xref: /linux/drivers/base/property.c (revision e3b9f1e81de2083f359bacd2a94bf1c024f2ede0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * property.c - Unified device property interface.
4  *
5  * Copyright (C) 2014, Intel Corporation
6  * Authors: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
7  *          Mika Westerberg <mika.westerberg@linux.intel.com>
8  */
9 
10 #include <linux/acpi.h>
11 #include <linux/export.h>
12 #include <linux/kernel.h>
13 #include <linux/of.h>
14 #include <linux/of_address.h>
15 #include <linux/of_graph.h>
16 #include <linux/of_irq.h>
17 #include <linux/property.h>
18 #include <linux/etherdevice.h>
19 #include <linux/phy.h>
20 
21 struct property_set {
22 	struct device *dev;
23 	struct fwnode_handle fwnode;
24 	const struct property_entry *properties;
25 };
26 
27 static const struct fwnode_operations pset_fwnode_ops;
28 
29 static inline bool is_pset_node(const struct fwnode_handle *fwnode)
30 {
31 	return !IS_ERR_OR_NULL(fwnode) && fwnode->ops == &pset_fwnode_ops;
32 }
33 
34 #define to_pset_node(__fwnode)						\
35 	({								\
36 		typeof(__fwnode) __to_pset_node_fwnode = __fwnode;	\
37 									\
38 		is_pset_node(__to_pset_node_fwnode) ?			\
39 			container_of(__to_pset_node_fwnode,		\
40 				     struct property_set, fwnode) :	\
41 			NULL;						\
42 	})
43 
44 static const struct property_entry *
45 pset_prop_get(const struct property_set *pset, const char *name)
46 {
47 	const struct property_entry *prop;
48 
49 	if (!pset || !pset->properties)
50 		return NULL;
51 
52 	for (prop = pset->properties; prop->name; prop++)
53 		if (!strcmp(name, prop->name))
54 			return prop;
55 
56 	return NULL;
57 }
58 
59 static const void *pset_prop_find(const struct property_set *pset,
60 				  const char *propname, size_t length)
61 {
62 	const struct property_entry *prop;
63 	const void *pointer;
64 
65 	prop = pset_prop_get(pset, propname);
66 	if (!prop)
67 		return ERR_PTR(-EINVAL);
68 	if (prop->is_array)
69 		pointer = prop->pointer.raw_data;
70 	else
71 		pointer = &prop->value.raw_data;
72 	if (!pointer)
73 		return ERR_PTR(-ENODATA);
74 	if (length > prop->length)
75 		return ERR_PTR(-EOVERFLOW);
76 	return pointer;
77 }
78 
79 static int pset_prop_read_u8_array(const struct property_set *pset,
80 				   const char *propname,
81 				   u8 *values, size_t nval)
82 {
83 	const void *pointer;
84 	size_t length = nval * sizeof(*values);
85 
86 	pointer = pset_prop_find(pset, propname, length);
87 	if (IS_ERR(pointer))
88 		return PTR_ERR(pointer);
89 
90 	memcpy(values, pointer, length);
91 	return 0;
92 }
93 
94 static int pset_prop_read_u16_array(const struct property_set *pset,
95 				    const char *propname,
96 				    u16 *values, size_t nval)
97 {
98 	const void *pointer;
99 	size_t length = nval * sizeof(*values);
100 
101 	pointer = pset_prop_find(pset, propname, length);
102 	if (IS_ERR(pointer))
103 		return PTR_ERR(pointer);
104 
105 	memcpy(values, pointer, length);
106 	return 0;
107 }
108 
109 static int pset_prop_read_u32_array(const struct property_set *pset,
110 				    const char *propname,
111 				    u32 *values, size_t nval)
112 {
113 	const void *pointer;
114 	size_t length = nval * sizeof(*values);
115 
116 	pointer = pset_prop_find(pset, propname, length);
117 	if (IS_ERR(pointer))
118 		return PTR_ERR(pointer);
119 
120 	memcpy(values, pointer, length);
121 	return 0;
122 }
123 
124 static int pset_prop_read_u64_array(const struct property_set *pset,
125 				    const char *propname,
126 				    u64 *values, size_t nval)
127 {
128 	const void *pointer;
129 	size_t length = nval * sizeof(*values);
130 
131 	pointer = pset_prop_find(pset, propname, length);
132 	if (IS_ERR(pointer))
133 		return PTR_ERR(pointer);
134 
135 	memcpy(values, pointer, length);
136 	return 0;
137 }
138 
139 static int pset_prop_count_elems_of_size(const struct property_set *pset,
140 					 const char *propname, size_t length)
141 {
142 	const struct property_entry *prop;
143 
144 	prop = pset_prop_get(pset, propname);
145 	if (!prop)
146 		return -EINVAL;
147 
148 	return prop->length / length;
149 }
150 
151 static int pset_prop_read_string_array(const struct property_set *pset,
152 				       const char *propname,
153 				       const char **strings, size_t nval)
154 {
155 	const struct property_entry *prop;
156 	const void *pointer;
157 	size_t array_len, length;
158 
159 	/* Find out the array length. */
160 	prop = pset_prop_get(pset, propname);
161 	if (!prop)
162 		return -EINVAL;
163 
164 	if (!prop->is_array)
165 		/* The array length for a non-array string property is 1. */
166 		array_len = 1;
167 	else
168 		/* Find the length of an array. */
169 		array_len = pset_prop_count_elems_of_size(pset, propname,
170 							  sizeof(const char *));
171 
172 	/* Return how many there are if strings is NULL. */
173 	if (!strings)
174 		return array_len;
175 
176 	array_len = min(nval, array_len);
177 	length = array_len * sizeof(*strings);
178 
179 	pointer = pset_prop_find(pset, propname, length);
180 	if (IS_ERR(pointer))
181 		return PTR_ERR(pointer);
182 
183 	memcpy(strings, pointer, length);
184 
185 	return array_len;
186 }
187 
188 struct fwnode_handle *dev_fwnode(struct device *dev)
189 {
190 	return IS_ENABLED(CONFIG_OF) && dev->of_node ?
