1 // SPDX-License-Identifier: GPL-2.0 2 // 3 // regmap based irq_chip 4 // 5 // Copyright 2011 Wolfson Microelectronics plc 6 // 7 // Author: Mark Brown <broonie@opensource.wolfsonmicro.com> 8 9 #include <linux/device.h> 10 #include <linux/export.h> 11 #include <linux/interrupt.h> 12 #include <linux/irq.h> 13 #include <linux/irqdomain.h> 14 #include <linux/pm_runtime.h> 15 #include <linux/regmap.h> 16 #include <linux/slab.h> 17 18 #include "internal.h" 19 20 struct regmap_irq_chip_data { 21 struct mutex lock; 22 struct irq_chip irq_chip; 23 24 struct regmap *map; 25 const struct regmap_irq_chip *chip; 26 27 int irq_base; 28 struct irq_domain *domain; 29 30 int irq; 31 int wake_count; 32 33 unsigned int mask_base; 34 unsigned int unmask_base; 35 36 void *status_reg_buf; 37 unsigned int *main_status_buf; 38 unsigned int *status_buf; 39 unsigned int *mask_buf; 40 unsigned int *mask_buf_def; 41 unsigned int *wake_buf; 42 unsigned int *type_buf; 43 unsigned int *type_buf_def; 44 unsigned int **virt_buf; 45 unsigned int **config_buf; 46 47 unsigned int irq_reg_stride; 48 49 unsigned int (*get_irq_reg)(struct regmap_irq_chip_data *data, 50 unsigned int base, int index); 51 52 unsigned int clear_status:1; 53 }; 54 55 static inline const 56 struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data, 57 int irq) 58 { 59 return &data->chip->irqs[irq]; 60 } 61 62 static bool regmap_irq_can_bulk_read_status(struct regmap_irq_chip_data *data) 63 { 64 struct regmap *map = data->map; 65 66 /* 67 * While possible that a user-defined ->get_irq_reg() callback might 68 * be linear enough to support bulk reads, most of the time it won't. 69 * Therefore only allow them if the default callback is being used. 70 */ 71 return data->irq_reg_stride == 1 && map->reg_stride == 1 && 72 data->get_irq_reg == regmap_irq_get_irq_reg_linear && 73 !map->use_single_read; 74 } 75 76 static void regmap_irq_lock(struct irq_data *data) 77 { 78 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data); 79 80 mutex_lock(&d->lock); 81 } 82 83 static void regmap_irq_sync_unlock(struct irq_data *data) 84 { 85 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data); 86 struct regmap *map = d->map; 87 int i, j, ret; 88 u32 reg; 89 u32 val; 90 91 if (d->chip->runtime_pm) { 92 ret = pm_runtime_get_sync(map->dev); 93 if (ret < 0) 94 dev_err(map->dev, "IRQ sync failed to resume: %d\n", 95 ret); 96 } 97 98 if (d->clear_status) { 99 for (i = 0; i < d->chip->num_regs; i++) { 100 reg = d->get_irq_reg(d, d->chip->status_base, i); 101 102 ret = regmap_read(map, reg, &val); 103 if (ret) 104 dev_err(d->map->dev, 105 "Failed to clear the interrupt status bits\n"); 106 } 107 108 d->clear_status = false; 109 } 110 111 /* 112 * If there's been a change in the mask write it back to the 113 * hardware. We rely on the use of the regmap core cache to 114 * suppress pointless writes. 115 */ 116 for (i = 0; i < d->chip->num_regs; i++) { 117 if (d->mask_base) { 118 if (d->chip->handle_mask_sync) 119 d->chip->handle_mask_sync(d->map, i, 120 d->mask_buf_def[i], 121 d->mask_buf[i], 122 d->chip->irq_drv_data); 123 else { 124 reg = d->get_irq_reg(d, d->mask_base, i); 125 ret = regmap_update_bits(d->map, reg, 126 d->mask_buf_def[i], 127 d->mask_buf[i]); 128 if (ret) 129 dev_err(d->map->dev, "Failed to sync masks in %x\n", 130 reg); 131 } 132 } 133 134 if (d->unmask_base) { 135 reg = d->get_irq_reg(d, d->unmask_base, i); 136 ret = regmap_update_bits(d->map, reg, 137 d->mask_buf_def[i], ~d->mask_buf[i]); 138 if (ret) 139 dev_err(d->map->dev, "Failed to sync masks in %x\n", 140 reg); 141 } 142 143 reg = d->get_irq_reg(d, d->chip->wake_base, i); 144 if (d->wake_buf) { 145 if (d->chip->wake_invert) 146 ret = regmap_update_bits(d->map, reg, 147 d->mask_buf_def[i], 148 ~d->wake_buf[i]); 149 else 150 ret = regmap_update_bits(d->map, reg, 151 d->mask_buf_def[i], 152 d->wake_buf[i]); 153 if (ret != 0) 154 dev_err(d->map->dev, 155 "Failed to sync wakes in %x: %d\n", 156 reg, ret); 157 } 158 159 if (!d->chip->init_ack_masked) 160 continue; 161 /* 162 * Ack all the masked interrupts unconditionally, 163 * OR if there is masked interrupt which hasn't been Acked, 164 * it'll be ignored in irq handler, then may introduce irq storm 165 */ 166 if (d->mask_buf[i] && (d->chip->ack_base || d->chip->use_ack)) { 167 reg = d->get_irq_reg(d, d->chip->ack_base, i); 168 169 /* some chips ack by write 0 */ 170 if (d->chip->ack_invert) 171 ret = regmap_write(map, reg, ~d->mask_buf[i]); 172 else 173 ret = regmap_write(map, reg, d->mask_buf[i]); 174 if (d->chip->clear_ack) { 175 if (d->chip->ack_invert && !ret) 176 ret = regmap_write(map, reg, UINT_MAX); 177 else if (!ret) 178 