1 // SPDX-License-Identifier: GPL-2.0 2 // 3 // regmap based irq_chip 4 // 5 // Copyright 2011 Wolfson Microelectronics plc 6 // 7 // Author: Mark Brown <broonie@opensource.wolfsonmicro.com> 8 9 #include <linux/device.h> 10 #include <linux/export.h> 11 #include <linux/interrupt.h> 12 #include <linux/irq.h> 13 #include <linux/irqdomain.h> 14 #include <linux/pm_runtime.h> 15 #include <linux/regmap.h> 16 #include <linux/slab.h> 17 18 #include "internal.h" 19 20 struct regmap_irq_chip_data { 21 struct mutex lock; 22 struct irq_chip irq_chip; 23 24 struct regmap *map; 25 const struct regmap_irq_chip *chip; 26 27 int irq_base; 28 struct irq_domain *domain; 29 30 int irq; 31 int wake_count; 32 33 void *status_reg_buf; 34 unsigned int *main_status_buf; 35 unsigned int *status_buf; 36 unsigned int *mask_buf; 37 unsigned int *mask_buf_def; 38 unsigned int *wake_buf; 39 unsigned int *type_buf; 40 unsigned int *type_buf_def; 41 unsigned int **config_buf; 42 43 unsigned int irq_reg_stride; 44 45 unsigned int (*get_irq_reg)(struct regmap_irq_chip_data *data, 46 unsigned int base, int index); 47 48 unsigned int clear_status:1; 49 }; 50 51 static inline const 52 struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data, 53 int irq) 54 { 55 return &data->chip->irqs[irq]; 56 } 57 58 static bool regmap_irq_can_bulk_read_status(struct regmap_irq_chip_data *data) 59 { 60 struct regmap *map = data->map; 61 62 /* 63 * While possible that a user-defined ->get_irq_reg() callback might 64 * be linear enough to support bulk reads, most of the time it won't. 65 * Therefore only allow them if the default callback is being used. 66 */ 67 return data->irq_reg_stride == 1 && map->reg_stride == 1 && 68 data->get_irq_reg == regmap_irq_get_irq_reg_linear && 69 !map->use_single_read; 70 } 71 72 static void regmap_irq_lock(struct irq_data *data) 73 { 74 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data); 75 76 mutex_lock(&d->lock); 77 } 78 79 static void regmap_irq_sync_unlock(struct irq_data *data) 80 { 81 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data); 82 struct regmap *map = d->map; 83 int i, j, ret; 84 u32 reg; 85 u32 val; 86 87 if (d->chip->runtime_pm) { 88 ret = pm_runtime_get_sync(map->dev); 89 if (ret < 0) 90 dev_err(map->dev, "IRQ sync failed to resume: %d\n", 91 ret); 92 } 93 94 if (d->clear_status) { 95 for (i = 0; i < d->chip->num_regs; i++) { 96 reg = d->get_irq_reg(d, d->chip->status_base, i); 97 98 ret = regmap_read(map, reg, &val); 99 if (ret) 100 dev_err(d->map->dev, 101 "Failed to clear the interrupt status bits\n"); 102 } 103 104 d->clear_status = false; 105 } 106 107 /* 108 * If there's been a change in the mask write it back to the 109 * hardware. We rely on the use of the regmap core cache to 110 * suppress pointless writes. 111 */ 112 for (i = 0; i < d->chip->num_regs; i++) { 113 if (d->chip->handle_mask_sync) 114 d->chip->handle_mask_sync(i, d->mask_buf_def[i], 115 d->mask_buf[i], 116 d->chip->irq_drv_data); 117 118 if (d->chip->mask_base && !d->chip->handle_mask_sync) { 119 reg = d->get_irq_reg(d, d->chip->mask_base, i); 120 ret = regmap_update_bits(d->map, reg, 121 d->mask_buf_def[i], 122 d->mask_buf[i]); 123 if (ret) 124 dev_err(d->map->dev, "Failed to sync masks in %x\n", reg); 125 } 126 127 if (d->chip->unmask_base && !d->chip->handle_mask_sync) { 128 reg = d->get_irq_reg(d, d->chip->unmask_base, i); 129 ret = regmap_update_bits(d->map, reg, 130 d->mask_buf_def[i], ~d->mask_buf[i]); 131 if (ret) 132 dev_err(d->map->dev, "Failed to sync masks in %x\n", 133 reg); 134 } 135 136 reg = d->get_irq_reg(d, d->chip->wake_base, i); 137 if (d->wake_buf) { 138 if (d->chip->wake_invert) 139 ret = regmap_update_bits(d->map, reg, 140 d->mask_buf_def[i], 141 ~d->wake_buf[i]); 142 else 143 ret = regmap_update_bits(d->map, reg, 144 d->mask_buf_def[i], 145 d->wake_buf[i]); 146 if (ret != 0) 147 dev_err(d->map->dev, 148 "Failed to sync wakes in %x: %d\n", 149 reg, ret); 150 } 151 152 if (!d->chip->init_ack_masked) 153 continue; 154 /* 155 * Ack all the masked interrupts unconditionally, 156 * OR if there is masked interrupt which hasn't been Acked, 157 * it'll be ignored in irq