191 		&dev->of_node->fwnode : dev->fwnode;
192 }
193 EXPORT_SYMBOL_GPL(dev_fwnode);
194 
195 static bool pset_fwnode_property_present(const struct fwnode_handle *fwnode,
196 					 const char *propname)
197 {
198 	return !!pset_prop_get(to_pset_node(fwnode), propname);
199 }
200 
201 static int pset_fwnode_read_int_array(const struct fwnode_handle *fwnode,
202 				      const char *propname,
203 				      unsigned int elem_size, void *val,
204 				      size_t nval)
205 {
206 	const struct property_set *node = to_pset_node(fwnode);
207 
208 	if (!val)
209 		return pset_prop_count_elems_of_size(node, propname, elem_size);
210 
211 	switch (elem_size) {
212 	case sizeof(u8):
213 		return pset_prop_read_u8_array(node, propname, val, nval);
214 	case sizeof(u16):
215 		return pset_prop_read_u16_array(node, propname, val, nval);
216 	case sizeof(u32):
217 		return pset_prop_read_u32_array(node, propname, val, nval);
218 	case sizeof(u64):
219 		return pset_prop_read_u64_array(node, propname, val, nval);
220 	}
221 
222 	return -ENXIO;
223 }
224 
225 static int
226 pset_fwnode_property_read_string_array(const struct fwnode_handle *fwnode,
227 				       const char *propname,
228 				       const char **val, size_t nval)
229 {
230 	return pset_prop_read_string_array(to_pset_node(fwnode), propname,
231 					   val, nval);
232 }
233 
234 static const struct fwnode_operations pset_fwnode_ops = {
235 	.property_present = pset_fwnode_property_present,
236 	.property_read_int_array = pset_fwnode_read_int_array,
237 	.property_read_string_array = pset_fwnode_property_read_string_array,
238 };
239 
240 /**
241  * device_property_present - check if a property of a device is present
242  * @dev: Device whose property is being checked
243  * @propname: Name of the property
244  *
245  * Check if property @propname is present in the device firmware description.
246  */
247 bool device_property_present(struct device *dev, const char *propname)
248 {
249 	return fwnode_property_present(dev_fwnode(dev), propname);
250 }
251 EXPORT_SYMBOL_GPL(device_property_present);
252 
253 /**
254  * fwnode_property_present - check if a property of a firmware node is present
255  * @fwnode: Firmware node whose property to check
256  * @propname: Name of the property
257  */
258 bool fwnode_property_present(const struct fwnode_handle *fwnode,
259 			     const char *propname)
260 {
261 	bool ret;
262 
263 	ret = fwnode_call_bool_op(fwnode, property_present, propname);
264 	if (ret == false && !IS_ERR_OR_NULL(fwnode) &&
265 	    !IS_ERR_OR_NULL(fwnode->secondary))
266 		ret = fwnode_call_bool_op(fwnode->secondary, property_present,
267 					 propname);
268 	return ret;
269 }
270 EXPORT_SYMBOL_GPL(fwnode_property_present);
271 
272 /**
273  * device_property_read_u8_array - return a u8 array property of a device
274  * @dev: Device to get the property of
275  * @propname: Name of the property
276  * @val: The values are stored here or %NULL to return the number of values
277  * @nval: Size of the @val array
278  *
279  * Function reads an array of u8 properties with @propname from the device
280  * firmware description and stores them to @val if found.
281  *
282  * Return: number of values if @val was %NULL,
283  *         %0 if the property was found (success),
284  *	   %-EINVAL if given arguments are not valid,
285  *	   %-ENODATA if the property does not have a value,
286  *	   %-EPROTO if the property is not an array of numbers,
287  *	   %-EOVERFLOW if the size of the property is not as expected.
288  *	   %-ENXIO if no suitable firmware interface is present.
289  */
290 int device_property_read_u8_array(struct device *dev, const char *propname,
291 				  u8 *val, size_t nval)
292 {
293 	return fwnode_property_read_u8_array(dev_fwnode(dev), propname, val, nval);
294 }
295 EXPORT_SYMBOL_GPL(device_property_read_u8_array);
296 
297 /**
298  * device_property_read_u16_array - return a u16 array property of a device
299  * @dev: Device to get the property of
300  * @propname: Name of the property
301  * @val: The values are stored here or %NULL to return the number of values
302  * @nval: Size of the @val array
303  *
304  * Function reads an array of u16 properties with @propname from the device
305  * firmware description and stores them to @val if found.
306  *
307  * Return: number of values if @val was %NULL,
308  *         %0 if the property was found (success),
309  *	   %-EINVAL if given arguments are not valid,
310  *	   %-ENODATA if the property does not have a value,
311  *	   %-EPROTO if the property is not an array of numbers,
312  *	   %-EOVERFLOW if the size of the property is not as expected.
313  *	   %-ENXIO if no suitable firmware interface is present.
314  */
315 int device_property_read_u16_array(struct device *dev, const char *propname,
316 				   u16 *val, size_t nval)
317 {
318 	return fwnode_property_read_u16_array(dev_fwnode(dev), propname, val, nval);
319 }
320 EXPORT_SYMBOL_GPL(device_property_read_u16_array);
321 
322 /**
323  * device_property_read_u32_array - return a u32 array property of a device
324  * @dev: Device to get the property of
325  * @propname: Name of the property
326  * @val: The values are stored here or %NULL to return the number of values
327  * @nval: Size of the @val array
328  *
329  * Function reads an array of u32 properties with @propname from the device
330  * firmware description and stores them to @val if found.
331  *
332  * Return: number of values if @val was %NULL,
333  *         %0 if the property was found (success),
334  *	   %-EINVAL if given arguments are not valid,
335  *	   %-ENODATA if the property does not have a value,
336  *	   %-EPROTO if the property is not an array of numbers,
337  *	   %-EOVERFLOW if the size of the property is not as expected.
338  *	   %-ENXIO if no suitable firmware interface is present.
339  */
340 int device_property_read_u32_array(struct device *dev, const char *propname,
341 				   u32 *val, size_t nval)
342 {
343 	return fwnode_property_read_u32_array(dev_fwnode(dev), propname, val, nval);
344 }
345 EXPORT_SYMBOL_GPL(device_property_read_u32_array);
346 
347 /**
348  * device_property_read_u64_array - return a u64 array property of a device
349  * @dev: Device to get the property of
350  * @propname: Name of the property
351  * @val: The values are stored here or %NULL to return the number of values
352  * @nval: Size of the @val array
353  *
354  * Function reads an array of u64 properties with @propname from the device
355  * firmware description and stores them to @val if found.
356  *
357  * Return: number of values if @val was %NULL,
358  *         %0 if the property was found (success),
359  *	   %-EINVAL if given arguments are not valid,
360  *	   %-ENODATA if the property does not have a value,
361  *	   %-EPROTO if the property is not an array of numbers,
362  *	   %-EOVERFLOW if the size of the property is not as expected.
363  *	   %-ENXIO if no suitable firmware interface is present.
364  */
365 int device_property_read_u64_array(struct device *dev, const char *propname,
366 				   u64 *val, size_t nval)
367 {
368 	return fwnode_property_read_u64_array(dev_fwnode(dev), propname, val, nval);
369 }
370 EXPORT_SYMBOL_GPL(device_property_read_u64_array);
371 
372 /**
373  * device_property_read_string_array - return a string array property of device
374  * @dev: Device to get the property of
375  * @propname: Name of the property
376  * @val: The values are stored here or %NULL to return the number of values
377  * @nval: Size of the @val array
378  *
379  * Function reads an array of string properties with @propname from the device
380  * firmware description and stores them to @val if found.
