1 // SPDX-License-Identifier: GPL-2.0 2 // 3 // regmap based irq_chip 4 // 5 // Copyright 2011 Wolfson Microelectronics plc 6 // 7 // Author: Mark Brown <broonie@opensource.wolfsonmicro.com> 8 9 #include <linux/device.h> 10 #include <linux/export.h> 11 #include <linux/interrupt.h> 12 #include <linux/irq.h> 13 #include <linux/irqdomain.h> 14 #include <linux/pm_runtime.h> 15 #include <linux/regmap.h> 16 #include <linux/slab.h> 17 18 #include "internal.h" 19 20 struct regmap_irq_chip_data { 21 struct mutex lock; 22 struct irq_chip irq_chip; 23 24 struct regmap *map; 25 const struct regmap_irq_chip *chip; 26 27 int irq_base; 28 struct irq_domain *domain; 29 30 int irq; 31 int wake_count; 32 33 void *status_reg_buf; 34 unsigned int *main_status_buf; 35 unsigned int *status_buf; 36 unsigned int *mask_buf; 37 unsigned int *mask_buf_def; 38 unsigned int *wake_buf; 39 unsigned int *type_buf; 40 unsigned int *type_buf_def; 41 unsigned int **config_buf; 42 43 unsigned int irq_reg_stride; 44 45 unsigned int (*get_irq_reg)(struct regmap_irq_chip_data *data, 46 unsigned int base, int index); 47 48 unsigned int clear_status:1; 49 }; 50 51 static inline const 52 struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data, 53 int irq) 54 { 55 return &data->chip->irqs[irq]; 56 } 57 58 static bool regmap_irq_can_bulk_read_status(struct regmap_irq_chip_data *data) 59 { 60 struct regmap *map = data->map; 61 62 /* 63 * While possible that a user-defined ->get_irq_reg() callback might 64 * be linear enough to support bulk reads, most of the time it won't. 65 * Therefore only allow them if the default callback is being used. 66 */ 67 return data->irq_reg_stride == 1 && map->reg_stride == 1 && 68 data->get_irq_reg == regmap_irq_get_irq_reg_linear && 69 !map->use_single_read; 70 } 71 72 static void regmap_irq_lock(struct irq_data *data) 73 { 74 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data); 75 76 mutex_lock(&d->lock); 77 } 78 79 static void regmap_irq_sync_unlock(struct irq_data *data) 80 { 81 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data); 82 struct regmap *map = d->map; 83 int i, j, ret; 84 u32 reg; 85 u32 val; 86 87 if (d->chip->runtime_pm) { 88 ret = pm_runtime_get_sync(map->dev); 89 if (ret < 0) 90 dev_err(map->dev, "IRQ sync failed to resume: %d\n", 91 ret); 92 } 93 94 if (d->clear_status) { 95 for (i = 0; i < d->chip->num_regs; i++) { 96 reg = d->get_irq_reg(d, d->chip->status_base, i); 97 98 ret = regmap_read(map, reg, &val); 99 if (ret) 100 dev_err(d->map->dev, 101 "Failed to clear the interrupt status bits\n"); 102 } 103 104 d->clear_status = false; 105 } 106 107 /* 108 * If there's been a change in the mask write it back to the 109 * hardware. We rely on the use of the regmap core cache to 110 * suppress pointless writes. 111 */ 112 for (i = 0; i < d->chip->num_regs; i++) { 113 if (d->chip->handle_mask_sync) 114 d->chip->handle_mask_sync(i, d->mask_buf_def[i], 115 d->mask_buf[i], 116 d->chip->irq_drv_data); 117 118 if (d->chip->mask_base && !d->chip->handle_mask_sync) { 119 reg = d->get_irq_reg(d, d->chip->mask_base, i); 120 ret = regmap_update_bits(d->map, reg, 121 d->mask_buf_def[i], 122 d->mask_buf[i]); 123 if (ret) 124 dev_err(d->map->dev, "Failed to sync masks in %x\n", reg); 125 } 126 127 if (d->chip->unmask_base && !d->chip->handle_mask_sync) { 128 reg = d->get_irq_reg(d, d->chip->unmask_base, i); 129 ret = regmap_update_bits(d->map, reg, 130 d->mask_buf_def[i], ~d->mask_buf[i]); 131 if (ret) 132 dev_err(d->map->dev, "Failed to sync masks in %x\n", 133 reg); 134 } 135 136 reg = d->get_irq_reg(d, d->chip->wake_base, i); 137 if (d->wake_buf) { 138 if (d->chip->wake_invert) 139 ret = regmap_update_bits(d->map, reg, 140 d->mask_buf_def[i], 141 ~d->wake_buf[i]); 142 else 143 ret = regmap_update_bits(d->map, reg, 144 d->mask_buf_def[i], 145 d->wake_buf[i]); 146 if (ret != 0) 147 dev_err(d->map->dev, 148 "Failed to sync wakes in %x: %d\n", 149 reg, ret); 150 } 151 152 if (!d->chip->init_ack_masked) 153 continue; 154 /* 155 * Ack all the masked interrupts unconditionally, 156 * OR if there is masked interrupt which hasn't been Acked, 157 * it'll be