xref: /linux/drivers/base/property.c (revision e76933a9bfa9b7f28a387f2e13cb3e689adc200d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * property.c - Unified device property interface.
4  *
5  * Copyright (C) 2014, Intel Corporation
6  * Authors: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
7  *          Mika Westerberg <mika.westerberg@linux.intel.com>
8  */
9 
10 #include <linux/acpi.h>
11 #include <linux/export.h>
12 #include <linux/kernel.h>
13 #include <linux/of.h>
14 #include <linux/of_address.h>
15 #include <linux/of_graph.h>
16 #include <linux/of_irq.h>
17 #include <linux/property.h>
18 #include <linux/phy.h>
19 
20 struct fwnode_handle *__dev_fwnode(struct device *dev)
21 {
22 	return IS_ENABLED(CONFIG_OF) && dev->of_node ?
23 		of_fwnode_handle(dev->of_node) : dev->fwnode;
24 }
25 EXPORT_SYMBOL_GPL(__dev_fwnode);
26 
27 const struct fwnode_handle *__dev_fwnode_const(const struct device *dev)
28 {
29 	return IS_ENABLED(CONFIG_OF) && dev->of_node ?
30 		of_fwnode_handle(dev->of_node) : dev->fwnode;
31 }
32 EXPORT_SYMBOL_GPL(__dev_fwnode_const);
33 
34 /**
35  * device_property_present - check if a property of a device is present
36  * @dev: Device whose property is being checked
37  * @propname: Name of the property
38  *
39  * Check if property @propname is present in the device firmware description.
40  *
41  * Return: true if property @propname is present. Otherwise, returns false.
42  */
43 bool device_property_present(const struct device *dev, const char *propname)
44 {
45 	return fwnode_property_present(dev_fwnode(dev), propname);
46 }
47 EXPORT_SYMBOL_GPL(device_property_present);
48 
49 /**
50  * fwnode_property_present - check if a property of a firmware node is present
51  * @fwnode: Firmware node whose property to check
52  * @propname: Name of the property
53  *
54  * Return: true if property @propname is present. Otherwise, returns false.
55  */
56 bool fwnode_property_present(const struct fwnode_handle *fwnode,
57 			     const char *propname)
58 {
59 	bool ret;
60 
61 	if (IS_ERR_OR_NULL(fwnode))
62 		return false;
63 
64 	ret = fwnode_call_bool_op(fwnode, property_present, propname);
65 	if (ret)
66 		return ret;
67 
68 	return fwnode_call_bool_op(fwnode->secondary, property_present, propname);
69 }
70 EXPORT_SYMBOL_GPL(fwnode_property_present);
71 
72 /**
73  * device_property_read_u8_array - return a u8 array property of a device
74  * @dev: Device to get the property of
75  * @propname: Name of the property
76  * @val: The values are stored here or %NULL to return the number of values
77  * @nval: Size of the @val array
78  *
79  * Function reads an array of u8 properties with @propname from the device
80  * firmware description and stores them to @val if found.
81  *
82  * It's recommended to call device_property_count_u8() instead of calling
83  * this function with @val equals %NULL and @nval equals 0.
84  *
85  * Return: number of values if @val was %NULL,
86  *         %0 if the property was found (success),
87  *	   %-EINVAL if given arguments are not valid,
88  *	   %-ENODATA if the property does not have a value,
89  *	   %-EPROTO if the property is not an array of numbers,
90  *	   %-EOVERFLOW if the size of the property is not as expected.
91  *	   %-ENXIO if no suitable firmware interface is present.
92  */
93 int device_property_read_u8_array(const struct device *dev, const char *propname,
94 				  u8 *val, size_t nval)
95 {
96 	return fwnode_property_read_u8_array(dev_fwnode(dev), propname, val, nval);
97 }
98 EXPORT_SYMBOL_GPL(device_property_read_u8_array);
99 
100 /**
101  * device_property_read_u16_array - return a u16 array property of a device
102  * @dev: Device to get the property of
103  * @propname: Name of the property
104  * @val: The values are stored here or %NULL to return the number of values
105  * @nval: Size of the @val array
106  *
107  * Function reads an array of u16 properties with @propname from the device
108  * firmware description and stores them to @val if found.
109  *
110  * It's recommended to call device_property_count_u16() instead of calling
111  * this function with @val equals %NULL and @nval equals 0.
112  *
113  * Return: number of values if @val was %NULL,
114  *         %0 if the property was found (success),
115  *	   %-EINVAL if given arguments are not valid,
116  *	   %-ENODATA if the property does not have a value,
117  *	   %-EPROTO if the property is not an array of numbers,
118  *	   %-EOVERFLOW if the size of the property is not as expected.
119  *	   %-ENXIO if no suitable firmware interface is present.
120  */
121 int device_property_read_u16_array(const struct device *dev, const char *propname,
122 				   u16 *val, size_t nval)
123 {
124 	return fwnode_property_read_u16_array(dev_fwnode(dev), propname, val, nval);
125 }
126 EXPORT_SYMBOL_GPL(device_property_read_u16_array);
127 
128 /**
129  * device_property_read_u32_array - return a u32 array property of a device
130  * @dev: Device to get the property of
131  * @propname: Name of the property
132  * @val: The values are stored here or %NULL to return the number of values
133  * @nval: Size of the @val array
134  *
135  * Function reads an array of u32 properties with @propname from the device
136  * firmware description and stores them to @val if found.
137  *
138  * It's recommended to call device_property_count_u32() instead of calling
139  * this function with @val equals %NULL and @nval equals 0.
140  *
141  * Return: number of values if @val was %NULL,
142  *         %0 if the property was found (success),
143  *	   %-EINVAL if given arguments are not valid,
144  *	   %-ENODATA if the property does not have a value,
145  *	   %-EPROTO if the property is not an array of numbers,
146  *	   %-EOVERFLOW if the size of the property is not as expected.
147  *	   %-ENXIO if no suitable firmware interface is present.
148  */
149 int device_property_read_u32_array(const struct device *dev, const char *propname,
150 				   u32 *val, size_t nval)
151 {
152 	return fwnode_property_read_u32_array(dev_fwnode(dev), propname, val, nval);
153 }
154 EXPORT_SYMBOL_GPL(device_property_read_u32_array);
155 
156 /**
157  * device_property_read_u64_array - return a u64 array property of a device
158  * @dev: Device to get the property of
159  * @propname: Name of the property
160  * @val: The values are stored here or %NULL to return the number of values
161  * @nval: Size of the @val array
162  *
163  * Function reads an array of u64 properties with @propname from the device
164  * firmware description and stores them to @val if found.
165  *
166  * It's recommended to call device_property_count_u64() instead of calling
167  * this function with @val equals %NULL and @nval equals 0.
168  *
169  * Return: number of values if @val was %NULL,
170  *         %0 if the property was found (success),
171  *	   %-EINVAL if given arguments are not valid,
172  *	   %-ENODATA if the property does not have a value,
173  *	   %-EPROTO if the property is not an array of numbers,
174  *	   %-EOVERFLOW if the size of the property is not as expected.
