xref: /linux/drivers/base/regmap/regmap-irq.c (revision 071bf69a0220253a44acb8b2a27f7a262b9a46bf)
1 /*
2  * regmap based irq_chip
3  *
4  * Copyright 2011 Wolfson Microelectronics plc
5  *
6  * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #include <linux/device.h>
14 #include <linux/export.h>
15 #include <linux/interrupt.h>
16 #include <linux/irq.h>
17 #include <linux/irqdomain.h>
18 #include <linux/pm_runtime.h>
19 #include <linux/regmap.h>
20 #include <linux/slab.h>
21 
22 #include "internal.h"
23 
24 struct regmap_irq_chip_data {
25 	struct mutex lock;
26 	struct irq_chip irq_chip;
27 
28 	struct regmap *map;
29 	const struct regmap_irq_chip *chip;
30 
31 	int irq_base;
32 	struct irq_domain *domain;
33 
34 	int irq;
35 	int wake_count;
36 
37 	void *status_reg_buf;
38 	unsigned int *status_buf;
39 	unsigned int *mask_buf;
40 	unsigned int *mask_buf_def;
41 	unsigned int *wake_buf;
42 	unsigned int *type_buf;
43 	unsigned int *type_buf_def;
44 
45 	unsigned int irq_reg_stride;
46 	unsigned int type_reg_stride;
47 };
48 
49 static inline const
50 struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data,
51 				     int irq)
52 {
53 	return &data->chip->irqs[irq];
54 }
55 
56 static void regmap_irq_lock(struct irq_data *data)
57 {
58 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
59 
60 	mutex_lock(&d->lock);
61 }
62 
63 static void regmap_irq_sync_unlock(struct irq_data *data)
64 {
65 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
66 	struct regmap *map = d->map;
67 	int i, ret;
68 	u32 reg;
69 	u32 unmask_offset;
70 
71 	if (d->chip->runtime_pm) {
72 		ret = pm_runtime_get_sync(map->dev);
73 		if (ret < 0)
74 			dev_err(map->dev, "IRQ sync failed to resume: %d\n",
75 				ret);
76 	}
77 
78 	/*
79 	 * If there's been a change in the mask write it back to the
80 	 * hardware.  We rely on the use of the regmap core cache to
81 	 * suppress pointless writes.
82 	 */
83 	for (i = 0; i < d->chip->num_regs; i++) {
84 		reg = d->chip->mask_base +
85 			(i * map->reg_stride * d->irq_reg_stride);
86 		if (d->chip->mask_invert) {
87 			ret = regmap_update_bits(d->map, reg,
88 					 d->mask_buf_def[i], ~d->mask_buf[i]);
89 		} else if (d->chip->unmask_base) {
90 			/* set mask with mask_base register */
91 			ret = regmap_update_bits(d->map, reg,
92 					d->mask_buf_def[i], ~d->mask_buf[i]);
93 			if (ret < 0)
94 				dev_err(d->map->dev,
95 					"Failed to sync unmasks in %x\n",
96 					reg);
97 			unmask_offset = d->chip->unmask_base -
98 							d->chip->mask_base;
99 			/* clear mask with unmask_base register */
100 			ret = regmap_update_bits(d->map,
101 					reg + unmask_offset,
102 					d->mask_buf_def[i],
103 					d->mask_buf[i]);
104 		} else {
105 			ret = regmap_update_bits(d->map, reg,
106 					 d->mask_buf_def[i], d->mask_buf[i]);
107 		}
108 		if (ret != 0)
109 			dev_err(d->map->dev, "Failed to sync masks in %x\n",
110 				reg);
111 
112 		reg = d->chip->wake_base +
113 			(i * map->reg_stride * d->irq_reg_stride);
114 		if (d->wake_buf) {
115 			if (d->chip->wake_invert)
116 				ret = regmap_update_bits(d->map, reg,
117 							 d->mask_buf_def[i],
118 							 ~d->wake_buf[i]);
119 			else
120 				ret = regmap_update_bits(d->map, reg,
121 							 d->mask_buf_def[i],
122 							 d->wake_buf[i]);