381  *
382  * Return: number of values read on success if @val is non-NULL,
383  *	   number of values available on success if @val is NULL,
384  *	   %-EINVAL if given arguments are not valid,
385  *	   %-ENODATA if the property does not have a value,
386  *	   %-EPROTO or %-EILSEQ if the property is not an array of strings,
387  *	   %-EOVERFLOW if the size of the property is not as expected.
388  *	   %-ENXIO if no suitable firmware interface is present.
389  */
390 int device_property_read_string_array(struct device *dev, const char *propname,
391 				      const char **val, size_t nval)
392 {
393 	return fwnode_property_read_string_array(dev_fwnode(dev), propname, val, nval);
394 }
395 EXPORT_SYMBOL_GPL(device_property_read_string_array);
396 
397 /**
398  * device_property_read_string - return a string property of a device
399  * @dev: Device to get the property of
400  * @propname: Name of the property
401  * @val: The value is stored here
402  *
403  * Function reads property @propname from the device firmware description and
404  * stores the value into @val if found. The value is checked to be a string.
405  *
406  * Return: %0 if the property was found (success),
407  *	   %-EINVAL if given arguments are not valid,
408  *	   %-ENODATA if the property does not have a value,
409  *	   %-EPROTO or %-EILSEQ if the property type is not a string.
410  *	   %-ENXIO if no suitable firmware interface is present.
411  */
412 int device_property_read_string(struct device *dev, const char *propname,
413 				const char **val)
414 {
415 	return fwnode_property_read_string(dev_fwnode(dev), propname, val);
416 }
417 EXPORT_SYMBOL_GPL(device_property_read_string);
418 
419 /**
420  * device_property_match_string - find a string in an array and return index
421  * @dev: Device to get the property of
422  * @propname: Name of the property holding the array
423  * @string: String to look for
424  *
425  * Find a given string in a string array and if it is found return the
426  * index back.
427  *
428  * Return: %0 if the property was found (success),
429  *	   %-EINVAL if given arguments are not valid,
430  *	   %-ENODATA if the property does not have a value,
431  *	   %-EPROTO if the property is not an array of strings,
432  *	   %-ENXIO if no suitable firmware interface is present.
433  */
434 int device_property_match_string(struct device *dev, const char *propname,
435 				 const char *string)
436 {
437 	return fwnode_property_match_string(dev_fwnode(dev), propname, string);
438 }
439 EXPORT_SYMBOL_GPL(device_property_match_string);
440 
441 static int fwnode_property_read_int_array(const struct fwnode_handle *fwnode,
442 					  const char *propname,
443 					  unsigned int elem_size, void *val,
444 					  size_t nval)
445 {
446 	int ret;
447 
448 	ret = fwnode_call_int_op(fwnode, property_read_int_array, propname,
449 				 elem_size, val, nval);
450 	if (ret == -EINVAL && !IS_ERR_OR_NULL(fwnode) &&
451 	    !IS_ERR_OR_NULL(fwnode->secondary))
452 		ret = fwnode_call_int_op(
453 			fwnode->secondary, property_read_int_array, propname,
454 			elem_size, val, nval);
455 
456 	return ret;
457 }
458 
459 /**
460  * fwnode_property_read_u8_array - return a u8 array property of firmware node
461  * @fwnode: Firmware node to get the property of
462  * @propname: Name of the property
463  * @val: The values are stored here or %NULL to return the number of values
464  * @nval: Size of the @val array
465  *
466  * Read an array of u8 properties with @propname from @fwnode and stores them to
467  * @val if found.
468  *
469  * Return: number of values if @val was %NULL,
470  *         %0 if the property was found (success),
471  *	   %-EINVAL if given arguments are not valid,
472  *	   %-ENODATA if the property does not have a value,
473  *	   %-EPROTO if the property is not an array of numbers,
474  *	   %-EOVERFLOW if the size of the property is not as expected,
475  *	   %-ENXIO if no suitable firmware interface is present.
476  */
477 int fwnode_property_read_u8_array(const struct fwnode_handle *fwnode,
478 				  const char *propname, u8 *val, size_t nval)
479 {
480 	return fwnode_property_read_int_array(fwnode, propname, sizeof(u8),
481 					      val, nval);
482 }
483 EXPORT_SYMBOL_GPL(fwnode_property_read_u8_array);
484 
485 /**
486  * fwnode_property_read_u16_array - return a u16 array property of firmware node
487  * @fwnode: Firmware node to get the property of
488  * @propname: Name of the property
489  * @val: The values are stored here or %NULL to return the number of values
490  * @nval: Size of the @val array
491  *
492  * Read an array of u16 properties with @propname from @fwnode and store them to
493  * @val if found.
494  *
495  * Return: number of values if @val was %NULL,
496  *         %0 if the property was found (success),
497  *	   %-EINVAL if given arguments are not valid,
498  *	   %-ENODATA if the property does not have a value,
499  *	   %-EPROTO if the property is not an array of numbers,
500  *	   %-EOVERFLOW if the size of the property is not as expected,
501  *	   %-ENXIO if no suitable firmware interface is present.
502  */
503 int fwnode_property_read_u16_array(const struct fwnode_handle *fwnode,
504 				   const char *propname, u16 *val, size_t nval)
505 {
506 	return fwnode_property_read_int_array(fwnode, propname, sizeof(u16),
507 					      val, nval);
508 }
509 EXPORT_SYMBOL_GPL(fwnode_property_read_u16_array);
510 
511 /**
512  * fwnode_property_read_u32_array - return a u32 array property of firmware node
513  * @fwnode: Firmware node to get the property of
514  * @propname: Name of the property
515  * @val: The values are stored here or %NULL to return the number of values
516  * @nval: Size of the @val array
517  *
518  * Read an array of u32 properties with @propname from @fwnode store them to
519  * @val if found.
520  *
521  * Return: number of values if @val was %NULL,
522  *         %0 if the property was found (success),
523  *	   %-EINVAL if given arguments are not valid,
524  *	   %-ENODATA if the property does not have a value,
525  *	   %-EPROTO if the property is not an array of numbers,
526  *	   %-EOVERFLOW if the size of the property is not as expected,
527  *	   %-ENXIO if no suitable firmware interface is present.