175  *	   %-ENXIO if no suitable firmware interface is present.
176  */
177 int device_property_read_u64_array(const struct device *dev, const char *propname,
178 				   u64 *val, size_t nval)
179 {
180 	return fwnode_property_read_u64_array(dev_fwnode(dev), propname, val, nval);
181 }
182 EXPORT_SYMBOL_GPL(device_property_read_u64_array);
183 
184 /**
185  * device_property_read_string_array - return a string array property of device
186  * @dev: Device to get the property of
187  * @propname: Name of the property
188  * @val: The values are stored here or %NULL to return the number of values
189  * @nval: Size of the @val array
190  *
191  * Function reads an array of string properties with @propname from the device
192  * firmware description and stores them to @val if found.
193  *
194  * It's recommended to call device_property_string_array_count() instead of calling
195  * this function with @val equals %NULL and @nval equals 0.
196  *
197  * Return: number of values read on success if @val is non-NULL,
198  *	   number of values available on success if @val is NULL,
199  *	   %-EINVAL if given arguments are not valid,
200  *	   %-ENODATA if the property does not have a value,
201  *	   %-EPROTO or %-EILSEQ if the property is not an array of strings,
202  *	   %-EOVERFLOW if the size of the property is not as expected.
203  *	   %-ENXIO if no suitable firmware interface is present.
204  */
205 int device_property_read_string_array(const struct device *dev, const char *propname,
206 				      const char **val, size_t nval)
207 {
208 	return fwnode_property_read_string_array(dev_fwnode(dev), propname, val, nval);
209 }
210 EXPORT_SYMBOL_GPL(device_property_read_string_array);
211 
212 /**
213  * device_property_read_string - return a string property of a device
214  * @dev: Device to get the property of
215  * @propname: Name of the property
216  * @val: The value is stored here
217  *
218  * Function reads property @propname from the device firmware description and
219  * stores the value into @val if found. The value is checked to be a string.
220  *
221  * Return: %0 if the property was found (success),
222  *	   %-EINVAL if given arguments are not valid,
223  *	   %-ENODATA if the property does not have a value,
224  *	   %-EPROTO or %-EILSEQ if the property type is not a string.
225  *	   %-ENXIO if no suitable firmware interface is present.
226  */
227 int device_property_read_string(const struct device *dev, const char *propname,
228 				const char **val)
229 {
230 	return fwnode_property_read_string(dev_fwnode(dev), propname, val);
231 }
232 EXPORT_SYMBOL_GPL(device_property_read_string);
233 
234 /**
235  * device_property_match_string - find a string in an array and return index
236  * @dev: Device to get the property of
237  * @propname: Name of the property holding the array
238  * @string: String to look for
239  *
240  * Find a given string in a string array and if it is found return the
241  * index back.
242  *
243  * Return: index, starting from %0, if the property was found (success),
244  *	   %-EINVAL if given arguments are not valid,
245  *	   %-ENODATA if the property does not have a value,
246  *	   %-EPROTO if the property is not an array of strings,
247  *	   %-ENXIO if no suitable firmware interface is present.
248  */
249 int device_property_match_string(const struct device *dev, const char *propname,
250 				 const char *string)
251 {
252 	return fwnode_property_match_string(dev_fwnode(dev), propname, string);
253 }
254 EXPORT_SYMBOL_GPL(device_property_match_string);
255 
256 static int fwnode_property_read_int_array(const struct fwnode_handle *fwnode,
257 					  const char *propname,
258 					  unsigned int elem_size, void *val,
259 					  size_t nval)
260 {
261 	int ret;
262 
263 	if (IS_ERR_OR_NULL(fwnode))
264 		return -EINVAL;
265 
266 	ret = fwnode_call_int_op(fwnode, property_read_int_array, propname,
267 				 elem_size, val, nval);
268 	if (ret != -EINVAL)
269 		return ret;
270 
271 	return fwnode_call_int_op(fwnode->secondary, property_read_int_array, propname,
272 				  elem_size, val, nval);
273 }
274 
275 /**
276  * fwnode_property_read_u8_array - return a u8 array property of firmware node
277  * @fwnode: Firmware node to get the property of
278  * @propname: Name of the property
279  * @val: The values are stored here or %NULL to return the number of values
280  * @nval: Size of the @val array
281  *
282  * Read an array of u8 properties with @propname from @fwnode and stores them to
283  * @val if found.
284  *
285  * It's recommended to call fwnode_property_count_u8() instead of calling
286  * this function with @val equals %NULL and @nval equals 0.
287  *
288  * Return: number of values if @val was %NULL,
289  *         %0 if the property was found (success),
290  *	   %-EINVAL if given arguments are not valid,
291  *	   %-ENODATA if the property does not have a value,
292  *	   %-EPROTO if the property is not an array of numbers,
293  *	   %-EOVERFLOW if the size of the property is not as expected,
294  *	   %-ENXIO if no suitable firmware interface is present.
295  */
296 int fwnode_property_read_u8_array(const struct fwnode_handle *fwnode,
297 				  const char *propname, u8 *val, size_t nval)
298 {
299 	return fwnode_property_read_int_array(fwnode, propname, sizeof(u8),
300 					      val, nval);
301 }
302 EXPORT_SYMBOL_GPL(fwnode_property_read_u8_array);
303 
304 /**
305  * fwnode_property_read_u16_array - return a u16 array property of firmware node
306  * @fwnode: Firmware node to get the property of
307  * @propname: Name of the property
308  * @val: The values are stored here or %NULL to return the number of values
309  * @nval: Size of the @val array
310  *
311  * Read an array of u16 properties with @propname from @fwnode and store them to
312  * @val if found.
313  *
314  * It's recommended to call fwnode_property_count_u16() instead of calling
315  * this function with @val equals %NULL and @nval equals 0.
316  *
317  * Return: number of values if @val was %NULL,
318  *         %0 if the property was found (success),
319  *	   %-EINVAL if given arguments are not valid,
320  *	   %-ENODATA if the property does not have a value,
321  *	   %-EPROTO if the property is not an array of numbers,
322  *	   %-EOVERFLOW if the size of the property is not as expected,
323  *	   %-ENXIO if no suitable firmware interface is present.
324  */
325 int fwnode_property_read_u16_array(const struct fwnode_handle *fwnode,
326 				   const char *propname, u16 *val, size_t nval)
327 {
328 	return fwnode_property_read_int_array(fwnode, propname, sizeof(u16),
329 					      val, nval);
330 }
331 EXPORT_SYMBOL_GPL(fwnode_property_read_u16_array);
332 
333 /**
334  * fwnode_property_read_u32_array - return a u32 array property of firmware node
335  * @fwnode: Firmware node to get the property of
336  * @propname: Name of the property
337  * @val: The values are stored here or %NULL to return the number of values
338  * @nval: Size of the @val array
339  *
340  * Read an array of u32 properties with @propname from @fwnode store them to
341  * @val if found.
342  *
343  * It's recommended to call fwnode_property_count_u32() instead of calling
344  * this function with @val equals %NULL and @nval equals 0.
