1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * property.c - Unified device property interface. 4 * 5 * Copyright (C) 2014, Intel Corporation 6 * Authors: Rafael J. Wysocki <rafael.j.wysocki@intel.com> 7 * Mika Westerberg <mika.westerberg@linux.intel.com> 8 */ 9 10 #include <linux/acpi.h> 11 #include <linux/export.h> 12 #include <linux/kernel.h> 13 #include <linux/of.h> 14 #include <linux/of_address.h> 15 #include <linux/of_graph.h> 16 #include <linux/of_irq.h> 17 #include <linux/property.h> 18 #include <linux/phy.h> 19 20 struct fwnode_handle *__dev_fwnode(struct device *dev) 21 { 22 return IS_ENABLED(CONFIG_OF) && dev->of_node ? 23 of_fwnode_handle(dev->of_node) : dev->fwnode; 24 } 25 EXPORT_SYMBOL_GPL(__dev_fwnode); 26 27 const struct fwnode_handle *__dev_fwnode_const(const struct device *dev) 28 { 29 return IS_ENABLED(CONFIG_OF) && dev->of_node ? 30 of_fwnode_handle(dev->of_node) : dev->fwnode; 31 } 32 EXPORT_SYMBOL_GPL(__dev_fwnode_const); 33 34 /** 35 * device_property_present - check if a property of a device is present 36 * @dev: Device whose property is being checked 37 * @propname: Name of the property 38 * 39 * Check if property @propname is present in the device firmware description. 40 * 41 * Return: true if property @propname is present. Otherwise, returns false. 42 */ 43 bool device_property_present(const struct device *dev, const char *propname) 44 { 45 return fwnode_property_present(dev_fwnode(dev), propname); 46 } 47 EXPORT_SYMBOL_GPL(device_property_present); 48 49 /** 50 * fwnode_property_present - check if a property of a firmware node is present 51 * @fwnode: Firmware node whose property to check 52 * @propname: Name of the property 53 * 54 * Return: true if property @propname is present. Otherwise, returns false. 55 */ 56 bool fwnode_property_present(const struct fwnode_handle *fwnode, 57 const char *propname) 58 { 59 bool ret; 60 61 if (IS_ERR_OR_NULL(fwnode)) 62 return false; 63 64 ret = fwnode_call_bool_op(fwnode, property_present, propname); 65 if (ret) 66 return ret; 67 68 return fwnode_call_bool_op(fwnode->secondary, property_present, propname); 69 } 70 EXPORT_SYMBOL_GPL(fwnode_property_present); 71 72 /** 73 * device_property_read_u8_array - return a u8 array property of a device 74 * @dev: Device to get the property of 75 * @propname: Name of the property 76 * @val: The values are stored here or %NULL to return the number of values 77 * @nval: Size of the @val array 78 * 79 * Function reads an array of u8 properties with @propname from the device 80 * firmware description and stores them to @val if found. 81 * 82 * It's recommended to call device_property_count_u8() instead of calling 83 * this function with @val equals %NULL and @nval equals 0. 84 * 85 * Return: number of values if @val was %NULL, 86 * %0 if the property was found (success), 87 * %-EINVAL if given arguments are not valid, 88 * %-ENODATA if the property does not have a value, 89 * %-EPROTO if the property is not an array of numbers, 90 * %-EOVERFLOW if the size of the property is not as expected. 91 * %-ENXIO if no suitable firmware interface is present. 92 */ 93 int device_property_read_u8_array(const struct device *dev, const char *propname, 94 u8 *val, size_t nval) 95 { 96 return fwnode_property_read_u8_array(dev_fwnode(dev), propname, val, nval); 97 } 98 EXPORT_SYMBOL_GPL(device_property_read_u8_array); 99 100 /** 101 * device_property_read_u16_array - return a u16 array property of a device 102 * @dev: Device to get the property of 103 * @propname: Name of the property 104 * @val: The values are stored here or %NULL to return the number of values 105 * @nval: Size of the @val array 106 * 107 * Function reads an array of u16 properties with @propname from the device 108 * firmware description and stores them to @val if found. 109 * 110 * It's recommended to call device_property_count_u16() instead of calling 111 * this function with @val equals %NULL and @nval equals 0. 112 * 113 * Return: number of values if @val was %NULL, 114 * %0 if the property was found (success), 115 * %-EINVAL if given arguments are not valid, 116 * %-ENODATA if the property does not have a value, 117 * %-EPROTO if the property is not an array of numbers, 118 * %-EOVERFLOW if the size of the property is not as expected. 119 * %-ENXIO if no suitable firmware interface is present. 120 */ 121 int device_property_read_u16_array(const struct device *dev, const char *propname, 122 u16 *val, size_t nval) 123 { 124 return fwnode_property_read_u16_array(dev_fwnode(dev), propname, val, nval); 125 } 126 EXPORT_SYMBOL_GPL(device_property_read_u16_array); 127 128 /** 129 * device_property_read_u32_array - return a u32 array property of a device 130 * @dev: Device to get the property of 131 * @propname: Name of the property 132 * @val: The values are stored here or %NULL to return the number of values 133 * @nval: Size of the @val array 134 * 135 * Function reads an array of u32 properties with @propname from the device 136 * firmware description and stores them to @val if found. 137 * 138 * It's recommended to call device_property_count_u32() instead of calling 139 * this function with @val equals %NULL and @nval equals 0. 140 * 141 * Return: number of values if @val was %NULL, 142 * %0 if the property was found (success), 143 * %-EINVAL if given arguments are not valid, 144 * %-ENODATA if the property does not have a value, 145 * %-EPROTO if the property is not an array of numbers, 146 * %-EOVERFLOW if the size of the property is not as expected. 147 * %-ENXIO if no suitable firmware interface is present. 148 */ 149 int device_property_read_u32_array(const struct device *dev, const char *propname, 150 u32 *val, size_t nval) 151 { 152 return fwnode_property_read_u32_array(dev_fwnode(dev), propname, val, nval); 153 } 154 EXPORT_SYMBOL_GPL(device_property_read_u32_array); 155 156 /** 157 * device_property_read_u64_array - return a u64 array property of a device 158 * @dev: Device to get the property of 159 * @propname: Name of the property 160 * @val: The values are stored here or %NULL to return the number of values 161 * @nval: Size of the @val array 162 * 163 * Function reads an array of u64 properties with @propname from the device 164 * firmware description and stores them to @val if found. 