ignored in irq handler, then may introduce irq storm 158 */ 159 if (d->mask_buf[i] && (d->chip->ack_base || d->chip->use_ack)) { 160 reg = d->get_irq_reg(d, d->chip->ack_base, i); 161 162 /* some chips ack by write 0 */ 163 if (d->chip->ack_invert) 164 ret = regmap_write(map, reg, ~d->mask_buf[i]); 165 else 166 ret = regmap_write(map, reg, d->mask_buf[i]); 167 if (d->chip->clear_ack) { 168 if (d->chip->ack_invert && !ret) 169 ret = regmap_write(map, reg, UINT_MAX); 170 else if (!ret) 171 ret = regmap_write(map, reg, 0); 172 } 173 if (ret != 0) 174 dev_err(d->map->dev, "Failed to ack 0x%x: %d\n", 175 reg, ret); 176 } 177 } 178 179 for (i = 0; i < d->chip->num_config_bases; i++) { 180 for (j = 0; j < d->chip->num_config_regs; j++) { 181 reg = d->get_irq_reg(d, d->chip->config_base[i], j); 182 ret = regmap_write(map, reg, d->config_buf[i][j]); 183 if (ret) 184 dev_err(d->map->dev, 185 "Failed to write config %x: %d\n", 186 reg, ret); 187 } 188 } 189 190 if (d->chip->runtime_pm) 191 pm_runtime_put(map->dev); 192 193 /* If we've changed our wakeup count propagate it to the parent */ 194 if (d->wake_count < 0) 195 for (i = d->wake_count; i < 0; i++) 196 irq_set_irq_wake(d->irq, 0); 197 else if (d->wake_count > 0) 198 for (i = 0; i < d->wake_count; i++) 199 irq_set_irq_wake(d->irq, 1); 200 201 d->wake_count = 0; 202 203 mutex_unlock(&d->lock); 204 } 205 206 static void regmap_irq_enable(struct irq_data *data) 207 { 208 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data); 209 struct regmap *map = d->map; 210 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq); 211 unsigned int reg = irq_data->reg_offset / map->reg_stride; 212 unsigned int mask; 213 214 /* 215 * The type_in_mask flag means that the underlying hardware uses 216 * separate mask bits for each interrupt trigger type, but we want 217 * to have a single logical interrupt with a configurable type. 218 * 219 * If the interrupt we're enabling defines any supported types 220 * then instead of using the regular mask bits for this interrupt, 221 * use the value previously written to the type buffer at the 222 * corresponding offset in regmap_irq_set_type(). 223 */ 224 if (d->chip->type_in_mask && irq_data->type.types_supported) 225 mask = d->type_buf[reg] & irq_data->mask; 226 else 227 mask = irq_data->mask; 228 229 if (d->chip->clear_on_unmask) 230 d->clear_status = true; 231 232 d->mask_buf[reg] &= ~mask; 233 } 234 235 static void regmap_irq_disable(struct irq_data *data) 236 { 237 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data); 238 struct regmap *map = d->map; 239 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq); 240 241 d->mask_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask; 242 } 243 244 static int regmap_irq_set_type(struct irq_data *data, unsigned int type) 245 { 246 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data); 247 struct regmap *map = d->map; 248 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq); 249 int reg, ret; 250 const struct regmap_irq_type *t = &irq_data->type; 251 252 if ((t->types_supported & type) != type) 253 return 0; 254 255 reg = t->type_reg_offset / map->reg_stride; 256 257 if (d->chip->type_in_mask) { 258 ret = regmap_irq_set_type_config_simple(&d->type_buf, type, 259 irq_data, reg, d->chip->irq_drv_data); 260 if (ret) 261 return ret; 262 } 263 264 if (d->chip->set_type_config) { 265 ret = d->chip->set_type_config(d->config_buf, type, irq_data, 266 reg, d->chip->irq_drv_data); 267 if (ret) 268 return ret; 269 } 270 271 return 0; 272 } 273 274 static int regmap_irq_set_wake(struct irq_data *data, unsigned int on) 275 { 276 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data); 277 struct regmap *map = d->map; 278 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq); 279 280 if (on) { 281 if (d->wake_buf) 282 d->wake_buf[irq_data->reg_offset / map->reg_stride] 283 &= ~irq_data->mask; 284 d->wake_count++; 285 } else { 286 if (d->wake_buf) 287 d->wake_buf[irq_data->reg_offset / map->reg_stride] 288 |= irq_data->mask; 289 d->wake_count--; 290 } 291 292 return 0; 293 } 294 295 static const struct irq_chip regmap_irq_chip = { 296 .irq_bus_lock = regmap_irq_lock, 297 .irq_bus_sync_unlock = regmap_irq_sync_unlock, 298 .irq_disable = regmap_irq_disable, 299 .irq_enable = regmap_irq_enable, 300 .irq_set_type = regmap_irq_set_type, 301 .irq_set_wake = regmap_irq_set_wake, 302 }; 303 304 static inline int read_sub_irq_data(struct regmap_irq_chip_data *data, 305 unsigned int b) 306 { 307 const struct regmap_irq_chip *chip = data->chip; 308 const struct regmap_irq_sub_irq_map *subreg; 309 struct regmap *map = data->map; 310 unsigned int reg; 311 int i, ret = 0; 312 313 if (!chip->sub_reg_offsets) { 314 reg = data->get_irq_reg(data, chip->status_base, b); 315 ret = regmap_read(map, reg, &data->status_buf[b]); 316 } else { 317 /* 318 * Note we can't use ->get_irq_reg() here because the offsets 319 * in 'subreg' are *not* interchangeable with indices. 320 */ 321 subreg = &chip->sub_reg_offsets[b]; 322 for (i = 0; i < subreg->num_regs; i++) { 323 unsigned int offset = subreg->offset[i]; 324 unsigned int index = offset / map->reg_stride; 325 326 ret = regmap_read(map, chip->status_base + offset, 327 &data->status_buf[index]); 328 if (ret) 329 break; 330 } 331 } 332 return ret; 333 } 334 335 static irqreturn_t regmap_irq_thread(int irq, void *d) 336 { 337 struct regmap_irq_chip_data *data = d; 338 const struct regmap_irq_chip *chip = data->chip; 339 struct regmap *map = data->map; 340 int ret, i; 341 bool handled = false; 342 u32 reg; 343 344 if (chip->handle_pre_irq) 345 chip->handle_pre_irq(chip->irq_drv_data); 346 347 if (chip->runtime_pm) { 348 ret = pm_runtime_get_sync(map->dev); 349 if (ret < 0) { 350 dev_err(map->dev, "IRQ thread failed to resume: %d\n", 351 ret); 352 goto exit; 353 } 354 } 355 356 /* 357 * Read only registers with active IRQs if the chip has 'main status 358 * register'. Else read in the statuses, using a single bulk read if 359 * possible in order to reduce the I/O overheads. 360 */ 361 362 if (chip->no_status) { 363 /* no status register so default to all active */ 364 memset32(data->status_buf, GENMASK(31, 0), chip->num_regs); 365 } else if (chip->num_main_regs) { 366 unsigned int max_main_bits; 367 unsigned long size; 368 369 size = chip->num_regs * sizeof(unsigned int); 370 371 max_main_bits = (chip->num_main_status_bits) ? 372 chip->num_main_status_bits : chip->num_regs; 373 /* Clear the status buf as we don't read all status regs */ 374 memset(data->status_buf, 0, size); 375 376 /* We could support bulk read for main status registers 377 * but I don't expect to see devices with really many main 378 * status registers so let's only support single reads for the 379 * sake of simplicity. and add bulk reads only if needed 380 */ 381 for (i = 0; i < chip->num_main_regs; i++) { 382 reg = data->get_irq_reg(data, chip->main_status, i); 383 ret = regmap_read(map, reg, &data->main_status_buf[i]); 384 if (ret) { 385 dev_err(map->dev, 386 "Failed to read IRQ status %d\n", 387 ret); 388 goto exit; 389 } 390 } 391 392 /* Read sub registers with active IRQs */ 393 for (i = 0; i < chip->num_main_regs; i++) { 394 unsigned int b; 395 const unsigned long mreg = data->main_status_buf[i]; 396 397 for_each_set_bit(b, &mreg, map->format.val_bytes * 8) { 398 if (i * map->format.val_bytes * 8 + b > 399 max_main_bits) 400 break; 401 ret = read_sub_irq_data(data, b); 402 403 if (ret != 0) { 404 dev_err(map->dev, 405 "Failed to read IRQ status %d\n", 406 ret); 407 goto exit; 408 } 409 } 410 411 } 412 } else if (regmap_irq_can_bulk_read_status(data)) { 413 414 u8 *buf8 = data->status_reg_buf; 415 u16 *buf16 = data->status_reg_buf; 416 u32 *buf32 = data->status_reg_buf; 417 418 BUG_ON(!data->status_reg_buf); 419 420 ret = regmap_bulk_read(map, chip->status_base, 421 data->status_reg_buf, 422 chip->num_regs); 423 if (ret != 0) { 424 dev_err(map->dev, "Failed to read IRQ status: %d\n", 425 ret); 426 goto exit; 427 } 428 429 for (i = 0; i < data->chip->num_regs; i++) { 430 switch (map->format.val_bytes) { 431 case 1: 432 data->status_buf[i] = buf8[i]; 433 break; 434 case 2: 435 data->status_buf[i] = buf16[i]; 436 break; 437 case 4: 438 data->status_buf[i] = buf32[i]; 439 break; 440 default: 441 BUG(); 442 goto