528  */
529 int fwnode_property_read_u32_array(const struct fwnode_handle *fwnode,
530 				   const char *propname, u32 *val, size_t nval)
531 {
532 	return fwnode_property_read_int_array(fwnode, propname, sizeof(u32),
533 					      val, nval);
534 }
535 EXPORT_SYMBOL_GPL(fwnode_property_read_u32_array);
536 
537 /**
538  * fwnode_property_read_u64_array - return a u64 array property firmware node
539  * @fwnode: Firmware node to get the property of
540  * @propname: Name of the property
541  * @val: The values are stored here or %NULL to return the number of values
542  * @nval: Size of the @val array
543  *
544  * Read an array of u64 properties with @propname from @fwnode and store them to
545  * @val if found.
546  *
547  * Return: number of values if @val was %NULL,
548  *         %0 if the property was found (success),
549  *	   %-EINVAL if given arguments are not valid,
550  *	   %-ENODATA if the property does not have a value,
551  *	   %-EPROTO if the property is not an array of numbers,
552  *	   %-EOVERFLOW if the size of the property is not as expected,
553  *	   %-ENXIO if no suitable firmware interface is present.
554  */
555 int fwnode_property_read_u64_array(const struct fwnode_handle *fwnode,
556 				   const char *propname, u64 *val, size_t nval)
557 {
558 	return fwnode_property_read_int_array(fwnode, propname, sizeof(u64),
559 					      val, nval);
560 }
561 EXPORT_SYMBOL_GPL(fwnode_property_read_u64_array);
562 
563 /**
564  * fwnode_property_read_string_array - return string array property of a node
565  * @fwnode: Firmware node to get the property of
566  * @propname: Name of the property
567  * @val: The values are stored here or %NULL to return the number of values
568  * @nval: Size of the @val array
569  *
570  * Read an string list property @propname from the given firmware node and store
571  * them to @val if found.
572  *
573  * Return: number of values read on success if @val is non-NULL,
574  *	   number of values available on success if @val is NULL,
575  *	   %-EINVAL if given arguments are not valid,
576  *	   %-ENODATA if the property does not have a value,
577  *	   %-EPROTO or %-EILSEQ if the property is not an array of strings,
578  *	   %-EOVERFLOW if the size of the property is not as expected,
579  *	   %-ENXIO if no suitable firmware interface is present.
580  */
581 int fwnode_property_read_string_array(const struct fwnode_handle *fwnode,
582 				      const char *propname, const char **val,
583 				      size_t nval)
584 {
585 	int ret;
586 
587 	ret = fwnode_call_int_op(fwnode, property_read_string_array, propname,
588 				 val, nval);
589 	if (ret == -EINVAL && !IS_ERR_OR_NULL(fwnode) &&
590 	    !IS_ERR_OR_NULL(fwnode->secondary))
591 		ret = fwnode_call_int_op(fwnode->secondary,
592 					 property_read_string_array, propname,
593 					 val, nval);
594 	return ret;
595 }
596 EXPORT_SYMBOL_GPL(fwnode_property_read_string_array);
597 
598 /**
599  * fwnode_property_read_string - return a string property of a firmware node
600  * @fwnode: Firmware node to get the property of
601  * @propname: Name of the property
602  * @val: The value is stored here
603  *
604  * Read property @propname from the given firmware node and store the value into
605  * @val if found.  The value is checked to be a string.
606  *
607  * Return: %0 if the property was found (success),
608  *	   %-EINVAL if given arguments are not valid,
609  *	   %-ENODATA if the property does not have a value,
610  *	   %-EPROTO or %-EILSEQ if the property is not a string,
611  *	   %-ENXIO if no suitable firmware interface is present.
612  */
613 int fwnode_property_read_string(const struct fwnode_handle *fwnode,
614 				const char *propname, const char **val)
615 {
616 	int ret = fwnode_property_read_string_array(fwnode, propname, val, 1);
617 
618 	return ret < 0 ? ret : 0;
619 }
620 EXPORT_SYMBOL_GPL(fwnode_property_read_string);
621 
622 /**
623  * fwnode_property_match_string - find a string in an array and return index
624  * @fwnode: Firmware node to get the property of
625  * @propname: Name of the property holding the array
626  * @string: String to look for
627  *
628  * Find a given string in a string array and if it is found return the
629  * index back.
630  *
631  * Return: %0 if the property was found (success),
632  *	   %-EINVAL if given arguments are not valid,
633  *	   %-ENODATA if the property does not have a value,
634  *	   %-EPROTO if the property is not an array of strings,
635  *	   %-ENXIO if no suitable firmware interface is present.
636  */
637 int fwnode_property_match_string(const struct fwnode_handle *fwnode,
638 	const char *propname, const char *string)
639 {
640 	const char **values;
641 	int nval, ret;
642 
643 	nval = fwnode_property_read_string_array(fwnode, propname, NULL, 0);
644 	if (nval < 0)
645 		return nval;
646 
647 	if (nval == 0)
648 		return -ENODATA;
649 
650 	values = kcalloc(nval, sizeof(*values), GFP_KERNEL);
651 	if (!values)
652 		return -ENOMEM;
653 
654 	ret = fwnode_property_read_string_array(fwnode, propname, values, nval);
655 	if (ret < 0)
656 		goto out;
657 
658 	ret = match_string(values, nval, string);
659 	if (ret < 0)
660 		ret = -ENODATA;
661 out:
662 	kfree(values);
663 	return ret;
664 }
665 EXPORT_SYMBOL_GPL(fwnode_property_match_string);
666 
667 /**
668  * fwnode_property_get_reference_args() - Find a reference with arguments
669  * @fwnode:	Firmware node where to look for the reference
670  * @prop:	The name of the property
671  * @nargs_prop:	The name of the property telling the number of
672  *		arguments in the referred node. NULL if @nargs is known,
673  *		otherwise @nargs is ignored. Only relevant on OF.
674  * @nargs:	Number of arguments. Ignored if @nargs_prop is non-NULL.
675  * @index:	Index of the reference, from zero onwards.
676  * @args:	Result structure with reference and integer arguments.
677  *
678  * Obtain a reference based on a named property in an fwnode, with
679  * integer arguments.
680  *
681  * Caller is responsible to call fwnode_handle_put() on the returned
682  * args->fwnode pointer.