165 * 166 * It's recommended to call device_property_count_u64() instead of calling 167 * this function with @val equals %NULL and @nval equals 0. 168 * 169 * Return: number of values if @val was %NULL, 170 * %0 if the property was found (success), 171 * %-EINVAL if given arguments are not valid, 172 * %-ENODATA if the property does not have a value, 173 * %-EPROTO if the property is not an array of numbers, 174 * %-EOVERFLOW if the size of the property is not as expected. 175 * %-ENXIO if no suitable firmware interface is present. 176 */ 177 int device_property_read_u64_array(const struct device *dev, const char *propname, 178 u64 *val, size_t nval) 179 { 180 return fwnode_property_read_u64_array(dev_fwnode(dev), propname, val, nval); 181 } 182 EXPORT_SYMBOL_GPL(device_property_read_u64_array); 183 184 /** 185 * device_property_read_string_array - return a string array property of device 186 * @dev: Device to get the property of 187 * @propname: Name of the property 188 * @val: The values are stored here or %NULL to return the number of values 189 * @nval: Size of the @val array 190 * 191 * Function reads an array of string properties with @propname from the device 192 * firmware description and stores them to @val if found. 193 * 194 * It's recommended to call device_property_string_array_count() instead of calling 195 * this function with @val equals %NULL and @nval equals 0. 196 * 197 * Return: number of values read on success if @val is non-NULL, 198 * number of values available on success if @val is NULL, 199 * %-EINVAL if given arguments are not valid, 200 * %-ENODATA if the property does not have a value, 201 * %-EPROTO or %-EILSEQ if the property is not an array of strings, 202 * %-EOVERFLOW if the size of the property is not as expected. 203 * %-ENXIO if no suitable firmware interface is present. 204 */ 205 int device_property_read_string_array(const struct device *dev, const char *propname, 206 const char **val, size_t nval) 207 { 208 return fwnode_property_read_string_array(dev_fwnode(dev), propname, val, nval); 209 } 210 EXPORT_SYMBOL_GPL(device_property_read_string_array); 211 212 /** 213 * device_property_read_string - return a string property of a device 214 * @dev: Device to get the property of 215 * @propname: Name of the property 216 * @val: The value is stored here 217 * 218 * Function reads property @propname from the device firmware description and 219 * stores the value into @val if found. The value is checked to be a string. 220 * 221 * Return: %0 if the property was found (success), 222 * %-EINVAL if given arguments are not valid, 223 * %-ENODATA if the property does not have a value, 224 * %-EPROTO or %-EILSEQ if the property type is not a string. 225 * %-ENXIO if no suitable firmware interface is present. 226 */ 227 int device_property_read_string(const struct device *dev, const char *propname, 228 const char **val) 229 { 230 return fwnode_property_read_string(dev_fwnode(dev), propname, val); 231 } 232 EXPORT_SYMBOL_GPL(device_property_read_string); 233 234 /** 235 * device_property_match_string - find a string in an array and return index 236 * @dev: Device to get the property of 237 * @propname: Name of the property holding the array 238 * @string: String to look for 239 * 240 * Find a given string in a string array and if it is found return the 241 * index back. 242 * 243 * Return: index, starting from %0, if the property was found (success), 244 * %-EINVAL if given arguments are not valid, 245 * %-ENODATA if the property does not have a value, 246 * %-EPROTO if the property is not an array of strings, 247 * %-ENXIO if no suitable firmware interface is present. 248 */ 249 int device_property_match_string(const struct device *dev, const char *propname, 250 const char *string) 251 { 252 return fwnode_property_match_string(dev_fwnode(dev), propname, string); 253 } 254 EXPORT_SYMBOL_GPL(device_property_match_string); 255 256 static int fwnode_property_read_int_array(const struct fwnode_handle *fwnode, 257 const char *propname, 258 unsigned int elem_size, void *val, 259 size_t nval) 260 { 261 int ret; 262 263 if (IS_ERR_OR_NULL(fwnode)) 264 return -EINVAL; 265 266 ret = fwnode_call_int_op(fwnode, property_read_int_array, propname, 267 elem_size, val, nval); 268 if (ret != -EINVAL) 269 return ret; 270 271 return fwnode_call_int_op(fwnode->secondary, property_read_int_array, propname, 272 elem_size, val, nval); 273 } 274 275 /** 276 * fwnode_property_read_u8_array - return a u8 array property of firmware node 277 * @fwnode: Firmware node to get the property of 278 * @propname: Name of the property 279 * @val: The values are stored here or %NULL to return the number of values 280 * @nval: Size of the @val array 281 * 282 * Read an array of u8 properties with @propname from @fwnode and stores them to 283 * @val if found. 284 * 285 * It's recommended to call fwnode_property_count_u8() instead of calling 286 * this function with @val equals %NULL and @nval equals 0. 287 * 288 * Return: number of values if @val was %NULL, 289 * %0 if the property was found (success), 290 * %-EINVAL if given arguments are not valid, 291 * %-ENODATA if the property does not have a value, 292 * %-EPROTO if the property is not an array of numbers, 293 * %-EOVERFLOW if the size of the property is not as expected, 294 * %-ENXIO if no suitable firmware interface is present. 295 */ 296 int fwnode_property_read_u8_array(const struct fwnode_handle *fwnode, 297 const char *propname, u8 *val, size_t nval) 298 { 299 return fwnode_property_read_int_array(fwnode, propname, sizeof(u8), 300 val, nval); 301 } 302 EXPORT_SYMBOL_GPL(fwnode_property_read_u8_array); 303 304 /** 305 * fwnode_property_read_u16_array - return a u16 array property of firmware node 306 * @fwnode: Firmware node to get the property of 307 * @propname: Name of the property 308 * @val: The values are stored here or %NULL to return the number of values 309 * @nval: Size of the @val array 310 * 311 * Read an array of u16 properties with @propname from @fwnode and store them to 312 * @val if found. 313 * 314 * It's recommended to call fwnode_property_count_u16() instead of calling 315 * this function with @val equals %NULL and @nval equals 0. 