
664 	free_irq(irq, d);
665 	irq_domain_remove(d->domain);
666 	kfree(d->type_buf);
667 	kfree(d->type_buf_def);
668 	kfree(d->wake_buf);
669 	kfree(d->mask_buf_def);
670 	kfree(d->mask_buf);
671 	kfree(d->status_reg_buf);
672 	kfree(d->status_buf);
673 	kfree(d);
674 }
675 EXPORT_SYMBOL_GPL(regmap_del_irq_chip);
676 
677 /**
678  * regmap_irq_chip_get_base(): Retrieve interrupt base for a regmap IRQ chip
679  *
680  * Useful for drivers to request their own IRQs.
681  *
682  * @data: regmap_irq controller to operate on.
683  */
684 int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data)
685 {
686 	WARN_ON(!data->irq_base);
687 	return data->irq_base;
688 }
689 EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base);
690 
691 /**
692  * regmap_irq_get_virq(): Map an interrupt on a chip to a virtual IRQ
693  *
694  * Useful for drivers to request their own IRQs.
695  *
696  * @data: regmap_irq controller to operate on.
697  * @irq: index of the interrupt requested in the chip IRQs
698  */
699 int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq)
700 {
701 	/* Handle holes in the IRQ list */
702 	if (!data->chip->irqs[irq].mask)
703 		return -EINVAL;
704 
705 	return irq_create_mapping(data->domain, irq);
706 }
707 EXPORT_SYMBOL_GPL(regmap_irq_get_virq);
708 
709 /**
710  * regmap_irq_get_domain(): Retrieve the irq_domain for the chip
711  *
712  * Useful for drivers to request their own IRQs and for integration
713  * with subsystems.  For ease of integration NULL is accepted as a
714  * domain, allowing devices to just call this even if no domain is
715  * allocated.
716  *
717  * @data: regmap_irq controller to operate on.
718  */
719 struct irq_domain *regmap_irq_get_domain(struct regmap_irq_chip_data *data)
720 {
721 	if (data)
722 		return data->domain;
723 	else
724 		return NULL;
725 }
726 EXPORT_SYMBOL_GPL(regmap_irq_get_domain);
727