xref: /linux/drivers/base/regmap/regmap-irq.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * regmap based irq_chip
3  *
4  * Copyright 2011 Wolfson Microelectronics plc
5  *
6  * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #include <linux/device.h>
14 #include <linux/export.h>
15 #include <linux/interrupt.h>
16 #include <linux/irq.h>
17 #include <linux/irqdomain.h>
18 #include <linux/pm_runtime.h>
19 #include <linux/regmap.h>
20 #include <linux/slab.h>
21 
22 #include "internal.h"
23 
24 struct regmap_irq_chip_data {
25 	struct mutex lock;
26 	struct irq_chip irq_chip;
27 
28 	struct regmap *map;
29 	const struct regmap_irq_chip *chip;
30 
31 	int irq_base;
32 	struct irq_domain *domain;
33 
34 	int irq;
35 	int wake_count;
36 
37 	void *status_reg_buf;
38 	unsigned int *status_buf;
39 	unsigned int *mask_buf;
40 	unsigned int *mask_buf_def;
41 	unsigned int *wake_buf;
42 	unsigned int *type_buf;
43 	unsigned int *type_buf_def;
44 
45 	unsigned int irq_reg_stride;
46 	unsigned int type_reg_stride;
47 };
48 
49 static inline const
50 struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data,
51 				     int irq)
52 {
53 	return &data->chip->irqs[irq];
54 }
55 
56 static void regmap_irq_lock(struct irq_data *data)
57 {
58 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
59 
60 	mutex_lock(&d->lock);
61 }
62 
63 static void regmap_irq_sync_unlock(struct irq_data *data)
64 {
65 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
66 	struct regmap *map = d->map;
67 	int i, ret;
68 	u32 reg;
69 	u32 unmask_offset;
70 
71 	if (d->chip->runtime_pm) {
72 		ret = pm_runtime_get_sync(map->dev);
73 		if (ret < 0)
74 			dev_err(map->dev, "IRQ sync failed to resume: %d\n",
75 				ret);
76 	}
77 
78 	/*
79 	 * If there's been a change in the mask write it back to the
80 	 * hardware.  We rely on the use of the regmap core cache to
81 	 * suppress pointless writes.
82 	 */
83 	for (i = 0; i < d->chip->num_regs; i++) {
84 		reg = d->chip->mask_base +
85 			(i * map->reg_stride * d->irq_reg_stride);
86 		if (d->chip->mask_invert) {
87 			ret = regmap_update_bits(d->map, reg,
88 					 d->mask_buf_def[i], ~d->mask_buf[i]);
89 		} else if (d->chip->unmask_base) {
90 			/* set mask with mask_base register */
91 			ret = regmap_update_bits(d->map, reg,
92 					d->mask_buf_def[i], ~d->mask_buf[i]);
93 			if (ret < 0)
94 				dev_err(d->map->dev,
95 					"Failed to sync unmasks in %x\n",
96 					reg);
97 			unmask_offset = d->chip->unmask_base -
98 							d->chip->mask_base;
99 			/* clear mask with unmask_base register */
100 			ret = regmap_update_bits(d->map,
101 					reg + unmask_offset,
102 					d->mask_buf_def[i],
103 					d->mask_buf[i]);
104 		} else {
105 			ret = regmap_update_bits(d->map, reg,
106 					 d->mask_buf_def[i], d->mask_buf[i]);
107 		}
108 		if (ret != 0)
109 			dev_err(d->map->dev, "Failed to sync masks in %x\n",
110 				reg);
111 
112 		reg = d->chip->wake_base +
113 			(i * map->reg_stride * d->irq_reg_stride);
114 		if (d->wake_buf) {
115 			if (d->chip->wake_invert)
116 				ret = regmap_update_bits(d->map, reg,
117 							 d->mask_buf_def[i],
118 							 ~d->wake_buf[i]);
119 			else
120 				ret = regmap_update_bits(d->map, reg,
121 							 d->mask_buf_def[i],
122 							 d->wake_buf[i]);
