xref: /linux/drivers/base/property.c (revision b5bee6ced21ca98389000b7017dd41b0cc37fa50)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * property.c - Unified device property interface.
4  *
5  * Copyright (C) 2014, Intel Corporation
6  * Authors: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
7  *          Mika Westerberg <mika.westerberg@linux.intel.com>
8  */
9 
10 #include <linux/acpi.h>
11 #include <linux/export.h>
12 #include <linux/kernel.h>
13 #include <linux/of.h>
14 #include <linux/of_address.h>
15 #include <linux/of_graph.h>
16 #include <linux/of_irq.h>
17 #include <linux/property.h>
18 #include <linux/phy.h>
19 
20 struct fwnode_handle *dev_fwnode(struct device *dev)
21 {
22 	return IS_ENABLED(CONFIG_OF) && dev->of_node ?
23 		of_fwnode_handle(dev->of_node) : dev->fwnode;
24 }
25 EXPORT_SYMBOL_GPL(dev_fwnode);
26 
27 /**
28  * device_property_present - check if a property of a device is present
29  * @dev: Device whose property is being checked
30  * @propname: Name of the property
31  *
32  * Check if property @propname is present in the device firmware description.
33  */
34 bool device_property_present(struct device *dev, const char *propname)
35 {
36 	return fwnode_property_present(dev_fwnode(dev), propname);
37 }
38 EXPORT_SYMBOL_GPL(device_property_present);
39 
40 /**
41  * fwnode_property_present - check if a property of a firmware node is present
42  * @fwnode: Firmware node whose property to check
43  * @propname: Name of the property
44  */
45 bool fwnode_property_present(const struct fwnode_handle *fwnode,
46 			     const char *propname)
47 {
48 	bool ret;
49 
50 	if (IS_ERR_OR_NULL(fwnode))
51 		return false;
52 
53 	ret = fwnode_call_bool_op(fwnode, property_present, propname);
54 	if (ret)
55 		return ret;
56 
57 	return fwnode_call_bool_op(fwnode->secondary, property_present, propname);
58 }
59 EXPORT_SYMBOL_GPL(fwnode_property_present);
60 
61 /**
62  * device_property_read_u8_array - return a u8 array property of a device
63  * @dev: Device to get the property of
64  * @propname: Name of the property
65  * @val: The values are stored here or %NULL to return the number of values
66  * @nval: Size of the @val array
67  *
68  * Function reads an array of u8 properties with @propname from the device
69  * firmware description and stores them to @val if found.
70  *
71  * It's recommended to call device_property_count_u8() instead of calling
72  * this function with @val equals %NULL and @nval equals 0.
73  *
74  * Return: number of values if @val was %NULL,
75  *         %0 if the property was found (success),
76  *	   %-EINVAL if given arguments are not valid,
77  *	   %-ENODATA if the property does not have a value,
78  *	   %-EPROTO if the property is not an array of numbers,
79  *	   %-EOVERFLOW if the size of the property is not as expected.
80  *	   %-ENXIO if no suitable firmware interface is present.
81  */
82 int device_property_read_u8_array(struct device *dev, const char *propname,
83 				  u8 *val, size_t nval)
84 {
85 	return fwnode_property_read_u8_array(dev_fwnode(dev), propname, val, nval);
86 }
87 EXPORT_SYMBOL_GPL(device_property_read_u8_array);
88 
89 /**
90  * device_property_read_u16_array - return a u16 array property of a device
91  * @dev: Device to get the property of
92  * @propname: Name of the property
93  * @val: The values are stored here or %NULL to return the number of values
94  * @nval: Size of the @val array
95  *
96  * Function reads an array of u16 properties with @propname from the device
97  * firmware description and stores them to @val if found.
98  *
99  * It's recommended to call device_property_count_u16() instead of calling
100  * this function with @val equals %NULL and @nval equals 0.
101  *
102  * Return: number of values if @val was %NULL,
103  *         %0 if the property was found (success),
104  *	   %-EINVAL if given arguments are not valid,
105  *	   %-ENODATA if the property does not have a value,
106  *	   %-EPROTO if the property is not an array of numbers,
107  *	   %-EOVERFLOW if the size of the property is not as expected.
108  *	   %-ENXIO if no suitable firmware interface is present.
109  */
110 int device_property_read_u16_array(struct device *dev, const char *propname,
111 				   u16 *val, size_t nval)
112 {
113 	return fwnode_property_read_u16_array(dev_fwnode(dev), propname, val, nval);
114 }
115 EXPORT_SYMBOL_GPL(device_property_read_u16_array);
116 
117 /**
118  * device_property_read_u32_array - return a u32 array property of a device
119  * @dev: Device to get the property of
120  * @propname: Name of the property
121  * @val: The values are stored here or %NULL to return the number of values
122  * @nval: Size of the @val array
123  *
124  * Function reads an array of u32 properties with @propname from the device
125  * firmware description and stores them to @val if found.
126  *
127  * It's recommended to call device_property_count_u32() instead of calling
128  * this function with @val equals %NULL and @nval equals 0.
129  *
130  * Return: number of values if @val was %NULL,
131  *         %0 if the property was found (success),
132  *	   %-EINVAL if given arguments are not valid,
133  *	   %-ENODATA if the property does not have a value,
134  *	   %-EPROTO if the property is not an array of numbers,
135  *	   %-EOVERFLOW if the size of the property is not as expected.
136  *	   %-ENXIO if no suitable firmware interface is present.
137  */
138 int device_property_read_u32_array(struct device *dev, const char *propname,
139 				   u32 *val, size_t nval)
140 {
141 	return fwnode_property_read_u32_array(dev_fwnode(dev), propname, val, nval);
142 }
143 EXPORT_SYMBOL_GPL(device_property_read_u32_array);
144 
145 /**
146  * device_property_read_u64_array - return a u64 array property of a device
147  * @dev: Device to get the property of
148  * @propname: Name of the property
149  * @val: The values are stored here or %NULL to return the number of values
150  * @nval: Size of the @val array
151  *
152  * Function reads an array of u64 properties with @propname from the device
153  * firmware description and stores them to @val if found.
154  *
155  * It's recommended to call device_property_count_u64() instead of calling
156  * this function with @val equals %NULL and @nval equals 0.
157  *
158  * Return: number of values if @val was %NULL,
159  *         %0 if the property was found (success),
160  *	   %-EINVAL if given arguments are not valid,
161  *	   %-ENODATA if the property does not have a value,
162  *	   %-EPROTO if the property is not an array of numbers,
163  *	   %-EOVERFLOW if the size of the property is not as expected.