ret = regmap_write(map, reg, 0); 179 } 180 if (ret != 0) 181 dev_err(d->map->dev, "Failed to ack 0x%x: %d\n", 182 reg, ret); 183 } 184 } 185 186 /* Don't update the type bits if we're using mask bits for irq type. */ 187 if (!d->chip->type_in_mask) { 188 for (i = 0; i < d->chip->num_type_reg; i++) { 189 if (!d->type_buf_def[i]) 190 continue; 191 reg = d->get_irq_reg(d, d->chip->type_base, i); 192 ret = regmap_update_bits(d->map, reg, 193 d->type_buf_def[i], d->type_buf[i]); 194 if (ret != 0) 195 dev_err(d->map->dev, "Failed to sync type in %x\n", 196 reg); 197 } 198 } 199 200 if (d->chip->num_virt_regs) { 201 for (i = 0; i < d->chip->num_virt_regs; i++) { 202 for (j = 0; j < d->chip->num_regs; j++) { 203 reg = d->get_irq_reg(d, d->chip->virt_reg_base[i], 204 j); 205 ret = regmap_write(map, reg, d->virt_buf[i][j]); 206 if (ret != 0) 207 dev_err(d->map->dev, 208 "Failed to write virt 0x%x: %d\n", 209 reg, ret); 210 } 211 } 212 } 213 214 for (i = 0; i < d->chip->num_config_bases; i++) { 215 for (j = 0; j < d->chip->num_config_regs; j++) { 216 reg = d->get_irq_reg(d, d->chip->config_base[i], j); 217 ret = regmap_write(map, reg, d->config_buf[i][j]); 218 if (ret) 219 dev_err(d->map->dev, 220 "Failed to write config %x: %d\n", 221 reg, ret); 222 } 223 } 224 225 if (d->chip->runtime_pm) 226 pm_runtime_put(map->dev); 227 228 /* If we've changed our wakeup count propagate it to the parent */ 229 if (d->wake_count < 0) 230 for (i = d->wake_count; i < 0; i++) 231 irq_set_irq_wake(d->irq, 0); 232 else if (d->wake_count > 0) 233 for (i = 0; i < d->wake_count; i++) 234 irq_set_irq_wake(d->irq, 1); 235 236 d->wake_count = 0; 237 238 mutex_unlock(&d->lock); 239 } 240 241 static void regmap_irq_enable(struct irq_data *data) 242 { 243 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data); 244 struct regmap *map = d->map; 245 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq); 246 unsigned int reg = irq_data->reg_offset / map->reg_stride; 247 unsigned int mask; 248 249 /* 250 * The type_in_mask flag means that the underlying hardware uses 251 * separate mask bits for each interrupt trigger type, but we want 252 * to have a single logical interrupt with a configurable type. 253 * 254 * If the interrupt we're enabling defines any supported types 255 * then instead of using the regular mask bits for this interrupt, 256 * use the value previously written to the type buffer at the 257 * corresponding offset in regmap_irq_set_type(). 258 */ 259 if (d->chip->type_in_mask && irq_data->type.types_supported) 260 mask = d->type_buf[reg] & irq_data->mask; 261 else 262 mask = irq_data->mask; 263 264 if (d->chip->clear_on_unmask) 265 d->clear_status = true; 266 267 d->mask_buf[reg] &= ~mask; 268 } 269 270 static void regmap_irq_disable(struct irq_data *data) 271 { 272 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data); 273 struct regmap *map = d->map; 274 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq); 275 276 d->mask_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask; 277 } 278 279 static int regmap_irq_set_type(struct irq_data *data, unsigned int type) 280 { 281 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data); 282 struct regmap *map = d->map; 283 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq); 284 int reg, ret; 285 const struct regmap_irq_type *t = &irq_data->type; 286 287 if ((t->types_supported & type) != type) 288 return 0; 289 290 reg = t->type_reg_offset / map->reg_stride; 291 292 if (t->type_reg_mask) 293 d->type_buf[reg] &= ~t->type_reg_mask; 294 else 295 d->type_buf[reg] &= ~(t->type_falling_val | 296 t->type_rising_val | 297 t->type_level_low_val | 298 t->type_level_high_val); 299 switch (type) { 300 case IRQ_TYPE_EDGE_FALLING: 301 d->type_buf[reg] |= t->type_falling_val; 302 break; 303 304 case IRQ_TYPE_EDGE_RISING: 305 d->type_buf[reg] |= t->type_rising_val; 306 break; 307 308 case IRQ_TYPE_EDGE_BOTH: 309 d->type_buf[reg] |= (t->type_falling_val | 310 t->type_rising_val); 311 break; 312 313 case IRQ_TYPE_LEVEL_HIGH: 314 d->type_buf[reg] |= t->type_level_high_val; 315 break; 316 317 case IRQ_TYPE_LEVEL_LOW: 318 d->type_buf[reg] |= t->type_level_low_val; 319 break; 320 default: 321 return -EINVAL; 322 } 323 324 if (d->chip->set_type_virt) { 325 ret = d->chip->set_type_virt(d->virt_buf, type, data->hwirq, 326 reg); 327 if (ret) 328 return ret; 329 } 330 331 if (d->chip->set_type_config) { 332 ret = d->chip->set_type_config(d->config_buf, type, 333 irq_data, reg); 334 if (ret) 335 return ret; 336 } 337 338 return 0; 339 } 340 341 static int regmap_irq_set_wake(struct irq_data *data, unsigned int on) 342 { 343 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data); 