123 			if (ret != 0)
124 				dev_err(d->map->dev,
125 					"Failed to sync wakes in %x: %d\n",
126 					reg, ret);
127 		}
128 
129 		if (!d->chip->init_ack_masked)
130 			continue;
131 		/*
132 		 * Ack all the masked interrupts unconditionally,
133 		 * OR if there is masked interrupt which hasn't been Acked,
134 		 * it'll be ignored in irq handler, then may introduce irq storm
135 		 */
136 		if (d->mask_buf[i] && (d->chip->ack_base || d->chip->use_ack)) {
137 			reg = d->chip->ack_base +
138 				(i * map->reg_stride * d->irq_reg_stride);
139 			/* some chips ack by write 0 */
140 			if (d->chip->ack_invert)
141 				ret = regmap_write(map, reg, ~d->mask_buf[i]);
142 			else
143 				ret = regmap_write(map, reg, d->mask_buf[i]);
144 			if (ret != 0)
145 				dev_err(d->map->dev, "Failed to ack 0x%x: %d\n",
146 					reg, ret);
147 		}
148 	}
149 
150 	for (i = 0; i < d->chip->num_type_reg; i++) {
151 		if (!d->type_buf_def[i])
152 			continue;
153 		reg = d->chip->type_base +
154 			(i * map->reg_stride * d->type_reg_stride);
155 		if (d->chip->type_invert)
156 			ret = regmap_update_bits(d->map, reg,
157 				d->type_buf_def[i], ~d->type_buf[i]);
158 		else
159 			ret = regmap_update_bits(d->map, reg,
160 				d->type_buf_def[i], d->type_buf[i]);
161 		if (ret != 0)
162 			dev_err(d->map->dev, "Failed to sync type in %x\n",
163 				reg);
164 	}
165 
166 	if (d->chip->runtime_pm)
167 		pm_runtime_put(map->dev);
168 
169 	/* If we've changed our wakeup count propagate it to the parent */
170 	if (d->wake_count < 0)
171 		for (i = d->wake_count; i < 0; i++)
172 			irq_set_irq_wake(d->irq, 0);
173 	else if (d->wake_count > 0)
174 		for (i = 0; i < d->wake_count; i++)
175 			irq_set_irq_wake(d->irq, 1);
176 
177 	d->wake_count = 0;
178 
179 	mutex_unlock(&d->lock);
180 }
181 
182 static void regmap_irq_enable(struct irq_data *data)
183 {
184 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
185 	struct regmap *map = d->map;
186 	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
187 
188 	d->mask_buf[irq_data->reg_offset / map->reg_stride] &= ~irq_data->mask;
189 }
190 
191 static void regmap_irq_disable(struct irq_data *data)
192 {
193 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
194 	struct regmap *map = d->map;
195 	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
196 
197 	d->mask_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask;
198 }
199 
200 static int regmap_irq_set_type(struct irq_data *data, unsigned int type)
201 {
202 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
203 	struct regmap *map = d->map;
204 	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
205 	int reg = irq_data->type_reg_offset / map->reg_stride;
206 
207 	if (!(irq_data->type_rising_mask | irq_data->type_falling_mask))
208 		return 0;
209 
210 	d->type_buf[reg] &= ~(irq_data->type_falling_mask |
211 					irq_data->type_rising_mask);
212 	switch (type) {
213 	case IRQ_TYPE_EDGE_FALLING:
214 		d->type_buf[reg] |= irq_data->type_falling_mask;
215 		break;
216 
217 	case IRQ_TYPE_EDGE_RISING:
218 		d->type_buf[reg] |= irq_data->type_rising_mask;
219 		break;
220 
221 	case IRQ_TYPE_EDGE_BOTH:
222 		d->type_buf[reg] |= (irq_data->type_falling_mask |
223 					irq_data->type_rising_mask);
224 		break;
225 
226 	default:
227 		return -EINVAL;
228 	}
229 	return 0;
230 }
231 
232 static int regmap_irq_set_wake(struct irq_data *data, unsigned int on)
233 {
234 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
235 	struct regmap *map = d->map;
236 	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
237 
238 	if (on) {
239 		if (d->wake_buf)
240 			d->wake_buf[irq_data->reg_offset / map->reg_stride]
241 				&= ~irq_data->mask;
242 		d->wake_count++;
243 	} else {
244 		if (d->wake_buf)
245 			d->wake_buf[irq_data->reg_offset / map->reg_stride]
246 				|= irq_data->mask;
247 		d->wake_count--;
248 	}
249 
250 	return 0;
251 }
252 
253 static const struct irq_chip regmap_irq_chip = {
254 	.irq_bus_lock		= regmap_irq_lock,
255 	.irq_bus_sync_unlock	= regmap_irq_sync_unlock,
256 	.irq_disable		= regmap_irq_disable,
257 	.irq_enable		= regmap_irq_enable,
258 	.irq_set_type		= regmap_irq_set_type,
259 	.irq_set_wake		= regmap_irq_set_wake,
260 };
261 
262 static irqreturn_t regmap_irq_thread(int irq, void *d)
263 {
264 	struct regmap_irq_chip_data *data = d;
265 	const struct regmap_irq_chip *chip = data->chip;
266 	struct regmap *map = data->map;
267 	int ret, i;
268 	bool handled = false;
269 	u32 reg;
270 
271 	if (chip->handle_pre_irq)
272 		chip->handle_pre_irq(chip->irq_drv_data);
273 
274 	if (chip->runtime_pm) {
275 		ret = pm_runtime_get_sync(map->dev);
276 		if (ret < 0) {
277 			dev_err(map->dev, "IRQ thread failed to resume: %d\n",
278 				ret);
279 			pm_runtime_put(map->dev);
280 			goto exit;
281 		}
282 	}
283 
284 	/*
285 	 * Read in the statuses, using a single bulk read if possible
286 	 * in order to reduce the I/O overheads.
287 	 */
288 	if (!map->use_single_read && map->reg_stride == 1 &&
289 	    data->irq_reg_stride == 1) {
290 		u8 *buf8 = data->status_reg_buf;
291 		u16 *buf16 = data->status_reg_buf;
292 		u32 *buf32 = data->status_reg_buf;
293 
294 		BUG_ON(!data->status_reg_buf);
295 
296 		ret = regmap_bulk_read(map, chip->status_base,
297 				       data->status_reg_buf,
298 				       chip->num_regs);
299 		if (ret != 0) {
300 			dev_err(map->dev, "Failed to read IRQ status: %d\n",
301 				ret);
302 			goto exit;
303 		}
304 
305 		for (i = 0; i < data->chip->num_regs; i++) {
306 			switch (map->format.val_bytes) {
307 			case 1:
308 				data->status_buf[i] = buf8[i];
309 				break;
310 			case 2:
311 				data->status_buf[i] = buf16[i];
312 				break;
313 			case 4:
314 				data->status_buf[i] = buf32[i];
315 				break;
316 			default:
317 				BUG();
318 				goto exit;
319 			}
320 		}
321 
322 	} else {
323 		for (i = 0; i < data->chip->num_regs; i++) {
324 			ret = regmap_read(map, chip->status_base +
325 					  (i * map->reg_stride
326 					   * data->irq_reg_stride),
327 					  &data->status_buf[i]);
328 
329 			if (ret != 0) {
330 				dev_err(map->dev,
331 					"Failed to read IRQ status: %d\n",
332 					ret);
333 				if (chip->runtime_pm)
334 					pm_runtime_put(map->dev);
335 				goto exit;
336 			}
337 		}
338 	}
339 
340 	/*
341 	 * Ignore masked IRQs and ack if we need to; we ack early so
342 	 * there is no race between handling and acknowleding the
343 	 * interrupt.  We assume that typically few of the interrupts
344 	 * will fire simultaneously so don't worry about overhead from
345 	 * doing a write per register.