164  *	   %-ENXIO if no suitable firmware interface is present.
165  */
166 int device_property_read_u64_array(struct device *dev, const char *propname,
167 				   u64 *val, size_t nval)
168 {
169 	return fwnode_property_read_u64_array(dev_fwnode(dev), propname, val, nval);
170 }
171 EXPORT_SYMBOL_GPL(device_property_read_u64_array);
172 
173 /**
174  * device_property_read_string_array - return a string array property of device
175  * @dev: Device to get the property of
176  * @propname: Name of the property
177  * @val: The values are stored here or %NULL to return the number of values
178  * @nval: Size of the @val array
179  *
180  * Function reads an array of string properties with @propname from the device
181  * firmware description and stores them to @val if found.
182  *
183  * It's recommended to call device_property_string_array_count() instead of calling
184  * this function with @val equals %NULL and @nval equals 0.
185  *
186  * Return: number of values read on success if @val is non-NULL,
187  *	   number of values available on success if @val is NULL,
188  *	   %-EINVAL if given arguments are not valid,
189  *	   %-ENODATA if the property does not have a value,
190  *	   %-EPROTO or %-EILSEQ if the property is not an array of strings,
191  *	   %-EOVERFLOW if the size of the property is not as expected.
192  *	   %-ENXIO if no suitable firmware interface is present.
193  */
194 int device_property_read_string_array(struct device *dev, const char *propname,
195 				      const char **val, size_t nval)
196 {
197 	return fwnode_property_read_string_array(dev_fwnode(dev), propname, val, nval);
198 }
199 EXPORT_SYMBOL_GPL(device_property_read_string_array);
200 
201 /**
202  * device_property_read_string - return a string property of a device
203  * @dev: Device to get the property of
204  * @propname: Name of the property
205  * @val: The value is stored here
206  *
207  * Function reads property @propname from the device firmware description and
208  * stores the value into @val if found. The value is checked to be a string.
209  *
210  * Return: %0 if the property was found (success),
211  *	   %-EINVAL if given arguments are not valid,
212  *	   %-ENODATA if the property does not have a value,
213  *	   %-EPROTO or %-EILSEQ if the property type is not a string.
214  *	   %-ENXIO if no suitable firmware interface is present.
215  */
216 int device_property_read_string(struct device *dev, const char *propname,
217 				const char **val)
218 {
219 	return fwnode_property_read_string(dev_fwnode(dev), propname, val);
220 }
221 EXPORT_SYMBOL_GPL(device_property_read_string);
222 
223 /**
224  * device_property_match_string - find a string in an array and return index
225  * @dev: Device to get the property of
226  * @propname: Name of the property holding the array
227  * @string: String to look for
228  *
229  * Find a given string in a string array and if it is found return the
230  * index back.
231  *
232  * Return: %0 if the property was found (success),
233  *	   %-EINVAL if given arguments are not valid,
234  *	   %-ENODATA if the property does not have a value,
235  *	   %-EPROTO if the property is not an array of strings,
236  *	   %-ENXIO if no suitable firmware interface is present.
237  */
238 int device_property_match_string(struct device *dev, const char *propname,
239 				 const char *string)
240 {
241 	return fwnode_property_match_string(dev_fwnode(dev), propname, string);
242 }
243 EXPORT_SYMBOL_GPL(device_property_match_string);
244 
245 static int fwnode_property_read_int_array(const struct fwnode_handle *fwnode,
246 					  const char *propname,
247 					  unsigned int elem_size, void *val,
248 					  size_t nval)
249 {
250 	int ret;
251 
252 	if (IS_ERR_OR_NULL(fwnode))
253 		return -EINVAL;
254 
255 	ret = fwnode_call_int_op(fwnode, property_read_int_array, propname,
256 				 elem_size, val, nval);
257 	if (ret != -EINVAL)
258 		return ret;
259 
260 	return fwnode_call_int_op(fwnode->secondary, property_read_int_array, propname,
261 				  elem_size, val, nval);
262 }
263 
264 /**
265  * fwnode_property_read_u8_array - return a u8 array property of firmware node
266  * @fwnode: Firmware node to get the property of
267  * @propname: Name of the property
268  * @val: The values are stored here or %NULL to return the number of values
269  * @nval: Size of the @val array
270  *
271  * Read an array of u8 properties with @propname from @fwnode and stores them to
272  * @val if found.
273  *
274  * It's recommended to call fwnode_property_count_u8() instead of calling
275  * this function with @val equals %NULL and @nval equals 0.
276  *
277  * Return: number of values if @val was %NULL,
278  *         %0 if the property was found (success),
279  *	   %-EINVAL if given arguments are not valid,
280  *	   %-ENODATA if the property does not have a value,
281  *	   %-EPROTO if the property is not an array of numbers,
282  *	   %-EOVERFLOW if the size of the property is not as expected,
283  *	   %-ENXIO if no suitable firmware interface is present.
284  */
285 int fwnode_property_read_u8_array(const struct fwnode_handle *fwnode,
286 				  const char *propname, u8 *val, size_t nval)
287 {
288 	return fwnode_property_read_int_array(fwnode, propname, sizeof(u8),
289 					      val, nval);
290 }
291 EXPORT_SYMBOL_GPL(fwnode_property_read_u8_array);
292 
293 /**
294  * fwnode_property_read_u16_array - return a u16 array property of firmware node
295  * @fwnode: Firmware node to get the property of
296  * @propname: Name of the property
297  * @val: The values are stored here or %NULL to return the number of values
298  * @nval: Size of the @val array
299  *
300  * Read an array of u16 properties with @propname from @fwnode and store them to
301  * @val if found.
302  *
303  * It's recommended to call fwnode_property_count_u16() instead of calling
304  * this function with @val equals %NULL and @nval equals 0.
305  *
306  * Return: number of values if @val was %NULL,
307  *         %0 if the property was found (success),
308  *	   %-EINVAL if given arguments are not valid,
309  *	   %-ENODATA if the property does not have a value,
310  *	   %-EPROTO if the property is not an array of numbers,
311  *	   %-EOVERFLOW if the size of the property is not as expected,
312  *	   %-ENXIO if no suitable firmware interface is present.