683  *
684  * Returns: %0 on success
685  *	    %-ENOENT when the index is out of bounds, the index has an empty
686  *		     reference or the property was not found
687  *	    %-EINVAL on parse error
688  */
689 int fwnode_property_get_reference_args(const struct fwnode_handle *fwnode,
690 				       const char *prop, const char *nargs_prop,
691 				       unsigned int nargs, unsigned int index,
692 				       struct fwnode_reference_args *args)
693 {
694 	return fwnode_call_int_op(fwnode, get_reference_args, prop, nargs_prop,
695 				  nargs, index, args);
696 }
697 EXPORT_SYMBOL_GPL(fwnode_property_get_reference_args);
698 
699 static void property_entry_free_data(const struct property_entry *p)
700 {
701 	size_t i, nval;
702 
703 	if (p->is_array) {
704 		if (p->is_string && p->pointer.str) {
705 			nval = p->length / sizeof(const char *);
706 			for (i = 0; i < nval; i++)
707 				kfree(p->pointer.str[i]);
708 		}
709 		kfree(p->pointer.raw_data);
710 	} else if (p->is_string) {
711 		kfree(p->value.str);
712 	}
713 	kfree(p->name);
714 }
715 
716 static int property_copy_string_array(struct property_entry *dst,
717 				      const struct property_entry *src)
718 {
719 	char **d;
720 	size_t nval = src->length / sizeof(*d);
721 	int i;
722 
723 	d = kcalloc(nval, sizeof(*d), GFP_KERNEL);
724 	if (!d)
725 		return -ENOMEM;
726 
727 	for (i = 0; i < nval; i++) {
728 		d[i] = kstrdup(src->pointer.str[i], GFP_KERNEL);
729 		if (!d[i] && src->pointer.str[i]) {
730 			while (--i >= 0)
731 				kfree(d[i]);
732 			kfree(d);
733 			return -ENOMEM;
734 		}
735 	}
736 
737 	dst->pointer.raw_data = d;
738 	return 0;
739 }
740 
741 static int property_entry_copy_data(struct property_entry *dst,
742 				    const struct property_entry *src)
743 {
744 	int error;
745 
746 	if (src->is_array) {
747 		if (!src->length)
748 			return -ENODATA;
749 
750 		if (src->is_string) {
751 			error = property_copy_string_array(dst, src);
752 			if (error)
753 				return error;
754 		} else {
755 			dst->pointer.raw_data = kmemdup(src->pointer.raw_data,
756 							src->length, GFP_KERNEL);
757 			if (!dst->pointer.raw_data)
758 				return -ENOMEM;
759 		}
760 	} else if (src->is_string) {
761 		dst->value.str = kstrdup(src->value.str, GFP_KERNEL);
762 		if (!dst->value.str && src->value.str)
763 			return -ENOMEM;
764 	} else {
765 		dst->value.raw_data = src->value.raw_data;
766 	}
767 
768 	dst->length = src->length;
769 	dst->is_array = src->is_array;
770 	dst->is_string = src->is_string;
771 
772 	dst->name = kstrdup(src->name, GFP_KERNEL);
773 	if (!dst->name)
774 		goto out_free_data;
775 
776 	return 0;
777 
778 out_free_data:
779 	property_entry_free_data(dst);
780 	return -ENOMEM;
781 }
782 
783 /**
784  * property_entries_dup - duplicate array of properties
785  * @properties: array of properties to copy
786  *
787  * This function creates a deep copy of the given NULL-terminated array
788  * of property entries.
789  */
790 struct property_entry *
791 property_entries_dup(const struct property_entry *properties)
792 {
793 	struct property_entry *p;
794 	int i, n = 0;
795 
796 	while (properties[n].name)
797 		n++;
798 
799 	p = kcalloc(n + 1, sizeof(*p), GFP_KERNEL);
800 	if (!p)
801 		return ERR_PTR(-ENOMEM);
802 
803 	for (i = 0; i < n; i++) {
804 		int ret = property_entry_copy_data(&p[i], &properties[i]);
805 		if (ret) {
806 			while (--i >= 0)
807 				property_entry_free_data(&p[i]);
808 			kfree(p);
809 			return ERR_PTR(ret);
810 		}
811 	}
812 
813 	return p;
814 }
815 EXPORT_SYMBOL_GPL(property_entries_dup);
816 
817 /**
818  * property_entries_free - free previously allocated array of properties
819  * @properties: array of properties to destroy
820  *
821  * This function frees given NULL-terminated array of property entries,
822  * along with their data.
823  */
824 void property_entries_free(const struct property_entry *properties)
825 {
826 	const struct property_entry *p;
827 
828 	for (p = properties; p->name; p++)
829 		property_entry_free_data(p);
830 
831 	kfree(properties);
832 }
833 EXPORT_SYMBOL_GPL(property_entries_free);
834 
835 /**
836  * pset_free_set - releases memory allocated for copied property set
837  * @pset: Property set to release
838  *
839  * Function takes previously copied property set and releases all the
840  * memory allocated to it.
841  */
842 static void pset_free_set(struct property_set *pset)
843 {
844 	if (!pset)
845 		return;
846 
847 	property_entries_free(pset->properties);
848 	kfree(pset);
849 }
850 
851 /**
852  * pset_copy_set - copies property set
853  * @pset: Property set to copy
854  *
855  * This function takes a deep copy of the given property set and returns
856  * pointer to the copy. Call device_free_property_set() to free resources
857  * allocated in this function.
858  *
859  * Return: Pointer to the new property set or error pointer.
860  */
861 static struct property_set *pset_copy_set(const struct property_set *pset)
862 {
863 	struct property_entry *properties;
864 	struct property_set *p;
865 
866 	p = kzalloc(sizeof(*p), GFP_KERNEL);
867 	if (!p)
868 		return ERR_PTR(-ENOMEM);
869 
870 	properties = property_entries_dup(pset->properties);
871 	if (IS_ERR(properties)) {
872 		kfree(p);
873 		return ERR_CAST(properties);
874 	}
875 
876 	p->properties = properties;
877 	return p;
878 }
879 
880 /**
881  * device_remove_properties - Remove properties from a device object.
882  * @dev: Device whose properties to remove.
883  *
884  * The function removes properties previously associated to the device
885  * secondary firmware node with device_add_properties(). Memory allocated
886  * to the properties will also be released.
887  */
888 void device_remove_properties(struct device *dev)
889 {
890 	struct fwnode_handle *fwnode;
891 	struct property_set *pset;
892 
893 	fwnode = dev_fwnode(dev);
894 	if (!fwnode)
895 		return;
896 	/*
897 	 * Pick either primary or secondary node depending which one holds
898 	 * the pset. If there is no real firmware node (ACPI/DT) primary
899 	 * will hold the pset.
900 	 */
901 	pset = to_pset_node(fwnode);
902 	if (pset) {
903 		set_primary_fwnode(dev, NULL);
904 	} else {
905 		pset = to_pset_node(fwnode->secondary);
906 		if (pset && dev == pset->dev)
907 			set_secondary_fwnode(dev, NULL);
908 	}
909 	if (pset && dev == pset->dev)
910 		pset_free_set(pset);
911 }
912 EXPORT_SYMBOL_GPL(device_remove_properties);
913 
914 /**
915  * device_add_properties - Add a collection of properties to a device object.