exit; 443 } 444 } 445 446 } else { 447 for (i = 0; i < data->chip->num_regs; i++) { 448 unsigned int reg = data->get_irq_reg(data, 449 data->chip->status_base, i); 450 ret = regmap_read(map, reg, &data->status_buf[i]); 451 452 if (ret != 0) { 453 dev_err(map->dev, 454 "Failed to read IRQ status: %d\n", 455 ret); 456 goto exit; 457 } 458 } 459 } 460 461 if (chip->status_invert) 462 for (i = 0; i < data->chip->num_regs; i++) 463 data->status_buf[i] = ~data->status_buf[i]; 464 465 /* 466 * Ignore masked IRQs and ack if we need to; we ack early so 467 * there is no race between handling and acknowledging the 468 * interrupt. We assume that typically few of the interrupts 469 * will fire simultaneously so don't worry about overhead from 470 * doing a write per register. 471 */ 472 for (i = 0; i < data->chip->num_regs; i++) { 473 data->status_buf[i] &= ~data->mask_buf[i]; 474 475 if (data->status_buf[i] && (chip->ack_base || chip->use_ack)) { 476 reg = data->get_irq_reg(data, data->chip->ack_base, i); 477 478 if (chip->ack_invert) 479 ret = regmap_write(map, reg, 480 ~data->status_buf[i]); 481 else 482 ret = regmap_write(map, reg, 483 data->status_buf[i]); 484 if (chip->clear_ack) { 485 if (chip->ack_invert && !ret) 486 ret = regmap_write(map, reg, UINT_MAX); 487 else if (!ret) 488 ret = regmap_write(map, reg, 0); 489 } 490 if (ret != 0) 491 dev_err(map->dev, "Failed to ack 0x%x: %d\n", 492 reg, ret); 493 } 494 } 495 496 for (i = 0; i < chip->num_irqs; i++) { 497 if (data->status_buf[chip->irqs[i].reg_offset / 498 map->reg_stride] & chip->irqs[i].mask) { 499 handle_nested_irq(irq_find_mapping(data->domain, i)); 500 handled = true; 501 } 502 } 503 504 exit: 505 if (chip->handle_post_irq) 506 chip->handle_post_irq(chip->irq_drv_data); 507 508 if (chip->runtime_pm) 509 pm_runtime_put(map->dev); 510 511 if (handled) 512 return IRQ_HANDLED; 513 else 514 return IRQ_NONE; 515 } 516 517 static int regmap_irq_map(struct irq_domain *h, unsigned int virq, 518 irq_hw_number_t hw) 519 { 520 struct regmap_irq_chip_data *data = h->host_data; 521 522 irq_set_chip_data(virq, data); 523 irq_set_chip(virq, &data->irq_chip); 524 irq_set_nested_thread(virq, 1); 525 irq_set_parent(virq, data->irq); 526 irq_set_noprobe(virq); 527 528 return 0; 529 } 530 531 static const struct irq_domain_ops regmap_domain_ops = { 532 .map = regmap_irq_map, 533 .xlate = irq_domain_xlate_onetwocell, 534 }; 535 536 /** 537 * regmap_irq_get_irq_reg_linear() - Linear IRQ register mapping callback. 538 * @data: Data for the &struct regmap_irq_chip 539 * @base: Base register 540 * @index: Register index 541 * 542 * Returns the register address corresponding to the given @base and @index 543 * by the formula ``base + index * regmap_stride * irq_reg_stride``. 544 */ 545 unsigned int regmap_irq_get_irq_reg_linear(struct regmap_irq_chip_data *data, 546 unsigned int base, int index) 547 { 548 struct regmap *map = data->map; 549 550 return base + index * map->reg_stride * data->irq_reg_stride; 551 } 552 EXPORT_SYMBOL_GPL(regmap_irq_get_irq_reg_linear); 553 554 /** 555 * regmap_irq_set_type_config_simple() - Simple IRQ type configuration callback. 556 * @buf: Buffer containing configuration register values, this is a 2D array of 557 * `num_config_bases` rows, each of `num_config_regs` elements. 558 * @type: The requested IRQ type. 559 * @irq_data: The IRQ being configured. 560 * @idx: Index of the irq's config registers within each array `buf[i]` 561 * @irq_drv_data: Driver specific IRQ data 562 * 563 * This is a &struct regmap_irq_chip->set_type_config callback suitable for 564 * chips with one config register. Register values are updated according to 565 * the &struct regmap_irq_type data associated with an IRQ. 566 */ 567 int regmap_irq_set_type_config_simple(unsigned int **buf, unsigned int type, 568 const struct regmap_irq *irq_data, 569 int idx, void *irq_drv_data) 570 { 571 const struct regmap_irq_type *t = &irq_data->type; 572 573 if (t->type_reg_mask) 574 buf[0][idx] &= ~t->type_reg_mask; 575 else 576 buf[0][idx] &= ~(t->type_falling_val | 577 t->type_rising_val | 578 t->type_level_low_val | 579 t->type_level_high_val); 