316 * 317 * Return: number of values if @val was %NULL, 318 * %0 if the property was found (success), 319 * %-EINVAL if given arguments are not valid, 320 * %-ENODATA if the property does not have a value, 321 * %-EPROTO if the property is not an array of numbers, 322 * %-EOVERFLOW if the size of the property is not as expected, 323 * %-ENXIO if no suitable firmware interface is present. 324 */ 325 int fwnode_property_read_u16_array(const struct fwnode_handle *fwnode, 326 const char *propname, u16 *val, size_t nval) 327 { 328 return fwnode_property_read_int_array(fwnode, propname, sizeof(u16), 329 val, nval); 330 } 331 EXPORT_SYMBOL_GPL(fwnode_property_read_u16_array); 332 333 /** 334 * fwnode_property_read_u32_array - return a u32 array property of firmware node 335 * @fwnode: Firmware node to get the property of 336 * @propname: Name of the property 337 * @val: The values are stored here or %NULL to return the number of values 338 * @nval: Size of the @val array 339 * 340 * Read an array of u32 properties with @propname from @fwnode store them to 341 * @val if found. 342 * 343 * It's recommended to call fwnode_property_count_u32() instead of calling 344 * this function with @val equals %NULL and @nval equals 0. 345 * 346 * Return: number of values if @val was %NULL, 347 * %0 if the property was found (success), 348 * %-EINVAL if given arguments are not valid, 349 * %-ENODATA if the property does not have a value, 350 * %-EPROTO if the property is not an array of numbers, 351 * %-EOVERFLOW if the size of the property is not as expected, 352 * %-ENXIO if no suitable firmware interface is present. 353 */ 354 int fwnode_property_read_u32_array(const struct fwnode_handle *fwnode, 355 const char *propname, u32 *val, size_t nval) 356 { 357 return fwnode_property_read_int_array(fwnode, propname, sizeof(u32), 358 val, nval); 359 } 360 EXPORT_SYMBOL_GPL(fwnode_property_read_u32_array); 361 362 /** 363 * fwnode_property_read_u64_array - return a u64 array property firmware node 364 * @fwnode: Firmware node to get the property of 365 * @propname: Name of the property 366 * @val: The values are stored here or %NULL to return the number of values 367 * @nval: Size of the @val array 368 * 369 * Read an array of u64 properties with @propname from @fwnode and store them to 370 * @val if found. 371 * 372 * It's recommended to call fwnode_property_count_u64() instead of calling 373 * this function with @val equals %NULL and @nval equals 0. 374 * 375 * Return: number of values if @val was %NULL, 376 * %0 if the property was found (success), 377 * %-EINVAL if given arguments are not valid, 378 * %-ENODATA if the property does not have a value, 379 * %-EPROTO if the property is not an array of numbers, 380 * %-EOVERFLOW if the size of the property is not as expected, 381 * %-ENXIO if no suitable firmware interface is present. 382 */ 383 int fwnode_property_read_u64_array(const struct fwnode_handle *fwnode, 384 const char *propname, u64 *val, size_t nval) 385 { 386 return fwnode_property_read_int_array(fwnode, propname, sizeof(u64), 387 val, nval); 388 } 389 EXPORT_SYMBOL_GPL(fwnode_property_read_u64_array); 390 391 /** 392 * fwnode_property_read_string_array - return string array property of a node 393 * @fwnode: Firmware node to get the property of 394 * @propname: Name of the property 395 * @val: The values are stored here or %NULL to return the number of values 396 * @nval: Size of the @val array 397 * 398 * Read an string list property @propname from the given firmware node and store 399 * them to @val if found. 400 * 401 * It's recommended to call fwnode_property_string_array_count() instead of calling 402 * this function with @val equals %NULL and @nval equals 0. 403 * 404 * Return: number of values read on success if @val is non-NULL, 405 * number of values available on success if @val is NULL, 406 * %-EINVAL if given arguments are not valid, 407 * %-ENODATA if the property does not have a value, 408 * %-EPROTO or %-EILSEQ if the property is not an array of strings, 409 * %-EOVERFLOW if the size of the property is not as expected, 410 * %-ENXIO if no suitable firmware interface is present. 411 */ 412 int fwnode_property_read_string_array(const struct fwnode_handle *fwnode, 413 const char *propname, const char **val, 414 size_t nval) 415 { 416 int ret; 417 418 if (IS_ERR_OR_NULL(fwnode)) 419 return -EINVAL; 420 421 ret = fwnode_call_int_op(fwnode, property_read_string_array, propname, 422 val, nval); 423 if (ret != -EINVAL) 424 return ret; 425 426 return fwnode_call_int_op(fwnode->secondary, property_read_string_array, propname, 427 val, nval); 428 } 429 EXPORT_SYMBOL_GPL(fwnode_property_read_string_array); 430 431 /** 432 * fwnode_property_read_string - return a string property of a firmware node 433 * @fwnode: Firmware node to get the property of 434 * @propname: Name of the property 435 * @val: The value is stored here 436 * 437 * Read property @propname from the given firmware node and store the value into 438 * @val if found. The value is checked to be a string. 439 * 440 * Return: %0 if the property was found (success), 441 * %-EINVAL if given arguments are not valid, 442 * %-ENODATA if the property does not have a value, 443 * %-EPROTO or %-EILSEQ if the property is not a string, 444 * %-ENXIO if no suitable firmware interface is present. 445 */ 446 int fwnode_property_read_string(const struct fwnode_handle *fwnode, 447 const char *propname, const char **val) 448 { 449 int ret = fwnode_property_read_string_array(fwnode, propname, val, 1); 450 451 return ret < 0 ? ret : 0; 452 } 453 EXPORT_SYMBOL_GPL(fwnode_property_read_string); 454 455 /** 456 * fwnode_property_match_string - find a string in an array and return index 457 * @fwnode: Firmware node to get the property of 458 * @propname: Name of the property holding the array 459 * @string: String to look for 460 * 461 * Find a given string in a string array and if it is found return the 462 * index back. 463 * 464 * Return: index, starting from %0, if the property was found (success), 465 * %-EINVAL if given arguments are not valid, 466 * %-ENODATA if the property does not have a value, 467 * %-EPROTO if the property is not an array of strings, 468 * %-ENXIO if no suitable firmware interface is present. 