313  */
314 int fwnode_property_read_u16_array(const struct fwnode_handle *fwnode,
315 				   const char *propname, u16 *val, size_t nval)
316 {
317 	return fwnode_property_read_int_array(fwnode, propname, sizeof(u16),
318 					      val, nval);
319 }
320 EXPORT_SYMBOL_GPL(fwnode_property_read_u16_array);
321 
322 /**
323  * fwnode_property_read_u32_array - return a u32 array property of firmware node
324  * @fwnode: Firmware node to get the property of
325  * @propname: Name of the property
326  * @val: The values are stored here or %NULL to return the number of values
327  * @nval: Size of the @val array
328  *
329  * Read an array of u32 properties with @propname from @fwnode store them to
330  * @val if found.
331  *
332  * It's recommended to call fwnode_property_count_u32() instead of calling
333  * this function with @val equals %NULL and @nval equals 0.
334  *
335  * Return: number of values if @val was %NULL,
336  *         %0 if the property was found (success),
337  *	   %-EINVAL if given arguments are not valid,
338  *	   %-ENODATA if the property does not have a value,
339  *	   %-EPROTO if the property is not an array of numbers,
340  *	   %-EOVERFLOW if the size of the property is not as expected,
341  *	   %-ENXIO if no suitable firmware interface is present.
342  */
343 int fwnode_property_read_u32_array(const struct fwnode_handle *fwnode,
344 				   const char *propname, u32 *val, size_t nval)
345 {
346 	return fwnode_property_read_int_array(fwnode, propname, sizeof(u32),
347 					      val, nval);
348 }
349 EXPORT_SYMBOL_GPL(fwnode_property_read_u32_array);
350 
351 /**
352  * fwnode_property_read_u64_array - return a u64 array property firmware node
353  * @fwnode: Firmware node to get the property of
354  * @propname: Name of the property
355  * @val: The values are stored here or %NULL to return the number of values
356  * @nval: Size of the @val array
357  *
358  * Read an array of u64 properties with @propname from @fwnode and store them to
359  * @val if found.
360  *
361  * It's recommended to call fwnode_property_count_u64() instead of calling
362  * this function with @val equals %NULL and @nval equals 0.
363  *
364  * Return: number of values if @val was %NULL,
365  *         %0 if the property was found (success),
366  *	   %-EINVAL if given arguments are not valid,
367  *	   %-ENODATA if the property does not have a value,
368  *	   %-EPROTO if the property is not an array of numbers,
369  *	   %-EOVERFLOW if the size of the property is not as expected,
370  *	   %-ENXIO if no suitable firmware interface is present.
371  */
372 int fwnode_property_read_u64_array(const struct fwnode_handle *fwnode,
373 				   const char *propname, u64 *val, size_t nval)
374 {
375 	return fwnode_property_read_int_array(fwnode, propname, sizeof(u64),
376 					      val, nval);
377 }
378 EXPORT_SYMBOL_GPL(fwnode_property_read_u64_array);
379 
380 /**
381  * fwnode_property_read_string_array - return string array property of a node
382  * @fwnode: Firmware node to get the property of
383  * @propname: Name of the property
384  * @val: The values are stored here or %NULL to return the number of values
385  * @nval: Size of the @val array
386  *
387  * Read an string list property @propname from the given firmware node and store
388  * them to @val if found.
389  *
390  * It's recommended to call fwnode_property_string_array_count() instead of calling
391  * this function with @val equals %NULL and @nval equals 0.
392  *
393  * Return: number of values read on success if @val is non-NULL,
394  *	   number of values available on success if @val is NULL,
395  *	   %-EINVAL if given arguments are not valid,
396  *	   %-ENODATA if the property does not have a value,
397  *	   %-EPROTO or %-EILSEQ if the property is not an array of strings,
398  *	   %-EOVERFLOW if the size of the property is not as expected,
399  *	   %-ENXIO if no suitable firmware interface is present.
400  */
401 int fwnode_property_read_string_array(const struct fwnode_handle *fwnode,
402 				      const char *propname, const char **val,
403 				      size_t nval)
404 {
405 	int ret;
406 
407 	if (IS_ERR_OR_NULL(fwnode))
408 		return -EINVAL;
409 
410 	ret = fwnode_call_int_op(fwnode, property_read_string_array, propname,
411 				 val, nval);
412 	if (ret != -EINVAL)
413 		return ret;
414 
415 	return fwnode_call_int_op(fwnode->secondary, property_read_string_array, propname,
416 				  val, nval);
417 }
418 EXPORT_SYMBOL_GPL(fwnode_property_read_string_array);
419 
420 /**
421  * fwnode_property_read_string - return a string property of a firmware node
422  * @fwnode: Firmware node to get the property of
423  * @propname: Name of the property
424  * @val: The value is stored here
425  *
426  * Read property @propname from the given firmware node and store the value into
427  * @val if found.  The value is checked to be a string.
428  *
429  * Return: %0 if the property was found (success),
430  *	   %-EINVAL if given arguments are not valid,
431  *	   %-ENODATA if the property does not have a value,
432  *	   %-EPROTO or %-EILSEQ if the property is not a string,
433  *	   %-ENXIO if no suitable firmware interface is present.
434  */
435 int fwnode_property_read_string(const struct fwnode_handle *fwnode,
436 				const char *propname, const char **val)
437 {
438 	int ret = fwnode_property_read_string_array(fwnode, propname, val, 1);
439 
440 	return ret < 0 ? ret : 0;
441 }
442 EXPORT_SYMBOL_GPL(fwnode_property_read_string);
443 
444 /**
445  * fwnode_property_match_string - find a string in an array and return index
446  * @fwnode: Firmware node to get the property of
447  * @propname: Name of the property holding the array
448  * @string: String to look for
449  *
450  * Find a given string in a string array and if it is found return the
451  * index back.
452  *
453  * Return: %0 if the property was found (success),
454  *	   %-EINVAL if given arguments are not valid,
455  *	   %-ENODATA if the property does not have a value,
456  *	   %-EPROTO if the property is not an array of strings,
457  *	   %-ENXIO if no suitable firmware interface is present.
458  */
459 int fwnode_property_match_string(const struct fwnode_handle *fwnode,
460 	const char *propname, const char *string)
461 {
462 	const char **values;
463 	int nval, ret;
464 
465 	nval = fwnode_property_read_string_array(fwnode, propname, NULL, 0);
466 	if (nval < 0)
467 		return nval;
468 
469 	if (nval == 0)
470 		return -ENODATA;
471 
472 	values = kcalloc(nval, sizeof(*values), GFP_KERNEL);
473 	if (!values)
474 		return -ENOMEM;
475 
476 	ret = fwnode_property_read_string_array(fwnode, propname, values, nval);
477 	if (ret < 0)
478 		goto out;
479 
480 	ret = match_string(values, nval, string);
481 	if (ret < 0)
482 		ret = -ENODATA;
483 out:
484 	kfree(values);
485 	return ret;
486 }
487 EXPORT_SYMBOL_GPL(fwnode_property_match_string);
488 
489 /**
490  * fwnode_property_get_reference_args() - Find a reference with arguments
491  * @fwnode:	Firmware node where to look for the reference
492  * @prop:	The name of the property
493  * @nargs_prop:	The name of the property telling the number of
494  *		arguments in the referred node. NULL if @nargs is known,
495  *		otherwise @nargs is ignored. Only relevant on OF.