handler, then may introduce irq storm 158 */ 159 if (d->mask_buf[i] && (d->chip->ack_base || d->chip->use_ack)) { 160 reg = d->get_irq_reg(d, d->chip->ack_base, i); 161 162 /* some chips ack by write 0 */ 163 if (d->chip->ack_invert) 164 ret = regmap_write(map, reg, ~d->mask_buf[i]); 165 else 166 ret = regmap_write(map, reg, d->mask_buf[i]); 167 if (d->chip->clear_ack) { 168 if (d->chip->ack_invert && !ret) 169 ret = regmap_write(map, reg, UINT_MAX); 170 else if (!ret) 171 ret = regmap_write(map, reg, 0); 172 } 173 if (ret != 0) 174 dev_err(d->map->dev, "Failed to ack 0x%x: %d\n", 175 reg, ret); 176 } 177 } 178 179 for (i = 0; i < d->chip->num_config_bases; i++) { 180 for (j = 0; j < d->chip->num_config_regs; j++) { 181 reg = d->get_irq_reg(d, d->chip->config_base[i], j); 182 ret = regmap_write(map, reg, d->config_buf[i][j]); 183 if (ret) 184 dev_err(d->map->dev, 185 "Failed to write config %x: %d\n", 186 reg, ret); 187 } 188 } 189 190 if (d->chip->runtime_pm) 191 pm_runtime_put(map->dev); 192 193 /* If we've changed our wakeup count propagate it to the parent */ 194 if (d->wake_count < 0) 195 for (i = d->wake_count; i < 0; i++) 196 irq_set_irq_wake(d->irq, 0); 197 else if (d->wake_count > 0) 198 for (i = 0; i < d->wake_count; i++) 199 irq_set_irq_wake(d->irq, 1); 200 201 d->wake_count = 0; 202 203 mutex_unlock(&d->lock); 204 } 205 206 static void regmap_irq_enable(struct irq_data *data) 207 { 208 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data); 209 struct regmap *map = d->map; 210 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq); 211 unsigned int reg = irq_data->reg_offset / map->reg_stride; 212 unsigned int mask; 213 214 /* 215 * The type_in_mask flag means that the underlying hardware uses 216 * separate mask bits for each interrupt trigger type, but we want 217 * to have a single logical interrupt with a configurable type. 218 * 219 * If the interrupt we're enabling defines any supported types 220 * then instead of using the regular mask bits for this interrupt, 221 * use the value previously written to the type buffer at the 222 * corresponding offset in regmap_irq_set_type(). 223 */ 224 if (d->chip->type_in_mask && irq_data->type.types_supported) 225 mask = d->type_buf[reg] & irq_data->mask; 226 else 227 mask = irq_data->mask; 228 229 if (d->chip->clear_on_unmask) 230 d->clear_status = true; 231 232 d->mask_buf[reg] &= ~mask; 233 } 234 235 static void regmap_irq_disable(struct irq_data *data) 236 { 237 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data); 238 struct regmap *map = d->map; 239 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq); 240 241 d->mask_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask; 242 } 243 244 static int regmap_irq_set_type(struct irq_data *data, unsigned int type) 245 { 246 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data); 247 struct regmap *map = d->map; 248 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq); 249 int reg, ret; 250 const struct regmap_irq_type *t = &irq_data->type; 251 252 if ((t->types_supported & type) != type) 253 return 0; 254 255 reg = t->type_reg_offset / map->reg_stride; 256 257 if (d->chip->type_in_mask) { 258 ret = regmap_irq_set_type_config_simple(&d->type_buf, type, 259 irq_data, reg, d->chip->irq_drv_data); 260 if (ret) 261 return ret; 262 } 263 264 if (d->chip->set_type_config) { 265 ret = d->chip->set_type_config(d->config_buf, type, irq_data, 266 reg, d->chip->irq_drv_data); 267 if (ret) 268 return ret; 269 } 270 271 return 0; 272 } 273 274 static int regmap_irq_set_wake(struct irq_data *data, unsigned int on) 275 { 276 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data); 277 struct regmap *map = d->map; 278 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq); 279 280 if (on) { 281 if (d->wake_buf) 282 d->wake_buf[irq_data->reg_offset / map->reg_stride] 283 &= ~irq_data->mask; 284 d->wake_count++; 285 } else { 286 if (d->wake_buf) 287 d->wake_buf[irq_data->reg_offset / map->reg_stride] 288 |= irq_data->mask; 289 d->wake_count--; 290 } 291 292 return 0; 293 } 294 295 static const struct irq_chip regmap_irq_chip = { 296 .irq_bus_lock = regmap_irq_lock, 297 .irq_bus_sync_unlock = regmap_irq_sync_unlock, 298 .irq_disable = regmap_irq_disable, 299 .irq_enable = regmap_irq_enable, 300 .irq_set_type = regmap_irq_set_type, 301 .irq_set_wake = regmap_irq_set_wake, 302 }; 303 304 static inline int read_sub_irq_data(struct regmap_irq_chip_data *data, 305 unsigned int b) 306 { 307 const struct regmap_irq_chip *chip = data->chip; 308 const struct regmap_irq_sub_irq_map *subreg; 309 struct regmap *map = data->map; 310 unsigned int reg; 311 int i, ret = 0; 312 313 if (!chip->sub_reg_offsets) { 314 reg = data->get_irq_reg(data, chip->status_base, b); 315 ret = regmap_read(map, reg, &data->status_buf[b]); 316 } else { 317 /* 318 * Note we can't use ->get_irq_reg() here because the offsets 319 * in 'subreg' are *not* interchangeable with indices. 320 */ 321 subreg = &chip->sub_reg_offsets[b]; 322 for (i = 0; i < subreg->num_regs; i++) { 323 unsigned int offset = subreg->offset[i]; 324 unsigned int index = offset / map->reg_stride; 325 326 ret = regmap_read(map, chip->status_base + offset, 327 &data->status_buf[index]); 328 if (ret) 329 break; 330 } 331 } 332 return ret; 333 } 334 335 static irqreturn_t regmap_irq_thread(int irq, void *d) 336 { 337 struct regmap_irq_chip_data *data = d; 338 const struct regmap_irq_chip *chip = data->chip; 339 struct regmap *map = data->map; 340 int ret, i; 341 bool handled = false; 342 u32 reg; 343 344 if (chip->handle_pre_irq) 345 chip->handle_pre_irq(chip->irq_drv_data); 346 347 if (chip->runtime_pm) { 348 ret = pm_runtime_get_sync(map->dev); 349 if (ret < 0) { 350 dev_err(map->dev, "IRQ thread failed to resume: %d\n", 351 ret); 352 goto exit; 353 } 354 } 355 356 /* 357 * Read only registers with active IRQs if the chip has 'main status 358 * register'. Else read in the statuses, using a single bulk read if 359 * possible in order to reduce the I/O overheads. 360 */ 361 362 if (chip->no_status) { 363 /* no status register so default to all active */ 364 memset32(data->status_buf, GENMASK(31, 0), chip->num_regs); 365 } else if (chip->num_main_regs) { 366 unsigned int max_main_bits; 367 368 max_main_bits = (chip->num_main_status_bits) ? 369 chip->num_main_status_bits : chip->num_regs; 370 /* Clear the status buf as we don't read all status regs */ 371 memset32(data->status_buf, 0, chip->num_regs); 372 373 /* We could support bulk read for main status registers 374 * but I don't expect to see devices with really many main 375 * status registers so let's only support single reads for the 376 * sake of simplicity. and add bulk reads only if needed 377 */ 378 for (i = 0; i < chip->num_main_regs; i++) { 379 reg = data->get_irq_reg(data, chip->main_status, i); 380 ret = regmap_read(map, reg, &data->main_status_buf[i]); 381 if (ret) { 382 dev_err(map->dev, 383 "Failed to read IRQ status %d\n", 384 ret); 385 goto exit; 386 } 387 } 388 389 /* Read sub registers with active IRQs */ 390 for (i = 0; i < chip->num_main_regs; i++) { 391 unsigned int b; 392 const unsigned long mreg = data->main_status_buf[i]; 393 394 for_each_set_bit(b, &mreg, map->format.val_bytes * 8) { 395 if (i * map->format.val_bytes * 8 + b > 396 max_main_bits) 397 break; 398 ret = read_sub_irq_data(data, b); 399 400 if (ret != 0) { 401 dev_err(map->dev, 402 "Failed to read IRQ status %d\n", 403 ret); 404 goto exit; 405 } 406 } 407 408 } 409 } else if (regmap_irq_can_bulk_read_status(data)) { 410 411 u8 *buf8 = data->status_reg_buf; 412 u16 *buf16 = data->status_reg_buf; 413 u32 *buf32 = data->status_reg_buf; 414 415 BUG_ON(!data->status_reg_buf); 416 417 ret = regmap_bulk_read(map, chip->status_base, 418 data->status_reg_buf, 419 chip->num_regs); 420 if (ret != 0) { 421 dev_err(map->dev, "Failed to read IRQ status: %d\n", 422 ret); 423 goto exit; 424 } 425 426 for (i = 0; i < data->chip->num_regs; i++) { 427 switch (map->format.val_bytes) { 428 case 1: 429 data->status_buf[i] = buf8[i]; 430 break; 431 case 2: 432 data->status_buf[i] = buf16[i]; 433 break; 434 case 4: 435 data->status_buf[i] = buf32[i]; 436 break; 437 default: 438 BUG(); 439 goto exit; 440 } 441 } 442 443 } else { 444 for (i = 0; i < data->chip->num_regs; i++) { 445 unsigned int reg = data->get_irq_reg(data, 446 data->chip->status_base, i); 447 ret = regmap_read(map, reg, &data->status_buf[i]); 448 449 if (ret != 0) { 450 dev_err(map->dev, 451 "Failed to read IRQ status: %d\n", 452 ret); 453 goto exit; 454 } 455 } 456 } 457 458 if (chip->status_invert) 459 for (i = 0; i < data->chip->num_regs; i++) 460 data->status_buf[i] = ~data->status_buf[i]; 461 462 /* 463 * Ignore masked IRQs and ack if we need to; we ack early so 464 * there is no race between handling and acknowledging the 465 * interrupt. We assume that typically few of the interrupts 466 * will fire simultaneously so don't worry about overhead from 467 * doing a write per register. 468 */ 469 for (i = 0; i < data->chip->num_regs; i++) { 470 data->status_buf[i] &= ~data->mask_buf[i]; 471 472 if (data->status_buf[i] && (chip->ack_base || chip->use_ack)) { 473 reg = data->get_irq_reg(data, data->chip->ack_base, i); 474 475 if (chip->ack_invert) 476 ret = regmap_write(map, reg, 477 ~data->status_buf[i]); 478 else 479 ret = regmap_write(map, reg, 480 data->status_buf[i]); 481 if (chip->clear_ack) { 482 if (chip->ack_invert && !ret) 483 ret = regmap_write(map, reg, UINT_MAX); 484 else if (!ret) 485 ret = regmap_write(map, reg, 0); 486 } 487 if (ret != 0) 488 dev_err(map->dev, "Failed to ack 0x%x: %d\n", 489 reg, ret); 490 } 491 } 492 493 for (i = 0; i < chip->num_irqs; i++) { 494 if (data->status_buf[chip->irqs[i].reg_offset / 495 map->reg_stride] & chip->irqs[i].mask) { 496 handle_nested_irq(irq_find_mapping(data->domain, i)); 497 handled = true; 498 } 499 } 500 501 exit: 502 if (chip->handle_post_irq) 503 chip->handle_post_irq(chip->irq_drv_data); 504 505 if (chip->runtime_pm) 506 pm_runtime_put(map->dev); 507 508 if (handled) 509 return IRQ_HANDLED; 510 else 511 return IRQ_NONE; 512 } 513 514 static struct lock_class_key regmap_irq_lock_class; 515 static struct lock_class_key regmap_irq_request_class; 516 517 static int regmap_irq_map(struct irq_domain *h, unsigned int virq, 518 irq_hw_number_t hw) 519 { 520 struct regmap_irq_chip_data *data = h->host_data; 521 522 irq_set_chip_data(virq, data); 523 irq_set_lockdep_class(virq, ®map_irq_lock_class, ®map_irq_request_class); 524 irq_set_chip(virq, &data->irq_chip); 525 irq_set_nested_thread(virq, 1); 526 irq_set_parent(virq, data->irq); 527 irq_set_noprobe(virq); 528 529 return 0; 530 } 531 532 static const struct irq_domain_ops regmap_domain_ops = { 533 .map = regmap_irq_map, 534 .xlate = irq_domain_xlate_onetwocell, 535 }; 536 537 /** 538 * regmap_irq_get_irq_reg_linear() - Linear IRQ register mapping callback. 539 * @data: Data for the &struct regmap_irq_chip 540 * @base: Base register 541 * @index: Register index 542 * 543 * Returns the register address corresponding to the given @base and @index 544 * by the formula ``base + index * regmap_stride * irq_reg_stride``. 545 */ 546 unsigned int regmap_irq_get_irq_reg_linear(struct regmap_irq_chip_data *data, 547 unsigned int base, int index) 548 { 549 struct regmap *map = data->map; 550 551 return base + index * map->reg_stride * data->irq_reg_stride; 552 } 553 EXPORT_SYMBOL_GPL(regmap_irq_get_irq_reg_linear); 554 555 /** 556 * regmap_irq_set_type_config_simple() - Simple IRQ type configuration callback. 557 * @buf: Buffer containing configuration register values, this is a 2D array of 558 * `num_config_bases` rows, each of `num_config_regs` elements. 559 * @type: The requested IRQ type. 560 * @irq_data: The IRQ being configured. 561 * @idx: Index of the irq's config registers within each array `buf[i]` 562 * @irq_drv_data: Driver specific IRQ data 563 * 564 * This is a &struct regmap_irq_chip->set_type_config callback suitable for 565 * chips with one config register. Register values are updated according to 566 * the &struct regmap_irq_type data associated with an IRQ. 567 */ 568 int regmap_irq_set_type_config_simple(unsigned int **buf, unsigned int type, 569 const struct regmap_irq *irq_data, 570 int idx, void *irq_drv_data) 571 { 572 const struct regmap_irq_type *t = &irq_data->type; 573 574 if (t->type_reg_mask) 575 buf[0][idx] &= ~t->type_reg_mask; 576 else 577 buf[0][idx] &= ~(t->type_falling_val | 578 