469 */ 470 int fwnode_property_match_string(const struct fwnode_handle *fwnode, 471 const char *propname, const char *string) 472 { 473 const char **values; 474 int nval, ret; 475 476 nval = fwnode_property_string_array_count(fwnode, propname); 477 if (nval < 0) 478 return nval; 479 480 if (nval == 0) 481 return -ENODATA; 482 483 values = kcalloc(nval, sizeof(*values), GFP_KERNEL); 484 if (!values) 485 return -ENOMEM; 486 487 ret = fwnode_property_read_string_array(fwnode, propname, values, nval); 488 if (ret < 0) 489 goto out_free; 490 491 ret = match_string(values, nval, string); 492 if (ret < 0) 493 ret = -ENODATA; 494 495 out_free: 496 kfree(values); 497 return ret; 498 } 499 EXPORT_SYMBOL_GPL(fwnode_property_match_string); 500 501 /** 502 * fwnode_property_match_property_string - find a property string value in an array and return index 503 * @fwnode: Firmware node to get the property of 504 * @propname: Name of the property holding the string value 505 * @array: String array to search in 506 * @n: Size of the @array 507 * 508 * Find a property string value in a given @array and if it is found return 509 * the index back. 510 * 511 * Return: index, starting from %0, if the string value was found in the @array (success), 512 * %-ENOENT when the string value was not found in the @array, 513 * %-EINVAL if given arguments are not valid, 514 * %-ENODATA if the property does not have a value, 515 * %-EPROTO or %-EILSEQ if the property is not a string, 516 * %-ENXIO if no suitable firmware interface is present. 517 */ 518 int fwnode_property_match_property_string(const struct fwnode_handle *fwnode, 519 const char *propname, const char * const *array, size_t n) 520 { 521 const char *string; 522 int ret; 523 524 ret = fwnode_property_read_string(fwnode, propname, &string); 525 if (ret) 526 return ret; 527 528 ret = match_string(array, n, string); 529 if (ret < 0) 530 ret = -ENOENT; 531 532 return ret; 533 } 534 EXPORT_SYMBOL_GPL(fwnode_property_match_property_string); 535 536 /** 537 * fwnode_property_get_reference_args() - Find a reference with arguments 538 * @fwnode: Firmware node where to look for the reference 539 * @prop: The name of the property 540 * @nargs_prop: The name of the property telling the number of 541 * arguments in the referred node. NULL if @nargs is known, 542 * otherwise @nargs is ignored. Only relevant on OF. 543 * @nargs: Number of arguments. Ignored if @nargs_prop is non-NULL. 544 * @index: Index of the reference, from zero onwards. 545 * @args: Result structure with reference and integer arguments. 546 * 547 * Obtain a reference based on a named property in an fwnode, with 548 * integer arguments. 549 * 550 * The caller is responsible for calling fwnode_handle_put() on the returned 551 * @args->fwnode pointer. 552 * 553 * Return: %0 on success 554 * %-ENOENT when the index is out of bounds, the index has an empty 555 * reference or the property was not found 556 * %-EINVAL on parse error 557 */ 558 int fwnode_property_get_reference_args(const struct fwnode_handle *fwnode, 559 const char *prop, const char *nargs_prop, 560 unsigned int nargs, unsigned int index, 561 struct fwnode_reference_args *args) 562 { 563 int ret; 564 565 if (IS_ERR_OR_NULL(fwnode)) 566 return -ENOENT; 567 568 ret = fwnode_call_int_op(fwnode, get_reference_args, prop, nargs_prop, 569 nargs, index, args); 570 if (ret == 0) 571 return ret; 572 573 if (IS_ERR_OR_NULL(fwnode->secondary)) 574 return ret; 575 576 return fwnode_call_int_op(fwnode->secondary, get_reference_args, prop, nargs_prop, 577 nargs, index, args); 578 } 579 EXPORT_SYMBOL_GPL(fwnode_property_get_reference_args); 580 581 /** 582 * fwnode_find_reference - Find named reference to a fwnode_handle 583 * @fwnode: Firmware node where to look for the reference 584 * @name: The name of the reference 585 * @index: Index of the reference 586 * 587 * @index can be used when the named reference holds a table of references. 588 * 589 * The caller is responsible for calling fwnode_handle_put() on the returned 590 * fwnode pointer. 591 * 592 * Return: a pointer to the reference fwnode, when found. Otherwise, 593 * returns an error pointer. 594 */ 595 struct fwnode_handle *fwnode_find_reference(const struct fwnode_handle *fwnode, 596 const char *name, 597 unsigned int index) 598 { 599 struct fwnode_reference_args args; 600 int ret; 601 602 ret = fwnode_property_get_reference_args(fwnode, name, NULL, 0, index, 603 &args); 604 return ret ? ERR_PTR(ret) : args.fwnode; 605 } 606 EXPORT_SYMBOL_GPL(fwnode_find_reference); 607 608 /** 609 * fwnode_get_name - Return the name of a node 610 * @fwnode: The firmware node 611 * 612 * Return: a pointer to the node name, or %NULL. 613 */ 614 const char *fwnode_get_name(const struct fwnode_handle *fwnode) 615 { 616 return fwnode_call_ptr_op(fwnode, get_name); 617 } 618 EXPORT_SYMBOL_GPL(fwnode_get_name); 619 620 /** 621 * fwnode_get_name_prefix - Return the prefix of node for printing purposes 622 * @fwnode: The firmware node 623 * 624 * Return: the prefix of a node, intended to be printed right before the node. 625 * The prefix works also as a separator between the nodes. 626 */ 627 const char *fwnode_get_name_prefix(const struct fwnode_handle *fwnode) 628 { 629 return fwnode_call_ptr_op(fwnode, get_name_prefix); 630 } 631 632 /** 633 * fwnode_get_parent - Return parent firwmare node 634 * @fwnode: Firmware whose parent is retrieved 635 * 636 * The caller is responsible for calling fwnode_handle_put() on the returned 637 * fwnode pointer. 638 * 639 * Return: parent firmware node of the given node if possible or %NULL if no 640 * parent was available. 641 */ 642 struct fwnode_handle *fwnode_get_parent(const struct fwnode_handle *fwnode) 643 { 644 return fwnode_call_ptr_op(fwnode, get_parent); 645 } 646 EXPORT_SYMBOL_GPL(fwnode_get_parent); 647 648 /** 649 * fwnode_get_next_parent - Iterate to the node's parent 650 * @fwnode: Firmware whose parent is retrieved 651 * 652 * This is like fwnode_get_parent() except that it drops the refcount 653 * on the passed node, making it suitable for iterating through a 654 * node's parents. 655 * 656 * The caller is responsible for calling fwnode_handle_put() on the returned 657 * fwnode pointer. Note that this function also puts a reference to @fwnode 658 * unconditionally. 659 * 660 * Return: parent firmware node of the given node if possible or %NULL if no 661 * parent was available. 