496  * @nargs:	Number of arguments. Ignored if @nargs_prop is non-NULL.
497  * @index:	Index of the reference, from zero onwards.
498  * @args:	Result structure with reference and integer arguments.
499  *
500  * Obtain a reference based on a named property in an fwnode, with
501  * integer arguments.
502  *
503  * Caller is responsible to call fwnode_handle_put() on the returned
504  * args->fwnode pointer.
505  *
506  * Returns: %0 on success
507  *	    %-ENOENT when the index is out of bounds, the index has an empty
508  *		     reference or the property was not found
509  *	    %-EINVAL on parse error
510  */
511 int fwnode_property_get_reference_args(const struct fwnode_handle *fwnode,
512 				       const char *prop, const char *nargs_prop,
513 				       unsigned int nargs, unsigned int index,
514 				       struct fwnode_reference_args *args)
515 {
516 	int ret;
517 
518 	if (IS_ERR_OR_NULL(fwnode))
519 		return -ENOENT;
520 
521 	ret = fwnode_call_int_op(fwnode, get_reference_args, prop, nargs_prop,
522 				 nargs, index, args);
523 	if (ret == 0)
524 		return ret;
525 
526 	if (IS_ERR_OR_NULL(fwnode->secondary))
527 		return ret;
528 
529 	return fwnode_call_int_op(fwnode->secondary, get_reference_args, prop, nargs_prop,
530 				  nargs, index, args);
531 }
532 EXPORT_SYMBOL_GPL(fwnode_property_get_reference_args);
533 
534 /**
535  * fwnode_find_reference - Find named reference to a fwnode_handle
536  * @fwnode: Firmware node where to look for the reference
537  * @name: The name of the reference
538  * @index: Index of the reference
539  *
540  * @index can be used when the named reference holds a table of references.
541  *
542  * Returns pointer to the reference fwnode, or ERR_PTR. Caller is responsible to
543  * call fwnode_handle_put() on the returned fwnode pointer.
544  */
545 struct fwnode_handle *fwnode_find_reference(const struct fwnode_handle *fwnode,
546 					    const char *name,
547 					    unsigned int index)
548 {
549 	struct fwnode_reference_args args;
550 	int ret;
551 
552 	ret = fwnode_property_get_reference_args(fwnode, name, NULL, 0, index,
553 						 &args);
554 	return ret ? ERR_PTR(ret) : args.fwnode;
555 }
556 EXPORT_SYMBOL_GPL(fwnode_find_reference);
557 
558 /**
559  * fwnode_get_name - Return the name of a node
560  * @fwnode: The firmware node
561  *
562  * Returns a pointer to the node name.
563  */
564 const char *fwnode_get_name(const struct fwnode_handle *fwnode)
565 {
566 	return fwnode_call_ptr_op(fwnode, get_name);
567 }
568 EXPORT_SYMBOL_GPL(fwnode_get_name);
569 
570 /**
571  * fwnode_get_name_prefix - Return the prefix of node for printing purposes
572  * @fwnode: The firmware node
573  *
574  * Returns the prefix of a node, intended to be printed right before the node.
575  * The prefix works also as a separator between the nodes.
576  */
577 const char *fwnode_get_name_prefix(const struct fwnode_handle *fwnode)
578 {
579 	return fwnode_call_ptr_op(fwnode, get_name_prefix);
580 }
581 
582 /**
583  * fwnode_get_parent - Return parent firwmare node
584  * @fwnode: Firmware whose parent is retrieved
585  *
586  * Return parent firmware node of the given node if possible or %NULL if no
587  * parent was available.
588  */
589 struct fwnode_handle *fwnode_get_parent(const struct fwnode_handle *fwnode)
590 {
591 	return fwnode_call_ptr_op(fwnode, get_parent);
592 }
593 EXPORT_SYMBOL_GPL(fwnode_get_parent);
594 
595 /**
596  * fwnode_get_next_parent - Iterate to the node's parent
597  * @fwnode: Firmware whose parent is retrieved
598  *
599  * This is like fwnode_get_parent() except that it drops the refcount
600  * on the passed node, making it suitable for iterating through a
601  * node's parents.
602  *
603  * Returns a node pointer with refcount incremented, use
604  * fwnode_handle_node() on it when done.
605  */
606 struct fwnode_handle *fwnode_get_next_parent(struct fwnode_handle *fwnode)
607 {
608 	struct fwnode_handle *parent = fwnode_get_parent(fwnode);
609 
610 	fwnode_handle_put(fwnode);
611 
612 	return parent;
613 }
614 EXPORT_SYMBOL_GPL(fwnode_get_next_parent);
615 
616 /**
617  * fwnode_get_next_parent_dev - Find device of closest ancestor fwnode
618  * @fwnode: firmware node
619  *
620  * Given a firmware node (@fwnode), this function finds its closest ancestor
621  * firmware node that has a corresponding struct device and returns that struct
622  * device.
623  *
624  * The caller of this function is expected to call put_device() on the returned
625  * device when they are done.
626  */
627 struct device *fwnode_get_next_parent_dev(struct fwnode_handle *fwnode)
628 {
629 	struct fwnode_handle *parent;
630 	struct device *dev;
631 
632 	fwnode_for_each_parent_node(fwnode, parent) {
633 		dev = get_dev_from_fwnode(parent);
634 		if (dev) {
635 			fwnode_handle_put(parent);
636 			return dev;
637 		}
638 	}
639 	return NULL;
640 }
641 
642 /**
643  * fwnode_count_parents - Return the number of parents a node has
644  * @fwnode: The node the parents of which are to be counted
645  *
646  * Returns the number of parents a node has.