345  *
346  * Return: number of values if @val was %NULL,
347  *         %0 if the property was found (success),
348  *	   %-EINVAL if given arguments are not valid,
349  *	   %-ENODATA if the property does not have a value,
350  *	   %-EPROTO if the property is not an array of numbers,
351  *	   %-EOVERFLOW if the size of the property is not as expected,
352  *	   %-ENXIO if no suitable firmware interface is present.
353  */
354 int fwnode_property_read_u32_array(const struct fwnode_handle *fwnode,
355 				   const char *propname, u32 *val, size_t nval)
356 {
357 	return fwnode_property_read_int_array(fwnode, propname, sizeof(u32),
358 					      val, nval);
359 }
360 EXPORT_SYMBOL_GPL(fwnode_property_read_u32_array);
361 
362 /**
363  * fwnode_property_read_u64_array - return a u64 array property firmware node
364  * @fwnode: Firmware node to get the property of
365  * @propname: Name of the property
366  * @val: The values are stored here or %NULL to return the number of values
367  * @nval: Size of the @val array
368  *
369  * Read an array of u64 properties with @propname from @fwnode and store them to
370  * @val if found.
371  *
372  * It's recommended to call fwnode_property_count_u64() instead of calling
373  * this function with @val equals %NULL and @nval equals 0.
374  *
375  * Return: number of values if @val was %NULL,
376  *         %0 if the property was found (success),
377  *	   %-EINVAL if given arguments are not valid,
378  *	   %-ENODATA if the property does not have a value,
379  *	   %-EPROTO if the property is not an array of numbers,
380  *	   %-EOVERFLOW if the size of the property is not as expected,
381  *	   %-ENXIO if no suitable firmware interface is present.
382  */
383 int fwnode_property_read_u64_array(const struct fwnode_handle *fwnode,
384 				   const char *propname, u64 *val, size_t nval)
385 {
386 	return fwnode_property_read_int_array(fwnode, propname, sizeof(u64),
387 					      val, nval);
388 }
389 EXPORT_SYMBOL_GPL(fwnode_property_read_u64_array);
390 
391 /**
392  * fwnode_property_read_string_array - return string array property of a node
393  * @fwnode: Firmware node to get the property of
394  * @propname: Name of the property
395  * @val: The values are stored here or %NULL to return the number of values
396  * @nval: Size of the @val array
397  *
398  * Read an string list property @propname from the given firmware node and store
399  * them to @val if found.
400  *
401  * It's recommended to call fwnode_property_string_array_count() instead of calling
402  * this function with @val equals %NULL and @nval equals 0.
403  *
404  * Return: number of values read on success if @val is non-NULL,
405  *	   number of values available on success if @val is NULL,
406  *	   %-EINVAL if given arguments are not valid,
407  *	   %-ENODATA if the property does not have a value,
408  *	   %-EPROTO or %-EILSEQ if the property is not an array of strings,
409  *	   %-EOVERFLOW if the size of the property is not as expected,
410  *	   %-ENXIO if no suitable firmware interface is present.
411  */
412 int fwnode_property_read_string_array(const struct fwnode_handle *fwnode,
413 				      const char *propname, const char **val,
414 				      size_t nval)
415 {
416 	int ret;
417 
418 	if (IS_ERR_OR_NULL(fwnode))
419 		return -EINVAL;
420 
421 	ret = fwnode_call_int_op(fwnode, property_read_string_array, propname,
422 				 val, nval);
423 	if (ret != -EINVAL)
424 		return ret;
425 
426 	return fwnode_call_int_op(fwnode->secondary, property_read_string_array, propname,
427 				  val, nval);
428 }
429 EXPORT_SYMBOL_GPL(fwnode_property_read_string_array);
430 
431 /**
432  * fwnode_property_read_string - return a string property of a firmware node
433  * @fwnode: Firmware node to get the property of
434  * @propname: Name of the property
435  * @val: The value is stored here
436  *
437  * Read property @propname from the given firmware node and store the value into
438  * @val if found.  The value is checked to be a string.
439  *
440  * Return: %0 if the property was found (success),
441  *	   %-EINVAL if given arguments are not valid,
442  *	   %-ENODATA if the property does not have a value,
443  *	   %-EPROTO or %-EILSEQ if the property is not a string,
444  *	   %-ENXIO if no suitable firmware interface is present.
445  */
446 int fwnode_property_read_string(const struct fwnode_handle *fwnode,
447 				const char *propname, const char **val)
448 {
449 	int ret = fwnode_property_read_string_array(fwnode, propname, val, 1);
450 
451 	return ret < 0 ? ret : 0;
452 }
453 EXPORT_SYMBOL_GPL(fwnode_property_read_string);
454 
455 /**
456  * fwnode_property_match_string - find a string in an array and return index
457  * @fwnode: Firmware node to get the property of
458  * @propname: Name of the property holding the array
459  * @string: String to look for
460  *
461  * Find a given string in a string array and if it is found return the
462  * index back.
463  *
464  * Return: index, starting from %0, if the property was found (success),
465  *	   %-EINVAL if given arguments are not valid,
466  *	   %-ENODATA if the property does not have a value,
467  *	   %-EPROTO if the property is not an array of strings,
468  *	   %-ENXIO if no suitable firmware interface is present.
469  */
470 int fwnode_property_match_string(const struct fwnode_handle *fwnode,
471 	const char *propname, const char *string)
472 {
473 	const char **values;
474 	int nval, ret;
475 
476 	nval = fwnode_property_string_array_count(fwnode, propname);
477 	if (nval < 0)
478 		return nval;
479 
480 	if (nval == 0)
481 		return -ENODATA;
482 
483 	values = kcalloc(nval, sizeof(*values), GFP_KERNEL);
484 	if (!values)
485 		return -ENOMEM;
486 
487 	ret = fwnode_property_read_string_array(fwnode, propname, values, nval);
488 	if (ret < 0)
489 		goto out_free;
490 
491 	ret = match_string(values, nval, string);
492 	if (ret < 0)
493 		ret = -ENODATA;
494 
495 out_free:
496 	kfree(values);
497 	return ret;
498 }
499 EXPORT_SYMBOL_GPL(fwnode_property_match_string);
500 
501 /**
502  * fwnode_property_match_property_string - find a property string value in an array and return index
503  * @fwnode: Firmware node to get the property of
504  * @propname: Name of the property holding the string value
505  * @array: String array to search in
506  * @n: Size of the @array
507  *
508  * Find a property string value in a given @array and if it is found return
509  * the index back.
510  *
511  * Return: index, starting from %0, if the string value was found in the @array (success),
512  *	   %-ENOENT when the string value was not found in the @array,
513  *	   %-EINVAL if given arguments are not valid,
514  *	   %-ENODATA if the property does not have a value,
515  *	   %-EPROTO or %-EILSEQ if the property is not a string,
516  *	   %-ENXIO if no suitable firmware interface is present.
