1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * property.c - Unified device property interface. 4 * 5 * Copyright (C) 2014, Intel Corporation 6 * Authors: Rafael J. Wysocki <rafael.j.wysocki@intel.com> 7 * Mika Westerberg <mika.westerberg@linux.intel.com> 8 */ 9 10 #include <linux/acpi.h> 11 #include <linux/export.h> 12 #include <linux/kernel.h> 13 #include <linux/of.h> 14 #include <linux/of_address.h> 15 #include <linux/of_graph.h> 16 #include <linux/of_irq.h> 17 #include <linux/property.h> 18 #include <linux/phy.h> 19 20 struct fwnode_handle *__dev_fwnode(struct device *dev) 21 { 22 return IS_ENABLED(CONFIG_OF) && dev->of_node ? 23 of_fwnode_handle(dev->of_node) : dev->fwnode; 24 } 25 EXPORT_SYMBOL_GPL(__dev_fwnode); 26 27 const struct fwnode_handle *__dev_fwnode_const(const struct device *dev) 28 { 29 return IS_ENABLED(CONFIG_OF) && dev->of_node ? 30 of_fwnode_handle(dev->of_node) : dev->fwnode; 31 } 32 EXPORT_SYMBOL_GPL(__dev_fwnode_const); 33 34 /** 35 * device_property_present - check if a property of a device is present 36 * @dev: Device whose property is being checked 37 * @propname: Name of the property 38 * 39 * Check if property @propname is present in the device firmware description. 40 * 41 * Return: true if property @propname is present. Otherwise, returns false. 42 */ 43 bool device_property_present(const struct device *dev, const char *propname) 44 { 45 return fwnode_property_present(dev_fwnode(dev), propname); 46 } 47 EXPORT_SYMBOL_GPL(device_property_present); 48 49 /** 50 * fwnode_property_present - check if a property of a firmware node is present 51 * @fwnode: Firmware node whose property to check 52 * @propname: Name of the property 53 * 54 * Return: true if property @propname is present. Otherwise, returns false. 55 */ 56 bool fwnode_property_present(const struct fwnode_handle *fwnode, 57 const char *propname) 58 { 59 bool ret; 60 61 if (IS_ERR_OR_NULL(fwnode)) 62 return false; 63 64 ret = fwnode_call_bool_op(fwnode, property_present, propname); 65 if (ret) 66 return ret; 67 68 return fwnode_call_bool_op(fwnode->secondary, property_present, propname); 69 } 70 EXPORT_SYMBOL_GPL(fwnode_property_present); 71 72 /** 73 * device_property_read_u8_array - return a u8 array property of a device 74 * @dev: Device to get the property of 75 * @propname: Name of the property 76 * @val: The values are stored here or %NULL to return the number of values 77 * @nval: Size of the @val array 78 * 79 * Function reads an array of u8 properties with @propname from the device 80 * firmware description and stores them to @val if found. 81 * 82 * It's recommended to call device_property_count_u8() instead of calling 83 * this function with @val equals %NULL and @nval equals 0. 84 * 85 * Return: number of values if @val was %NULL, 86 * %0 if the property was found (success), 87 * %-EINVAL if given arguments are not valid, 88 * %-ENODATA if the property does not have a value, 89 * %-EPROTO if the property is not an array of numbers, 90 * %-EOVERFLOW if the size of the property is not as expected. 91 * %-ENXIO if no suitable firmware interface is present. 92 */ 93 int device_property_read_u8_array(const struct device *dev, const char *propname, 94 u8 *val, size_t nval) 95 { 96 return fwnode_property_read_u8_array(dev_fwnode(dev), propname, val, nval); 97 } 98 EXPORT_SYMBOL_GPL(device_property_read_u8_array); 99 100 /** 101 * device_property_read_u16_array - return a u16 array property of a device 102 * @dev: Device to get the property of 103 * @propname: Name of the property 104 * @val: The values are stored here or %NULL to return the number of values 105 * @nval: Size of the @val array 106 * 107 * Function reads an array of u16 properties with @propname from the device 108 * firmware description and stores them to @val if found. 109 * 110 * It's recommended to call device_property_count_u16() instead of calling 111 * this function with @val equals %NULL and @nval equals 0. 112 * 113 * Return: number of values if @val was %NULL, 114 * %0 if the property was found (success), 115 * %-EINVAL if given arguments are not valid, 116 * %-ENODATA if the property does not have a value, 117 * %-EPROTO if the property is not an array of numbers, 118 * %-EOVERFLOW if the size of the property is not as expected. 119 * %-ENXIO if no suitable firmware interface is present. 