647  */
648 unsigned int fwnode_count_parents(const struct fwnode_handle *fwnode)
649 {
650 	struct fwnode_handle *parent;
651 	unsigned int count = 0;
652 
653 	fwnode_for_each_parent_node(fwnode, parent)
654 		count++;
655 
656 	return count;
657 }
658 EXPORT_SYMBOL_GPL(fwnode_count_parents);
659 
660 /**
661  * fwnode_get_nth_parent - Return an nth parent of a node
662  * @fwnode: The node the parent of which is requested
663  * @depth: Distance of the parent from the node
664  *
665  * Returns the nth parent of a node. If there is no parent at the requested
666  * @depth, %NULL is returned. If @depth is 0, the functionality is equivalent to
667  * fwnode_handle_get(). For @depth == 1, it is fwnode_get_parent() and so on.
668  *
669  * The caller is responsible for calling fwnode_handle_put() for the returned
670  * node.
671  */
672 struct fwnode_handle *fwnode_get_nth_parent(struct fwnode_handle *fwnode,
673 					    unsigned int depth)
674 {
675 	struct fwnode_handle *parent;
676 
677 	if (depth == 0)
678 		return fwnode_handle_get(fwnode);
679 
680 	fwnode_for_each_parent_node(fwnode, parent) {
681 		if (--depth == 0)
682 			return parent;
683 	}
684 	return NULL;
685 }
686 EXPORT_SYMBOL_GPL(fwnode_get_nth_parent);
687 
688 /**
689  * fwnode_is_ancestor_of - Test if @ancestor is ancestor of @child
690  * @ancestor: Firmware which is tested for being an ancestor
691  * @child: Firmware which is tested for being the child
692  *
693  * A node is considered an ancestor of itself too.
694  *
695  * Returns true if @ancestor is an ancestor of @child. Otherwise, returns false.
696  */
697 bool fwnode_is_ancestor_of(struct fwnode_handle *ancestor, struct fwnode_handle *child)
698 {
699 	struct fwnode_handle *parent;
700 
701 	if (IS_ERR_OR_NULL(ancestor))
702 		return false;
703 
704 	if (child == ancestor)
705 		return true;
706 
707 	fwnode_for_each_parent_node(child, parent) {
708 		if (parent == ancestor) {
709 			fwnode_handle_put(parent);
710 			return true;
711 		}
712 	}
713 	return false;
714 }
715 
716 /**
717  * fwnode_get_next_child_node - Return the next child node handle for a node
718  * @fwnode: Firmware node to find the next child node for.
719  * @child: Handle to one of the node's child nodes or a %NULL handle.
720  */
721 struct fwnode_handle *
722 fwnode_get_next_child_node(const struct fwnode_handle *fwnode,
723 			   struct fwnode_handle *child)
724 {
725 	return fwnode_call_ptr_op(fwnode, get_next_child_node, child);
726 }
727 EXPORT_SYMBOL_GPL(fwnode_get_next_child_node);
728 
729 /**
730  * fwnode_get_next_available_child_node - Return the next
731  * available child node handle for a node
732  * @fwnode: Firmware node to find the next child node for.
733  * @child: Handle to one of the node's child nodes or a %NULL handle.
734  */
735 struct fwnode_handle *
736 fwnode_get_next_available_child_node(const struct fwnode_handle *fwnode,
737 				     struct fwnode_handle *child)
738 {
739 	struct fwnode_handle *next_child = child;
740 
741 	if (IS_ERR_OR_NULL(fwnode))
742 		return NULL;
743 
744 	do {
745 		next_child = fwnode_get_next_child_node(fwnode, next_child);
746 		if (!next_child)
747 			return NULL;
748 	} while (!fwnode_device_is_available(next_child));
749 
750 	return next_child;
751 }
752 EXPORT_SYMBOL_GPL(fwnode_get_next_available_child_node);
753 
754 /**
755  * device_get_next_child_node - Return the next child node handle for a device
756  * @dev: Device to find the next child node for.
757  * @child: Handle to one of the device's child nodes or a null handle.
758  */
759 struct fwnode_handle *device_get_next_child_node(struct device *dev,
760 						 struct fwnode_handle *child)
761 {
762 	const struct fwnode_handle *fwnode = dev_fwnode(dev);
763 	struct fwnode_handle *next;
764 
765 	if (IS_ERR_OR_NULL(fwnode))
766 		return NULL;
767 
768 	/* Try to find a child in primary fwnode */
769 	next = fwnode_get_next_child_node(fwnode, child);
770 	if (next)
771 		return next;
772 
773 	/* When no more children in primary, continue with secondary */
774 	return fwnode_get_next_child_node(fwnode->secondary, child);
775 }
776 EXPORT_SYMBOL_GPL(device_get_next_child_node);
777 
778 /**
779  * fwnode_get_named_child_node - Return first matching named child node handle
780  * @fwnode: Firmware node to find the named child node for.
781  * @childname: String to match child node name against.
782  */
783 struct fwnode_handle *
784 fwnode_get_named_child_node(const struct fwnode_handle *fwnode,
785 			    const char *childname)
786 {
787 	return fwnode_call_ptr_op(fwnode, get_named_child_node, childname);
788 }
789 EXPORT_SYMBOL_GPL(fwnode_get_named_child_node);
790 
791 /**
792  * device_get_named_child_node - Return first matching named child node handle
793  * @dev: Device to find the named child node for.
794  * @childname: String to match child node name against.
795  */
796 struct fwnode_handle *device_get_named_child_node(struct device *dev,
797 						  const char *childname)
798 {
799 	return fwnode_get_named_child_node(dev_fwnode(dev), childname);
800 }
801 EXPORT_SYMBOL_GPL(device_get_named_child_node);
802 
803 /**
804  * fwnode_handle_get - Obtain a reference to a device node
805  * @fwnode: Pointer to the device node to obtain the reference to.
806  *
807  * Returns the fwnode handle.
808  */
809 struct fwnode_handle *fwnode_handle_get(struct fwnode_handle *fwnode)
810 {
811 	if (!fwnode_has_op(fwnode, get))
812 		return fwnode;
813 
814 	return fwnode_call_ptr_op(fwnode, get);
815 }
816 EXPORT_SYMBOL_GPL(fwnode_handle_get);
817 
818 /**
819  * fwnode_handle_put - Drop reference to a device node
820  * @fwnode: Pointer to the device node to drop the reference to.
821  *
822  * This has to be used when terminating device_for_each_child_node() iteration
823  * with break or return to prevent stale device node references from being left
824  * behind.
825  */
826 void fwnode_handle_put(struct fwnode_handle *fwnode)
827 {
828 	fwnode_call_void_op(fwnode, put);
829 }
830 EXPORT_SYMBOL_GPL(fwnode_handle_put);
831 
832 /**
833  * fwnode_device_is_available - check if a device is available for use
834  * @fwnode: Pointer to the fwnode of the device.