580 581 switch (type) { 582 case IRQ_TYPE_EDGE_FALLING: 583 buf[0][idx] |= t->type_falling_val; 584 break; 585 586 case IRQ_TYPE_EDGE_RISING: 587 buf[0][idx] |= t->type_rising_val; 588 break; 589 590 case IRQ_TYPE_EDGE_BOTH: 591 buf[0][idx] |= (t->type_falling_val | 592 t->type_rising_val); 593 break; 594 595 case IRQ_TYPE_LEVEL_HIGH: 596 buf[0][idx] |= t->type_level_high_val; 597 break; 598 599 case IRQ_TYPE_LEVEL_LOW: 600 buf[0][idx] |= t->type_level_low_val; 601 break; 602 603 default: 604 return -EINVAL; 605 } 606 607 return 0; 608 } 609 EXPORT_SYMBOL_GPL(regmap_irq_set_type_config_simple); 610 611 static int regmap_irq_create_domain(struct fwnode_handle *fwnode, int irq_base, 612 const struct regmap_irq_chip *chip, 613 struct regmap_irq_chip_data *d) 614 { 615 struct irq_domain_info info = { 616 .fwnode = fwnode, 617 .size = chip->num_irqs, 618 .hwirq_max = chip->num_irqs, 619 .virq_base = irq_base, 620 .ops = ®map_domain_ops, 621 .host_data = d, 622 .name_suffix = chip->domain_suffix, 623 }; 624 625 d->domain = irq_domain_instantiate(&info); 626 if (IS_ERR(d->domain)) { 627 dev_err(d->map->dev, "Failed to create IRQ domain\n"); 628 return PTR_ERR(d->domain); 629 } 630 631 return 0; 632 } 633 634 635 /** 636 * regmap_add_irq_chip_fwnode() - Use standard regmap IRQ controller handling 637 * 638 * @fwnode: The firmware node where the IRQ domain should be added to. 639 * @map: The regmap for the device. 640 * @irq: The IRQ the device uses to signal interrupts. 641 * @irq_flags: The IRQF_ flags to use for the primary interrupt. 642 * @irq_base: Allocate at specific IRQ number if irq_base > 0. 643 * @chip: Configuration for the interrupt controller. 644 * @data: Runtime data structure for the controller, allocated on success. 645 * 646 * Returns 0 on success or an errno on failure. 647 * 648 * In order for this to be efficient the chip really should use a 649 * register cache. The chip driver is responsible for restoring the 650 * register values used by the IRQ controller over suspend and resume. 651 */ 652 int regmap_add_irq_chip_fwnode(struct fwnode_handle *fwnode, 653 struct regmap *map, int irq, 654 int irq_flags, int irq_base, 655 const struct regmap_irq_chip *chip, 656 struct regmap_irq_chip_data **data) 657 { 658 struct regmap_irq_chip_data *d; 659 int i; 660 int ret = -ENOMEM; 661 u32 reg; 662 663 if (chip->num_regs <= 0) 664 return -EINVAL; 665 666 if (chip->clear_on_unmask && (chip->ack_base || chip->use_ack)) 667 return -EINVAL; 668 669 if (chip->mask_base && chip->unmask_base && !chip->mask_unmask_non_inverted) 670 return -EINVAL; 671 672 for (i = 0; i < chip->num_irqs; i++) { 673 if (chip->irqs[i].reg_offset % map->reg_stride) 674 return -EINVAL; 675 if (chip->irqs[i].reg_offset / map->reg_stride >= 676 chip->num_regs) 677 return -EINVAL; 678 } 679 680 if (irq_base) { 681 irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0); 682 if (irq_base < 0) { 683 dev_warn(map->dev, "Failed to allocate IRQs: %d\n", 684 irq_base); 685 return irq_base; 686 } 687 } 688 689 d = kzalloc(sizeof(*d), GFP_KERNEL); 690 if (!d) 691 return -ENOMEM; 692 693 if (chip->num_main_regs) { 694 d->main_status_buf = kcalloc(chip->num_main_regs, 695 sizeof(*d->main_status_buf), 696 GFP_KERNEL); 697 698 if (!d->main_status_buf) 699 goto err_alloc; 700 } 701 702 d->status_buf = kcalloc(chip->num_regs, sizeof(*d->status_buf), 703 GFP_KERNEL); 704 if (!d->status_buf) 705 goto err_alloc; 706 707 d->mask_buf = kcalloc(chip->num_regs, sizeof(*d->mask_buf), 708 GFP_KERNEL); 709 if (!d->mask_buf) 710 goto err_alloc; 711 712 d->mask_buf_def = kcalloc(chip->num_regs, sizeof(*d->mask_buf_def), 713 GFP_KERNEL); 714 if (!d->mask_buf_def) 715 goto err_alloc; 716 717 if (chip->wake_base) { 718 d->wake_buf = kcalloc(chip->num_regs, sizeof(*d->wake_buf), 719 GFP_KERNEL); 720 if (!d->wake_buf) 721 goto err_alloc; 722 } 723 724 if (chip->type_in_mask) { 725 d->type_buf_def = kcalloc(chip->num_regs, 726 sizeof(*d->type_buf_def), GFP_KERNEL); 727 if (!d->type_buf_def) 728 goto err_alloc; 729 730 d->type_buf = kcalloc(chip->num_regs, sizeof(*d->type_buf), GFP_KERNEL); 731 if (!d->type_buf) 