517  */
518 int fwnode_property_match_property_string(const struct fwnode_handle *fwnode,
519 	const char *propname, const char * const *array, size_t n)
520 {
521 	const char *string;
522 	int ret;
523 
524 	ret = fwnode_property_read_string(fwnode, propname, &string);
525 	if (ret)
526 		return ret;
527 
528 	ret = match_string(array, n, string);
529 	if (ret < 0)
530 		ret = -ENOENT;
531 
532 	return ret;
533 }
534 EXPORT_SYMBOL_GPL(fwnode_property_match_property_string);
535 
536 /**
537  * fwnode_property_get_reference_args() - Find a reference with arguments
538  * @fwnode:	Firmware node where to look for the reference
539  * @prop:	The name of the property
540  * @nargs_prop:	The name of the property telling the number of
541  *		arguments in the referred node. NULL if @nargs is known,
542  *		otherwise @nargs is ignored. Only relevant on OF.
543  * @nargs:	Number of arguments. Ignored if @nargs_prop is non-NULL.
544  * @index:	Index of the reference, from zero onwards.
545  * @args:	Result structure with reference and integer arguments.
546  *
547  * Obtain a reference based on a named property in an fwnode, with
548  * integer arguments.
549  *
550  * The caller is responsible for calling fwnode_handle_put() on the returned
551  * @args->fwnode pointer.
552  *
553  * Return: %0 on success
554  *	    %-ENOENT when the index is out of bounds, the index has an empty
555  *		     reference or the property was not found
556  *	    %-EINVAL on parse error
557  */
558 int fwnode_property_get_reference_args(const struct fwnode_handle *fwnode,
559 				       const char *prop, const char *nargs_prop,
560 				       unsigned int nargs, unsigned int index,
561 				       struct fwnode_reference_args *args)
562 {
563 	int ret;
564 
565 	if (IS_ERR_OR_NULL(fwnode))
566 		return -ENOENT;
567 
568 	ret = fwnode_call_int_op(fwnode, get_reference_args, prop, nargs_prop,
569 				 nargs, index, args);
570 	if (ret == 0)
571 		return ret;
572 
573 	if (IS_ERR_OR_NULL(fwnode->secondary))
574 		return ret;
575 
576 	return fwnode_call_int_op(fwnode->secondary, get_reference_args, prop, nargs_prop,
577 				  nargs, index, args);
578 }
579 EXPORT_SYMBOL_GPL(fwnode_property_get_reference_args);
580 
581 /**
582  * fwnode_find_reference - Find named reference to a fwnode_handle
583  * @fwnode: Firmware node where to look for the reference
584  * @name: The name of the reference
585  * @index: Index of the reference
586  *
587  * @index can be used when the named reference holds a table of references.
588  *
589  * The caller is responsible for calling fwnode_handle_put() on the returned
590  * fwnode pointer.
591  *
592  * Return: a pointer to the reference fwnode, when found. Otherwise,
593  * returns an error pointer.
594  */
595 struct fwnode_handle *fwnode_find_reference(const struct fwnode_handle *fwnode,
596 					    const char *name,
597 					    unsigned int index)
598 {
599 	struct fwnode_reference_args args;
600 	int ret;
601 
602 	ret = fwnode_property_get_reference_args(fwnode, name, NULL, 0, index,
603 						 &args);
604 	return ret ? ERR_PTR(ret) : args.fwnode;
605 }
606 EXPORT_SYMBOL_GPL(fwnode_find_reference);
607 
608 /**
609  * fwnode_get_name - Return the name of a node
610  * @fwnode: The firmware node
611  *
612  * Return: a pointer to the node name, or %NULL.
613  */
614 const char *fwnode_get_name(const struct fwnode_handle *fwnode)
615 {
616 	return fwnode_call_ptr_op(fwnode, get_name);
617 }
618 EXPORT_SYMBOL_GPL(fwnode_get_name);
619 
620 /**
621  * fwnode_get_name_prefix - Return the prefix of node for printing purposes
622  * @fwnode: The firmware node
623  *
624  * Return: the prefix of a node, intended to be printed right before the node.
625  * The prefix works also as a separator between the nodes.
626  */
627 const char *fwnode_get_name_prefix(const struct fwnode_handle *fwnode)
628 {
629 	return fwnode_call_ptr_op(fwnode, get_name_prefix);
630 }
631 
632 /**
633  * fwnode_get_parent - Return parent firwmare node
634  * @fwnode: Firmware whose parent is retrieved
635  *
636  * The caller is responsible for calling fwnode_handle_put() on the returned
637  * fwnode pointer.
638  *
639  * Return: parent firmware node of the given node if possible or %NULL if no
640  * parent was available.
641  */
642 struct fwnode_handle *fwnode_get_parent(const struct fwnode_handle *fwnode)
643 {
644 	return fwnode_call_ptr_op(fwnode, get_parent);
645 }
646 EXPORT_SYMBOL_GPL(fwnode_get_parent);
647 
648 /**
649  * fwnode_get_next_parent - Iterate to the node's parent
650  * @fwnode: Firmware whose parent is retrieved
651  *
652  * This is like fwnode_get_parent() except that it drops the refcount
653  * on the passed node, making it suitable for iterating through a
654  * node's parents.
655  *
656  * The caller is responsible for calling fwnode_handle_put() on the returned
657  * fwnode pointer. Note that this function also puts a reference to @fwnode
658  * unconditionally.
659  *
660  * Return: parent firmware node of the given node if possible or %NULL if no
661  * parent was available.
662  */
663 struct fwnode_handle *fwnode_get_next_parent(struct fwnode_handle *fwnode)
664 {
665 	struct fwnode_handle *parent = fwnode_get_parent(fwnode);
666 
667 	fwnode_handle_put(fwnode);
668 
669 	return parent;
670 }
671 EXPORT_SYMBOL_GPL(fwnode_get_next_parent);
672 
673 /**
674  * fwnode_get_next_parent_dev - Find device of closest ancestor fwnode
675  * @fwnode: firmware node
676  *
677  * Given a firmware node (@fwnode), this function finds its closest ancestor
678  * firmware node that has a corresponding struct device and returns that struct
679  * device.
680  *
681  * The caller is responsible for calling put_device() on the returned device
682  * pointer.
683  *
684  * Return: a pointer to the device of the @fwnode's closest ancestor.
685  */
686 struct device *fwnode_get_next_parent_dev(const struct fwnode_handle *fwnode)
687 {
688 	struct fwnode_handle *parent;
689 	struct device *dev;
690 
691 	fwnode_for_each_parent_node(fwnode, parent) {
692 		dev = get_dev_from_fwnode(parent);
693 		if (dev) {
694 			fwnode_handle_put(parent);
695 			return dev;
696 		}
697 	}
698 	return NULL;
699 }
700 
701 /**
702  * fwnode_count_parents - Return the number of parents a node has
703  * @fwnode: The node the parents of which are to be counted
704  *
705  * Return: the number of parents a node has.
706  */
707 unsigned int fwnode_count_parents(const struct fwnode_handle *fwnode)
708 {
709 	struct fwnode_handle *parent;
710 	unsigned int count = 0;
711 
712 	fwnode_for_each_parent_node(fwnode, parent)
713 		count++;
714 
715 	return count;
716 }
717 EXPORT_SYMBOL_GPL(fwnode_count_parents);
718 
719 /**
720  * fwnode_get_nth_parent - Return an nth parent of a node
721  * @fwnode: The node the parent of which is requested
722  * @depth: Distance of the parent from the node
723  *
724  * The caller is responsible for calling fwnode_handle_put() on the returned
725  * fwnode pointer.