835  *
836  * For fwnode node types that don't implement the .device_is_available()
837  * operation, this function returns true.
838  */
839 bool fwnode_device_is_available(const struct fwnode_handle *fwnode)
840 {
841 	if (IS_ERR_OR_NULL(fwnode))
842 		return false;
843 
844 	if (!fwnode_has_op(fwnode, device_is_available))
845 		return true;
846 
847 	return fwnode_call_bool_op(fwnode, device_is_available);
848 }
849 EXPORT_SYMBOL_GPL(fwnode_device_is_available);
850 
851 /**
852  * device_get_child_node_count - return the number of child nodes for device
853  * @dev: Device to cound the child nodes for
854  */
855 unsigned int device_get_child_node_count(struct device *dev)
856 {
857 	struct fwnode_handle *child;
858 	unsigned int count = 0;
859 
860 	device_for_each_child_node(dev, child)
861 		count++;
862 
863 	return count;
864 }
865 EXPORT_SYMBOL_GPL(device_get_child_node_count);
866 
867 bool device_dma_supported(struct device *dev)
868 {
869 	return fwnode_call_bool_op(dev_fwnode(dev), device_dma_supported);
870 }
871 EXPORT_SYMBOL_GPL(device_dma_supported);
872 
873 enum dev_dma_attr device_get_dma_attr(struct device *dev)
874 {
875 	if (!fwnode_has_op(dev_fwnode(dev), device_get_dma_attr))
876 		return DEV_DMA_NOT_SUPPORTED;
877 
878 	return fwnode_call_int_op(dev_fwnode(dev), device_get_dma_attr);
879 }
880 EXPORT_SYMBOL_GPL(device_get_dma_attr);
881 
882 /**
883  * fwnode_get_phy_mode - Get phy mode for given firmware node
884  * @fwnode:	Pointer to the given node
885  *
886  * The function gets phy interface string from property 'phy-mode' or
887  * 'phy-connection-type', and return its index in phy_modes table, or errno in
888  * error case.
889  */
890 int fwnode_get_phy_mode(struct fwnode_handle *fwnode)
891 {
892 	const char *pm;
893 	int err, i;
894 
895 	err = fwnode_property_read_string(fwnode, "phy-mode", &pm);
896 	if (err < 0)
897 		err = fwnode_property_read_string(fwnode,
898 						  "phy-connection-type", &pm);
899 	if (err < 0)
900 		return err;
901 
902 	for (i = 0; i < PHY_INTERFACE_MODE_MAX; i++)
903 		if (!strcasecmp(pm, phy_modes(i)))
904 			return i;
905 
906 	return -ENODEV;
907 }
908 EXPORT_SYMBOL_GPL(fwnode_get_phy_mode);
909 
910 /**
911  * device_get_phy_mode - Get phy mode for given device
912  * @dev:	Pointer to the given device
913  *
914  * The function gets phy interface string from property 'phy-mode' or
915  * 'phy-connection-type', and return its index in phy_modes table, or errno in
916  * error case.
917  */
918 int device_get_phy_mode(struct device *dev)
919 {
920 	return fwnode_get_phy_mode(dev_fwnode(dev));
921 }
922 EXPORT_SYMBOL_GPL(device_get_phy_mode);
923 
924 /**
925  * fwnode_iomap - Maps the memory mapped IO for a given fwnode
926  * @fwnode:	Pointer to the firmware node
927  * @index:	Index of the IO range
928  *
929  * Returns a pointer to the mapped memory.
930  */
931 void __iomem *fwnode_iomap(struct fwnode_handle *fwnode, int index)
932 {
933 	return fwnode_call_ptr_op(fwnode, iomap, index);
934 }
935 EXPORT_SYMBOL(fwnode_iomap);
936 
937 /**
938  * fwnode_irq_get - Get IRQ directly from a fwnode
939  * @fwnode:	Pointer to the firmware node
940  * @index:	Zero-based index of the IRQ
941  *
942  * Returns Linux IRQ number on success. Other values are determined
943  * accordingly to acpi_/of_ irq_get() operation.
944  */
945 int fwnode_irq_get(const struct fwnode_handle *fwnode, unsigned int index)
946 {
947 	return fwnode_call_int_op(fwnode, irq_get, index);
948 }
949 EXPORT_SYMBOL(fwnode_irq_get);
950 
951 /**
952  * fwnode_irq_get_byname - Get IRQ from a fwnode using its name
953  * @fwnode:	Pointer to the firmware node
954  * @name:	IRQ name
955  *
956  * Description:
957  * Find a match to the string @name in the 'interrupt-names' string array
958  * in _DSD for ACPI, or of_node for Device Tree. Then get the Linux IRQ
959  * number of the IRQ resource corresponding to the index of the matched
960  * string.
961  *
962  * Return:
963  * Linux IRQ number on success, or negative errno otherwise.
964  */
965 int fwnode_irq_get_byname(const struct fwnode_handle *fwnode, const char *name)
966 {
967 	int index;
968 
969 	if (!name)
970 		return -EINVAL;
971 
972 	index = fwnode_property_match_string(fwnode, "interrupt-names",  name);
973 	if (index < 0)
974 		return index;
975 
976 	return fwnode_irq_get(fwnode, index);
977 }
978 EXPORT_SYMBOL(fwnode_irq_get_byname);
979 
980 /**
981  * fwnode_graph_get_next_endpoint - Get next endpoint firmware node
982  * @fwnode: Pointer to the parent firmware node
983  * @prev: Previous endpoint node or %NULL to get the first
984  *
985  * Returns an endpoint firmware node pointer or %NULL if no more endpoints
986  * are available.
987  */
988 struct fwnode_handle *
989 fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode,
990 			       struct fwnode_handle *prev)
991 {
992 	const struct fwnode_handle *parent;
993 	struct fwnode_handle *ep;
994 
995 	/*
996 	 * If this function is in a loop and the previous iteration returned
997 	 * an endpoint from fwnode->secondary, then we need to use the secondary
998 	 * as parent rather than @fwnode.
999 	 */
1000 	if (prev)
1001 		parent = fwnode_graph_get_port_parent(prev);
1002 	else
1003 		parent = fwnode;
1004 	if (IS_ERR_OR_NULL(parent))
1005 		return NULL;
1006 
1007 	ep = fwnode_call_ptr_op(parent, graph_get_next_endpoint, prev);
1008 	if (ep)
1009 		return ep;
1010 
1011 	return fwnode_graph_get_next_endpoint(parent->secondary, NULL);
1012 }
1013 EXPORT_SYMBOL_GPL(fwnode_graph_get_next_endpoint);
1014 
1015 /**
1016  * fwnode_graph_get_port_parent - Return the device fwnode of a port endpoint
1017  * @endpoint: Endpoint firmware node of the port
1018  *
1019  * Return: the firmware node of the device the @endpoint belongs to.