344 struct regmap *map = d->map; 345 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq); 346 347 if (on) { 348 if (d->wake_buf) 349 d->wake_buf[irq_data->reg_offset / map->reg_stride] 350 &= ~irq_data->mask; 351 d->wake_count++; 352 } else { 353 if (d->wake_buf) 354 d->wake_buf[irq_data->reg_offset / map->reg_stride] 355 |= irq_data->mask; 356 d->wake_count--; 357 } 358 359 return 0; 360 } 361 362 static const struct irq_chip regmap_irq_chip = { 363 .irq_bus_lock = regmap_irq_lock, 364 .irq_bus_sync_unlock = regmap_irq_sync_unlock, 365 .irq_disable = regmap_irq_disable, 366 .irq_enable = regmap_irq_enable, 367 .irq_set_type = regmap_irq_set_type, 368 .irq_set_wake = regmap_irq_set_wake, 369 }; 370 371 static inline int read_sub_irq_data(struct regmap_irq_chip_data *data, 372 unsigned int b) 373 { 374 const struct regmap_irq_chip *chip = data->chip; 375 struct regmap *map = data->map; 376 struct regmap_irq_sub_irq_map *subreg; 377 unsigned int reg; 378 int i, ret = 0; 379 380 if (!chip->sub_reg_offsets) { 381 reg = data->get_irq_reg(data, chip->status_base, b); 382 ret = regmap_read(map, reg, &data->status_buf[b]); 383 } else { 384 /* 385 * Note we can't use ->get_irq_reg() here because the offsets 386 * in 'subreg' are *not* interchangeable with indices. 387 */ 388 subreg = &chip->sub_reg_offsets[b]; 389 for (i = 0; i < subreg->num_regs; i++) { 390 unsigned int offset = subreg->offset[i]; 391 unsigned int index = offset / map->reg_stride; 392 393 if (chip->not_fixed_stride) 394 ret = regmap_read(map, 395 chip->status_base + offset, 396 &data->status_buf[b]); 397 else 398 ret = regmap_read(map, 399 chip->status_base + offset, 400 &data->status_buf[index]); 401 402 if (ret) 403 break; 404 } 405 } 406 return ret; 407 } 408 409 static irqreturn_t regmap_irq_thread(int irq, void *d) 410 { 411 struct regmap_irq_chip_data *data = d; 412 const struct regmap_irq_chip *chip = data->chip; 413 struct regmap *map = data->map; 414 int ret, i; 415 bool handled = false; 416 u32 reg; 417 418 if (chip->handle_pre_irq) 419 chip->handle_pre_irq(chip->irq_drv_data); 420 421 if (chip->runtime_pm) { 422 ret = pm_runtime_get_sync(map->dev); 423 if (ret < 0) { 424 dev_err(map->dev, "IRQ thread failed to resume: %d\n", 425 ret); 426 goto exit; 427 } 428 } 429 430 /* 431 * Read only registers with active IRQs if the chip has 'main status 432 * register'. Else read in the statuses, using a single bulk read if 433 * possible in order to reduce the I/O overheads. 434 */ 435 436 if (chip->num_main_regs) { 437 unsigned int max_main_bits; 438 unsigned long size; 439 440 size = chip->num_regs * sizeof(unsigned int); 441 442 max_main_bits = (chip->num_main_status_bits) ? 443 chip->num_main_status_bits : chip->num_regs; 444 /* Clear the status buf as we don't read all status regs */ 445 memset(data->status_buf, 0, size); 446 447 /* We could support bulk read for main status registers 448 * but I don't expect to see devices with really many main 449 * status registers so let's only support single reads for the 450 * sake of simplicity. and add bulk reads only if needed 451 */ 452 for (i = 0; i < chip->num_main_regs; i++) { 453 /* 454 * For not_fixed_stride, don't use ->get_irq_reg(). 455 * It would produce an incorrect result. 456 */ 457 if (data->chip->not_fixed_stride) 458 reg = chip->main_status + 459 i * map->reg_stride * data->irq_reg_stride; 460 else 461 reg = data->get_irq_reg(data, 462 chip->main_status, i); 463 464 ret = regmap_read(map, reg, &data->main_status_buf[i]); 465 if (ret) { 466 dev_err(map->dev, 467 "Failed to read IRQ status %d\n", 468 ret); 469 goto exit; 470 } 471 } 472 473 /* Read sub registers with active IRQs */ 474 for (i = 0; i < chip->num_main_regs; i++) { 475 unsigned int b; 476 const unsigned long mreg = data->main_status_buf[i]; 477 478 for_each_set_bit(b, &mreg, map->format.val_bytes * 8) { 479 if (i * map->format.val_bytes * 8 + b > 480 max_main_bits) 481 break; 482 ret = read_sub_irq_data(data, b); 483 484 if (ret != 0) { 485 dev_err(map->dev, 486 "Failed to read IRQ status %d\n", 487 ret); 488 goto exit; 489 } 490 } 491 492 } 493 } else if (regmap_irq_can_bulk_read_status(data)) { 494 495 u8 *buf8 = data->status_reg_buf; 496 u16 *buf16 = data->status_reg_buf; 497 u32 *buf32 = data->status_reg_buf; 498 499 BUG_ON(!data->status_reg_buf); 500 501 ret = regmap_bulk_read(map, chip->status_base, 502 data->status_reg_buf, 503 chip->num_regs); 504 if (ret != 0) { 505 dev_err(map->dev, "Failed to read IRQ status: %d\n", 506 ret); 507 goto exit; 508 } 509 510 for (i = 0; i < data->chip->num_regs; i++) { 511 switch (map->format.val_bytes) { 512 case 1: 513 