662 */ 663 struct fwnode_handle *fwnode_get_next_parent(struct fwnode_handle *fwnode) 664 { 665 struct fwnode_handle *parent = fwnode_get_parent(fwnode); 666 667 fwnode_handle_put(fwnode); 668 669 return parent; 670 } 671 EXPORT_SYMBOL_GPL(fwnode_get_next_parent); 672 673 /** 674 * fwnode_get_next_parent_dev - Find device of closest ancestor fwnode 675 * @fwnode: firmware node 676 * 677 * Given a firmware node (@fwnode), this function finds its closest ancestor 678 * firmware node that has a corresponding struct device and returns that struct 679 * device. 680 * 681 * The caller is responsible for calling put_device() on the returned device 682 * pointer. 683 * 684 * Return: a pointer to the device of the @fwnode's closest ancestor. 685 */ 686 struct device *fwnode_get_next_parent_dev(const struct fwnode_handle *fwnode) 687 { 688 struct fwnode_handle *parent; 689 struct device *dev; 690 691 fwnode_for_each_parent_node(fwnode, parent) { 692 dev = get_dev_from_fwnode(parent); 693 if (dev) { 694 fwnode_handle_put(parent); 695 return dev; 696 } 697 } 698 return NULL; 699 } 700 701 /** 702 * fwnode_count_parents - Return the number of parents a node has 703 * @fwnode: The node the parents of which are to be counted 704 * 705 * Return: the number of parents a node has. 706 */ 707 unsigned int fwnode_count_parents(const struct fwnode_handle *fwnode) 708 { 709 struct fwnode_handle *parent; 710 unsigned int count = 0; 711 712 fwnode_for_each_parent_node(fwnode, parent) 713 count++; 714 715 return count; 716 } 717 EXPORT_SYMBOL_GPL(fwnode_count_parents); 718 719 /** 720 * fwnode_get_nth_parent - Return an nth parent of a node 721 * @fwnode: The node the parent of which is requested 722 * @depth: Distance of the parent from the node 723 * 724 * The caller is responsible for calling fwnode_handle_put() on the returned 725 * fwnode pointer. 726 * 727 * Return: the nth parent of a node. If there is no parent at the requested 728 * @depth, %NULL is returned. If @depth is 0, the functionality is equivalent to 729 * fwnode_handle_get(). For @depth == 1, it is fwnode_get_parent() and so on. 730 */ 731 struct fwnode_handle *fwnode_get_nth_parent(struct fwnode_handle *fwnode, 732 unsigned int depth) 733 { 734 struct fwnode_handle *parent; 735 736 if (depth == 0) 737 return fwnode_handle_get(fwnode); 738 739 fwnode_for_each_parent_node(fwnode, parent) { 740 if (--depth == 0) 741 return parent; 742 } 743 return NULL; 744 } 745 EXPORT_SYMBOL_GPL(fwnode_get_nth_parent); 746 747 /** 748 * fwnode_is_ancestor_of - Test if @ancestor is ancestor of @child 749 * @ancestor: Firmware which is tested for being an ancestor 750 * @child: Firmware which is tested for being the child 751 * 752 * A node is considered an ancestor of itself too. 753 * 754 * Return: true if @ancestor is an ancestor of @child. Otherwise, returns false. 755 */ 756 bool fwnode_is_ancestor_of(const struct fwnode_handle *ancestor, const struct fwnode_handle *child) 757 { 758 struct fwnode_handle *parent; 759 760 if (IS_ERR_OR_NULL(ancestor)) 761 return false; 762 763 if (child == ancestor) 764 return true; 765 766 fwnode_for_each_parent_node(child, parent) { 767 if (parent == ancestor) { 768 fwnode_handle_put(parent); 769 return true; 770 } 771 } 772 return false; 773 } 774 775 /** 776 * fwnode_get_next_child_node - Return the next child node handle for a node 777 * @fwnode: Firmware node to find the next child node for. 778 * @child: Handle to one of the node's child nodes or a %NULL handle. 779 * 780 * The caller is responsible for calling fwnode_handle_put() on the returned 781 * fwnode pointer. Note that this function also puts a reference to @child 782 * unconditionally. 783 */ 784 struct fwnode_handle * 785 fwnode_get_next_child_node(const struct fwnode_handle *fwnode, 786 struct fwnode_handle *child) 787 { 788 return fwnode_call_ptr_op(fwnode, get_next_child_node, child); 789 } 790 EXPORT_SYMBOL_GPL(fwnode_get_next_child_node); 791 792 /** 793 * fwnode_get_next_available_child_node - Return the next available child node handle for a node 794 * @fwnode: Firmware node to find the next child node for. 795 * @child: Handle to one of the node's child nodes or a %NULL handle. 796 * 797 * The caller is responsible for calling fwnode_handle_put() on the returned 798 * fwnode pointer. Note that this function also puts a reference to @child 799 * unconditionally. 800 */ 801 struct fwnode_handle * 802 fwnode_get_next_available_child_node(const struct fwnode_handle *fwnode, 803 struct fwnode_handle *child) 804 { 805 struct fwnode_handle *next_child = child; 806 807 if (IS_ERR_OR_NULL(fwnode)) 808 return NULL; 809 810 do { 811 next_child = fwnode_get_next_child_node(fwnode, next_child); 812 if (!next_child) 813 return NULL; 814 } while (!fwnode_device_is_available(next_child)); 815 816 return next_child; 817 } 818 EXPORT_SYMBOL_GPL(fwnode_get_next_available_child_node); 819 820 /** 821 * device_get_next_child_node - Return the next child node handle for a device 822 * @dev: Device to find the next child node for. 823 * @child: Handle to one of the device's child nodes or a %NULL handle. 824 * 825 * The caller is responsible for calling fwnode_handle_put() on the returned 826 * fwnode pointer. Note that this function also puts a reference to @child 827 * unconditionally. 828 */ 829 struct fwnode_handle *device_get_next_child_node(const struct device *dev, 830 struct fwnode_handle *child) 831 { 832 const struct fwnode_handle *fwnode = dev_fwnode(dev); 833 struct fwnode_handle *next; 834 835 if (IS_ERR_OR_NULL(fwnode)) 836 return NULL; 837 838 /* Try to find a child in primary fwnode */ 839 next = fwnode_get_next_child_node(fwnode, child); 840 if (next) 841 return next; 842 843 /* When no more children in primary, continue with secondary */ 844 return fwnode_get_next_child_node(fwnode->secondary, child); 845 } 846 EXPORT_SYMBOL_GPL(device_get_next_child_node); 847 848 /** 849 * fwnode_get_named_child_node - Return first matching named child node handle 850 * @fwnode: Firmware node to find the named child node for. 851 * @childname: String to match child node name against. 852 * 853 * The caller is responsible for calling fwnode_handle_put() on the returned 854 * fwnode pointer. 