346 	 */
347 	for (i = 0; i < data->chip->num_regs; i++) {
348 		data->status_buf[i] &= ~data->mask_buf[i];
349 
350 		if (data->status_buf[i] && (chip->ack_base || chip->use_ack)) {
351 			reg = chip->ack_base +
352 				(i * map->reg_stride * data->irq_reg_stride);
353 			ret = regmap_write(map, reg, data->status_buf[i]);
354 			if (ret != 0)
355 				dev_err(map->dev, "Failed to ack 0x%x: %d\n",
356 					reg, ret);
357 		}
358 	}
359 
360 	for (i = 0; i < chip->num_irqs; i++) {
361 		if (data->status_buf[chip->irqs[i].reg_offset /
362 				     map->reg_stride] & chip->irqs[i].mask) {
363 			handle_nested_irq(irq_find_mapping(data->domain, i));
364 			handled = true;
365 		}
366 	}
367 
368 	if (chip->runtime_pm)
369 		pm_runtime_put(map->dev);
370 
371 exit:
372 	if (chip->handle_post_irq)
373 		chip->handle_post_irq(chip->irq_drv_data);
374 
375 	if (handled)
376 		return IRQ_HANDLED;
377 	else
378 		return IRQ_NONE;
379 }
380 
381 static int regmap_irq_map(struct irq_domain *h, unsigned int virq,
382 			  irq_hw_number_t hw)
383 {
384 	struct regmap_irq_chip_data *data = h->host_data;
385 
386 	irq_set_chip_data(virq, data);
387 	irq_set_chip(virq, &data->irq_chip);
388 	irq_set_nested_thread(virq, 1);
389 	irq_set_parent(virq, data->irq);
390 	irq_set_noprobe(virq);
391 
392 	return 0;
393 }
394 
395 static const struct irq_domain_ops regmap_domain_ops = {
396 	.map	= regmap_irq_map,
397 	.xlate	= irq_domain_xlate_twocell,
398 };
399 
400 /**
401  * regmap_add_irq_chip(): Use standard regmap IRQ controller handling
402  *
403  * map:       The regmap for the device.
404  * irq:       The IRQ the device uses to signal interrupts
405  * irq_flags: The IRQF_ flags to use for the primary interrupt.
406  * chip:      Configuration for the interrupt controller.
407  * data:      Runtime data structure for the controller, allocated on success
408  *
409  * Returns 0 on success or an errno on failure.
410  *
411  * In order for this to be efficient the chip really should use a
412  * register cache.  The chip driver is responsible for restoring the
413  * register values used by the IRQ controller over suspend and resume.
414  */
415 int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags,
416 			int irq_base, const struct regmap_irq_chip *chip,
417 			struct regmap_irq_chip_data **data)
418 {
419 	struct regmap_irq_chip_data *d;
420 	int i;
421 	int ret = -ENOMEM;
422 	u32 reg;
423 	u32 unmask_offset;
424 
425 	if (chip->num_regs <= 0)
426 		return -EINVAL;
427 
428 	for (i = 0; i < chip->num_irqs; i++) {
429 		if (chip->irqs[i].reg_offset % map->reg_stride)
430 			return -EINVAL;
431 		if (chip->irqs[i].reg_offset / map->reg_stride >=
432 		    chip->num_regs)
433 			return -EINVAL;
434 	}
435 
436 	if (irq_base) {
437 		irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0);
438 		if (irq_base < 0) {
439 			dev_warn(map->dev, "Failed to allocate IRQs: %d\n",
440 				 irq_base);
441 			return irq_base;
442 		}
443 	}
444 
445 	d = kzalloc(sizeof(*d), GFP_KERNEL);
446 	if (!d)
447 		return -ENOMEM;
448 
449 	d->status_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
450 				GFP_KERNEL);
451 	if (!d->status_buf)
452 		goto err_alloc;
453 
454 	d->mask_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
455 			      GFP_KERNEL);
456 	if (!d->mask_buf)
457 		goto err_alloc;
458 
459 	d->mask_buf_def = kcalloc(chip->num_regs, sizeof(unsigned int),
460 				  GFP_KERNEL);
461 	if (!d->mask_buf_def)
462 		goto err_alloc;
463 
464 	if (chip->wake_base) {
465 		d->wake_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
466 				      GFP_KERNEL);
467 		if (!d->wake_buf)