data->status_buf[i] = buf8[i]; 514 break; 515 case 2: 516 data->status_buf[i] = buf16[i]; 517 break; 518 case 4: 519 data->status_buf[i] = buf32[i]; 520 break; 521 default: 522 BUG(); 523 goto exit; 524 } 525 } 526 527 } else { 528 for (i = 0; i < data->chip->num_regs; i++) { 529 unsigned int reg = data->get_irq_reg(data, 530 data->chip->status_base, i); 531 ret = regmap_read(map, reg, &data->status_buf[i]); 532 533 if (ret != 0) { 534 dev_err(map->dev, 535 "Failed to read IRQ status: %d\n", 536 ret); 537 goto exit; 538 } 539 } 540 } 541 542 if (chip->status_invert) 543 for (i = 0; i < data->chip->num_regs; i++) 544 data->status_buf[i] = ~data->status_buf[i]; 545 546 /* 547 * Ignore masked IRQs and ack if we need to; we ack early so 548 * there is no race between handling and acknowledging the 549 * interrupt. We assume that typically few of the interrupts 550 * will fire simultaneously so don't worry about overhead from 551 * doing a write per register. 552 */ 553 for (i = 0; i < data->chip->num_regs; i++) { 554 data->status_buf[i] &= ~data->mask_buf[i]; 555 556 if (data->status_buf[i] && (chip->ack_base || chip->use_ack)) { 557 reg = data->get_irq_reg(data, data->chip->ack_base, i); 558 559 if (chip->ack_invert) 560 ret = regmap_write(map, reg, 561 ~data->status_buf[i]); 562 else 563 ret = regmap_write(map, reg, 564 data->status_buf[i]); 565 if (chip->clear_ack) { 566 if (chip->ack_invert && !ret) 567 ret = regmap_write(map, reg, UINT_MAX); 568 else if (!ret) 569 ret = regmap_write(map, reg, 0); 570 } 571 if (ret != 0) 572 dev_err(map->dev, "Failed to ack 0x%x: %d\n", 573 reg, ret); 574 } 575 } 576 577 for (i = 0; i < chip->num_irqs; i++) { 578 if (data->status_buf[chip->irqs[i].reg_offset / 579 map->reg_stride] & chip->irqs[i].mask) { 580 handle_nested_irq(irq_find_mapping(data->domain, i)); 581 handled = true; 582 } 583 } 584 585 exit: 586 if (chip->runtime_pm) 587 pm_runtime_put(map->dev); 588 589 if (chip->handle_post_irq) 590 chip->handle_post_irq(chip->irq_drv_data); 591 592 if (handled) 593 return IRQ_HANDLED; 594 else 595 return IRQ_NONE; 596 } 597 598 static int regmap_irq_map(struct irq_domain *h, unsigned int virq, 599 irq_hw_number_t hw) 600 { 601 struct regmap_irq_chip_data *data = h->host_data; 602 603 irq_set_chip_data(virq, data); 604 irq_set_chip(virq, &data->irq_chip); 605 irq_set_nested_thread(virq, 1); 606 irq_set_parent(virq, data->irq); 607 irq_set_noprobe(virq); 608 609 return 0; 610 } 611 612 static const struct irq_domain_ops regmap_domain_ops = { 613 .map = regmap_irq_map, 614 .xlate = irq_domain_xlate_onetwocell, 615 }; 616 617 /** 618 * regmap_irq_get_irq_reg_linear() - Linear IRQ register mapping callback. 619 * @data: Data for the &struct regmap_irq_chip 620 * @base: Base register 621 * @index: Register index 622 * 623 * Returns the register address corresponding to the given @base and @index 624 * by the formula ``base + index * regmap_stride * irq_reg_stride``. 625 */ 626 unsigned int regmap_irq_get_irq_reg_linear(struct regmap_irq_chip_data *data, 627 unsigned int base, int index) 628 { 629 const struct regmap_irq_chip *chip = data->chip; 630 struct regmap *map = data->map; 631 632 /* 633 * FIXME: This is for backward compatibility and should be removed 634 * when not_fixed_stride is dropped (it's only used by qcom-pm8008). 635 */ 636 if (chip->not_fixed_stride && chip->sub_reg_offsets) { 637 struct regmap_irq_sub_irq_map *subreg; 638 639 subreg = &chip->sub_reg_offsets[0]; 640 return base + subreg->offset[0]; 641 } 642 643 return base + index * map->reg_stride * data->irq_reg_stride; 644 } 645 EXPORT_SYMBOL_GPL(regmap_irq_get_irq_reg_linear); 646 647 /** 648 * regmap_irq_set_type_config_simple() - Simple IRQ type configuration callback. 649 * @buf: Buffer containing configuration register values, this is a 2D array of 650 * `num_config_bases` rows, each of `num_config_regs` elements. 651 * @type: The requested IRQ type. 652 * @irq_data: The IRQ being configured. 