t->type_rising_val | 579 t->type_level_low_val | 580 t->type_level_high_val); 581 582 switch (type) { 583 case IRQ_TYPE_EDGE_FALLING: 584 buf[0][idx] |= t->type_falling_val; 585 break; 586 587 case IRQ_TYPE_EDGE_RISING: 588 buf[0][idx] |= t->type_rising_val; 589 break; 590 591 case IRQ_TYPE_EDGE_BOTH: 592 buf[0][idx] |= (t->type_falling_val | 593 t->type_rising_val); 594 break; 595 596 case IRQ_TYPE_LEVEL_HIGH: 597 buf[0][idx] |= t->type_level_high_val; 598 break; 599 600 case IRQ_TYPE_LEVEL_LOW: 601 buf[0][idx] |= t->type_level_low_val; 602 break; 603 604 default: 605 return -EINVAL; 606 } 607 608 return 0; 609 } 610 EXPORT_SYMBOL_GPL(regmap_irq_set_type_config_simple); 611 612 static int regmap_irq_create_domain(struct fwnode_handle *fwnode, int irq_base, 613 const struct regmap_irq_chip *chip, 614 struct regmap_irq_chip_data *d) 615 { 616 struct irq_domain_info info = { 617 .fwnode = fwnode, 618 .size = chip->num_irqs, 619 .hwirq_max = chip->num_irqs, 620 .virq_base = irq_base, 621 .ops = ®map_domain_ops, 622 .host_data = d, 623 .name_suffix = chip->domain_suffix, 624 }; 625 626 d->domain = irq_domain_instantiate(&info); 627 if (IS_ERR(d->domain)) { 628 dev_err(d->map->dev, "Failed to create IRQ domain\n"); 629 return PTR_ERR(d->domain); 630 } 631 632 return 0; 633 } 634 635 636 /** 637 * regmap_add_irq_chip_fwnode() - Use standard regmap IRQ controller handling 638 * 639 * @fwnode: The firmware node where the IRQ domain should be added to. 640 * @map: The regmap for the device. 641 * @irq: The IRQ the device uses to signal interrupts. 642 * @irq_flags: The IRQF_ flags to use for the primary interrupt. 643 * @irq_base: Allocate at specific IRQ number if irq_base > 0. 644 * @chip: Configuration for the interrupt controller. 645 * @data: Runtime data structure for the controller, allocated on success. 646 * 647 * Returns 0 on success or an errno on failure. 648 * 649 * In order for this to be efficient the chip really should use a 650 * register cache. The chip driver is responsible for restoring the 651 * register values used by the IRQ controller over suspend and resume. 652 */ 653 int regmap_add_irq_chip_fwnode(struct fwnode_handle *fwnode, 654 struct regmap *map, int irq, 655 int irq_flags, int irq_base, 656 const struct regmap_irq_chip *chip, 657 struct regmap_irq_chip_data **data) 658 { 659 struct regmap_irq_chip_data *d; 660 int i; 661 int ret = -ENOMEM; 662 u32 reg; 663 664 if (chip->num_regs <= 0) 665 return -EINVAL; 666 667 if (chip->clear_on_unmask && (chip->ack_base || chip->use_ack)) 668 return -EINVAL; 669 670 if (chip->mask_base && chip->unmask_base && !chip->mask_unmask_non_inverted) 671 return -EINVAL; 672 673 for (i = 0; i < chip->num_irqs; i++) { 674 if (chip->irqs[i].reg_offset % map->reg_stride) 675 return -EINVAL; 676 if (chip->irqs[i].reg_offset / map->reg_stride >= 677 chip->num_regs) 678 return -EINVAL; 679 } 680 681 if (irq_base) { 682 irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0); 683 if (irq_base < 0) { 684 dev_warn(map->dev, "Failed to allocate IRQs: %d\n", 685 irq_base); 686 return irq_base; 687 } 688 } 689 690 d = kzalloc(sizeof(*d), GFP_KERNEL); 691 if (!d) 692 return -ENOMEM; 693 694 if (chip->num_main_regs) { 695 d->main_status_buf = kcalloc(chip->num_main_regs, 696 sizeof(*d->main_status_buf), 697 GFP_KERNEL); 698 699 if (!d->main_status_buf) 700 goto err_alloc; 701 } 702 703 d->status_buf = kcalloc(chip->num_regs, sizeof(*d->status_buf), 704 GFP_KERNEL); 705 if (!d->status_buf) 706 goto err_alloc; 707 708 d->mask_buf = kcalloc(chip->num_regs, sizeof(*d->mask_buf), 709 GFP_KERNEL); 710 if (!d->mask_buf) 711 goto err_alloc; 712 713 d->mask_buf_def = kcalloc(chip->num_regs, sizeof(*d->mask_buf_def), 714 GFP_KERNEL); 715 if (!d->mask_buf_def) 716 goto err_alloc; 717 718 if (chip->wake_base) { 719 d->wake_buf = kcalloc(chip->num_regs, sizeof(*d->wake_buf), 720 GFP_KERNEL); 721 if (!d->wake_buf) 722 goto err_alloc; 723 } 724 725 if (chip->type_in_mask) { 726 d->type_buf_def = kcalloc(chip->num_regs, 727 sizeof(*d->type_buf_def), GFP_KERNEL); 728 if (!d->type_buf_def) 729 goto err_alloc; 730 731 d->type_buf = kcalloc(chip->num_regs, sizeof(*d->type_buf), GFP_KERNEL); 