855 */ 856 struct fwnode_handle * 857 fwnode_get_named_child_node(const struct fwnode_handle *fwnode, 858 const char *childname) 859 { 860 return fwnode_call_ptr_op(fwnode, get_named_child_node, childname); 861 } 862 EXPORT_SYMBOL_GPL(fwnode_get_named_child_node); 863 864 /** 865 * device_get_named_child_node - Return first matching named child node handle 866 * @dev: Device to find the named child node for. 867 * @childname: String to match child node name against. 868 * 869 * The caller is responsible for calling fwnode_handle_put() on the returned 870 * fwnode pointer. 871 */ 872 struct fwnode_handle *device_get_named_child_node(const struct device *dev, 873 const char *childname) 874 { 875 return fwnode_get_named_child_node(dev_fwnode(dev), childname); 876 } 877 EXPORT_SYMBOL_GPL(device_get_named_child_node); 878 879 /** 880 * fwnode_handle_get - Obtain a reference to a device node 881 * @fwnode: Pointer to the device node to obtain the reference to. 882 * 883 * The caller is responsible for calling fwnode_handle_put() on the returned 884 * fwnode pointer. 885 * 886 * Return: the fwnode handle. 887 */ 888 struct fwnode_handle *fwnode_handle_get(struct fwnode_handle *fwnode) 889 { 890 if (!fwnode_has_op(fwnode, get)) 891 return fwnode; 892 893 return fwnode_call_ptr_op(fwnode, get); 894 } 895 EXPORT_SYMBOL_GPL(fwnode_handle_get); 896 897 /** 898 * fwnode_handle_put - Drop reference to a device node 899 * @fwnode: Pointer to the device node to drop the reference to. 900 * 901 * This has to be used when terminating device_for_each_child_node() iteration 902 * with break or return to prevent stale device node references from being left 903 * behind. 904 */ 905 void fwnode_handle_put(struct fwnode_handle *fwnode) 906 { 907 fwnode_call_void_op(fwnode, put); 908 } 909 EXPORT_SYMBOL_GPL(fwnode_handle_put); 910 911 /** 912 * fwnode_device_is_available - check if a device is available for use 913 * @fwnode: Pointer to the fwnode of the device. 914 * 915 * Return: true if device is available for use. Otherwise, returns false. 916 * 917 * For fwnode node types that don't implement the .device_is_available() 918 * operation, this function returns true. 919 */ 920 bool fwnode_device_is_available(const struct fwnode_handle *fwnode) 921 { 922 if (IS_ERR_OR_NULL(fwnode)) 923 return false; 924 925 if (!fwnode_has_op(fwnode, device_is_available)) 926 return true; 927 928 return fwnode_call_bool_op(fwnode, device_is_available); 929 } 930 EXPORT_SYMBOL_GPL(fwnode_device_is_available); 931 932 /** 933 * device_get_child_node_count - return the number of child nodes for device 934 * @dev: Device to cound the child nodes for 935 * 936 * Return: the number of child nodes for a given device. 937 */ 938 unsigned int device_get_child_node_count(const struct device *dev) 939 { 940 struct fwnode_handle *child; 941 unsigned int count = 0; 942 943 device_for_each_child_node(dev, child) 944 count++; 945 946 return count; 947 } 948 EXPORT_SYMBOL_GPL(device_get_child_node_count); 949 950 bool device_dma_supported(const struct device *dev) 951 { 952 return fwnode_call_bool_op(dev_fwnode(dev), device_dma_supported); 953 } 954 EXPORT_SYMBOL_GPL(device_dma_supported); 955 956 enum dev_dma_attr device_get_dma_attr(const struct device *dev) 957 { 958 if (!fwnode_has_op(dev_fwnode(dev), device_get_dma_attr)) 959 return DEV_DMA_NOT_SUPPORTED; 960 961 return fwnode_call_int_op(dev_fwnode(dev), device_get_dma_attr); 962 } 963 EXPORT_SYMBOL_GPL(device_get_dma_attr); 964 965 /** 966 * fwnode_get_phy_mode - Get phy mode for given firmware node 967 * @fwnode: Pointer to the given node 968 * 969 * The function gets phy interface string from property 'phy-mode' or 970 * 'phy-connection-type', and return its index in phy_modes table, or errno in 971 * error case. 972 */ 973 int fwnode_get_phy_mode(const struct fwnode_handle *fwnode) 974 { 975 const char *pm; 976 int err, i; 977 978 err = fwnode_property_read_string(fwnode, "phy-mode", &pm); 979 if (err < 0) 980 err = fwnode_property_read_string(fwnode, 981 "phy-connection-type", &pm); 982 if (err < 0) 983 return err; 984 985 for (i = 0; i < PHY_INTERFACE_MODE_MAX; i++) 986 if (!strcasecmp(pm, phy_modes(i))) 987 return i; 988 989 return -ENODEV; 990 } 991 EXPORT_SYMBOL_GPL(fwnode_get_phy_mode); 992 993 /** 994 * device_get_phy_mode - Get phy mode for given device 995 * @dev: Pointer to the given device 996 * 997 * The function gets phy interface string from property 'phy-mode' or 998 * 'phy-connection-type', and return its index in phy_modes table, or errno in 999 * error case. 1000 */ 1001 int device_get_phy_mode(struct device *dev) 1002 { 1003 return fwnode_get_phy_mode(dev_fwnode(dev)); 1004 } 1005 EXPORT_SYMBOL_GPL(device_get_phy_mode); 1006 1007 /** 1008 * fwnode_iomap - Maps the memory mapped IO for a given fwnode 1009 * @fwnode: Pointer to the firmware node 1010 * @index: Index of the IO range 1011 * 1012 * Return: a pointer to the mapped memory. 1013 */ 1014 void __iomem *fwnode_iomap(struct fwnode_handle *fwnode, int index) 1015 { 1016 return fwnode_call_ptr_op(fwnode, iomap, index); 1017 } 1018 EXPORT_SYMBOL(fwnode_iomap); 1019 1020 /** 1021 * fwnode_irq_get - Get IRQ directly from a fwnode 1022 * @fwnode: Pointer to the firmware node 1023 * @index: Zero-based index of the IRQ 1024 * 1025 * Return: Linux IRQ number on success. Negative errno on failure. 1026 */ 1027 int fwnode_irq_get(const struct fwnode_handle *fwnode, unsigned int index) 1028 { 1029 int ret; 1030 1031 ret = fwnode_call_int_op(fwnode, irq_get, index); 1032 /* We treat mapping errors as invalid case */ 1033 if (ret == 0) 1034 return -EINVAL; 1035 1036 return ret; 1037 } 1038 EXPORT_SYMBOL(fwnode_irq_get); 1039 1040 /** 1041 * fwnode_irq_get_byname - Get IRQ from a fwnode using its name 1042 * @fwnode: Pointer to the firmware node 1043 * @name: IRQ name 1044 * 1045 * Description: 1046 * Find a match to the string @name in the 'interrupt-names' string array 1047 * in _DSD for ACPI, or of_node for Device Tree. Then get the Linux IRQ 1048 * number of the IRQ resource corresponding to the index of the matched 1049 * string. 1050 * 1051 * Return: Linux IRQ number on success, or negative errno otherwise. 