653 * @idx: Index of the irq's config registers within each array `buf[i]` 654 * 655 * This is a &struct regmap_irq_chip->set_type_config callback suitable for 656 * chips with one config register. Register values are updated according to 657 * the &struct regmap_irq_type data associated with an IRQ. 658 */ 659 int regmap_irq_set_type_config_simple(unsigned int **buf, unsigned int type, 660 const struct regmap_irq *irq_data, int idx) 661 { 662 const struct regmap_irq_type *t = &irq_data->type; 663 664 if (t->type_reg_mask) 665 buf[0][idx] &= ~t->type_reg_mask; 666 else 667 buf[0][idx] &= ~(t->type_falling_val | 668 t->type_rising_val | 669 t->type_level_low_val | 670 t->type_level_high_val); 671 672 switch (type) { 673 case IRQ_TYPE_EDGE_FALLING: 674 buf[0][idx] |= t->type_falling_val; 675 break; 676 677 case IRQ_TYPE_EDGE_RISING: 678 buf[0][idx] |= t->type_rising_val; 679 break; 680 681 case IRQ_TYPE_EDGE_BOTH: 682 buf[0][idx] |= (t->type_falling_val | 683 t->type_rising_val); 684 break; 685 686 case IRQ_TYPE_LEVEL_HIGH: 687 buf[0][idx] |= t->type_level_high_val; 688 break; 689 690 case IRQ_TYPE_LEVEL_LOW: 691 buf[0][idx] |= t->type_level_low_val; 692 break; 693 694 default: 695 return -EINVAL; 696 } 697 698 return 0; 699 } 700 EXPORT_SYMBOL_GPL(regmap_irq_set_type_config_simple); 701 702 /** 703 * regmap_add_irq_chip_fwnode() - Use standard regmap IRQ controller handling 704 * 705 * @fwnode: The firmware node where the IRQ domain should be added to. 706 * @map: The regmap for the device. 707 * @irq: The IRQ the device uses to signal interrupts. 708 * @irq_flags: The IRQF_ flags to use for the primary interrupt. 709 * @irq_base: Allocate at specific IRQ number if irq_base > 0. 710 * @chip: Configuration for the interrupt controller. 711 * @data: Runtime data structure for the controller, allocated on success. 712 * 713 * Returns 0 on success or an errno on failure. 714 * 715 * In order for this to be efficient the chip really should use a 716 * register cache. The chip driver is responsible for restoring the 717 * register values used by the IRQ controller over suspend and resume. 718 */ 719 int regmap_add_irq_chip_fwnode(struct fwnode_handle *fwnode, 720 struct regmap *map, int irq, 721 int irq_flags, int irq_base, 722 const struct regmap_irq_chip *chip, 723 struct regmap_irq_chip_data **data) 724 { 725 struct regmap_irq_chip_data *d; 726 int i; 727 int ret = -ENOMEM; 728 int num_type_reg; 729 int num_regs; 730 u32 reg; 731 732 if (chip->num_regs <= 0) 733 return -EINVAL; 734 735 if (chip->clear_on_unmask && (chip->ack_base || chip->use_ack)) 736 return -EINVAL; 737 738 for (i = 0; i < chip->num_irqs; i++) { 739 if (chip->irqs[i].reg_offset % map->reg_stride) 740 return -EINVAL; 741 if (chip->irqs[i].reg_offset / map->reg_stride >= 742 chip->num_regs) 743 return -EINVAL; 744 } 745 746 if (chip->not_fixed_stride) { 747 dev_warn(map->dev, "not_fixed_stride is deprecated; use ->get_irq_reg() instead"); 748 749 for (i = 0; i < chip->num_regs; i++) 750 if (chip->sub_reg_offsets[i].num_regs != 1) 751 return -EINVAL; 752 } 753 754 if (chip->num_type_reg) 755 dev_warn(map->dev, "type registers are deprecated; use config registers instead"); 756 757 if (chip->num_virt_regs || chip->virt_reg_base || chip->set_type_virt) 758 dev_warn(map->dev, "virtual registers are deprecated; use config registers instead"); 759 760 if (irq_base) { 761 irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0); 762 if (irq_base < 0) { 763 dev_warn(map->dev, "Failed to allocate IRQs: %d\n", 764 irq_base); 765 return irq_base; 766 } 767 } 768 769 d = kzalloc(sizeof(*d), GFP_KERNEL); 770 if (!d) 771 return -ENOMEM; 772 773 if (chip->num_main_regs) { 774 d->main_status_buf = kcalloc(chip->num_main_regs, 775 sizeof(*d->main_status_buf), 776 GFP_KERNEL); 777 778 if (!d->main_status_buf) 779 goto err_alloc; 780 } 781 782 d->status_buf = kcalloc(chip->num_regs, sizeof(*d->status_buf), 783 GFP_KERNEL); 784 if (!d->status_buf) 785 goto err_alloc; 786 787 d->mask_buf = kcalloc(chip->num_regs, sizeof(*d->mask_buf), 788 GFP_KERNEL); 789 if (!d->mask_buf) 790 goto err_alloc; 791 792 d->mask_buf_def = kcalloc(chip->num_regs, sizeof(*d->mask_buf_def), 793 GFP_KERNEL); 794 if (!d->mask_buf_def) 795 goto err_alloc; 796 797 if (chip->wake_base) { 798 d->wake_buf = kcalloc(chip->num_regs, sizeof(*d->wake_buf), 799 GFP_KERNEL); 800 if (!d->wake_buf) 801 goto err_alloc; 802 } 803 804 /* 805 * Use num_config_regs if defined, otherwise fall back to num_type_reg 806 * to maintain backward compatibility. 807 */ 808 num_type_reg = chip->num_config_regs ? chip->num_config_regs 809 : chip->num_type_reg; 810 num_regs = chip->type_in_mask ? chip->num_regs : num_type_reg; 811 if (num_regs) { 812 d->type_buf_def = kcalloc(num_regs, 813 sizeof(*d->type_buf_def), GFP_KERNEL); 814 if (!d->type_buf_def) 815 goto err_alloc; 816 817 d->type_buf = kcalloc(num_regs, sizeof(*d->type_buf), 818 GFP_KERNEL); 819 if (!d->type_buf) 820 goto err_alloc; 821 } 822 823 if (chip->num_virt_regs) { 824 /* 825 * Create virt_buf[chip->num_extra_config_regs][chip->num_regs] 826 */ 827 d->virt_buf = kcalloc(chip->num_virt_regs, sizeof(*d->virt_buf), 828 GFP_KERNEL); 829 if (!d->virt_buf) 830 goto err_alloc; 831 832 for (i = 0; i < chip->num_virt_regs; i++) { 833 d->virt_buf[i] = kcalloc(chip->num_regs, 834 sizeof(**d->virt_buf), 835 GFP_KERNEL); 