123 			if (ret != 0)
124 				dev_err(d->map->dev,
125 					"Failed to sync wakes in %x: %d\n",
126 					reg, ret);
127 		}
128 
129 		if (!d->chip->init_ack_masked)
130 			continue;
131 		/*
132 		 * Ack all the masked interrupts unconditionally,
133 		 * OR if there is masked interrupt which hasn't been Acked,
134 		 * it'll be ignored in irq handler, then may introduce irq storm
135 		 */
136 		if (d->mask_buf[i] && (d->chip->ack_base || d->chip->use_ack)) {
137 			reg = d->chip->ack_base +
138 				(i * map->reg_stride * d->irq_reg_stride);
139 			/* some chips ack by write 0 */
140 			if (d->chip->ack_invert)
141 				ret = regmap_write(map, reg, ~d->mask_buf[i]);
142 			else
143 				ret = regmap_write(map, reg, d->mask_buf[i]);
144 			if (ret != 0)
145 				dev_err(d->map->dev, "Failed to ack 0x%x: %d\n",
146 					reg, ret);
147 		}
148 	}
149 
150 	for (i = 0; i < d->chip->num_type_reg; i++) {
151 		if (!d->type_buf_def[i])
152 			continue;
153 		reg = d->chip->type_base +
154 			(i * map->reg_stride * d->type_reg_stride);
155 		if (d->chip->type_invert)
156 			ret = regmap_update_bits(d->map, reg,
157 				d->type_buf_def[i], ~d->type_buf[i]);
158 		else
159 			ret = regmap_update_bits(d->map, reg,
160 				d->type_buf_def[i], d->type_buf[i]);
161 		if (ret != 0)
162 			dev_err(d->map->dev, "Failed to sync type in %x\n",
163 				reg);
164 	}
165 
166 	if (d->chip->runtime_pm)
167 		pm_runtime_put(map->dev);
168 
169 	/* If we've changed our wakeup count propagate it to the parent */
170 	if (d->wake_count < 0)
171 		for (i = d->wake_count; i < 0; i++)
172 			irq_set_irq_wake(d->irq, 0);
173 	else if (d->wake_count > 0)
174 		for (i = 0; i < d->wake_count; i++)
175 			irq_set_irq_wake(d->irq, 1);
176 
177 	d->wake_count = 0;
178 
179 	mutex_unlock(&d->lock);
180 }
181 
182 static void regmap_irq_enable(struct irq_data *data)
183 {
184 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
185 	struct regmap *map = d->map;
186 	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
187 
188 	d->mask_buf[irq_data->reg_offset / map->reg_stride] &= ~irq_data->mask;
189 }
190 
191 static void regmap_irq_disable(struct irq_data *data)
192 {
193 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
194 	struct regmap *map = d->map;
195 	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
196 
197 	d->mask_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask;
198 }
199 
200 static int regmap_irq_set_type(struct irq_data *data, unsigned int type)
201 {
202 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
203 	struct regmap *map = d->map;
204 	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
205 	int reg = irq_data->type_reg_offset / map->reg_stride;
206 
207 	if (!(irq_data->type_rising_mask | irq_data->type_falling_mask))
208 		return 0;
209 
210 	d->type_buf[reg] &= ~(irq_data->type_falling_mask |
211 					irq_data->type_rising_mask);
212 	switch (type) {
213 	case IRQ_TYPE_EDGE_FALLING:
214 		d->type_buf[reg] |= irq_data->type_falling_mask;
215 		break;
216 
217 	case IRQ_TYPE_EDGE_RISING:
218 		d->type_buf[reg] |= irq_data->type_rising_mask;
219 		break;
220 
221 	case IRQ_TYPE_EDGE_BOTH:
222 		d->type_buf[reg] |= (irq_data->type_falling_mask |
223 					irq_data->type_rising_mask);