468 			goto err_alloc;
469 	}
470 
471 	if (chip->num_type_reg) {
472 		d->type_buf_def = kcalloc(chip->num_type_reg,
473 					sizeof(unsigned int), GFP_KERNEL);
474 		if (!d->type_buf_def)
475 			goto err_alloc;
476 
477 		d->type_buf = kcalloc(chip->num_type_reg, sizeof(unsigned int),
478 				      GFP_KERNEL);
479 		if (!d->type_buf)
480 			goto err_alloc;
481 	}
482 
483 	d->irq_chip = regmap_irq_chip;
484 	d->irq_chip.name = chip->name;
485 	d->irq = irq;
486 	d->map = map;
487 	d->chip = chip;
488 	d->irq_base = irq_base;
489 
490 	if (chip->irq_reg_stride)
491 		d->irq_reg_stride = chip->irq_reg_stride;
492 	else
493 		d->irq_reg_stride = 1;
494 
495 	if (chip->type_reg_stride)
496 		d->type_reg_stride = chip->type_reg_stride;
497 	else
498 		d->type_reg_stride = 1;
499 
500 	if (!map->use_single_read && map->reg_stride == 1 &&
501 	    d->irq_reg_stride == 1) {
502 		d->status_reg_buf = kmalloc_array(chip->num_regs,
503 						  map->format.val_bytes,
504 						  GFP_KERNEL);
505 		if (!d->status_reg_buf)
506 			goto err_alloc;
507 	}
508 
509 	mutex_init(&d->lock);
510 
511 	for (i = 0; i < chip->num_irqs; i++)
512 		d->mask_buf_def[chip->irqs[i].reg_offset / map->reg_stride]
513 			|= chip->irqs[i].mask;
514 
515 	/* Mask all the interrupts by default */
516 	for (i = 0; i < chip->num_regs; i++) {
517 		d->mask_buf[i] = d->mask_buf_def[i];
518 		reg = chip->mask_base +
519 			(i * map->reg_stride * d->irq_reg_stride);
520 		if (chip->mask_invert)
521 			ret = regmap_update_bits(map, reg,
522 					 d->mask_buf[i], ~d->mask_buf[i]);
523 		else if (d->chip->unmask_base) {
524 			unmask_offset = d->chip->unmask_base -
525 					d->chip->mask_base;
526 			ret = regmap_update_bits(d->map,
527 					reg + unmask_offset,
528 					d->mask_buf[i],
529 					d->mask_buf[i]);
530 		} else
531 			ret = regmap_update_bits(map, reg,
532 					 d->mask_buf[i], d->mask_buf[i]);
533 		if (ret != 0) {
534 			dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
535 				reg, ret);
536 			goto err_alloc;
537 		}
538 
539 		if (!chip->init_ack_masked)
540 			continue;
541 
542 		/* Ack masked but set interrupts */
543 		reg = chip->status_base +
544 			(i * map->reg_stride * d->irq_reg_stride);
545 		ret = regmap_read(map, reg, &d->status_buf[i]);
546 		if (ret != 0) {
547 			dev_err(map->dev, "Failed to read IRQ status: %d\n",
548 				ret);
549 			goto err_alloc;
550 		}
551 
552 		if (d->status_buf[i] && (chip->ack_base || chip->use_ack)) {
553 			reg = chip->ack_base +
554 				(i * map->reg_stride * d->irq_reg_stride);
555 			if (chip->ack_invert)
556 				ret = regmap_write(map, reg,
557 					~(d->status_buf[i] & d->mask_buf[i]));
558 			else
559 				ret = regmap_write(map, reg,
560 					d->status_buf[i] & d->mask_buf[i]);
561 			if (ret != 0) {
562 				dev_err(map->dev, "Failed to ack 0x%x: %d\n",
563 					reg, ret);
564 				goto err_alloc;
565 			}
566 		}
567 	}
568 
569 	/* Wake is disabled by default */
570 	if (d->wake_buf) {
571 		for (i = 0; i < chip->num_regs; i++) {
572 			d->wake_buf[i] = d->mask_buf_def[i];
573 			reg = chip->wake_base +
574 				(i * map->reg_stride * d->irq_reg_stride);
575 
576 			if (chip->wake_invert)
577 				ret = regmap_update_bits(map, reg,
578 							 d->mask_buf_def[i],
579 							 0);
580 			else
581 				ret = regmap_update_bits(map, reg,
582 							 d->mask_buf_def[i],
583 							 d->wake_buf[i]);
584 			if (ret != 0) {
585 				dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
586 					reg, ret);
587 				goto err_alloc;
588 			}
589 		}
590 	}
591 
592 	if (chip->num_type_reg) {
593 		for (i = 0; i < chip->num_irqs; i++) {