1020  */
1021 struct fwnode_handle *
1022 fwnode_graph_get_port_parent(const struct fwnode_handle *endpoint)
1023 {
1024 	struct fwnode_handle *port, *parent;
1025 
1026 	port = fwnode_get_parent(endpoint);
1027 	parent = fwnode_call_ptr_op(port, graph_get_port_parent);
1028 
1029 	fwnode_handle_put(port);
1030 
1031 	return parent;
1032 }
1033 EXPORT_SYMBOL_GPL(fwnode_graph_get_port_parent);
1034 
1035 /**
1036  * fwnode_graph_get_remote_port_parent - Return fwnode of a remote device
1037  * @fwnode: Endpoint firmware node pointing to the remote endpoint
1038  *
1039  * Extracts firmware node of a remote device the @fwnode points to.
1040  */
1041 struct fwnode_handle *
1042 fwnode_graph_get_remote_port_parent(const struct fwnode_handle *fwnode)
1043 {
1044 	struct fwnode_handle *endpoint, *parent;
1045 
1046 	endpoint = fwnode_graph_get_remote_endpoint(fwnode);
1047 	parent = fwnode_graph_get_port_parent(endpoint);
1048 
1049 	fwnode_handle_put(endpoint);
1050 
1051 	return parent;
1052 }
1053 EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port_parent);
1054 
1055 /**
1056  * fwnode_graph_get_remote_port - Return fwnode of a remote port
1057  * @fwnode: Endpoint firmware node pointing to the remote endpoint
1058  *
1059  * Extracts firmware node of a remote port the @fwnode points to.
1060  */
1061 struct fwnode_handle *
1062 fwnode_graph_get_remote_port(const struct fwnode_handle *fwnode)
1063 {
1064 	return fwnode_get_next_parent(fwnode_graph_get_remote_endpoint(fwnode));
1065 }
1066 EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port);
1067 
1068 /**
1069  * fwnode_graph_get_remote_endpoint - Return fwnode of a remote endpoint
1070  * @fwnode: Endpoint firmware node pointing to the remote endpoint
1071  *
1072  * Extracts firmware node of a remote endpoint the @fwnode points to.
1073  */
1074 struct fwnode_handle *
1075 fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode)
1076 {
1077 	return fwnode_call_ptr_op(fwnode, graph_get_remote_endpoint);
1078 }
1079 EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_endpoint);
1080 
1081 static bool fwnode_graph_remote_available(struct fwnode_handle *ep)
1082 {
1083 	struct fwnode_handle *dev_node;
1084 	bool available;
1085 
1086 	dev_node = fwnode_graph_get_remote_port_parent(ep);
1087 	available = fwnode_device_is_available(dev_node);
1088 	fwnode_handle_put(dev_node);
1089 
1090 	return available;
1091 }
1092 
1093 /**
1094  * fwnode_graph_get_endpoint_by_id - get endpoint by port and endpoint numbers
1095  * @fwnode: parent fwnode_handle containing the graph
1096  * @port: identifier of the port node
1097  * @endpoint: identifier of the endpoint node under the port node
1098  * @flags: fwnode lookup flags
1099  *
1100  * Return the fwnode handle of the local endpoint corresponding the port and
1101  * endpoint IDs or NULL if not found.
1102  *
1103  * If FWNODE_GRAPH_ENDPOINT_NEXT is passed in @flags and the specified endpoint
1104  * has not been found, look for the closest endpoint ID greater than the
1105  * specified one and return the endpoint that corresponds to it, if present.
1106  *
1107  * Does not return endpoints that belong to disabled devices or endpoints that
1108  * are unconnected, unless FWNODE_GRAPH_DEVICE_DISABLED is passed in @flags.
1109  *
1110  * The returned endpoint needs to be released by calling fwnode_handle_put() on
1111  * it when it is not needed any more.
1112  */
1113 struct fwnode_handle *
1114 fwnode_graph_get_endpoint_by_id(const struct fwnode_handle *fwnode,
1115 				u32 port, u32 endpoint, unsigned long flags)
1116 {
1117 	struct fwnode_handle *ep, *best_ep = NULL;
1118 	unsigned int best_ep_id = 0;
1119 	bool endpoint_next = flags & FWNODE_GRAPH_ENDPOINT_NEXT;
1120 	bool enabled_only = !(flags & FWNODE_GRAPH_DEVICE_DISABLED);
1121 
1122 	fwnode_graph_for_each_endpoint(fwnode, ep) {
1123 		struct fwnode_endpoint fwnode_ep = { 0 };
1124 		int ret;
1125 
1126 		if (enabled_only && !fwnode_graph_remote_available(ep))
1127 			continue;
1128 
1129 		ret = fwnode_graph_parse_endpoint(ep, &fwnode_ep);
1130 		if (ret < 0)
1131 			continue;
1132 
1133 		if (fwnode_ep.port != port)
1134 			continue;
1135 
1136 		if (fwnode_ep.id == endpoint)
1137 			return ep;
1138 
1139 		if (!endpoint_next)
1140 			continue;
1141 
1142 		/*
1143 		 * If the endpoint that has just been found is not the first
1144 		 * matching one and the ID of the one found previously is closer
1145 		 * to the requested endpoint ID, skip it.
1146 		 */
1147 		if (fwnode_ep.id < endpoint ||
1148 		    (best_ep && best_ep_id < fwnode_ep.id))
1149 			continue;
1150 
1151 		fwnode_handle_put(best_ep);
1152 		best_ep = fwnode_handle_get(ep);
1153 		best_ep_id = fwnode_ep.id;
1154 	}
1155 
1156 	return best_ep;
1157 }
1158 EXPORT_SYMBOL_GPL(fwnode_graph_get_endpoint_by_id);
1159 
1160 /**
1161  * fwnode_graph_get_endpoint_count - Count endpoints on a device node
1162  * @fwnode: The node related to a device
1163  * @flags: fwnode lookup flags
1164  * Count endpoints in a device node.
1165  *
1166  * If FWNODE_GRAPH_DEVICE_DISABLED flag is specified, also unconnected endpoints
1167  * and endpoints connected to disabled devices are counted.