732 goto err_alloc; 733 } 734 735 if (chip->num_config_bases && chip->num_config_regs) { 736 /* 737 * Create config_buf[num_config_bases][num_config_regs] 738 */ 739 d->config_buf = kcalloc(chip->num_config_bases, 740 sizeof(*d->config_buf), GFP_KERNEL); 741 if (!d->config_buf) 742 goto err_alloc; 743 744 for (i = 0; i < chip->num_config_bases; i++) { 745 d->config_buf[i] = kcalloc(chip->num_config_regs, 746 sizeof(**d->config_buf), 747 GFP_KERNEL); 748 if (!d->config_buf[i]) 749 goto err_alloc; 750 } 751 } 752 753 d->irq_chip = regmap_irq_chip; 754 d->irq_chip.name = chip->name; 755 d->irq = irq; 756 d->map = map; 757 d->chip = chip; 758 d->irq_base = irq_base; 759 760 if (chip->irq_reg_stride) 761 d->irq_reg_stride = chip->irq_reg_stride; 762 else 763 d->irq_reg_stride = 1; 764 765 if (chip->get_irq_reg) 766 d->get_irq_reg = chip->get_irq_reg; 767 else 768 d->get_irq_reg = regmap_irq_get_irq_reg_linear; 769 770 if (regmap_irq_can_bulk_read_status(d)) { 771 d->status_reg_buf = kmalloc_array(chip->num_regs, 772 map->format.val_bytes, 773 GFP_KERNEL); 774 if (!d->status_reg_buf) 775 goto err_alloc; 776 } 777 778 mutex_init(&d->lock); 779 780 for (i = 0; i < chip->num_irqs; i++) 781 d->mask_buf_def[chip->irqs[i].reg_offset / map->reg_stride] 782 |= chip->irqs[i].mask; 783 784 /* Mask all the interrupts by default */ 785 for (i = 0; i < chip->num_regs; i++) { 786 d->mask_buf[i] = d->mask_buf_def[i]; 787 788 if (chip->handle_mask_sync) { 789 ret = chip->handle_mask_sync(i, d->mask_buf_def[i], 790 d->mask_buf[i], 791 chip->irq_drv_data); 792 if (ret) 793 goto err_alloc; 794 } 795 796 if (chip->mask_base && !chip->handle_mask_sync) { 797 reg = d->get_irq_reg(d, chip->mask_base, i); 798 ret = regmap_update_bits(d->map, reg, 799 d->mask_buf_def[i], 800 d->mask_buf[i]); 801 if (ret) { 802 dev_err(map->dev, "Failed to set masks in 0x%x: %d\n", 803 reg, ret); 804 goto err_alloc; 805 } 806 } 807 808 if (chip->unmask_base && !chip->handle_mask_sync) { 809 reg = d->get_irq_reg(d, chip->unmask_base, i); 810 ret = regmap_update_bits(d->map, reg, 811 d->mask_buf_def[i], ~d->mask_buf[i]); 812 if (ret) { 813 dev_err(map->dev, "Failed to set masks in 0x%x: %d\n", 814 reg, ret); 815 goto err_alloc; 816 } 817 } 818 819 if (!chip->init_ack_masked) 820 continue; 821 822 /* Ack masked but set interrupts */ 823 if (d->chip->no_status) { 824 /* no status register so default to all active */ 825 d->status_buf[i] = GENMASK(31, 0); 826 } else { 827 reg = d->get_irq_reg(d, d->chip->status_base, i); 828 ret = regmap_read(map, reg, &d->status_buf[i]); 829 if (ret != 0) { 830 dev_err(map->dev, "Failed to read IRQ status: %d\n", 831 ret); 832 goto err_alloc; 833 } 834 } 835 836 if (chip->status_invert) 837 d->status_buf[i] = ~d->status_buf[i]; 838 839 if (d->status_buf[i] && (chip->ack_base || chip->use_ack)) { 840 reg = d->get_irq_reg(d, d->chip->ack_base, i); 841 if (chip->ack_invert) 842 ret = regmap_write(map, reg, 843 ~(d->status_buf[i] & d->mask_buf[i])); 844 else 845 ret = regmap_write(map, reg, 846 d->status_buf[i] & d->mask_buf[i]); 847 if (chip->clear_ack) { 848 if (chip->ack_invert && !ret) 849 ret = regmap_write(map, reg, UINT_MAX); 850 else if (!ret) 851 ret = regmap_write(map, reg, 0); 852 } 853 if (ret != 0) { 854 dev_err(map->dev, "Failed to ack 0x%x: %d\n", 855 reg, ret); 856 goto err_alloc; 857 } 858 } 859 } 860 861 /* Wake is disabled by default */ 862 if (d->wake_buf) { 863 for (i = 0; i < chip->num_regs; i++) { 864 d->wake_buf[i] = d->mask_buf_def[i]; 865 reg = d->get_irq_reg(d, d->chip->wake_base, i); 866 867 if (chip->wake_invert) 868 ret = regmap_update_bits(d->map, reg, 869 d->mask_buf_def[i], 870 0); 871 else 872 ret = regmap_update_bits(d->map, reg, 873 d->mask_buf_def[i], 874 d->wake_buf[i]); 875 if (ret != 0) { 876 dev_err(map->dev, "Failed to set masks in 0x%x: %d\n", 877 reg, ret); 878 goto err_alloc; 879 } 880 } 881 } 882 883 ret = regmap_irq_create_domain(fwnode, irq_base, chip, d); 884 if (ret) 885 goto err_alloc; 886 887 ret = request_threaded_irq(irq, NULL, regmap_irq_thread, 888 irq_flags | IRQF_ONESHOT, 889 chip->name, d); 890 if (ret != 0) { 891 dev_err(map->dev, "Failed