224 		break;
225 
226 	default:
227 		return -EINVAL;
228 	}
229 	return 0;
230 }
231 
232 static int regmap_irq_set_wake(struct irq_data *data, unsigned int on)
233 {
234 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
235 	struct regmap *map = d->map;
236 	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
237 
238 	if (on) {
239 		if (d->wake_buf)
240 			d->wake_buf[irq_data->reg_offset / map->reg_stride]
241 				&= ~irq_data->mask;
242 		d->wake_count++;
243 	} else {
244 		if (d->wake_buf)
245 			d->wake_buf[irq_data->reg_offset / map->reg_stride]
246 				|= irq_data->mask;
247 		d->wake_count--;
248 	}
249 
250 	return 0;
251 }
252 
253 static const struct irq_chip regmap_irq_chip = {
254 	.irq_bus_lock		= regmap_irq_lock,
255 	.irq_bus_sync_unlock	= regmap_irq_sync_unlock,
256 	.irq_disable		= regmap_irq_disable,
257 	.irq_enable		= regmap_irq_enable,
258 	.irq_set_type		= regmap_irq_set_type,
259 	.irq_set_wake		= regmap_irq_set_wake,
260 };
261 
262 static irqreturn_t regmap_irq_thread(int irq, void *d)
263 {
264 	struct regmap_irq_chip_data *data = d;
265 	const struct regmap_irq_chip *chip = data->chip;
266 	struct regmap *map = data->map;
267 	int ret, i;
268 	bool handled = false;
269 	u32 reg;
270 
271 	if (chip->runtime_pm) {
272 		ret = pm_runtime_get_sync(map->dev);
273 		if (ret < 0) {
274 			dev_err(map->dev, "IRQ thread failed to resume: %d\n",
275 				ret);
276 			pm_runtime_put(map->dev);
277 			return IRQ_NONE;
278 		}
279 	}
280 
281 	/*
282 	 * Read in the statuses, using a single bulk read if possible
283 	 * in order to reduce the I/O overheads.
284 	 */
285 	if (!map->use_single_read && map->reg_stride == 1 &&
286 	    data->irq_reg_stride == 1) {
287 		u8 *buf8 = data->status_reg_buf;
288 		u16 *buf16 = data->status_reg_buf;
289 		u32 *buf32 = data->status_reg_buf;
290 
291 		BUG_ON(!data->status_reg_buf);
292 
293 		ret = regmap_bulk_read(map, chip->status_base,
294 				       data->status_reg_buf,
295 				       chip->num_regs);
296 		if (ret != 0) {
297 			dev_err(map->dev, "Failed to read IRQ status: %d\n",
298 				ret);
299 			return IRQ_NONE;
300 		}
301 
302 		for (i = 0; i < data->chip->num_regs; i++) {
303 			switch (map->format.val_bytes) {
304 			case 1:
305 				data->status_buf[i] = buf8[i];
306 				break;
307 			case 2:
308 				data->status_buf[i] = buf16[i];
309 				break;
310 			case 4:
311 				data->status_buf[i] = buf32[i];
312 				break;
313 			default:
314 				BUG();
315 				return IRQ_NONE;
316 			}
317 		}
318 
319 	} else {
320 		for (i = 0; i < data->chip->num_regs; i++) {
321 			ret = regmap_read(map, chip->status_base +
322 					  (i * map->reg_stride
323 					   * data->irq_reg_stride),
324 					  &data->status_buf[i]);
325 
326 			if (ret != 0) {
327 				dev_err(map->dev,
328 					"Failed to read IRQ status: %d\n",
329 					ret);
330 				if (chip->runtime_pm)
331 					pm_runtime_put(map->dev);
332 				return IRQ_NONE;
333 			}
334 		}
335 	}
336 
337 	/*
338 	 * Ignore masked IRQs and ack if we need to; we ack early so
339 	 * there is no race between handling and acknowleding the
340 	 * interrupt.  We assume that typically few of the interrupts
341 	 * will fire simultaneously so don't worry about overhead from
342 	 * doing a write per register.