732 if (!d->type_buf) 733 goto err_alloc; 734 } 735 736 if (chip->num_config_bases && chip->num_config_regs) { 737 /* 738 * Create config_buf[num_config_bases][num_config_regs] 739 */ 740 d->config_buf = kcalloc(chip->num_config_bases, 741 sizeof(*d->config_buf), GFP_KERNEL); 742 if (!d->config_buf) 743 goto err_alloc; 744 745 for (i = 0; i < chip->num_config_bases; i++) { 746 d->config_buf[i] = kcalloc(chip->num_config_regs, 747 sizeof(**d->config_buf), 748 GFP_KERNEL); 749 if (!d->config_buf[i]) 750 goto err_alloc; 751 } 752 } 753 754 d->irq_chip = regmap_irq_chip; 755 d->irq_chip.name = chip->name; 756 d->irq = irq; 757 d->map = map; 758 d->chip = chip; 759 d->irq_base = irq_base; 760 761 if (chip->irq_reg_stride) 762 d->irq_reg_stride = chip->irq_reg_stride; 763 else 764 d->irq_reg_stride = 1; 765 766 if (chip->get_irq_reg) 767 d->get_irq_reg = chip->get_irq_reg; 768 else 769 d->get_irq_reg = regmap_irq_get_irq_reg_linear; 770 771 if (regmap_irq_can_bulk_read_status(d)) { 772 d->status_reg_buf = kmalloc_array(chip->num_regs, 773 map->format.val_bytes, 774 GFP_KERNEL); 775 if (!d->status_reg_buf) 776 goto err_alloc; 777 } 778 779 mutex_init(&d->lock); 780 781 for (i = 0; i < chip->num_irqs; i++) 782 d->mask_buf_def[chip->irqs[i].reg_offset / map->reg_stride] 783 |= chip->irqs[i].mask; 784 785 /* Mask all the interrupts by default */ 786 for (i = 0; i < chip->num_regs; i++) { 787 d->mask_buf[i] = d->mask_buf_def[i]; 788 789 if (chip->handle_mask_sync) { 790 ret = chip->handle_mask_sync(i, d->mask_buf_def[i], 791 d->mask_buf[i], 792 chip->irq_drv_data); 793 if (ret) 794 goto err_alloc; 795 } 796 797 if (chip->mask_base && !chip->handle_mask_sync) { 798 reg = d->get_irq_reg(d, chip->mask_base, i); 799 ret = regmap_update_bits(d->map, reg, 800 d->mask_buf_def[i], 801 d->mask_buf[i]); 802 if (ret) { 803 dev_err(map->dev, "Failed to set masks in 0x%x: %d\n", 804 reg, ret); 805 goto err_alloc; 806 } 807 } 808 809 if (chip->unmask_base && !chip->handle_mask_sync) { 810 reg = d->get_irq_reg(d, chip->unmask_base, i); 811 ret = regmap_update_bits(d->map, reg, 812 d->mask_buf_def[i], ~d->mask_buf[i]); 813 if (ret) { 814 dev_err(map->dev, "Failed to set masks in 0x%x: %d\n", 815 reg, ret); 816 goto err_alloc; 817 } 818 } 819 820 if (!chip->init_ack_masked) 821 continue; 822 823 /* Ack masked but set interrupts */ 824 if (d->chip->no_status) { 825 /* no status register so default to all active */ 826 d->status_buf[i] = GENMASK(31, 0); 827 } else { 828 reg = d->get_irq_reg(d, d->chip->status_base, i); 829 ret = regmap_read(map, reg, &d->status_buf[i]); 830 if (ret != 0) { 831 dev_err(map->dev, "Failed to read IRQ status: %d\n", 832 ret); 833 goto err_alloc; 834 } 835 } 836 837 if (chip->status_invert) 838 d->status_buf[i] = ~d->status_buf[i]; 839 840 if (d->status_buf[i] && (chip->ack_base || chip->use_ack)) { 841 reg = d->get_irq_reg(d, d->chip->ack_base, i); 842 if (chip->ack_invert) 843 ret = regmap_write(map, reg, 844 ~(d->status_buf[i] & d->mask_buf[i])); 845 else 846 ret = regmap_write(map, reg, 847 d->status_buf[i] & d->mask_buf[i]); 848 if (chip->clear_ack) { 849 if (chip->ack_invert && !ret) 850 ret = regmap_write(map, reg, UINT_MAX); 851 else if (!ret) 852 ret = regmap_write(map, reg, 0); 853 } 854 if (ret != 0) { 855 dev_err(map->dev, "Failed to ack 0x%x: %d\n", 856 reg, ret); 857 goto err_alloc; 858 } 859 } 860 } 861 862 /* Wake is disabled by default */ 863 if (d->wake_buf) { 864 for (i = 0; i < chip->num_regs; i++) { 865 d->wake_buf[i] = d->mask_buf_def[i]; 866 reg = d->get_irq_reg(d, d->chip->wake_base, i); 867 868 if (chip->wake_invert) 869 ret = regmap_update_bits(d->map, reg, 870 d->mask_buf_def[i], 871 0); 872 else 873 ret = regmap_update_bits(d->map, reg, 874 d->mask_buf_def[i], 875 d->wake_buf[i]); 876 if (ret != 0) { 877 dev_err(map->dev, "Failed to set masks in 0x%x: %d\n", 878 reg, ret); 879 goto err_alloc; 880 } 881 } 882 } 883 884 ret = regmap_irq_create_domain(fwnode, irq_base, chip, d); 885 if (ret) 886 goto err_alloc; 887 888 ret = request_threaded_irq(irq, NULL, regmap_irq_thread, 889 irq_flags | IRQF_ONESHOT, 890 chip->name, d); 891 if (ret != 0) { 892 dev_err(map->dev, "Failed to request IRQ %d for %s: %d\n", 893 irq, chip->name, ret); 894 goto err_domain; 895 } 896 897 *data = d; 898 899 return 0; 900 901 err_domain: 902 /* Should really dispose of the domain but... */ 903 err_alloc: 904 kfree(d->type_buf); 905 kfree(d->type_buf_def); 906 kfree(d->wake_buf); 907 kfree(d->mask_buf_def); 908 kfree(d->mask_buf); 909 kfree(d->status_buf); 910 kfree(d->status_reg_buf); 911 if (d->config_buf) { 912 for (i = 0; i < chip->num_config_bases; i++) 913 kfree(d->config_buf[i]); 914 kfree(d->config_buf); 915 } 916 kfree(d); 917 return ret; 918 } 919 EXPORT_SYMBOL_GPL(regmap_add_irq_chip_fwnode); 920 921 /** 922 * regmap_add_irq_chip() - Use standard regmap IRQ controller handling 923 * 924 * @map: The regmap for the device. 925 * @irq: The IRQ the device uses to signal interrupts. 926 * @irq_flags: The IRQF_ flags to use for the primary interrupt. 927 * @irq_base: Allocate at specific IRQ number if irq_base > 0. 928 * @chip: Configuration for the interrupt controller. 929 * @data: Runtime data structure for the controller, allocated on success. 930 * 931 * Returns 0 on success or an errno on failure. 932 * 933 * This is the same as regmap_add_irq_chip_fwnode, except that the firmware 934 * node of the regmap is used. 935 */ 936 int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags, 937 int irq_base, const struct regmap_irq_chip *chip, 938 struct regmap_irq_chip_data **data) 939 { 940 return regmap_add_irq_chip_fwnode(dev_fwnode(map->dev), map, irq, 941 irq_flags, irq_base, chip, data); 942 } 943 EXPORT_SYMBOL_GPL(regmap_add_irq_chip); 944 945 /** 946 * regmap_del_irq_chip() - Stop interrupt handling for a regmap IRQ chip 947 * 948 * @irq: Primary IRQ for the device 949 * @d: ®map_irq_chip_data allocated by regmap_add_irq_chip() 950 * 951 * This function also disposes of all mapped IRQs on the chip. 952 */ 953 void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d) 954 { 955 unsigned int virq; 956 int i, hwirq; 957 958 if (!d) 959 return; 960 961 free_irq(irq, d); 962 963 /* Dispose all virtual irq from irq domain before removing it */ 964 for (hwirq = 0; hwirq < d->chip->num_irqs; hwirq++) { 965 /* Ignore hwirq if holes in the IRQ list */ 966 if (!d->chip->irqs[hwirq].mask) 967 continue; 968 969 /* 970 * Find the virtual irq of hwirq on chip and if it is 971 * there then dispose it 972 */ 973 virq = irq_find_mapping(d->domain, hwirq); 974 if (virq) 975 irq_dispose_mapping(virq); 976 } 977 978 irq_domain_remove(d->domain); 979 kfree(d->type_buf); 980 kfree(d->type_buf_def); 981 kfree(d->wake_buf); 982 kfree(d->mask_buf_def); 983 kfree(d->mask_buf); 984 kfree(d->status_reg_buf); 985 kfree(d->status_buf); 986 if (d->config_buf) { 987 for (i = 0; i < d->chip->num_config_bases; i++) 988 kfree(d->config_buf[i]); 989 kfree(d->config_buf); 990 } 991 kfree(d); 992 } 993 EXPORT_SYMBOL_GPL(regmap_del_irq_chip); 994 995 static void devm_regmap_irq_chip_release(struct device *dev, void *res) 996 { 997 struct regmap_irq_chip_data *d = *(struct regmap_irq_chip_data **)res; 998 999 regmap_del_irq_chip(d->irq, d); 1000 } 1001 1002 static int devm_regmap_irq_chip_match(struct device *dev, void *res, void *data) 1003 1004 { 1005 struct regmap_irq_chip_data **r = res; 1006 1007 if (!r || !*r) { 1008 WARN_ON(!r || !*r); 1009 return 0; 1010 } 1011 return *r == data; 1012 } 1013 1014 /** 1015 * devm_regmap_add_irq_chip_fwnode() - Resource managed regmap_add_irq_chip_fwnode() 1016 * 1017 * @dev: The device pointer on which irq_chip belongs to. 1018 * @fwnode: The firmware node where the IRQ domain should be added to. 1019 * @map: The regmap for the device. 1020 * @irq: The IRQ the device uses to signal interrupts 1021 * @irq_flags: The IRQF_ flags to use for the primary interrupt. 1022 * @irq_base: Allocate at specific IRQ number if irq_base > 0. 1023 * @chip: Configuration for the interrupt controller. 1024 * @data: Runtime data structure for the controller, allocated on success 1025 * 1026 * Returns 0 on success or an errno on failure. 1027 * 1028 * The ®map_irq_chip_data will be automatically released when the device is 1029 * unbound. 