to request IRQ %d for %s: %d\n", 892 irq, chip->name, ret); 893 goto err_domain; 894 } 895 896 *data = d; 897 898 return 0; 899 900 err_domain: 901 /* Should really dispose of the domain but... */ 902 err_alloc: 903 kfree(d->type_buf); 904 kfree(d->type_buf_def); 905 kfree(d->wake_buf); 906 kfree(d->mask_buf_def); 907 kfree(d->mask_buf); 908 kfree(d->status_buf); 909 kfree(d->status_reg_buf); 910 if (d->config_buf) { 911 for (i = 0; i < chip->num_config_bases; i++) 912 kfree(d->config_buf[i]); 913 kfree(d->config_buf); 914 } 915 kfree(d); 916 return ret; 917 } 918 EXPORT_SYMBOL_GPL(regmap_add_irq_chip_fwnode); 919 920 /** 921 * regmap_add_irq_chip() - Use standard regmap IRQ controller handling 922 * 923 * @map: The regmap for the device. 924 * @irq: The IRQ the device uses to signal interrupts. 925 * @irq_flags: The IRQF_ flags to use for the primary interrupt. 926 * @irq_base: Allocate at specific IRQ number if irq_base > 0. 927 * @chip: Configuration for the interrupt controller. 928 * @data: Runtime data structure for the controller, allocated on success. 929 * 930 * Returns 0 on success or an errno on failure. 931 * 932 * This is the same as regmap_add_irq_chip_fwnode, except that the firmware 933 * node of the regmap is used. 934 */ 935 int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags, 936 int irq_base, const struct regmap_irq_chip *chip, 937 struct regmap_irq_chip_data **data) 938 { 939 return regmap_add_irq_chip_fwnode(dev_fwnode(map->dev), map, irq, 940 irq_flags, irq_base, chip, data); 941 } 942 EXPORT_SYMBOL_GPL(regmap_add_irq_chip); 943 944 /** 945 * regmap_del_irq_chip() - Stop interrupt handling for a regmap IRQ chip 946 * 947 * @irq: Primary IRQ for the device 948 * @d: ®map_irq_chip_data allocated by regmap_add_irq_chip() 949 * 950 * This function also disposes of all mapped IRQs on the chip. 951 */ 952 void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d) 953 { 954 unsigned int virq; 955 int i, hwirq; 956 957 if (!d) 958 return; 959 960 free_irq(irq, d); 961 962 /* Dispose all virtual irq from irq domain before removing it */ 963 for (hwirq = 0; hwirq < d->chip->num_irqs; hwirq++) { 964 /* Ignore hwirq if holes in the IRQ list */ 965 if (!d->chip->irqs[hwirq].mask) 966 continue; 967 968 /* 969 * Find the virtual irq of hwirq on chip and if it is 970 * there then dispose it 971 */ 972 virq = irq_find_mapping(d->domain, hwirq); 973 if (virq) 974 irq_dispose_mapping(virq); 975 } 976 977 irq_domain_remove(d->domain); 978 kfree(d->type_buf); 979 kfree(d->type_buf_def); 980 kfree(d->wake_buf); 981 kfree(d->mask_buf_def); 982 kfree(d->mask_buf); 983 kfree(d->status_reg_buf); 984 kfree(d->status_buf); 985 if (d->config_buf) { 986 for (i = 0; i < d->chip->num_config_bases; i++) 987 kfree(d->config_buf[i]); 988 kfree(d->config_buf); 989 } 990 kfree(d); 991 } 992 EXPORT_SYMBOL_GPL(regmap_del_irq_chip); 993 994 static void devm_regmap_irq_chip_release(struct device *dev, void *res) 995 { 996 struct regmap_irq_chip_data *d = *(struct regmap_irq_chip_data **)res; 997 998 regmap_del_irq_chip(d->irq, d); 999 } 1000 1001 static int devm_regmap_irq_chip_match(struct device *dev, void *res, void *data) 1002 1003 { 1004 struct regmap_irq_chip_data **r = res; 1005 1006 if (!r || !*r) { 1007 WARN_ON(!r || !*r); 1008 return 0; 1009 } 1010 return *r == data; 1011 } 1012 1013 /** 1014 * devm_regmap_add_irq_chip_fwnode() - Resource managed regmap_add_irq_chip_fwnode() 1015 * 1016 * @dev: The device pointer on which irq_chip belongs to. 1017 * @fwnode: The firmware node where the IRQ domain should be added to. 1018 * @map: The regmap for the device. 1019 * @irq: The IRQ the device uses to signal interrupts 1020 * @irq_flags: The IRQF_ flags to use for the primary interrupt. 1021 * @irq_base: Allocate at specific IRQ number if irq_base > 0. 1022 * @chip: Configuration for the interrupt controller. 1023 * @data: Runtime data structure for the controller, allocated on success 1024 * 1025 * Returns 0 on success or an errno on failure. 1026 * 1027 * The ®map_irq_chip_data will be automatically released when the device is 1028 * unbound. 