343 	 */
344 	for (i = 0; i < data->chip->num_regs; i++) {
345 		data->status_buf[i] &= ~data->mask_buf[i];
346 
347 		if (data->status_buf[i] && (chip->ack_base || chip->use_ack)) {
348 			reg = chip->ack_base +
349 				(i * map->reg_stride * data->irq_reg_stride);
350 			ret = regmap_write(map, reg, data->status_buf[i]);
351 			if (ret != 0)
352 				dev_err(map->dev, "Failed to ack 0x%x: %d\n",
353 					reg, ret);
354 		}
355 	}
356 
357 	for (i = 0; i < chip->num_irqs; i++) {
358 		if (data->status_buf[chip->irqs[i].reg_offset /
359 				     map->reg_stride] & chip->irqs[i].mask) {
360 			handle_nested_irq(irq_find_mapping(data->domain, i));
361 			handled = true;
362 		}
363 	}
364 
365 	if (chip->runtime_pm)
366 		pm_runtime_put(map->dev);
367 
368 	if (handled)
369 		return IRQ_HANDLED;
370 	else
371 		return IRQ_NONE;
372 }
373 
374 static int regmap_irq_map(struct irq_domain *h, unsigned int virq,
375 			  irq_hw_number_t hw)
376 {
377 	struct regmap_irq_chip_data *data = h->host_data;
378 
379 	irq_set_chip_data(virq, data);
380 	irq_set_chip(virq, &data->irq_chip);
381 	irq_set_nested_thread(virq, 1);
382 	irq_set_parent(virq, data->irq);
383 	irq_set_noprobe(virq);
384 
385 	return 0;
386 }
387 
388 static const struct irq_domain_ops regmap_domain_ops = {
389 	.map	= regmap_irq_map,
390 	.xlate	= irq_domain_xlate_twocell,
391 };
392 
393 /**
394  * regmap_add_irq_chip(): Use standard regmap IRQ controller handling
395  *
396  * map:       The regmap for the device.
397  * irq:       The IRQ the device uses to signal interrupts
398  * irq_flags: The IRQF_ flags to use for the primary interrupt.
399  * chip:      Configuration for the interrupt controller.
400  * data:      Runtime data structure for the controller, allocated on success
401  *
402  * Returns 0 on success or an errno on failure.
403  *
404  * In order for this to be efficient the chip really should use a
405  * register cache.  The chip driver is responsible for restoring the
406  * register values used by the IRQ controller over suspend and resume.
407  */
408 int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags,
409 			int irq_base, const struct regmap_irq_chip *chip,
410 			struct regmap_irq_chip_data **data)
411 {
412 	struct regmap_irq_chip_data *d;
413 	int i;
414 	int ret = -ENOMEM;
415 	u32 reg;
416 	u32 unmask_offset;
417 
418 	if (chip->num_regs <= 0)
419 		return -EINVAL;
420 
421 	for (i = 0; i < chip->num_irqs; i++) {
422 		if (chip->irqs[i].reg_offset % map->reg_stride)
423 			return -EINVAL;
424 		if (chip->irqs[i].reg_offset / map->reg_stride >=
425 		    chip->num_regs)
426 			return -EINVAL;
427 	}
428 
429 	if (irq_base) {
430 		irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0);
431 		if (irq_base < 0) {
432 			dev_warn(map->dev, "Failed to allocate IRQs: %d\n",
433 				 irq_base);
434 			return irq_base;
435 		}
436 	}
437 
438 	d = kzalloc(sizeof(*d), GFP_KERNEL);
439 	if (!d)
440 		return -ENOMEM;
441 
442 	d->status_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
443 				GFP_KERNEL);
444 	if (!d->status_buf)
445 		goto err_alloc;
446 
447 	d->mask_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
448 			      GFP_KERNEL);
449 	if (!d->mask_buf)
450 		goto err_alloc;
451 
452 	d->mask_buf_def = kcalloc(chip->num_regs, sizeof(unsigned int),
453 				  GFP_KERNEL);
454 	if (!d->mask_buf_def)
455 		goto err_alloc;
456 
457 	if (chip->wake_base) {
458 		d->wake_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
459 				      GFP_KERNEL);
460 		if (!d->wake_buf)
461 			goto err_alloc;
462 	}
463 
464 	if (chip->num_type_reg) {