916  * @dev: Device to add properties to.
917  * @properties: Collection of properties to add.
918  *
919  * Associate a collection of device properties represented by @properties with
920  * @dev as its secondary firmware node. The function takes a copy of
921  * @properties.
922  */
923 int device_add_properties(struct device *dev,
924 			  const struct property_entry *properties)
925 {
926 	struct property_set *p, pset;
927 
928 	if (!properties)
929 		return -EINVAL;
930 
931 	pset.properties = properties;
932 
933 	p = pset_copy_set(&pset);
934 	if (IS_ERR(p))
935 		return PTR_ERR(p);
936 
937 	p->fwnode.ops = &pset_fwnode_ops;
938 	set_secondary_fwnode(dev, &p->fwnode);
939 	p->dev = dev;
940 	return 0;
941 }
942 EXPORT_SYMBOL_GPL(device_add_properties);
943 
944 /**
945  * fwnode_get_next_parent - Iterate to the node's parent
946  * @fwnode: Firmware whose parent is retrieved
947  *
948  * This is like fwnode_get_parent() except that it drops the refcount
949  * on the passed node, making it suitable for iterating through a
950  * node's parents.
951  *
952  * Returns a node pointer with refcount incremented, use
953  * fwnode_handle_node() on it when done.
954  */
955 struct fwnode_handle *fwnode_get_next_parent(struct fwnode_handle *fwnode)
956 {
957 	struct fwnode_handle *parent = fwnode_get_parent(fwnode);
958 
959 	fwnode_handle_put(fwnode);
960 
961 	return parent;
962 }
963 EXPORT_SYMBOL_GPL(fwnode_get_next_parent);
964 
965 /**
966  * fwnode_get_parent - Return parent firwmare node
967  * @fwnode: Firmware whose parent is retrieved
968  *
969  * Return parent firmware node of the given node if possible or %NULL if no
970  * parent was available.
971  */
972 struct fwnode_handle *fwnode_get_parent(const struct fwnode_handle *fwnode)
973 {
974 	return fwnode_call_ptr_op(fwnode, get_parent);
975 }
976 EXPORT_SYMBOL_GPL(fwnode_get_parent);
977 
978 /**
979  * fwnode_get_next_child_node - Return the next child node handle for a node
980  * @fwnode: Firmware node to find the next child node for.
981  * @child: Handle to one of the node's child nodes or a %NULL handle.
982  */
983 struct fwnode_handle *
984 fwnode_get_next_child_node(const struct fwnode_handle *fwnode,
985 			   struct fwnode_handle *child)
986 {
987 	return fwnode_call_ptr_op(fwnode, get_next_child_node, child);
988 }
989 EXPORT_SYMBOL_GPL(fwnode_get_next_child_node);
990 
991 /**
992  * fwnode_get_next_available_child_node - Return the next
993  * available child node handle for a node
994  * @fwnode: Firmware node to find the next child node for.
995  * @child: Handle to one of the node's child nodes or a %NULL handle.
996  */
997 struct fwnode_handle *
998 fwnode_get_next_available_child_node(const struct fwnode_handle *fwnode,
999 				     struct fwnode_handle *child)
1000 {
1001 	struct fwnode_handle *next_child = child;
1002 
1003 	if (!fwnode)
1004 		return NULL;
1005 
1006 	do {
1007 		next_child = fwnode_get_next_child_node(fwnode, next_child);
1008 
1009 		if (!next_child || fwnode_device_is_available(next_child))
1010 			break;
1011 	} while (next_child);
1012 
1013 	return next_child;
1014 }
1015 EXPORT_SYMBOL_GPL(fwnode_get_next_available_child_node);
1016 
1017 /**
1018  * device_get_next_child_node - Return the next child node handle for a device
1019  * @dev: Device to find the next child node for.
1020  * @child: Handle to one of the device's child nodes or a null handle.
1021  */
1022 struct fwnode_handle *device_get_next_child_node(struct device *dev,
1023 						 struct fwnode_handle *child)
1024 {
1025 	struct acpi_device *adev = ACPI_COMPANION(dev);
1026 	struct fwnode_handle *fwnode = NULL;
1027 
1028 	if (dev->of_node)
1029 		fwnode = &dev->of_node->fwnode;
1030 	else if (adev)
1031 		fwnode = acpi_fwnode_handle(adev);
1032 
1033 	return fwnode_get_next_child_node(fwnode, child);
1034 }
1035 EXPORT_SYMBOL_GPL(device_get_next_child_node);
1036 
1037 /**
1038  * fwnode_get_named_child_node - Return first matching named child node handle
1039  * @fwnode: Firmware node to find the named child node for.
1040  * @childname: String to match child node name against.
1041  */
1042 struct fwnode_handle *
1043 fwnode_get_named_child_node(const struct fwnode_handle *fwnode,
1044 			    const char *childname)
1045 {
1046 	return fwnode_call_ptr_op(fwnode, get_named_child_node, childname);
1047 }
1048 EXPORT_SYMBOL_GPL(fwnode_get_named_child_node);
1049 
1050 /**
1051  * device_get_named_child_node - Return first matching named child node handle
1052  * @dev: Device to find the named child node for.
1053  * @childname: String to match child node name against.
1054  */
1055 struct fwnode_handle *device_get_named_child_node(struct device *dev,
1056 						  const char *childname)
1057 {
1058 	return fwnode_get_named_child_node(dev_fwnode(dev), childname);
1059 }
1060 EXPORT_SYMBOL_GPL(device_get_named_child_node);
1061 
1062 /**
1063  * fwnode_handle_get - Obtain a reference to a device node
1064  * @fwnode: Pointer to the device node to obtain the reference to.
1065  *
1066  * Returns the fwnode handle.
1067  */
1068 struct fwnode_handle *fwnode_handle_get(struct fwnode_handle *fwnode)
1069 {
1070 	if (!fwnode_has_op(fwnode, get))
1071 		return fwnode;
1072 
1073 	return fwnode_call_ptr_op(fwnode, get);
1074 }
1075 EXPORT_SYMBOL_GPL(fwnode_handle_get);
1076 
1077 /**
1078  * fwnode_handle_put - Drop reference to a device node
1079  * @fwnode: Pointer to the device node to drop the reference to.
1080  *
1081  * This has to be used when terminating device_for_each_child_node() iteration
1082  * with break or return to prevent stale device node references from being left
1083  * behind.
1084  */
1085 void fwnode_handle_put(struct fwnode_handle *fwnode)
1086 {
1087 	fwnode_call_void_op(fwnode, put);
1088 }
1089 EXPORT_SYMBOL_GPL(fwnode_handle_put);
1090 
1091 /**
1092  * fwnode_device_is_available - check if a device is available for use
1093  * @fwnode: Pointer to the fwnode of the device.