726  *
727  * Return: the nth parent of a node. If there is no parent at the requested
728  * @depth, %NULL is returned. If @depth is 0, the functionality is equivalent to
729  * fwnode_handle_get(). For @depth == 1, it is fwnode_get_parent() and so on.
730  */
731 struct fwnode_handle *fwnode_get_nth_parent(struct fwnode_handle *fwnode,
732 					    unsigned int depth)
733 {
734 	struct fwnode_handle *parent;
735 
736 	if (depth == 0)
737 		return fwnode_handle_get(fwnode);
738 
739 	fwnode_for_each_parent_node(fwnode, parent) {
740 		if (--depth == 0)
741 			return parent;
742 	}
743 	return NULL;
744 }
745 EXPORT_SYMBOL_GPL(fwnode_get_nth_parent);
746 
747 /**
748  * fwnode_is_ancestor_of - Test if @ancestor is ancestor of @child
749  * @ancestor: Firmware which is tested for being an ancestor
750  * @child: Firmware which is tested for being the child
751  *
752  * A node is considered an ancestor of itself too.
753  *
754  * Return: true if @ancestor is an ancestor of @child. Otherwise, returns false.
755  */
756 bool fwnode_is_ancestor_of(const struct fwnode_handle *ancestor, const struct fwnode_handle *child)
757 {
758 	struct fwnode_handle *parent;
759 
760 	if (IS_ERR_OR_NULL(ancestor))
761 		return false;
762 
763 	if (child == ancestor)
764 		return true;
765 
766 	fwnode_for_each_parent_node(child, parent) {
767 		if (parent == ancestor) {
768 			fwnode_handle_put(parent);
769 			return true;
770 		}
771 	}
772 	return false;
773 }
774 
775 /**
776  * fwnode_get_next_child_node - Return the next child node handle for a node
777  * @fwnode: Firmware node to find the next child node for.
778  * @child: Handle to one of the node's child nodes or a %NULL handle.
779  *
780  * The caller is responsible for calling fwnode_handle_put() on the returned
781  * fwnode pointer. Note that this function also puts a reference to @child
782  * unconditionally.
783  */
784 struct fwnode_handle *
785 fwnode_get_next_child_node(const struct fwnode_handle *fwnode,
786 			   struct fwnode_handle *child)
787 {
788 	return fwnode_call_ptr_op(fwnode, get_next_child_node, child);
789 }
790 EXPORT_SYMBOL_GPL(fwnode_get_next_child_node);
791 
792 /**
793  * fwnode_get_next_available_child_node - Return the next available child node handle for a node
794  * @fwnode: Firmware node to find the next child node for.
795  * @child: Handle to one of the node's child nodes or a %NULL handle.
796  *
797  * The caller is responsible for calling fwnode_handle_put() on the returned
798  * fwnode pointer. Note that this function also puts a reference to @child
799  * unconditionally.
800  */
801 struct fwnode_handle *
802 fwnode_get_next_available_child_node(const struct fwnode_handle *fwnode,
803 				     struct fwnode_handle *child)
804 {
805 	struct fwnode_handle *next_child = child;
806 
807 	if (IS_ERR_OR_NULL(fwnode))
808 		return NULL;
809 
810 	do {
811 		next_child = fwnode_get_next_child_node(fwnode, next_child);
812 		if (!next_child)
813 			return NULL;
814 	} while (!fwnode_device_is_available(next_child));
815 
816 	return next_child;
817 }
818 EXPORT_SYMBOL_GPL(fwnode_get_next_available_child_node);
819 
820 /**
821  * device_get_next_child_node - Return the next child node handle for a device
822  * @dev: Device to find the next child node for.
823  * @child: Handle to one of the device's child nodes or a %NULL handle.
824  *
825  * The caller is responsible for calling fwnode_handle_put() on the returned
826  * fwnode pointer. Note that this function also puts a reference to @child
827  * unconditionally.
828  */
829 struct fwnode_handle *device_get_next_child_node(const struct device *dev,
830 						 struct fwnode_handle *child)
831 {
832 	const struct fwnode_handle *fwnode = dev_fwnode(dev);
833 	struct fwnode_handle *next;
834 
835 	if (IS_ERR_OR_NULL(fwnode))
836 		return NULL;
837 
838 	/* Try to find a child in primary fwnode */
839 	next = fwnode_get_next_child_node(fwnode, child);
840 	if (next)
841 		return next;
842 
843 	/* When no more children in primary, continue with secondary */
844 	return fwnode_get_next_child_node(fwnode->secondary, child);
845 }
846 EXPORT_SYMBOL_GPL(device_get_next_child_node);
847 
848 /**
849  * fwnode_get_named_child_node - Return first matching named child node handle
850  * @fwnode: Firmware node to find the named child node for.
851  * @childname: String to match child node name against.
852  *
853  * The caller is responsible for calling fwnode_handle_put() on the returned
854  * fwnode pointer.
855  */
856 struct fwnode_handle *
857 fwnode_get_named_child_node(const struct fwnode_handle *fwnode,
858 			    const char *childname)
859 {
860 	return fwnode_call_ptr_op(fwnode, get_named_child_node, childname);
861 }
862 EXPORT_SYMBOL_GPL(fwnode_get_named_child_node);
863 
864 /**
865  * device_get_named_child_node - Return first matching named child node handle
866  * @dev: Device to find the named child node for.
867  * @childname: String to match child node name against.
868  *
869  * The caller is responsible for calling fwnode_handle_put() on the returned
870  * fwnode pointer.
871  */
872 struct fwnode_handle *device_get_named_child_node(const struct device *dev,
873 						  const char *childname)
874 {
875 	return fwnode_get_named_child_node(dev_fwnode(dev), childname);
876 }
877 EXPORT_SYMBOL_GPL(device_get_named_child_node);
878 
879 /**
880  * fwnode_handle_get - Obtain a reference to a device node
881  * @fwnode: Pointer to the device node to obtain the reference to.
882  *
883  * The caller is responsible for calling fwnode_handle_put() on the returned
884  * fwnode pointer.
885  *
886  * Return: the fwnode handle.
887  */
888 struct fwnode_handle *fwnode_handle_get(struct fwnode_handle *fwnode)
889 {
890 	if (!fwnode_has_op(fwnode, get))
891 		return fwnode;
892 
893 	return fwnode_call_ptr_op(fwnode, get);
894 }
895 EXPORT_SYMBOL_GPL(fwnode_handle_get);
896 
897 /**
898  * fwnode_handle_put - Drop reference to a device node
899  * @fwnode: Pointer to the device node to drop the reference to.
900  *
901  * This has to be used when terminating device_for_each_child_node() iteration
902  * with break or return to prevent stale device node references from being left
903  * behind.