465 		d->type_buf_def = kcalloc(chip->num_type_reg,
466 					sizeof(unsigned int), GFP_KERNEL);
467 		if (!d->type_buf_def)
468 			goto err_alloc;
469 
470 		d->type_buf = kcalloc(chip->num_type_reg, sizeof(unsigned int),
471 				      GFP_KERNEL);
472 		if (!d->type_buf)
473 			goto err_alloc;
474 	}
475 
476 	d->irq_chip = regmap_irq_chip;
477 	d->irq_chip.name = chip->name;
478 	d->irq = irq;
479 	d->map = map;
480 	d->chip = chip;
481 	d->irq_base = irq_base;
482 
483 	if (chip->irq_reg_stride)
484 		d->irq_reg_stride = chip->irq_reg_stride;
485 	else
486 		d->irq_reg_stride = 1;
487 
488 	if (chip->type_reg_stride)
489 		d->type_reg_stride = chip->type_reg_stride;
490 	else
491 		d->type_reg_stride = 1;
492 
493 	if (!map->use_single_read && map->reg_stride == 1 &&
494 	    d->irq_reg_stride == 1) {
495 		d->status_reg_buf = kmalloc_array(chip->num_regs,
496 						  map->format.val_bytes,
497 						  GFP_KERNEL);
498 		if (!d->status_reg_buf)
499 			goto err_alloc;
500 	}
501 
502 	mutex_init(&d->lock);
503 
504 	for (i = 0; i < chip->num_irqs; i++)
505 		d->mask_buf_def[chip->irqs[i].reg_offset / map->reg_stride]
506 			|= chip->irqs[i].mask;
507 
508 	/* Mask all the interrupts by default */
509 	for (i = 0; i < chip->num_regs; i++) {
510 		d->mask_buf[i] = d->mask_buf_def[i];
511 		reg = chip->mask_base +
512 			(i * map->reg_stride * d->irq_reg_stride);
513 		if (chip->mask_invert)
514 			ret = regmap_update_bits(map, reg,
515 					 d->mask_buf[i], ~d->mask_buf[i]);
516 		else if (d->chip->unmask_base) {
517 			unmask_offset = d->chip->unmask_base -
518 					d->chip->mask_base;
519 			ret = regmap_update_bits(d->map,
520 					reg + unmask_offset,
521 					d->mask_buf[i],
522 					d->mask_buf[i]);
523 		} else
524 			ret = regmap_update_bits(map, reg,
525 					 d->mask_buf[i], d->mask_buf[i]);
526 		if (ret != 0) {
527 			dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
528 				reg, ret);
529 			goto err_alloc;
530 		}
531 
532 		if (!chip->init_ack_masked)
533 			continue;
534 
535 		/* Ack masked but set interrupts */
536 		reg = chip->status_base +
537 			(i * map->reg_stride * d->irq_reg_stride);
538 		ret = regmap_read(map, reg, &d->status_buf[i]);
539 		if (ret != 0) {
540 			dev_err(map->dev, "Failed to read IRQ status: %d\n",
541 				ret);
542 			goto err_alloc;
543 		}
544 
545 		if (d->status_buf[i] && (chip->ack_base || chip->use_ack)) {
546 			reg = chip->ack_base +
547 				(i * map->reg_stride * d->irq_reg_stride);
548 			if (chip->ack_invert)
549 				ret = regmap_write(map, reg,
550 					~(d->status_buf[i] & d->mask_buf[i]));
551 			else
552 				ret = regmap_write(map, reg,
553 					d->status_buf[i] & d->mask_buf[i]);
554 			if (ret != 0) {
555 				dev_err(map->dev, "Failed to ack 0x%x: %d\n",
556 					reg, ret);
557 				goto err_alloc;
558 			}
559 		}
560 	}
561 
562 	/* Wake is disabled by default */
563 	if (d->wake_buf) {
564 		for (i = 0; i < chip->num_regs; i++) {
565 			d->wake_buf[i] = d->mask_buf_def[i];
566 			reg = chip->wake_base +
567 				(i * map->reg_stride * d->irq_reg_stride);
568 
569 			if (chip->wake_invert)
570 				ret = regmap_update_bits(map, reg,
571 							 d->mask_buf_def[i],
572 							 0);
573 			else
574 				ret = regmap_update_bits(map, reg,
575 							 d->mask_buf_def[i],
576 							 d->wake_buf[i]);
577 			if (ret != 0) {
578 				dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
579 					reg, ret);
580 				goto err_alloc;
581 			}
582 		}
583 	}
584 
585 	if (chip->num_type_reg) {
586 		for (i = 0; i < chip->num_irqs; i++) {
587 			reg = chip->irqs[i].type_reg_offset / map->reg_stride;