1168  */
1169 unsigned int fwnode_graph_get_endpoint_count(struct fwnode_handle *fwnode,
1170 					     unsigned long flags)
1171 {
1172 	struct fwnode_handle *ep;
1173 	unsigned int count = 0;
1174 
1175 	fwnode_graph_for_each_endpoint(fwnode, ep) {
1176 		if (flags & FWNODE_GRAPH_DEVICE_DISABLED ||
1177 		    fwnode_graph_remote_available(ep))
1178 			count++;
1179 	}
1180 
1181 	return count;
1182 }
1183 EXPORT_SYMBOL_GPL(fwnode_graph_get_endpoint_count);
1184 
1185 /**
1186  * fwnode_graph_parse_endpoint - parse common endpoint node properties
1187  * @fwnode: pointer to endpoint fwnode_handle
1188  * @endpoint: pointer to the fwnode endpoint data structure
1189  *
1190  * Parse @fwnode representing a graph endpoint node and store the
1191  * information in @endpoint. The caller must hold a reference to
1192  * @fwnode.
1193  */
1194 int fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode,
1195 				struct fwnode_endpoint *endpoint)
1196 {
1197 	memset(endpoint, 0, sizeof(*endpoint));
1198 
1199 	return fwnode_call_int_op(fwnode, graph_parse_endpoint, endpoint);
1200 }
1201 EXPORT_SYMBOL(fwnode_graph_parse_endpoint);
1202 
1203 const void *device_get_match_data(struct device *dev)
1204 {
1205 	return fwnode_call_ptr_op(dev_fwnode(dev), device_get_match_data, dev);
1206 }
1207 EXPORT_SYMBOL_GPL(device_get_match_data);
1208 
1209 static unsigned int fwnode_graph_devcon_matches(struct fwnode_handle *fwnode,
1210 						const char *con_id, void *data,
1211 						devcon_match_fn_t match,
1212 						void **matches,
1213 						unsigned int matches_len)
1214 {
1215 	struct fwnode_handle *node;
1216 	struct fwnode_handle *ep;
1217 	unsigned int count = 0;
1218 	void *ret;
1219 
1220 	fwnode_graph_for_each_endpoint(fwnode, ep) {
1221 		if (matches && count >= matches_len) {
1222 			fwnode_handle_put(ep);
1223 			break;
1224 		}
1225 
1226 		node = fwnode_graph_get_remote_port_parent(ep);
1227 		if (!fwnode_device_is_available(node)) {
1228 			fwnode_handle_put(node);
1229 			continue;
1230 		}
1231 
1232 		ret = match(node, con_id, data);
1233 		fwnode_handle_put(node);
1234 		if (ret) {
1235 			if (matches)
1236 				matches[count] = ret;
1237 			count++;
1238 		}
1239 	}
1240 	return count;
1241 }
1242 
1243 static unsigned int fwnode_devcon_matches(struct fwnode_handle *fwnode,
1244 					  const char *con_id, void *data,
1245 					  devcon_match_fn_t match,
1246 					  void **matches,
1247 					  unsigned int matches_len)
1248 {
1249 	struct fwnode_handle *node;
1250 	unsigned int count = 0;
1251 	unsigned int i;
1252 	void *ret;
1253 
1254 	for (i = 0; ; i++) {
1255 		if (matches && count >= matches_len)
1256 			break;
1257 
1258 		node = fwnode_find_reference(fwnode, con_id, i);
1259 		if (IS_ERR(node))
1260 			break;
1261 
1262 		ret = match(node, NULL, data);
1263 		fwnode_handle_put(node);
1264 		if (ret) {
1265 			if (matches)
1266 				matches[count] = ret;
1267 			count++;
1268 		}
1269 	}
1270 
1271 	return count;
1272 }
1273 
1274 /**
1275  * fwnode_connection_find_match - Find connection from a device node
1276  * @fwnode: Device node with the connection
1277  * @con_id: Identifier for the connection
1278  * @data: Data for the match function
1279  * @match: Function to check and convert the connection description
1280  *
1281  * Find a connection with unique identifier @con_id between @fwnode and another
1282  * device node. @match will be used to convert the connection description to
1283  * data the caller is expecting to be returned.
1284  */
1285 void *fwnode_connection_find_match(struct fwnode_handle *fwnode,
1286 				   const char *con_id, void *data,
1287 				   devcon_match_fn_t match)
1288 {
1289 	unsigned int count;
1290 	void *ret;
1291 
1292 	if (!fwnode || !match)
1293 		return NULL;
1294 
1295 	count = fwnode_graph_devcon_matches(fwnode, con_id, data, match, &ret, 1);
1296 	if (count)
1297 		return ret;
1298 
1299 	count = fwnode_devcon_matches(fwnode, con_id, data, match, &ret, 1);
1300 	return count ? ret : NULL;
1301 }
1302 EXPORT_SYMBOL_GPL(fwnode_connection_find_match);
1303 
1304 /**
1305  * fwnode_connection_find_matches - Find connections from a device node
1306  * @fwnode: Device node with the connection
1307  * @con_id: Identifier for the connection
1308  * @data: Data for the match function
1309  * @match: Function to check and convert the connection description
1310  * @matches: (Optional) array of pointers to fill with matches
1311  * @matches_len: Length of @matches
1312  *
1313  * Find up to @matches_len connections with unique identifier @con_id between
1314  * @fwnode and other device nodes. @match will be used to convert the
1315  * connection description to data the caller is expecting to be returned
1316  * through the @matches array.
1317  * If @matches is NULL @matches_len is ignored and the total number of resolved
1318  * matches is returned.
1319  *
1320  * Return: Number of matches resolved, or negative errno.
1321  */
1322 int fwnode_connection_find_matches(struct fwnode_handle *fwnode,
1323 				   const char *con_id, void *data,
1324 				   devcon_match_fn_t match,
1325 				   void **matches, unsigned int matches_len)
1326 {
1327 	unsigned int count_graph;
1328 	unsigned int count_ref;
1329 
1330 	if (!fwnode || !match)
1331 		return -EINVAL;
1332 
1333 	count_graph = fwnode_graph_devcon_matches(fwnode, con_id, data, match,
1334 						  matches, matches_len);
1335 
1336 	if (matches) {
1337 		matches += count_graph;
1338 		matches_len -= count_graph;
1339 	}
1340 
1341 	count_ref = fwnode_devcon_matches(fwnode, con_id, data, match,
1342 					  matches, matches_len);
1343 
1344 	return count_graph + count_ref;
1345 }
1346 EXPORT_SYMBOL_GPL(fwnode_connection_find_matches);
1347