594 			reg = chip->irqs[i].type_reg_offset / map->reg_stride;
595 			d->type_buf_def[reg] |= chip->irqs[i].type_rising_mask |
596 					chip->irqs[i].type_falling_mask;
597 		}
598 		for (i = 0; i < chip->num_type_reg; ++i) {
599 			if (!d->type_buf_def[i])
600 				continue;
601 
602 			reg = chip->type_base +
603 				(i * map->reg_stride * d->type_reg_stride);
604 			if (chip->type_invert)
605 				ret = regmap_update_bits(map, reg,
606 					d->type_buf_def[i], 0xFF);
607 			else
608 				ret = regmap_update_bits(map, reg,
609 					d->type_buf_def[i], 0x0);
610 			if (ret != 0) {
611 				dev_err(map->dev,
612 					"Failed to set type in 0x%x: %x\n",
613 					reg, ret);
614 				goto err_alloc;
615 			}
616 		}
617 	}
618 
619 	if (irq_base)
620 		d->domain = irq_domain_add_legacy(map->dev->of_node,
621 						  chip->num_irqs, irq_base, 0,
622 						  &regmap_domain_ops, d);
623 	else
624 		d->domain = irq_domain_add_linear(map->dev->of_node,
625 						  chip->num_irqs,
626 						  &regmap_domain_ops, d);
627 	if (!d->domain) {
628 		dev_err(map->dev, "Failed to create IRQ domain\n");
629 		ret = -ENOMEM;
630 		goto err_alloc;
631 	}
632 
633 	ret = request_threaded_irq(irq, NULL, regmap_irq_thread,
634 				   irq_flags | IRQF_ONESHOT,
635 				   chip->name, d);
636 	if (ret != 0) {
637 		dev_err(map->dev, "Failed to request IRQ %d for %s: %d\n",
638 			irq, chip->name, ret);
639 		goto err_domain;
640 	}
641 
642 	*data = d;
643 
644 	return 0;
645 
646 err_domain:
647 	/* Should really dispose of the domain but... */
648 err_alloc:
649 	kfree(d->type_buf);
650 	kfree(d->type_buf_def);
651 	kfree(d->wake_buf);
652 	kfree(d->mask_buf_def);
653 	kfree(d->mask_buf);
654 	kfree(d->status_buf);
655 	kfree(d->status_reg_buf);
656 	kfree(d);
657 	return ret;
658 }
659 EXPORT_SYMBOL_GPL(regmap_add_irq_chip);
660 
661 /**
662  * regmap_del_irq_chip(): Stop interrupt handling for a regmap IRQ chip
663  *
664  * @irq: Primary IRQ for the device
665  * @d:   regmap_irq_chip_data allocated by regmap_add_irq_chip()
666  *
667  * This function also dispose all mapped irq on chip.
668  */
669 void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d)
670 {
671 	unsigned int virq;
672 	int hwirq;
673 
674 	if (!d)
675 		return;
676 
677 	free_irq(irq, d);
678 
679 	/* Dispose all virtual irq from irq domain before removing it */
680 	for (hwirq = 0; hwirq < d->chip->num_irqs; hwirq++) {
681 		/* Ignore hwirq if holes in the IRQ list */
682 		if (!d->chip->irqs[hwirq].mask)
683 			continue;
684 
685 		/*
686 		 * Find the virtual irq of hwirq on chip and if it is
687 		 * there then dispose it
688 		 */
689 		virq = irq_find_mapping(d->domain, hwirq);
690 		if (virq)
691 			irq_dispose_mapping(virq);
692 	}
693 
694 	irq_domain_remove(d->domain);
695 	kfree(d->type_buf);
696 	kfree(d->type_buf_def);
697 	kfree(d->wake_buf);
698 	kfree(d->mask_buf_def);
699 	kfree(d->mask_buf);
700 	kfree(d->status_reg_buf);
701 	kfree(d->status_buf);
702 	kfree(d);
703 }
704 EXPORT_SYMBOL_GPL(regmap_del_irq_chip);
705 
706 static void devm_regmap_irq_chip_release(struct device *dev, void *res)
707 {
708 	struct regmap_irq_chip_data *d = *(struct regmap_irq_chip_data **)res;
709 
710 	regmap_del_irq_chip(d->irq, d);
711 }
712 
713 static int devm_regmap_irq_chip_match(struct device *dev, void *res, void *data)
714 
715 {
716 	struct regmap_irq_chip_data **r = res;
717 
718 	if (!r || !*r) {
719 		WARN_ON(!r || !*r);
720 		return 0;
721 	}
722 	return *r == data;
723 }
724 
725 /**
726  * devm_regmap_add_irq_chip(): Resource manager regmap_add_irq_chip()
727  *
728  * @dev:       The device pointer on which irq_chip belongs to.