1094  */
1095 bool fwnode_device_is_available(const struct fwnode_handle *fwnode)
1096 {
1097 	return fwnode_call_bool_op(fwnode, device_is_available);
1098 }
1099 EXPORT_SYMBOL_GPL(fwnode_device_is_available);
1100 
1101 /**
1102  * device_get_child_node_count - return the number of child nodes for device
1103  * @dev: Device to cound the child nodes for
1104  */
1105 unsigned int device_get_child_node_count(struct device *dev)
1106 {
1107 	struct fwnode_handle *child;
1108 	unsigned int count = 0;
1109 
1110 	device_for_each_child_node(dev, child)
1111 		count++;
1112 
1113 	return count;
1114 }
1115 EXPORT_SYMBOL_GPL(device_get_child_node_count);
1116 
1117 bool device_dma_supported(struct device *dev)
1118 {
1119 	/* For DT, this is always supported.
1120 	 * For ACPI, this depends on CCA, which
1121 	 * is determined by the acpi_dma_supported().
1122 	 */
1123 	if (IS_ENABLED(CONFIG_OF) && dev->of_node)
1124 		return true;
1125 
1126 	return acpi_dma_supported(ACPI_COMPANION(dev));
1127 }
1128 EXPORT_SYMBOL_GPL(device_dma_supported);
1129 
1130 enum dev_dma_attr device_get_dma_attr(struct device *dev)
1131 {
1132 	enum dev_dma_attr attr = DEV_DMA_NOT_SUPPORTED;
1133 
1134 	if (IS_ENABLED(CONFIG_OF) && dev->of_node) {
1135 		if (of_dma_is_coherent(dev->of_node))
1136 			attr = DEV_DMA_COHERENT;
1137 		else
1138 			attr = DEV_DMA_NON_COHERENT;
1139 	} else
1140 		attr = acpi_get_dma_attr(ACPI_COMPANION(dev));
1141 
1142 	return attr;
1143 }
1144 EXPORT_SYMBOL_GPL(device_get_dma_attr);
1145 
1146 /**
1147  * fwnode_get_phy_mode - Get phy mode for given firmware node
1148  * @fwnode:	Pointer to the given node
1149  *
1150  * The function gets phy interface string from property 'phy-mode' or
1151  * 'phy-connection-type', and return its index in phy_modes table, or errno in
1152  * error case.
1153  */
1154 int fwnode_get_phy_mode(struct fwnode_handle *fwnode)
1155 {
1156 	const char *pm;
1157 	int err, i;
1158 
1159 	err = fwnode_property_read_string(fwnode, "phy-mode", &pm);
1160 	if (err < 0)
1161 		err = fwnode_property_read_string(fwnode,
1162 						  "phy-connection-type", &pm);
1163 	if (err < 0)
1164 		return err;
1165 
1166 	for (i = 0; i < PHY_INTERFACE_MODE_MAX; i++)
1167 		if (!strcasecmp(pm, phy_modes(i)))
1168 			return i;
1169 
1170 	return -ENODEV;
1171 }
1172 EXPORT_SYMBOL_GPL(fwnode_get_phy_mode);
1173 
1174 /**
1175  * device_get_phy_mode - Get phy mode for given device
1176  * @dev:	Pointer to the given device
1177  *
1178  * The function gets phy interface string from property 'phy-mode' or
1179  * 'phy-connection-type', and return its index in phy_modes table, or errno in
1180  * error case.
1181  */
1182 int device_get_phy_mode(struct device *dev)
1183 {
1184 	return fwnode_get_phy_mode(dev_fwnode(dev));
1185 }
1186 EXPORT_SYMBOL_GPL(device_get_phy_mode);
1187 
1188 static void *fwnode_get_mac_addr(struct fwnode_handle *fwnode,
1189 				 const char *name, char *addr,
1190 				 int alen)
1191 {
1192 	int ret = fwnode_property_read_u8_array(fwnode, name, addr, alen);
1193 
1194 	if (ret == 0 && alen == ETH_ALEN && is_valid_ether_addr(addr))
1195 		return addr;
1196 	return NULL;
1197 }
1198 
1199 /**
1200  * fwnode_get_mac_address - Get the MAC from the firmware node
1201  * @fwnode:	Pointer to the firmware node
1202  * @addr:	Address of buffer to store the MAC in
1203  * @alen:	Length of the buffer pointed to by addr, should be ETH_ALEN
1204  *
1205  * Search the firmware node for the best MAC address to use.  'mac-address' is
1206  * checked first, because that is supposed to contain to "most recent" MAC
1207  * address. If that isn't set, then 'local-mac-address' is checked next,
1208  * because that is the default address.  If that isn't set, then the obsolete
1209  * 'address' is checked, just in case we're using an old device tree.
1210  *
1211  * Note that the 'address' property is supposed to contain a virtual address of
1212  * the register set, but some DTS files have redefined that property to be the
1213  * MAC address.
1214  *
1215  * All-zero MAC addresses are rejected, because those could be properties that
1216  * exist in the firmware tables, but were not updated by the firmware.  For
1217  * example, the DTS could define 'mac-address' and 'local-mac-address', with
1218  * zero MAC addresses.  Some older U-Boots only initialized 'local-mac-address'.
1219  * In this case, the real MAC is in 'local-mac-address', and 'mac-address'
1220  * exists but is all zeros.
1221 */
1222 void *fwnode_get_mac_address(struct fwnode_handle *fwnode, char *addr, int alen)
1223 {
1224 	char *res;
1225 
1226 	res = fwnode_get_mac_addr(fwnode, "mac-address", addr, alen);
1227 	if (res)
1228 		return res;
1229 
1230 	res = fwnode_get_mac_addr(fwnode, "local-mac-address", addr, alen);
1231 	if (res)
1232 		return res;
1233 
1234 	return fwnode_get_mac_addr(fwnode, "address", addr, alen);
1235 }
1236 EXPORT_SYMBOL(fwnode_get_mac_address);
1237 
1238 /**
1239  * device_get_mac_address - Get the MAC for a given device
1240  * @dev:	Pointer to the device
1241  * @addr:	Address of buffer to store the MAC in
1242  * @alen:	Length of the buffer pointed to by addr, should be ETH_ALEN
1243  */
1244 void *device_get_mac_address(struct device *dev, char *addr, int alen)
1245 {
1246 	return fwnode_get_mac_address(dev_fwnode(dev), addr, alen);
1247 }
1248 EXPORT_SYMBOL(device_get_mac_address);
1249 
1250 /**
1251  * fwnode_irq_get - Get IRQ directly from a fwnode
1252  * @fwnode:	Pointer to the firmware node
1253  * @index:	Zero-based index of the IRQ
1254  *
1255  * Returns Linux IRQ number on success. Other values are determined
1256  * accordingly to acpi_/of_ irq_get() operation.