1052 */ 1053 int fwnode_irq_get_byname(const struct fwnode_handle *fwnode, const char *name) 1054 { 1055 int index; 1056 1057 if (!name) 1058 return -EINVAL; 1059 1060 index = fwnode_property_match_string(fwnode, "interrupt-names", name); 1061 if (index < 0) 1062 return index; 1063 1064 return fwnode_irq_get(fwnode, index); 1065 } 1066 EXPORT_SYMBOL(fwnode_irq_get_byname); 1067 1068 /** 1069 * fwnode_graph_get_next_endpoint - Get next endpoint firmware node 1070 * @fwnode: Pointer to the parent firmware node 1071 * @prev: Previous endpoint node or %NULL to get the first 1072 * 1073 * The caller is responsible for calling fwnode_handle_put() on the returned 1074 * fwnode pointer. Note that this function also puts a reference to @prev 1075 * unconditionally. 1076 * 1077 * Return: an endpoint firmware node pointer or %NULL if no more endpoints 1078 * are available. 1079 */ 1080 struct fwnode_handle * 1081 fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode, 1082 struct fwnode_handle *prev) 1083 { 1084 struct fwnode_handle *ep, *port_parent = NULL; 1085 const struct fwnode_handle *parent; 1086 1087 /* 1088 * If this function is in a loop and the previous iteration returned 1089 * an endpoint from fwnode->secondary, then we need to use the secondary 1090 * as parent rather than @fwnode. 1091 */ 1092 if (prev) { 1093 port_parent = fwnode_graph_get_port_parent(prev); 1094 parent = port_parent; 1095 } else { 1096 parent = fwnode; 1097 } 1098 if (IS_ERR_OR_NULL(parent)) 1099 return NULL; 1100 1101 ep = fwnode_call_ptr_op(parent, graph_get_next_endpoint, prev); 1102 if (ep) 1103 goto out_put_port_parent; 1104 1105 ep = fwnode_graph_get_next_endpoint(parent->secondary, NULL); 1106 1107 out_put_port_parent: 1108 fwnode_handle_put(port_parent); 1109 return ep; 1110 } 1111 EXPORT_SYMBOL_GPL(fwnode_graph_get_next_endpoint); 1112 1113 /** 1114 * fwnode_graph_get_port_parent - Return the device fwnode of a port endpoint 1115 * @endpoint: Endpoint firmware node of the port 1116 * 1117 * The caller is responsible for calling fwnode_handle_put() on the returned 1118 * fwnode pointer. 1119 * 1120 * Return: the firmware node of the device the @endpoint belongs to. 1121 */ 1122 struct fwnode_handle * 1123 fwnode_graph_get_port_parent(const struct fwnode_handle *endpoint) 1124 { 1125 struct fwnode_handle *port, *parent; 1126 1127 port = fwnode_get_parent(endpoint); 1128 parent = fwnode_call_ptr_op(port, graph_get_port_parent); 1129 1130 fwnode_handle_put(port); 1131 1132 return parent; 1133 } 1134 EXPORT_SYMBOL_GPL(fwnode_graph_get_port_parent); 1135 1136 /** 1137 * fwnode_graph_get_remote_port_parent - Return fwnode of a remote device 1138 * @fwnode: Endpoint firmware node pointing to the remote endpoint 1139 * 1140 * Extracts firmware node of a remote device the @fwnode points to. 1141 * 1142 * The caller is responsible for calling fwnode_handle_put() on the returned 1143 * fwnode pointer. 1144 */ 1145 struct fwnode_handle * 1146 fwnode_graph_get_remote_port_parent(const struct fwnode_handle *fwnode) 1147 { 1148 struct fwnode_handle *endpoint, *parent; 1149 1150 endpoint = fwnode_graph_get_remote_endpoint(fwnode); 1151 parent = fwnode_graph_get_port_parent(endpoint); 1152 1153 fwnode_handle_put(endpoint); 1154 1155 return parent; 1156 } 1157 EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port_parent); 1158 1159 /** 1160 * fwnode_graph_get_remote_port - Return fwnode of a remote port 1161 * @fwnode: Endpoint firmware node pointing to the remote endpoint 1162 * 1163 * Extracts firmware node of a remote port the @fwnode points to. 1164 * 1165 * The caller is responsible for calling fwnode_handle_put() on the returned 1166 * fwnode pointer. 1167 */ 1168 struct fwnode_handle * 1169 fwnode_graph_get_remote_port(const struct fwnode_handle *fwnode) 1170 { 1171 return fwnode_get_next_parent(fwnode_graph_get_remote_endpoint(fwnode)); 1172 } 1173 EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port); 1174 1175 /** 1176 * fwnode_graph_get_remote_endpoint - Return fwnode of a remote endpoint 1177 * @fwnode: Endpoint firmware node pointing to the remote endpoint 1178 * 1179 * Extracts firmware node of a remote endpoint the @fwnode points to. 1180 * 1181 * The caller is responsible for calling fwnode_handle_put() on the returned 1182 * fwnode pointer. 1183 */ 1184 struct fwnode_handle * 1185 fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode) 1186 { 1187 return fwnode_call_ptr_op(fwnode, graph_get_remote_endpoint); 1188 } 1189 EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_endpoint); 1190 1191 static bool fwnode_graph_remote_available(struct fwnode_handle *ep) 1192 { 1193 struct fwnode_handle *dev_node; 1194 bool available; 1195 1196 dev_node = fwnode_graph_get_remote_port_parent(ep); 1197 available = fwnode_device_is_available(dev_node); 1198 fwnode_handle_put(dev_node); 1199 1200 return available; 1201 } 1202 1203 /** 1204 * fwnode_graph_get_endpoint_by_id - get endpoint by port and endpoint numbers 1205 * @fwnode: parent fwnode_handle containing the graph 1206 * @port: identifier of the port node 1207 * @endpoint: identifier of the endpoint node under the port node 1208 * @flags: fwnode lookup flags 1209 * 1210 * The caller is responsible for calling fwnode_handle_put() on the returned 1211 * fwnode pointer. 1212 * 1213 * Return: the fwnode handle of the local endpoint corresponding the port and 1214 * endpoint IDs or %NULL if not found. 1215 * 1216 * If FWNODE_GRAPH_ENDPOINT_NEXT is passed in @flags and the specified endpoint 1217 * has not been found, look for the closest endpoint ID greater than the 1218 * specified one and return the endpoint that corresponds to it, if present. 1219 * 1220 * Does not return endpoints that belong to disabled devices or endpoints that 1221 * are unconnected, unless FWNODE_GRAPH_DEVICE_DISABLED is passed in @flags. 1222 */ 1223 struct fwnode_handle * 1224 fwnode_graph_get_endpoint_by_id(const struct fwnode_handle *fwnode, 1225 u32 port, u32 endpoint, unsigned long flags) 1226 { 1227 struct fwnode_handle *ep, *best_ep = NULL; 1228 unsigned int best_ep_id = 0; 1229 bool endpoint_next = flags & FWNODE_GRAPH_ENDPOINT_NEXT; 1230 bool enabled_only = !