729  * @map:       The regmap for the device.
730  * @irq:       The IRQ the device uses to signal interrupts
731  * @irq_flags: The IRQF_ flags to use for the primary interrupt.
732  * @chip:      Configuration for the interrupt controller.
733  * @data:      Runtime data structure for the controller, allocated on success
734  *
735  * Returns 0 on success or an errno on failure.
736  *
737  * The regmap_irq_chip data automatically be released when the device is
738  * unbound.
739  */
740 int devm_regmap_add_irq_chip(struct device *dev, struct regmap *map, int irq,
741 			     int irq_flags, int irq_base,
742 			     const struct regmap_irq_chip *chip,
743 			     struct regmap_irq_chip_data **data)
744 {
745 	struct regmap_irq_chip_data **ptr, *d;
746 	int ret;
747 
748 	ptr = devres_alloc(devm_regmap_irq_chip_release, sizeof(*ptr),
749 			   GFP_KERNEL);
750 	if (!ptr)
751 		return -ENOMEM;
752 
753 	ret = regmap_add_irq_chip(map, irq, irq_flags, irq_base,
754 				  chip, &d);
755 	if (ret < 0) {
756 		devres_free(ptr);
757 		return ret;
758 	}
759 
760 	*ptr = d;
761 	devres_add(dev, ptr);
762 	*data = d;
763 	return 0;
764 }
765 EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip);
766 
767 /**
768  * devm_regmap_del_irq_chip(): Resource managed regmap_del_irq_chip()
769  *
770  * @dev: Device for which which resource was allocated.
771  * @irq: Primary IRQ for the device
772  * @d:   regmap_irq_chip_data allocated by regmap_add_irq_chip()
773  */
774 void devm_regmap_del_irq_chip(struct device *dev, int irq,
775 			      struct regmap_irq_chip_data *data)
776 {
777 	int rc;
778 
779 	WARN_ON(irq != data->irq);
780 	rc = devres_release(dev, devm_regmap_irq_chip_release,
781 			    devm_regmap_irq_chip_match, data);
782 
783 	if (rc != 0)
784 		WARN_ON(rc);
785 }
786 EXPORT_SYMBOL_GPL(devm_regmap_del_irq_chip);
787 
788 /**
789  * regmap_irq_chip_get_base(): Retrieve interrupt base for a regmap IRQ chip
790  *
791  * Useful for drivers to request their own IRQs.
792  *
793  * @data: regmap_irq controller to operate on.
794  */
795 int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data)
796 {
797 	WARN_ON(!data->irq_base);
798 	return data->irq_base;
799 }
800 EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base);
801 
802 /**
803  * regmap_irq_get_virq(): Map an interrupt on a chip to a virtual IRQ
804  *
805  * Useful for drivers to request their own IRQs.
806  *
807  * @data: regmap_irq controller to operate on.
808  * @irq: index of the interrupt requested in the chip IRQs
809  */
810 int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq)
811 {
812 	/* Handle holes in the IRQ list */
813 	if (!data->chip->irqs[irq].mask)
814 		return -EINVAL;
815 
816 	return irq_create_mapping(data->domain, irq);
817 }
818 EXPORT_SYMBOL_GPL(regmap_irq_get_virq);
819 
820 /**
821  * regmap_irq_get_domain(): Retrieve the irq_domain for the chip
822  *
823  * Useful for drivers to request their own IRQs and for integration
824  * with subsystems.  For ease of integration NULL is accepted as a
825  * domain, allowing devices to just call this even if no domain is
826  * allocated.
827  *
828  * @data: regmap_irq controller to operate on.
829  */
830 struct irq_domain *regmap_irq_get_domain(struct regmap_irq_chip_data *data)
831 {
832 	if (data)
833 		return data->domain;
834 	else
835 		return NULL;
836 }
837 EXPORT_SYMBOL_GPL(regmap_irq_get_domain);
838