1257  */
1258 int fwnode_irq_get(struct fwnode_handle *fwnode, unsigned int index)
1259 {
1260 	struct device_node *of_node = to_of_node(fwnode);
1261 	struct resource res;
1262 	int ret;
1263 
1264 	if (IS_ENABLED(CONFIG_OF) && of_node)
1265 		return of_irq_get(of_node, index);
1266 
1267 	ret = acpi_irq_get(ACPI_HANDLE_FWNODE(fwnode), index, &res);
1268 	if (ret)
1269 		return ret;
1270 
1271 	return res.start;
1272 }
1273 EXPORT_SYMBOL(fwnode_irq_get);
1274 
1275 /**
1276  * device_graph_get_next_endpoint - Get next endpoint firmware node
1277  * @fwnode: Pointer to the parent firmware node
1278  * @prev: Previous endpoint node or %NULL to get the first
1279  *
1280  * Returns an endpoint firmware node pointer or %NULL if no more endpoints
1281  * are available.
1282  */
1283 struct fwnode_handle *
1284 fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode,
1285 			       struct fwnode_handle *prev)
1286 {
1287 	return fwnode_call_ptr_op(fwnode, graph_get_next_endpoint, prev);
1288 }
1289 EXPORT_SYMBOL_GPL(fwnode_graph_get_next_endpoint);
1290 
1291 /**
1292  * fwnode_graph_get_port_parent - Return the device fwnode of a port endpoint
1293  * @endpoint: Endpoint firmware node of the port
1294  *
1295  * Return: the firmware node of the device the @endpoint belongs to.
1296  */
1297 struct fwnode_handle *
1298 fwnode_graph_get_port_parent(const struct fwnode_handle *endpoint)
1299 {
1300 	struct fwnode_handle *port, *parent;
1301 
1302 	port = fwnode_get_parent(endpoint);
1303 	parent = fwnode_call_ptr_op(port, graph_get_port_parent);
1304 
1305 	fwnode_handle_put(port);
1306 
1307 	return parent;
1308 }
1309 EXPORT_SYMBOL_GPL(fwnode_graph_get_port_parent);
1310 
1311 /**
1312  * fwnode_graph_get_remote_port_parent - Return fwnode of a remote device
1313  * @fwnode: Endpoint firmware node pointing to the remote endpoint
1314  *
1315  * Extracts firmware node of a remote device the @fwnode points to.
1316  */
1317 struct fwnode_handle *
1318 fwnode_graph_get_remote_port_parent(const struct fwnode_handle *fwnode)
1319 {
1320 	struct fwnode_handle *endpoint, *parent;
1321 
1322 	endpoint = fwnode_graph_get_remote_endpoint(fwnode);
1323 	parent = fwnode_graph_get_port_parent(endpoint);
1324 
1325 	fwnode_handle_put(endpoint);
1326 
1327 	return parent;
1328 }
1329 EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port_parent);
1330 
1331 /**
1332  * fwnode_graph_get_remote_port - Return fwnode of a remote port
1333  * @fwnode: Endpoint firmware node pointing to the remote endpoint
1334  *
1335  * Extracts firmware node of a remote port the @fwnode points to.
1336  */
1337 struct fwnode_handle *
1338 fwnode_graph_get_remote_port(const struct fwnode_handle *fwnode)
1339 {
1340 	return fwnode_get_next_parent(fwnode_graph_get_remote_endpoint(fwnode));
1341 }
1342 EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port);
1343 
1344 /**
1345  * fwnode_graph_get_remote_endpoint - Return fwnode of a remote endpoint
1346  * @fwnode: Endpoint firmware node pointing to the remote endpoint
1347  *
1348  * Extracts firmware node of a remote endpoint the @fwnode points to.
1349  */
1350 struct fwnode_handle *
1351 fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode)
1352 {
1353 	return fwnode_call_ptr_op(fwnode, graph_get_remote_endpoint);
1354 }
1355 EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_endpoint);
1356 
1357 /**
1358  * fwnode_graph_get_remote_node - get remote parent node for given port/endpoint
1359  * @fwnode: pointer to parent fwnode_handle containing graph port/endpoint
1360  * @port_id: identifier of the parent port node
1361  * @endpoint_id: identifier of the endpoint node
1362  *
1363  * Return: Remote fwnode handle associated with remote endpoint node linked
1364  *	   to @node. Use fwnode_node_put() on it when done.
1365  */
1366 struct fwnode_handle *
1367 fwnode_graph_get_remote_node(const struct fwnode_handle *fwnode, u32 port_id,
1368 			     u32 endpoint_id)
1369 {
1370 	struct fwnode_handle *endpoint = NULL;
1371 
1372 	while ((endpoint = fwnode_graph_get_next_endpoint(fwnode, endpoint))) {
1373 		struct fwnode_endpoint fwnode_ep;
1374 		struct fwnode_handle *remote;
1375 		int ret;
1376 
1377 		ret = fwnode_graph_parse_endpoint(endpoint, &fwnode_ep);
1378 		if (ret < 0)
1379 			continue;
1380 
1381 		if (fwnode_ep.port != port_id || fwnode_ep.id != endpoint_id)
1382 			continue;
1383 
1384 		remote = fwnode_graph_get_remote_port_parent(endpoint);
1385 		if (!remote)
1386 			return NULL;
1387 
1388 		return fwnode_device_is_available(remote) ? remote : NULL;
1389 	}
1390 
1391 	return NULL;
1392 }
1393 EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_node);
1394 
1395 /**
1396  * fwnode_graph_parse_endpoint - parse common endpoint node properties
1397  * @fwnode: pointer to endpoint fwnode_handle
1398  * @endpoint: pointer to the fwnode endpoint data structure
1399  *
1400  * Parse @fwnode representing a graph endpoint node and store the
1401  * information in @endpoint. The caller must hold a reference to
1402  * @fwnode.
1403  */
1404 int fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode,
1405 				struct fwnode_endpoint *endpoint)
1406 {
1407 	memset(endpoint, 0, sizeof(*endpoint));
1408 
1409 	return fwnode_call_int_op(fwnode, graph_parse_endpoint, endpoint);
1410 }
1411 EXPORT_SYMBOL(fwnode_graph_parse_endpoint);
1412 
1413 const void *device_get_match_data(struct device *dev)
1414 {
1415 	return fwnode_call_ptr_op(dev_fwnode(dev), device_get_match_data, dev);
1416 }
1417 EXPORT_SYMBOL_GPL(device_get_match_data);
1418