(flags & FWNODE_GRAPH_DEVICE_DISABLED); 1231 1232 fwnode_graph_for_each_endpoint(fwnode, ep) { 1233 struct fwnode_endpoint fwnode_ep = { 0 }; 1234 int ret; 1235 1236 if (enabled_only && !fwnode_graph_remote_available(ep)) 1237 continue; 1238 1239 ret = fwnode_graph_parse_endpoint(ep, &fwnode_ep); 1240 if (ret < 0) 1241 continue; 1242 1243 if (fwnode_ep.port != port) 1244 continue; 1245 1246 if (fwnode_ep.id == endpoint) 1247 return ep; 1248 1249 if (!endpoint_next) 1250 continue; 1251 1252 /* 1253 * If the endpoint that has just been found is not the first 1254 * matching one and the ID of the one found previously is closer 1255 * to the requested endpoint ID, skip it. 1256 */ 1257 if (fwnode_ep.id < endpoint || 1258 (best_ep && best_ep_id < fwnode_ep.id)) 1259 continue; 1260 1261 fwnode_handle_put(best_ep); 1262 best_ep = fwnode_handle_get(ep); 1263 best_ep_id = fwnode_ep.id; 1264 } 1265 1266 return best_ep; 1267 } 1268 EXPORT_SYMBOL_GPL(fwnode_graph_get_endpoint_by_id); 1269 1270 /** 1271 * fwnode_graph_get_endpoint_count - Count endpoints on a device node 1272 * @fwnode: The node related to a device 1273 * @flags: fwnode lookup flags 1274 * Count endpoints in a device node. 1275 * 1276 * If FWNODE_GRAPH_DEVICE_DISABLED flag is specified, also unconnected endpoints 1277 * and endpoints connected to disabled devices are counted. 1278 */ 1279 unsigned int fwnode_graph_get_endpoint_count(const struct fwnode_handle *fwnode, 1280 unsigned long flags) 1281 { 1282 struct fwnode_handle *ep; 1283 unsigned int count = 0; 1284 1285 fwnode_graph_for_each_endpoint(fwnode, ep) { 1286 if (flags & FWNODE_GRAPH_DEVICE_DISABLED || 1287 fwnode_graph_remote_available(ep)) 1288 count++; 1289 } 1290 1291 return count; 1292 } 1293 EXPORT_SYMBOL_GPL(fwnode_graph_get_endpoint_count); 1294 1295 /** 1296 * fwnode_graph_parse_endpoint - parse common endpoint node properties 1297 * @fwnode: pointer to endpoint fwnode_handle 1298 * @endpoint: pointer to the fwnode endpoint data structure 1299 * 1300 * Parse @fwnode representing a graph endpoint node and store the 1301 * information in @endpoint. The caller must hold a reference to 1302 * @fwnode. 1303 */ 1304 int fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode, 1305 struct fwnode_endpoint *endpoint) 1306 { 1307 memset(endpoint, 0, sizeof(*endpoint)); 1308 1309 return fwnode_call_int_op(fwnode, graph_parse_endpoint, endpoint); 1310 } 1311 EXPORT_SYMBOL(fwnode_graph_parse_endpoint); 1312 1313 const void *device_get_match_data(const struct device *dev) 1314 { 1315 return fwnode_call_ptr_op(dev_fwnode(dev), device_get_match_data, dev); 1316 } 1317 EXPORT_SYMBOL_GPL(device_get_match_data); 1318 1319 static unsigned int fwnode_graph_devcon_matches(const struct fwnode_handle *fwnode, 1320 const char *con_id, void *data, 1321 devcon_match_fn_t match, 1322 void **matches, 1323 unsigned int matches_len) 1324 { 1325 struct fwnode_handle *node; 1326 struct fwnode_handle *ep; 1327 unsigned int count = 0; 1328 void *ret; 1329 1330 fwnode_graph_for_each_endpoint(fwnode, ep) { 1331 if (matches && count >= matches_len) { 1332 fwnode_handle_put(ep); 1333 break; 1334 } 1335 1336 node = fwnode_graph_get_remote_port_parent(ep); 1337 if (!fwnode_device_is_available(node)) { 1338 fwnode_handle_put(node); 1339 continue; 1340 } 1341 1342 ret = match(node, con_id, data); 1343 fwnode_handle_put(node); 1344 if (ret) { 1345 if (matches) 1346 matches[count] = ret; 1347 count++; 1348 } 1349 } 1350 return count; 1351 } 1352 1353 static unsigned int fwnode_devcon_matches(const struct fwnode_handle *fwnode, 1354 const char *con_id, void *data, 1355 devcon_match_fn_t match, 1356 void **matches, 1357 unsigned int matches_len) 1358 { 1359 struct fwnode_handle *node; 1360 unsigned int count = 0; 1361 unsigned int i; 1362 void *ret; 1363 1364 for (i = 0; ; i++) { 1365 if (matches && count >= matches_len) 1366 break; 1367 1368 node = fwnode_find_reference(fwnode, con_id, i); 1369 if (IS_ERR(node)) 1370 break; 1371 1372 ret = match(node, NULL, data); 1373 fwnode_handle_put(node); 1374 if (ret) { 1375 if (matches) 1376 matches[count] = ret; 1377 count++; 1378 } 1379 } 1380 1381 return count; 1382 } 1383 1384 /** 1385 * fwnode_connection_find_match - Find connection from a device node 1386 * @fwnode: Device node with the connection 1387 * @con_id: Identifier for the connection 1388 * @data: Data for the match function 1389 * @match: Function to check and convert the connection description 1390 * 1391 * Find a connection with unique identifier @con_id between @fwnode and another 1392 * device node. @match will be used to convert the connection description to 1393 * data the caller is expecting to be returned. 1394 */ 1395 void *fwnode_connection_find_match(const struct fwnode_handle *fwnode, 1396 const char *con_id, void *data, 1397 devcon_match_fn_t match) 1398 { 1399 unsigned int count; 1400 void *ret; 1401 1402 if (!fwnode || !match) 1403 return NULL; 1404 1405 count = fwnode_graph_devcon_matches(fwnode, con_id, data, match, &ret, 1); 1406 if (count) 1407 return ret; 1408 1409 count = fwnode_devcon_matches(fwnode, con_id, data, match, &ret, 1); 1410 return count ? ret : NULL; 1411 } 1412 EXPORT_SYMBOL_GPL(fwnode_connection_find_match); 1413 1414 /** 1415 * fwnode_connection_find_matches - Find connections from a device node 1416 * @fwnode: Device node with the connection 1417 * @con_id: Identifier for the connection 1418 * @data: Data for the match function 1419 * @match: Function to check and convert the connection description 1420 * @matches: (Optional) array of pointers to fill with matches 1421 * @matches_len: Length of @matches 1422 * 1423 * Find up to @matches_len connections with unique identifier @con_id between 1424 * @fwnode and other device nodes. @match will be used to convert the 1425 * connection description to data the caller is expecting to be returned 1426 * through the @matches array. 1427 * 1428 * If @matches is %NULL @matches_len is ignored and the total number of resolved 1429 * matches is returned. 1430 * 1431 * Return: Number of matches resolved, or negative errno. 1432 */ 1433 int fwnode_connection_find_matches(const struct fwnode_handle *fwnode, 1434 const char *con_id, void *data, 1435 devcon_match_fn_t match, 1436 void **matches, unsigned int matches_len) 1437 { 1438 unsigned int count_graph; 1439 unsigned int count_ref; 1440 1441 if (!fwnode || !match) 1442 return -EINVAL; 1443 1444 count_graph = fwnode_graph_devcon_matches(fwnode, con_id, data, match, 1445 matches, matches_len); 1446 1447 if (matches) { 1448 matches += count_graph; 1449 matches_len -= count_graph; 1450 } 1451 1452 count_ref = fwnode_devcon_matches(fwnode, con_id, data, match, 1453 matches, matches_len); 1454 1455 return count_graph + count_ref; 1456 } 1457 EXPORT_SYMBOL_GPL(fwnode_connection_find_matches); 1458