1029 */ 1030 int devm_regmap_add_irq_chip_fwnode(struct device *dev, 1031 struct fwnode_handle *fwnode, 1032 struct regmap *map, int irq, 1033 int irq_flags, int irq_base, 1034 const struct regmap_irq_chip *chip, 1035 struct regmap_irq_chip_data **data) 1036 { 1037 struct regmap_irq_chip_data **ptr, *d; 1038 int ret; 1039 1040 ptr = devres_alloc(devm_regmap_irq_chip_release, sizeof(*ptr), 1041 GFP_KERNEL); 1042 if (!ptr) 1043 return -ENOMEM; 1044 1045 ret = regmap_add_irq_chip_fwnode(fwnode, map, irq, irq_flags, irq_base, 1046 chip, &d); 1047 if (ret < 0) { 1048 devres_free(ptr); 1049 return ret; 1050 } 1051 1052 *ptr = d; 1053 devres_add(dev, ptr); 1054 *data = d; 1055 return 0; 1056 } 1057 EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip_fwnode); 1058 1059 /** 1060 * devm_regmap_add_irq_chip() - Resource managed regmap_add_irq_chip() 1061 * 1062 * @dev: The device pointer on which irq_chip belongs to. 1063 * @map: The regmap for the device. 1064 * @irq: The IRQ the device uses to signal interrupts 1065 * @irq_flags: The IRQF_ flags to use for the primary interrupt. 1066 * @irq_base: Allocate at specific IRQ number if irq_base > 0. 1067 * @chip: Configuration for the interrupt controller. 1068 * @data: Runtime data structure for the controller, allocated on success 1069 * 1070 * Returns 0 on success or an errno on failure. 1071 * 1072 * The ®map_irq_chip_data will be automatically released when the device is 1073 * unbound. 1074 */ 1075 int devm_regmap_add_irq_chip(struct device *dev, struct regmap *map, int irq, 1076 int irq_flags, int irq_base, 1077 const struct regmap_irq_chip *chip, 1078 struct regmap_irq_chip_data **data) 1079 { 1080 return devm_regmap_add_irq_chip_fwnode(dev, dev_fwnode(map->dev), map, 1081 irq, irq_flags, irq_base, chip, 1082 data); 1083 } 1084 EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip); 1085 1086 /** 1087 * devm_regmap_del_irq_chip() - Resource managed regmap_del_irq_chip() 1088 * 1089 * @dev: Device for which the resource was allocated. 1090 * @irq: Primary IRQ for the device. 1091 * @data: ®map_irq_chip_data allocated by regmap_add_irq_chip(). 1092 * 1093 * A resource managed version of regmap_del_irq_chip(). 1094 */ 1095 void devm_regmap_del_irq_chip(struct device *dev, int irq, 1096 struct regmap_irq_chip_data *data) 1097 { 1098 int rc; 1099 1100 WARN_ON(irq != data->irq); 1101 rc = devres_release(dev, devm_regmap_irq_chip_release, 1102 devm_regmap_irq_chip_match, data); 1103 1104 if (rc != 0) 1105 WARN_ON(rc); 1106 } 1107 EXPORT_SYMBOL_GPL(devm_regmap_del_irq_chip); 1108 1109 /** 1110 * regmap_irq_chip_get_base() - Retrieve interrupt base for a regmap IRQ chip 1111 * 1112 * @data: regmap irq controller to operate on. 1113 * 1114 * Useful for drivers to request their own IRQs. 1115 */ 1116 int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data) 1117 { 1118 WARN_ON(!data->irq_base); 1119 return data->irq_base; 1120 } 1121 EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base); 1122 1123 /** 1124 * regmap_irq_get_virq() - Map an interrupt on a chip to a virtual IRQ 1125 * 1126 * @data: regmap irq controller to operate on. 1127 * @irq: index of the interrupt requested in the chip IRQs. 1128 * 1129 * Useful for drivers to request their own IRQs. 1130 */ 1131 int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq) 1132 { 1133 /* Handle holes in the IRQ list */ 1134 if (!data->chip->irqs[irq].mask) 1135 return -EINVAL; 1136 1137 return irq_create_mapping(data->domain, irq); 1138 } 1139 EXPORT_SYMBOL_GPL(regmap_irq_get_virq); 1140 1141 /** 1142 * regmap_irq_get_domain() - Retrieve the irq_domain for the chip 1143 * 1144 * @data: regmap_irq controller to operate on. 1145 * 1146 * Useful for drivers to request their own IRQs and for integration 1147 * with subsystems. For ease of integration NULL is accepted as a 1148 * domain, allowing devices to just call this even if no domain is 1149 * allocated. 1150 */ 1151 struct irq_domain *regmap_irq_get_domain(struct regmap_irq_chip_data *data) 1152 { 1153 if (data) 1154 return data->domain; 1155 else 1156 return NULL; 1157 } 1158 EXPORT_SYMBOL_GPL(regmap_irq_get_domain); 1159