1030 */ 1031 int devm_regmap_add_irq_chip_fwnode(struct device *dev, 1032 struct fwnode_handle *fwnode, 1033 struct regmap *map, int irq, 1034 int irq_flags, int irq_base, 1035 const struct regmap_irq_chip *chip, 1036 struct regmap_irq_chip_data **data) 1037 { 1038 struct regmap_irq_chip_data **ptr, *d; 1039 int ret; 1040 1041 ptr = devres_alloc(devm_regmap_irq_chip_release, sizeof(*ptr), 1042 GFP_KERNEL); 1043 if (!ptr) 1044 return -ENOMEM; 1045 1046 ret = regmap_add_irq_chip_fwnode(fwnode, map, irq, irq_flags, irq_base, 1047 chip, &d); 1048 if (ret < 0) { 1049 devres_free(ptr); 1050 return ret; 1051 } 1052 1053 *ptr = d; 1054 devres_add(dev, ptr); 1055 *data = d; 1056 return 0; 1057 } 1058 EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip_fwnode); 1059 1060 /** 1061 * devm_regmap_add_irq_chip() - Resource managed regmap_add_irq_chip() 1062 * 1063 * @dev: The device pointer on which irq_chip belongs to. 1064 * @map: The regmap for the device. 1065 * @irq: The IRQ the device uses to signal interrupts 1066 * @irq_flags: The IRQF_ flags to use for the primary interrupt. 1067 * @irq_base: Allocate at specific IRQ number if irq_base > 0. 1068 * @chip: Configuration for the interrupt controller. 1069 * @data: Runtime data structure for the controller, allocated on success 1070 * 1071 * Returns 0 on success or an errno on failure. 1072 * 1073 * The ®map_irq_chip_data will be automatically released when the device is 1074 * unbound. 1075 */ 1076 int devm_regmap_add_irq_chip(struct device *dev, struct regmap *map, int irq, 1077 int irq_flags, int irq_base, 1078 const struct regmap_irq_chip *chip, 1079 struct regmap_irq_chip_data **data) 1080 { 1081 return devm_regmap_add_irq_chip_fwnode(dev, dev_fwnode(map->dev), map, 1082 irq, irq_flags, irq_base, chip, 1083 data); 1084 } 1085 EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip); 1086 1087 /** 1088 * devm_regmap_del_irq_chip() - Resource managed regmap_del_irq_chip() 1089 * 1090 * @dev: Device for which the resource was allocated. 1091 * @irq: Primary IRQ for the device. 1092 * @data: ®map_irq_chip_data allocated by regmap_add_irq_chip(). 1093 * 1094 * A resource managed version of regmap_del_irq_chip(). 1095 */ 1096 void devm_regmap_del_irq_chip(struct device *dev, int irq, 1097 struct regmap_irq_chip_data *data) 1098 { 1099 int rc; 1100 1101 WARN_ON(irq != data->irq); 1102 rc = devres_release(dev, devm_regmap_irq_chip_release, 1103 devm_regmap_irq_chip_match, data); 1104 1105 if (rc != 0) 1106 WARN_ON(rc); 1107 } 1108 EXPORT_SYMBOL_GPL(devm_regmap_del_irq_chip); 1109 1110 /** 1111 * regmap_irq_chip_get_base() - Retrieve interrupt base for a regmap IRQ chip 1112 * 1113 * @data: regmap irq controller to operate on. 1114 * 1115 * Useful for drivers to request their own IRQs. 1116 */ 1117 int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data) 1118 { 1119 WARN_ON(!data->irq_base); 1120 return data->irq_base; 1121 } 1122 EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base); 1123 1124 /** 1125 * regmap_irq_get_virq() - Map an interrupt on a chip to a virtual IRQ 1126 * 1127 * @data: regmap irq controller to operate on. 1128 * @irq: index of the interrupt requested in the chip IRQs. 1129 * 1130 * Useful for drivers to request their own IRQs. 1131 */ 1132 int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq) 1133 { 1134 /* Handle holes in the IRQ list */ 1135 if (!data->chip->irqs[irq].mask) 1136 return -EINVAL; 1137 1138 return irq_create_mapping(data->domain, irq); 1139 } 1140 EXPORT_SYMBOL_GPL(regmap_irq_get_virq); 1141 1142 /** 1143 * regmap_irq_get_domain() - Retrieve the irq_domain for the chip 1144 * 1145 * @data: regmap_irq controller to operate on. 1146 * 1147 * Useful for drivers to request their own IRQs and for integration 1148 * with subsystems. For ease of integration NULL is accepted as a 1149 * domain, allowing devices to just call this even if no domain is 1150 * allocated. 1151 */ 1152 struct irq_domain *regmap_irq_get_domain(struct regmap_irq_chip_data *data) 1153 { 1154 if (data) 1155 return data->domain; 1156 else 1157 return NULL; 1158 } 1159 EXPORT_SYMBOL_GPL(regmap_irq_get_domain); 1160