836 if (!d->virt_buf[i]) 837 goto err_alloc; 838 } 839 } 840 841 if (chip->num_config_bases && chip->num_config_regs) { 842 /* 843 * Create config_buf[num_config_bases][num_config_regs] 844 */ 845 d->config_buf = kcalloc(chip->num_config_bases, 846 sizeof(*d->config_buf), GFP_KERNEL); 847 if (!d->config_buf) 848 goto err_alloc; 849 850 for (i = 0; i < chip->num_config_regs; i++) { 851 d->config_buf[i] = kcalloc(chip->num_config_regs, 852 sizeof(**d->config_buf), 853 GFP_KERNEL); 854 if (!d->config_buf[i]) 855 goto err_alloc; 856 } 857 } 858 859 d->irq_chip = regmap_irq_chip; 860 d->irq_chip.name = chip->name; 861 d->irq = irq; 862 d->map = map; 863 d->chip = chip; 864 d->irq_base = irq_base; 865 866 if (chip->mask_base && chip->unmask_base && 867 !chip->mask_unmask_non_inverted) { 868 /* 869 * Chips that specify both mask_base and unmask_base used to 870 * get inverted mask behavior by default, with no way to ask 871 * for the normal, non-inverted behavior. This "inverted by 872 * default" behavior is deprecated, but we have to support it 873 * until existing drivers have been fixed. 874 * 875 * Existing drivers should be updated by swapping mask_base 876 * and unmask_base and setting mask_unmask_non_inverted=true. 877 * New drivers should always set the flag. 878 */ 879 dev_warn(map->dev, "mask_base and unmask_base are inverted, please fix it"); 880 881 d->mask_base = chip->unmask_base; 882 d->unmask_base = chip->mask_base; 883 } else { 884 d->mask_base = chip->mask_base; 885 d->unmask_base = chip->unmask_base; 886 } 887 888 if (chip->irq_reg_stride) 889 d->irq_reg_stride = chip->irq_reg_stride; 890 else 891 d->irq_reg_stride = 1; 892 893 if (chip->get_irq_reg) 894 d->get_irq_reg = chip->get_irq_reg; 895 else 896 d->get_irq_reg = regmap_irq_get_irq_reg_linear; 897 898 if (regmap_irq_can_bulk_read_status(d)) { 899 d->status_reg_buf = kmalloc_array(chip->num_regs, 900 map->format.val_bytes, 901 GFP_KERNEL); 902 if (!d->status_reg_buf) 903 goto err_alloc; 904 } 905 906 mutex_init(&d->lock); 907 908 for (i = 0; i < chip->num_irqs; i++) 909 d->mask_buf_def[chip->irqs[i].reg_offset / map->reg_stride] 910 |= chip->irqs[i].mask; 911 912 /* Mask all the interrupts by default */ 913 for (i = 0; i < chip->num_regs; i++) { 914 d->mask_buf[i] = d->mask_buf_def[i]; 915 916 if (d->mask_base) { 917 if (chip->handle_mask_sync) { 918 ret = chip->handle_mask_sync(d->map, i, 919 d->mask_buf_def[i], 920 d->mask_buf[i], 921 chip->irq_drv_data); 922 if (ret) 923 goto err_alloc; 924 } else { 925 reg = d->get_irq_reg(d, d->mask_base, i); 926 ret = regmap_update_bits(d->map, reg, 927 d->mask_buf_def[i], 928 d->mask_buf[i]); 929 if (ret) { 930 dev_err(map->dev, "Failed to set masks in 0x%x: %d\n", 931 reg, ret); 932 goto err_alloc; 933 } 934 } 935 } 936 937 if (d->unmask_base) { 938 reg = d->get_irq_reg(d, d->unmask_base, i); 939 ret = regmap_update_bits(d->map, reg, 940 d->mask_buf_def[i], ~d->mask_buf[i]); 941 if (ret) { 942 dev_err(map->dev, "Failed to set masks in 0x%x: %d\n", 943 reg, ret); 944 goto err_alloc; 945 } 946 } 947 948 if (!chip->init_ack_masked) 949 continue; 950 951 /* Ack masked but set interrupts */ 952 reg = d->get_irq_reg(d, d->chip->status_base, i); 953 ret = regmap_read(map, reg, &d->status_buf[i]); 954 if (ret != 0) { 955 dev_err(map->dev, "Failed to read IRQ status: %d\n", 956 ret); 957 goto err_alloc; 958 } 959 960 if (chip->status_invert) 961 d->status_buf[i] = ~d->status_buf[i]; 962 963 if (d->status_buf[i] && (chip->ack_base || chip->use_ack)) { 964 reg = d->get_irq_reg(d, d->chip->ack_base, i); 965 if (chip->ack_invert) 966 ret = regmap_write(map, reg, 967 ~(d->status_buf[i] & d->mask_buf[i])); 968 else 969 ret = regmap_write(map, reg, 970 d->status_buf[i] & d->mask_buf[i]); 971 if (chip->clear_ack) { 972 if (chip->ack_invert && !ret) 973 ret = regmap_write(map, reg, UINT_MAX); 974 else if (!ret) 975 ret = regmap_write(map, reg, 0); 976 } 977 if (ret != 0) { 978 dev_err(map->dev, "Failed to ack 0x%x: %d\n", 979 reg, ret); 980 goto err_alloc; 981 } 982 } 983 } 984 985 /* Wake is disabled by default */ 986 if (d->wake_buf) { 987 for (i = 0; i < chip->num_regs; i++) { 988 d->wake_buf[i] = d->mask_buf_def[i]; 989 reg = d->get_irq_reg(d, d->chip->wake_base, i); 990 991 if (chip->wake_invert) 992 ret = regmap_update_bits(d->map, reg, 993 d->mask_buf_def[i], 994 0); 995 else 996 ret = regmap_update_bits(d->map, reg, 997 d->mask_buf_def[i], 998 d->wake_buf[i]); 999 if (ret != 0) { 1000 dev_err(map->dev, "Failed to set masks in 0x%x: %d\n", 1001 reg, ret); 1002 goto err_alloc; 1003 } 1004 } 1005 } 1006 1007 if (chip->num_type_reg && !chip->type_in_mask) { 1008 for (i = 0; i < chip->num_type_reg; ++i) { 1009 reg = d->get_irq_reg(d, d->chip->type_base, i); 1010 1011 ret = regmap_read(map, reg, &d->type_buf_def[i]); 1012 1013 if (ret) { 1014 dev_err(map->dev, "Failed to get type defaults at 0x%x: %d\n", 1015 reg, ret); 1016 goto err_alloc; 1017 } 1018 } 1019 } 1020 1021 if (irq_base) 1022 d->domain = irq_domain_create_legacy(fwnode, chip->num_irqs, 1023 irq_base, 0, 1024 ®map_domain_ops, d); 1025 else 1026 d->domain = irq_domain_create_linear(fwnode, chip->num_irqs, 1027 ®map_domain_ops, d); 1028 if (!d->domain) { 1029 dev_err(map->dev, "Failed to create IRQ domain\n"); 1030 ret = -ENOMEM; 1031 goto err_alloc; 1032 } 1033 1034 ret = request_threaded_irq(irq, NULL, regmap_irq_thread, 1035 irq_flags | IRQF_ONESHOT, 1036 chip->name, d); 1037 if (ret != 0) { 1038 dev_err(map->dev, "Failed to request IRQ %d for %s: %d\n", 1039 irq, chip->name, ret); 1040 goto err_domain; 1041 } 1042 1043 *data = d; 1044 1045 return 0; 1046 1047 err_domain: 1048 /* Should really dispose of the domain but... */ 1049 err_alloc: 1050 kfree(d->type_buf); 1051 kfree(d->type_buf_def); 1052 kfree(d->wake_buf); 1053 kfree(d->mask_buf_def); 1054 kfree(d->mask_buf); 1055 kfree(d->status_buf); 1056 kfree(d->status_reg_buf); 1057 if (d->virt_buf) { 1058 for (i = 0; i < chip->num_virt_regs; i++) 1059 kfree(d->virt_buf[i]); 1060 kfree(d->virt_buf); 1061 } 1062 if (d->config_buf) { 1063 for (i = 0; i < chip->num_config_bases; i++) 1064 kfree(d->config_buf[i]); 1065 kfree(d->config_buf); 1066 } 1067 kfree(d); 1068 return ret; 1069 } 1070 EXPORT_SYMBOL_GPL(regmap_add_irq_chip_fwnode); 1071 1072 /** 1073 * regmap_add_irq_chip() - Use standard regmap IRQ controller handling 1074 * 1075 * @map: The regmap for the device. 1076 * @irq: The IRQ the device uses to signal interrupts. 1077 * @irq_flags: The IRQF_ flags to use for the primary interrupt. 1078 * @irq_base: Allocate at specific IRQ number if irq_base > 0. 1079 * @chip: Configuration for the interrupt controller. 1080 * @data: Runtime data structure for the controller, allocated on success. 1081 * 1082 * Returns 0 on success or an errno on failure. 1083 * 1084 * This is the same as regmap_add_irq_chip_fwnode, except that the firmware 1085 * node of the regmap is used. 1086 */ 1087 int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags, 1088 int irq_base, const struct regmap_irq_chip *chip, 1089 struct regmap_irq_chip_data **data) 1090 { 1091 return regmap_add_irq_chip_fwnode(dev_fwnode(map->dev), map, irq, 1092 irq_flags, irq_base, chip, data); 1093 } 1094 EXPORT_SYMBOL_GPL(regmap_add_irq_chip); 1095 1096 /** 1097 * regmap_del_irq_chip() - Stop interrupt handling for a regmap IRQ chip 1098 * 1099 * @irq: Primary IRQ for the device 1100 * @d: ®map_irq_chip_data allocated by regmap_add_irq_chip() 1101 * 1102 * This function also disposes of all mapped IRQs on the chip. 1103 */ 1104 void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d) 1105 { 1106 unsigned int virq; 1107 int i, hwirq; 1108 1109 if (!d) 1110 return; 1111 1112 free_irq(irq, d); 1113 1114 /* Dispose all virtual irq from irq domain before removing it */ 1115 for (hwirq = 0; hwirq < d->chip->num_irqs; hwirq++) { 1116 /* Ignore hwirq if holes in the IRQ list */ 1117 if (!d->chip->irqs[hwirq].mask) 1118 continue; 1119 1120 /* 1121 * Find the virtual irq of hwirq on chip and if it is 1122 * there then dispose it 1123 */ 1124 virq = irq_find_mapping(d->domain, hwirq); 1125 if (virq) 1126 irq_dispose_mapping(virq); 1127 } 1128 1129 irq_domain_remove(d->domain); 1130 kfree(d->type_buf); 1131 kfree(d->type_buf_def); 1132 kfree(d->wake_buf); 1133 kfree(d->mask_buf_def); 1134 kfree(d->mask_buf); 1135 kfree(d->status_reg_buf); 1136 kfree(d->status_buf); 1137 if (d->config_buf) { 1138 for (i = 0; i < d->chip->num_config_bases; i++) 1139 kfree(d->config_buf[i]); 1140 kfree(d->config_buf); 1141 } 1142 kfree(d); 1143 } 1144 EXPORT_SYMBOL_GPL(regmap_del_irq_chip); 1145 1146 static void devm_regmap_irq_chip_release(struct device *dev, void *res) 1147 { 1148 struct regmap_irq_chip_data *d = *(struct regmap_irq_chip_data **)res; 1149 1150 regmap_del_irq_chip(d->irq, d); 1151 } 1152 1153 static int devm_regmap_irq_chip_match(struct device *dev, void *res, void *data) 1154 1155 { 1156 struct regmap_irq_chip_data **r = res; 1157 1158 if (!r || !*r) { 1159 WARN_ON(!r || !*r); 1160 return 0; 1161 } 1162 return *r == data; 1163 } 1164 1165 /** 1166 * devm_regmap_add_irq_chip_fwnode() - Resource managed regmap_add_irq_chip_fwnode() 1167 * 1168 * @dev: The device pointer on which irq_chip belongs to. 1169 * @fwnode: The firmware node where the IRQ domain should be added to. 1170 * @map: The regmap for the device. 