904  */
905 void fwnode_handle_put(struct fwnode_handle *fwnode)
906 {
907 	fwnode_call_void_op(fwnode, put);
908 }
909 EXPORT_SYMBOL_GPL(fwnode_handle_put);
910 
911 /**
912  * fwnode_device_is_available - check if a device is available for use
913  * @fwnode: Pointer to the fwnode of the device.
914  *
915  * Return: true if device is available for use. Otherwise, returns false.
916  *
917  * For fwnode node types that don't implement the .device_is_available()
918  * operation, this function returns true.
919  */
920 bool fwnode_device_is_available(const struct fwnode_handle *fwnode)
921 {
922 	if (IS_ERR_OR_NULL(fwnode))
923 		return false;
924 
925 	if (!fwnode_has_op(fwnode, device_is_available))
926 		return true;
927 
928 	return fwnode_call_bool_op(fwnode, device_is_available);
929 }
930 EXPORT_SYMBOL_GPL(fwnode_device_is_available);
931 
932 /**
933  * device_get_child_node_count - return the number of child nodes for device
934  * @dev: Device to cound the child nodes for
935  *
936  * Return: the number of child nodes for a given device.
937  */
938 unsigned int device_get_child_node_count(const struct device *dev)
939 {
940 	struct fwnode_handle *child;
941 	unsigned int count = 0;
942 
943 	device_for_each_child_node(dev, child)
944 		count++;
945 
946 	return count;
947 }
948 EXPORT_SYMBOL_GPL(device_get_child_node_count);
949 
950 bool device_dma_supported(const struct device *dev)
951 {
952 	return fwnode_call_bool_op(dev_fwnode(dev), device_dma_supported);
953 }
954 EXPORT_SYMBOL_GPL(device_dma_supported);
955 
956 enum dev_dma_attr device_get_dma_attr(const struct device *dev)
957 {
958 	if (!fwnode_has_op(dev_fwnode(dev), device_get_dma_attr))
959 		return DEV_DMA_NOT_SUPPORTED;
960 
961 	return fwnode_call_int_op(dev_fwnode(dev), device_get_dma_attr);
962 }
963 EXPORT_SYMBOL_GPL(device_get_dma_attr);
964 
965 /**
966  * fwnode_get_phy_mode - Get phy mode for given firmware node
967  * @fwnode:	Pointer to the given node
968  *
969  * The function gets phy interface string from property 'phy-mode' or
970  * 'phy-connection-type', and return its index in phy_modes table, or errno in
971  * error case.
972  */
973 int fwnode_get_phy_mode(const struct fwnode_handle *fwnode)
974 {
975 	const char *pm;
976 	int err, i;
977 
978 	err = fwnode_property_read_string(fwnode, "phy-mode", &pm);
979 	if (err < 0)
980 		err = fwnode_property_read_string(fwnode,
981 						  "phy-connection-type", &pm);
982 	if (err < 0)
983 		return err;
984 
985 	for (i = 0; i < PHY_INTERFACE_MODE_MAX; i++)
986 		if (!strcasecmp(pm, phy_modes(i)))
987 			return i;
988 
989 	return -ENODEV;
990 }
991 EXPORT_SYMBOL_GPL(fwnode_get_phy_mode);
992 
993 /**
994  * device_get_phy_mode - Get phy mode for given device
995  * @dev:	Pointer to the given device
996  *
997  * The function gets phy interface string from property 'phy-mode' or
998  * 'phy-connection-type', and return its index in phy_modes table, or errno in
999  * error case.
1000  */
1001 int device_get_phy_mode(struct device *dev)
1002 {
1003 	return fwnode_get_phy_mode(dev_fwnode(dev));
1004 }
1005 EXPORT_SYMBOL_GPL(device_get_phy_mode);
1006 
1007 /**
1008  * fwnode_iomap - Maps the memory mapped IO for a given fwnode
1009  * @fwnode:	Pointer to the firmware node
1010  * @index:	Index of the IO range
1011  *
1012  * Return: a pointer to the mapped memory.
1013  */
1014 void __iomem *fwnode_iomap(struct fwnode_handle *fwnode, int index)
1015 {
1016 	return fwnode_call_ptr_op(fwnode, iomap, index);
1017 }
1018 EXPORT_SYMBOL(fwnode_iomap);
1019 
1020 /**
1021  * fwnode_irq_get - Get IRQ directly from a fwnode
1022  * @fwnode:	Pointer to the firmware node
1023  * @index:	Zero-based index of the IRQ
1024  *
1025  * Return: Linux IRQ number on success. Negative errno on failure.
1026  */
1027 int fwnode_irq_get(const struct fwnode_handle *fwnode, unsigned int index)
1028 {
1029 	int ret;
1030 
1031 	ret = fwnode_call_int_op(fwnode, irq_get, index);
1032 	/* We treat mapping errors as invalid case */
1033 	if (ret == 0)
1034 		return -EINVAL;
1035 
1036 	return ret;
1037 }
1038 EXPORT_SYMBOL(fwnode_irq_get);
1039 
1040 /**
1041  * fwnode_irq_get_byname - Get IRQ from a fwnode using its name
1042  * @fwnode:	Pointer to the firmware node
1043  * @name:	IRQ name
1044  *
1045  * Description:
1046  * Find a match to the string @name in the 'interrupt-names' string array
1047  * in _DSD for ACPI, or of_node for Device Tree. Then get the Linux IRQ
1048  * number of the IRQ resource corresponding to the index of the matched
1049  * string.
1050  *
1051  * Return: Linux IRQ number on success, or negative errno otherwise.
1052  */
1053 int fwnode_irq_get_byname(const struct fwnode_handle *fwnode, const char *name)
1054 {
1055 	int index;
1056 
1057 	if (!name)
1058 		return -EINVAL;
1059 
1060 	index = fwnode_property_match_string(fwnode, "interrupt-names",  name);
1061 	if (index < 0)
1062 		return index;
1063 
1064 	return fwnode_irq_get(fwnode, index);
1065 }
1066 EXPORT_SYMBOL(fwnode_irq_get_byname);
1067 
1068 /**
1069  * fwnode_graph_get_next_endpoint - Get next endpoint firmware node
1070  * @fwnode: Pointer to the parent firmware node
1071  * @prev: Previous endpoint node or %NULL to get the first
1072  *
1073  * The caller is responsible for calling fwnode_handle_put() on the returned
1074  * fwnode pointer. Note that this function also puts a reference to @prev
1075  * unconditionally.
1076  *
1077  * Return: an endpoint firmware node pointer or %NULL if no more endpoints
1078  * are available.
1079  */
1080 struct fwnode_handle *
1081 fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode,
1082 			       struct fwnode_handle *prev)
1083 {
1084 	struct fwnode_handle *ep, *port_parent = NULL;
1085 	const struct fwnode_handle *parent;
1086 
1087 	/*
1088 	 * If this function is in a loop and the previous iteration returned
1089 	 * an endpoint from fwnode->secondary, then we need to use the secondary
1090 	 * as parent rather than @fwnode.