588 			d->type_buf_def[reg] |= chip->irqs[i].type_rising_mask |
589 					chip->irqs[i].type_falling_mask;
590 		}
591 		for (i = 0; i < chip->num_type_reg; ++i) {
592 			if (!d->type_buf_def[i])
593 				continue;
594 
595 			reg = chip->type_base +
596 				(i * map->reg_stride * d->type_reg_stride);
597 			if (chip->type_invert)
598 				ret = regmap_update_bits(map, reg,
599 					d->type_buf_def[i], 0xFF);
600 			else
601 				ret = regmap_update_bits(map, reg,
602 					d->type_buf_def[i], 0x0);
603 			if (ret != 0) {
604 				dev_err(map->dev,
605 					"Failed to set type in 0x%x: %x\n",
606 					reg, ret);
607 				goto err_alloc;
608 			}
609 		}
610 	}
611 
612 	if (irq_base)
613 		d->domain = irq_domain_add_legacy(map->dev->of_node,
614 						  chip->num_irqs, irq_base, 0,
615 						  &regmap_domain_ops, d);
616 	else
617 		d->domain = irq_domain_add_linear(map->dev->of_node,
618 						  chip->num_irqs,
619 						  &regmap_domain_ops, d);
620 	if (!d->domain) {
621 		dev_err(map->dev, "Failed to create IRQ domain\n");
622 		ret = -ENOMEM;
623 		goto err_alloc;
624 	}
625 
626 	ret = request_threaded_irq(irq, NULL, regmap_irq_thread,
627 				   irq_flags | IRQF_ONESHOT,
628 				   chip->name, d);
629 	if (ret != 0) {
630 		dev_err(map->dev, "Failed to request IRQ %d for %s: %d\n",
631 			irq, chip->name, ret);
632 		goto err_domain;
633 	}
634 
635 	*data = d;
636 
637 	return 0;
638 
639 err_domain:
640 	/* Should really dispose of the domain but... */
641 err_alloc:
642 	kfree(d->type_buf);
643 	kfree(d->type_buf_def);
644 	kfree(d->wake_buf);
645 	kfree(d->mask_buf_def);
646 	kfree(d->mask_buf);
647 	kfree(d->status_buf);
648 	kfree(d->status_reg_buf);
649 	kfree(d);
650 	return ret;
651 }
652 EXPORT_SYMBOL_GPL(regmap_add_irq_chip);
653 
654 /**
655  * regmap_del_irq_chip(): Stop interrupt handling for a regmap IRQ chip
656  *
657  * @irq: Primary IRQ for the device
658  * @d:   regmap_irq_chip_data allocated by regmap_add_irq_chip()
659  *
660  * This function also dispose all mapped irq on chip.
661  */
662 void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d)
663 {
664 	unsigned int virq;
665 	int hwirq;
666 
667 	if (!d)
668 		return;
669 
670 	free_irq(irq, d);
671 
672 	/* Dispose all virtual irq from irq domain before removing it */
673 	for (hwirq = 0; hwirq < d->chip->num_irqs; hwirq++) {
674 		/* Ignore hwirq if holes in the IRQ list */
675 		if (!d->chip->irqs[hwirq].mask)
676 			continue;
677 
678 		/*
679 		 * Find the virtual irq of hwirq on chip and if it is
680 		 * there then dispose it
681 		 */
682 		virq = irq_find_mapping(d->domain, hwirq);
683 		if (virq)
684 			irq_dispose_mapping(virq);
685 	}
686 
687 	irq_domain_remove(d->domain);
688 	kfree(d->type_buf);
689 	kfree(d->type_buf_def);
690 	kfree(d->wake_buf);
691 	kfree(d->mask_buf_def);
692 	kfree(d->mask_buf);
693 	kfree(d->status_reg_buf);
694 	kfree(d->status_buf);
695 	kfree(d);
696 }
697 EXPORT_SYMBOL_GPL(regmap_del_irq_chip);
698 
699 static void devm_regmap_irq_chip_release(struct device *dev, void *res)
700 {
701 	struct regmap_irq_chip_data *d = *(struct regmap_irq_chip_data **)res;
702 
703 	regmap_del_irq_chip(d->irq, d);
704 }
705 
706 static int devm_regmap_irq_chip_match(struct device *dev, void *res, void *data)
707 
708 {
709 	struct regmap_irq_chip_data **r = res;
710 
711 	if (!r || !*r) {
712 		WARN_ON(!r || !*r);
713 		return 0;
714 	}
715 	return *r == data;
716 }
717 
718 /**
719  * devm_regmap_add_irq_chip(): Resource manager regmap_add_irq_chip()
720  *
721  * @dev:       The device pointer on which irq_chip belongs to.