1171 * @irq: The IRQ the device uses to signal interrupts 1172 * @irq_flags: The IRQF_ flags to use for the primary interrupt. 1173 * @irq_base: Allocate at specific IRQ number if irq_base > 0. 1174 * @chip: Configuration for the interrupt controller. 1175 * @data: Runtime data structure for the controller, allocated on success 1176 * 1177 * Returns 0 on success or an errno on failure. 1178 * 1179 * The ®map_irq_chip_data will be automatically released when the device is 1180 * unbound. 1181 */ 1182 int devm_regmap_add_irq_chip_fwnode(struct device *dev, 1183 struct fwnode_handle *fwnode, 1184 struct regmap *map, int irq, 1185 int irq_flags, int irq_base, 1186 const struct regmap_irq_chip *chip, 1187 struct regmap_irq_chip_data **data) 1188 { 1189 struct regmap_irq_chip_data **ptr, *d; 1190 int ret; 1191 1192 ptr = devres_alloc(devm_regmap_irq_chip_release, sizeof(*ptr), 1193 GFP_KERNEL); 1194 if (!ptr) 1195 return -ENOMEM; 1196 1197 ret = regmap_add_irq_chip_fwnode(fwnode, map, irq, irq_flags, irq_base, 1198 chip, &d); 1199 if (ret < 0) { 1200 devres_free(ptr); 1201 return ret; 1202 } 1203 1204 *ptr = d; 1205 devres_add(dev, ptr); 1206 *data = d; 1207 return 0; 1208 } 1209 EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip_fwnode); 1210 1211 /** 1212 * devm_regmap_add_irq_chip() - Resource managed regmap_add_irq_chip() 1213 * 1214 * @dev: The device pointer on which irq_chip belongs to. 1215 * @map: The regmap for the device. 1216 * @irq: The IRQ the device uses to signal interrupts 1217 * @irq_flags: The IRQF_ flags to use for the primary interrupt. 1218 * @irq_base: Allocate at specific IRQ number if irq_base > 0. 1219 * @chip: Configuration for the interrupt controller. 1220 * @data: Runtime data structure for the controller, allocated on success 1221 * 1222 * Returns 0 on success or an errno on failure. 1223 * 1224 * The ®map_irq_chip_data will be automatically released when the device is 1225 * unbound. 1226 */ 1227 int devm_regmap_add_irq_chip(struct device *dev, struct regmap *map, int irq, 1228 int irq_flags, int irq_base, 1229 const struct regmap_irq_chip *chip, 1230 struct regmap_irq_chip_data **data) 1231 { 1232 return devm_regmap_add_irq_chip_fwnode(dev, dev_fwnode(map->dev), map, 1233 irq, irq_flags, irq_base, chip, 1234 data); 1235 } 1236 EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip); 1237 1238 /** 1239 * devm_regmap_del_irq_chip() - Resource managed regmap_del_irq_chip() 1240 * 1241 * @dev: Device for which the resource was allocated. 1242 * @irq: Primary IRQ for the device. 1243 * @data: ®map_irq_chip_data allocated by regmap_add_irq_chip(). 1244 * 1245 * A resource managed version of regmap_del_irq_chip(). 1246 */ 1247 void devm_regmap_del_irq_chip(struct device *dev, int irq, 1248 struct regmap_irq_chip_data *data) 1249 { 1250 int rc; 1251 1252 WARN_ON(irq != data->irq); 1253 rc = devres_release(dev, devm_regmap_irq_chip_release, 1254 devm_regmap_irq_chip_match, data); 1255 1256 if (rc != 0) 1257 WARN_ON(rc); 1258 } 1259 EXPORT_SYMBOL_GPL(devm_regmap_del_irq_chip); 1260 1261 /** 1262 * regmap_irq_chip_get_base() - Retrieve interrupt base for a regmap IRQ chip 1263 * 1264 * @data: regmap irq controller to operate on. 1265 * 1266 * Useful for drivers to request their own IRQs. 1267 */ 1268 int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data) 1269 { 1270 WARN_ON(!data->irq_base); 1271 return data->irq_base; 1272 } 1273 EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base); 1274 1275 /** 1276 * regmap_irq_get_virq() - Map an interrupt on a chip to a virtual IRQ 1277 * 1278 * @data: regmap irq controller to operate on. 1279 * @irq: index of the interrupt requested in the chip IRQs. 1280 * 1281 * Useful for drivers to request their own IRQs. 1282 */ 1283 int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq) 1284 { 1285 /* Handle holes in the IRQ list */ 1286 if (!data->chip->irqs[irq].mask) 1287 return -EINVAL; 1288 1289 return irq_create_mapping(data->domain, irq); 1290 } 1291 EXPORT_SYMBOL_GPL(regmap_irq_get_virq); 1292 1293 /** 1294 * regmap_irq_get_domain() - Retrieve the irq_domain for the chip 1295 * 1296 * @data: regmap_irq controller to operate on. 1297 * 1298 * Useful for drivers to request their own IRQs and for integration 1299 * with subsystems. For ease of integration NULL is accepted as a 1300 * domain, allowing devices to just call this even if no domain is 1301 * allocated. 1302 */ 1303 struct irq_domain *regmap_irq_get_domain(struct regmap_irq_chip_data *data) 1304 { 1305 if (data) 1306 return data->domain; 1307 else 1308 return NULL; 1309 } 1310 EXPORT_SYMBOL_GPL(regmap_irq_get_domain); 1311