1091 	 */
1092 	if (prev) {
1093 		port_parent = fwnode_graph_get_port_parent(prev);
1094 		parent = port_parent;
1095 	} else {
1096 		parent = fwnode;
1097 	}
1098 	if (IS_ERR_OR_NULL(parent))
1099 		return NULL;
1100 
1101 	ep = fwnode_call_ptr_op(parent, graph_get_next_endpoint, prev);
1102 	if (ep)
1103 		goto out_put_port_parent;
1104 
1105 	ep = fwnode_graph_get_next_endpoint(parent->secondary, NULL);
1106 
1107 out_put_port_parent:
1108 	fwnode_handle_put(port_parent);
1109 	return ep;
1110 }
1111 EXPORT_SYMBOL_GPL(fwnode_graph_get_next_endpoint);
1112 
1113 /**
1114  * fwnode_graph_get_port_parent - Return the device fwnode of a port endpoint
1115  * @endpoint: Endpoint firmware node of the port
1116  *
1117  * The caller is responsible for calling fwnode_handle_put() on the returned
1118  * fwnode pointer.
1119  *
1120  * Return: the firmware node of the device the @endpoint belongs to.
1121  */
1122 struct fwnode_handle *
1123 fwnode_graph_get_port_parent(const struct fwnode_handle *endpoint)
1124 {
1125 	struct fwnode_handle *port, *parent;
1126 
1127 	port = fwnode_get_parent(endpoint);
1128 	parent = fwnode_call_ptr_op(port, graph_get_port_parent);
1129 
1130 	fwnode_handle_put(port);
1131 
1132 	return parent;
1133 }
1134 EXPORT_SYMBOL_GPL(fwnode_graph_get_port_parent);
1135 
1136 /**
1137  * fwnode_graph_get_remote_port_parent - Return fwnode of a remote device
1138  * @fwnode: Endpoint firmware node pointing to the remote endpoint
1139  *
1140  * Extracts firmware node of a remote device the @fwnode points to.
1141  *
1142  * The caller is responsible for calling fwnode_handle_put() on the returned
1143  * fwnode pointer.
1144  */
1145 struct fwnode_handle *
1146 fwnode_graph_get_remote_port_parent(const struct fwnode_handle *fwnode)
1147 {
1148 	struct fwnode_handle *endpoint, *parent;
1149 
1150 	endpoint = fwnode_graph_get_remote_endpoint(fwnode);
1151 	parent = fwnode_graph_get_port_parent(endpoint);
1152 
1153 	fwnode_handle_put(endpoint);
1154 
1155 	return parent;
1156 }
1157 EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port_parent);
1158 
1159 /**
1160  * fwnode_graph_get_remote_port - Return fwnode of a remote port
1161  * @fwnode: Endpoint firmware node pointing to the remote endpoint
1162  *
1163  * Extracts firmware node of a remote port the @fwnode points to.
1164  *
1165  * The caller is responsible for calling fwnode_handle_put() on the returned
1166  * fwnode pointer.
1167  */
1168 struct fwnode_handle *
1169 fwnode_graph_get_remote_port(const struct fwnode_handle *fwnode)
1170 {
1171 	return fwnode_get_next_parent(fwnode_graph_get_remote_endpoint(fwnode));
1172 }
1173 EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port);
1174 
1175 /**
1176  * fwnode_graph_get_remote_endpoint - Return fwnode of a remote endpoint
1177  * @fwnode: Endpoint firmware node pointing to the remote endpoint
1178  *
1179  * Extracts firmware node of a remote endpoint the @fwnode points to.
1180  *
1181  * The caller is responsible for calling fwnode_handle_put() on the returned
1182  * fwnode pointer.
1183  */
1184 struct fwnode_handle *
1185 fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode)
1186 {
1187 	return fwnode_call_ptr_op(fwnode, graph_get_remote_endpoint);
1188 }
1189 EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_endpoint);
1190 
1191 static bool fwnode_graph_remote_available(struct fwnode_handle *ep)
1192 {
1193 	struct fwnode_handle *dev_node;
1194 	bool available;
1195 
1196 	dev_node = fwnode_graph_get_remote_port_parent(ep);
1197 	available = fwnode_device_is_available(dev_node);
1198 	fwnode_handle_put(dev_node);
1199 
1200 	return available;
1201 }
1202 
1203 /**
1204  * fwnode_graph_get_endpoint_by_id - get endpoint by port and endpoint numbers
1205  * @fwnode: parent fwnode_handle containing the graph
1206  * @port: identifier of the port node
1207  * @endpoint: identifier of the endpoint node under the port node
1208  * @flags: fwnode lookup flags
1209  *
1210  * The caller is responsible for calling fwnode_handle_put() on the returned
1211  * fwnode pointer.
1212  *
1213  * Return: the fwnode handle of the local endpoint corresponding the port and
1214  * endpoint IDs or %NULL if not found.
1215  *
1216  * If FWNODE_GRAPH_ENDPOINT_NEXT is passed in @flags and the specified endpoint
1217  * has not been found, look for the closest endpoint ID greater than the
1218  * specified one and return the endpoint that corresponds to it, if present.
1219  *
1220  * Does not return endpoints that belong to disabled devices or endpoints that
1221  * are unconnected, unless FWNODE_GRAPH_DEVICE_DISABLED is passed in @flags.
1222  */
1223 struct fwnode_handle *
1224 fwnode_graph_get_endpoint_by_id(const struct fwnode_handle *fwnode,
1225 				u32 port, u32 endpoint, unsigned long flags)
1226 {
1227 	struct fwnode_handle *ep, *best_ep = NULL;
1228 	unsigned int best_ep_id = 0;
1229 	bool endpoint_next = flags & FWNODE_GRAPH_ENDPOINT_NEXT;
1230 	bool enabled_only = !(flags & FWNODE_GRAPH_DEVICE_DISABLED);
1231 
1232 	fwnode_graph_for_each_endpoint(fwnode, ep) {
1233 		struct fwnode_endpoint fwnode_ep = { 0 };
1234 		int ret;
1235 
1236 		if (enabled_only && !fwnode_graph_remote_available(ep))
1237 			continue;
1238 
1239 		ret = fwnode_graph_parse_endpoint(ep, &fwnode_ep);
1240 		if (ret < 0)
1241 			continue;
1242 
1243 		if (fwnode_ep.port != port)
1244 			continue;
1245 
1246 		if (fwnode_ep.id == endpoint)
1247 			return ep;
1248 
1249 		if (!endpoint_next)
1250 			continue;
1251 
1252 		/*
1253 		 * If the endpoint that has just been found is not the first
1254 		 * matching one and the ID of the one found previously is closer
1255 		 * to the requested endpoint ID, skip it.
1256 		 */
1257 		if (fwnode_ep.id < endpoint ||
1258 		    (best_ep && best_ep_id < fwnode_ep.id))
1259 			continue;
1260 
1261 		fwnode_handle_put(best_ep);
1262 		best_ep = fwnode_handle_get(ep);
1263 		best_ep_id = fwnode_ep.id;
1264 	}
1265 
1266 	return best_ep;
1267 }
1268 EXPORT_SYMBOL_GPL(fwnode_graph_get_endpoint_by_id);
1269 
1270 /**
1271  * fwnode_graph_get_endpoint_count - Count endpoints on a device node
1272  * @fwnode: The node related to a device
1273  * @flags: fwnode lookup flags
1274  * Count endpoints in a device node.