722  * @map:       The regmap for the device.
723  * @irq:       The IRQ the device uses to signal interrupts
724  * @irq_flags: The IRQF_ flags to use for the primary interrupt.
725  * @chip:      Configuration for the interrupt controller.
726  * @data:      Runtime data structure for the controller, allocated on success
727  *
728  * Returns 0 on success or an errno on failure.
729  *
730  * The regmap_irq_chip data automatically be released when the device is
731  * unbound.
732  */
733 int devm_regmap_add_irq_chip(struct device *dev, struct regmap *map, int irq,
734 			     int irq_flags, int irq_base,
735 			     const struct regmap_irq_chip *chip,
736 			     struct regmap_irq_chip_data **data)
737 {
738 	struct regmap_irq_chip_data **ptr, *d;
739 	int ret;
740 
741 	ptr = devres_alloc(devm_regmap_irq_chip_release, sizeof(*ptr),
742 			   GFP_KERNEL);
743 	if (!ptr)
744 		return -ENOMEM;
745 
746 	ret = regmap_add_irq_chip(map, irq, irq_flags, irq_base,
747 				  chip, &d);
748 	if (ret < 0) {
749 		devres_free(ptr);
750 		return ret;
751 	}
752 
753 	*ptr = d;
754 	devres_add(dev, ptr);
755 	*data = d;
756 	return 0;
757 }
758 EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip);
759 
760 /**
761  * devm_regmap_del_irq_chip(): Resource managed regmap_del_irq_chip()
762  *
763  * @dev: Device for which which resource was allocated.
764  * @irq: Primary IRQ for the device
765  * @d:   regmap_irq_chip_data allocated by regmap_add_irq_chip()
766  */
767 void devm_regmap_del_irq_chip(struct device *dev, int irq,
768 			      struct regmap_irq_chip_data *data)
769 {
770 	int rc;
771 
772 	WARN_ON(irq != data->irq);
773 	rc = devres_release(dev, devm_regmap_irq_chip_release,
774 			    devm_regmap_irq_chip_match, data);
775 
776 	if (rc != 0)
777 		WARN_ON(rc);
778 }
779 EXPORT_SYMBOL_GPL(devm_regmap_del_irq_chip);
780 
781 /**
782  * regmap_irq_chip_get_base(): Retrieve interrupt base for a regmap IRQ chip
783  *
784  * Useful for drivers to request their own IRQs.
785  *
786  * @data: regmap_irq controller to operate on.
787  */
788 int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data)
789 {
790 	WARN_ON(!data->irq_base);
791 	return data->irq_base;
792 }
793 EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base);
794 
795 /**
796  * regmap_irq_get_virq(): Map an interrupt on a chip to a virtual IRQ
797  *
798  * Useful for drivers to request their own IRQs.
799  *
800  * @data: regmap_irq controller to operate on.
801  * @irq: index of the interrupt requested in the chip IRQs
802  */
803 int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq)
804 {
805 	/* Handle holes in the IRQ list */
806 	if (!data->chip->irqs[irq].mask)
807 		return -EINVAL;
808 
809 	return irq_create_mapping(data->domain, irq);
810 }
811 EXPORT_SYMBOL_GPL(regmap_irq_get_virq);
812 
813 /**
814  * regmap_irq_get_domain(): Retrieve the irq_domain for the chip
815  *
816  * Useful for drivers to request their own IRQs and for integration
817  * with subsystems.  For ease of integration NULL is accepted as a
818  * domain, allowing devices to just call this even if no domain is
819  * allocated.
820  *
821  * @data: regmap_irq controller to operate on.
822  */
823 struct irq_domain *regmap_irq_get_domain(struct regmap_irq_chip_data *data)
824 {
825 	if (data)
826 		return data->domain;
827 	else
828 		return NULL;
829 }
830 EXPORT_SYMBOL_GPL(regmap_irq_get_domain);
831