1275  *
1276  * If FWNODE_GRAPH_DEVICE_DISABLED flag is specified, also unconnected endpoints
1277  * and endpoints connected to disabled devices are counted.
1278  */
1279 unsigned int fwnode_graph_get_endpoint_count(const struct fwnode_handle *fwnode,
1280 					     unsigned long flags)
1281 {
1282 	struct fwnode_handle *ep;
1283 	unsigned int count = 0;
1284 
1285 	fwnode_graph_for_each_endpoint(fwnode, ep) {
1286 		if (flags & FWNODE_GRAPH_DEVICE_DISABLED ||
1287 		    fwnode_graph_remote_available(ep))
1288 			count++;
1289 	}
1290 
1291 	return count;
1292 }
1293 EXPORT_SYMBOL_GPL(fwnode_graph_get_endpoint_count);
1294 
1295 /**
1296  * fwnode_graph_parse_endpoint - parse common endpoint node properties
1297  * @fwnode: pointer to endpoint fwnode_handle
1298  * @endpoint: pointer to the fwnode endpoint data structure
1299  *
1300  * Parse @fwnode representing a graph endpoint node and store the
1301  * information in @endpoint. The caller must hold a reference to
1302  * @fwnode.
1303  */
1304 int fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode,
1305 				struct fwnode_endpoint *endpoint)
1306 {
1307 	memset(endpoint, 0, sizeof(*endpoint));
1308 
1309 	return fwnode_call_int_op(fwnode, graph_parse_endpoint, endpoint);
1310 }
1311 EXPORT_SYMBOL(fwnode_graph_parse_endpoint);
1312 
1313 const void *device_get_match_data(const struct device *dev)
1314 {
1315 	return fwnode_call_ptr_op(dev_fwnode(dev), device_get_match_data, dev);
1316 }
1317 EXPORT_SYMBOL_GPL(device_get_match_data);
1318 
1319 static unsigned int fwnode_graph_devcon_matches(const struct fwnode_handle *fwnode,
1320 						const char *con_id, void *data,
1321 						devcon_match_fn_t match,
1322 						void **matches,
1323 						unsigned int matches_len)
1324 {
1325 	struct fwnode_handle *node;
1326 	struct fwnode_handle *ep;
1327 	unsigned int count = 0;
1328 	void *ret;
1329 
1330 	fwnode_graph_for_each_endpoint(fwnode, ep) {
1331 		if (matches && count >= matches_len) {
1332 			fwnode_handle_put(ep);
1333 			break;
1334 		}
1335 
1336 		node = fwnode_graph_get_remote_port_parent(ep);
1337 		if (!fwnode_device_is_available(node)) {
1338 			fwnode_handle_put(node);
1339 			continue;
1340 		}
1341 
1342 		ret = match(node, con_id, data);
1343 		fwnode_handle_put(node);
1344 		if (ret) {
1345 			if (matches)
1346 				matches[count] = ret;
1347 			count++;
1348 		}
1349 	}
1350 	return count;
1351 }
1352 
1353 static unsigned int fwnode_devcon_matches(const struct fwnode_handle *fwnode,
1354 					  const char *con_id, void *data,
1355 					  devcon_match_fn_t match,
1356 					  void **matches,
1357 					  unsigned int matches_len)
1358 {
1359 	struct fwnode_handle *node;
1360 	unsigned int count = 0;
1361 	unsigned int i;
1362 	void *ret;
1363 
1364 	for (i = 0; ; i++) {
1365 		if (matches && count >= matches_len)
1366 			break;
1367 
1368 		node = fwnode_find_reference(fwnode, con_id, i);
1369 		if (IS_ERR(node))
1370 			break;
1371 
1372 		ret = match(node, NULL, data);
1373 		fwnode_handle_put(node);
1374 		if (ret) {
1375 			if (matches)
1376 				matches[count] = ret;
1377 			count++;
1378 		}
1379 	}
1380 
1381 	return count;
1382 }
1383 
1384 /**
1385  * fwnode_connection_find_match - Find connection from a device node
1386  * @fwnode: Device node with the connection
1387  * @con_id: Identifier for the connection
1388  * @data: Data for the match function
1389  * @match: Function to check and convert the connection description
1390  *
1391  * Find a connection with unique identifier @con_id between @fwnode and another
1392  * device node. @match will be used to convert the connection description to
1393  * data the caller is expecting to be returned.
1394  */
1395 void *fwnode_connection_find_match(const struct fwnode_handle *fwnode,
1396 				   const char *con_id, void *data,
1397 				   devcon_match_fn_t match)
1398 {
1399 	unsigned int count;
1400 	void *ret;
1401 
1402 	if (!fwnode || !match)
1403 		return NULL;
1404 
1405 	count = fwnode_graph_devcon_matches(fwnode, con_id, data, match, &ret, 1);
1406 	if (count)
1407 		return ret;
1408 
1409 	count = fwnode_devcon_matches(fwnode, con_id, data, match, &ret, 1);
1410 	return count ? ret : NULL;
1411 }
1412 EXPORT_SYMBOL_GPL(fwnode_connection_find_match);
1413 
1414 /**
1415  * fwnode_connection_find_matches - Find connections from a device node
1416  * @fwnode: Device node with the connection
1417  * @con_id: Identifier for the connection
1418  * @data: Data for the match function
1419  * @match: Function to check and convert the connection description
1420  * @matches: (Optional) array of pointers to fill with matches
1421  * @matches_len: Length of @matches
1422  *
1423  * Find up to @matches_len connections with unique identifier @con_id between
1424  * @fwnode and other device nodes. @match will be used to convert the
1425  * connection description to data the caller is expecting to be returned
1426  * through the @matches array.
1427  *
1428  * If @matches is %NULL @matches_len is ignored and the total number of resolved
1429  * matches is returned.
1430  *
1431  * Return: Number of matches resolved, or negative errno.
1432  */
1433 int fwnode_connection_find_matches(const struct fwnode_handle *fwnode,
1434 				   const char *con_id, void *data,
1435 				   devcon_match_fn_t match,
1436 				   void **matches, unsigned int matches_len)
1437 {
1438 	unsigned int count_graph;
1439 	unsigned int count_ref;
1440 
1441 	if (!fwnode || !match)
1442 		return -EINVAL;
1443 
1444 	count_graph = fwnode_graph_devcon_matches(fwnode, con_id, data, match,
1445 						  matches, matches_len);
1446 
1447 	if (matches) {
1448 		matches += count_graph;
1449 		matches_len -= count_graph;
1450 	}
1451 
1452 	count_ref = fwnode_devcon_matches(fwnode, con_id, data, match,
1453 					  matches, matches_len);
1454 
1455 	return count_graph + count_ref;
1456 }
1457 EXPORT_SYMBOL_GPL(fwnode_connection_find_matches);
1458