120 */ 121 int device_property_read_u16_array(const struct device *dev, const char *propname, 122 u16 *val, size_t nval) 123 { 124 return fwnode_property_read_u16_array(dev_fwnode(dev), propname, val, nval); 125 } 126 EXPORT_SYMBOL_GPL(device_property_read_u16_array); 127 128 /** 129 * device_property_read_u32_array - return a u32 array property of a device 130 * @dev: Device to get the property of 131 * @propname: Name of the property 132 * @val: The values are stored here or %NULL to return the number of values 133 * @nval: Size of the @val array 134 * 135 * Function reads an array of u32 properties with @propname from the device 136 * firmware description and stores them to @val if found. 137 * 138 * It's recommended to call device_property_count_u32() instead of calling 139 * this function with @val equals %NULL and @nval equals 0. 140 * 141 * Return: number of values if @val was %NULL, 142 * %0 if the property was found (success), 143 * %-EINVAL if given arguments are not valid, 144 * %-ENODATA if the property does not have a value, 145 * %-EPROTO if the property is not an array of numbers, 146 * %-EOVERFLOW if the size of the property is not as expected. 147 * %-ENXIO if no suitable firmware interface is present. 148 */ 149 int device_property_read_u32_array(const struct device *dev, const char *propname, 150 u32 *val, size_t nval) 151 { 152 return fwnode_property_read_u32_array(dev_fwnode(dev), propname, val, nval); 153 } 154 EXPORT_SYMBOL_GPL(device_property_read_u32_array); 155 156 /** 157 * device_property_read_u64_array - return a u64 array property of a device 158 * @dev: Device to get the property of 159 * @propname: Name of the property 160 * @val: The values are stored here or %NULL to return the number of values 161 * @nval: Size of the @val array 162 * 163 * Function reads an array of u64 properties with @propname from the device 164 * firmware description and stores them to @val if found. 165 * 166 * It's recommended to call device_property_count_u64() instead of calling 167 * this function with @val equals %NULL and @nval equals 0. 168 * 169 * Return: number of values if @val was %NULL, 170 * %0 if the property was found (success), 171 * %-EINVAL if given arguments are not valid, 172 * %-ENODATA if the property does not have a value, 173 * %-EPROTO if the property is not an array of numbers, 174 * %-EOVERFLOW if the size of the property is not as expected. 175 * %-ENXIO if no suitable firmware interface is present. 176 */ 177 int device_property_read_u64_array(const struct device *dev, const char *propname, 178 u64 *val, size_t nval) 179 { 180 return fwnode_property_read_u64_array(dev_fwnode(dev), propname, val, nval); 181 } 182 EXPORT_SYMBOL_GPL(device_property_read_u64_array); 183 184 /** 185 * device_property_read_string_array - return a string array property of device 186 * @dev: Device to get the property of 187 * @propname: Name of the property 188 * @val: The values are stored here or %NULL to return the number of values 189 * @nval: Size of the @val array 190 * 191 * Function reads an array of string properties with @propname from the device 192 * firmware description and stores them to @val if found. 193 * 194 * It's recommended to call device_property_string_array_count() instead of calling 195 * this function with @val equals %NULL and @nval equals 0. 196 * 197 * Return: number of values read on success if @val is non-NULL, 198 * number of values available on success if @val is NULL, 199 * %-EINVAL if given arguments are not valid, 200 * %-ENODATA if the property does not have a value, 201 * %-EPROTO or %-EILSEQ if the property is not an array of strings, 202 * %-EOVERFLOW if the size of the property is not as expected. 203 * %-ENXIO if no suitable firmware interface is present. 204 */ 205 int device_property_read_string_array(const struct device *dev, const char *propname, 206 const char **val, size_t nval) 207 { 208 return fwnode_property_read_string_array(dev_fwnode(dev), propname, val, nval); 209 } 210 EXPORT_SYMBOL_GPL(device_property_read_string_array); 211 212 /** 213 * device_property_read_string - return a string property of a device 214 * @dev: Device to get the property of 215 * @propname: Name of the property 216 * @val: The value is stored here 217 * 218 * Function reads property @propname from the device firmware description and 219 * stores the value into @val if found. The value is checked to be a string. 220 * 221 * Return: %0 if the property was found (success), 222 * %-EINVAL if given arguments are not valid, 223 * %-ENODATA if the property does not have a value, 224 * %-EPROTO or %-EILSEQ if the property type is not a string. 225 * %-ENXIO if no suitable firmware interface is present. 226 */ 227 int device_property_read_string(const struct device *dev, const char *propname, 228 const char **val) 229 { 230 return fwnode_property_read_string(dev_fwnode(dev), propname, val); 231 } 232 EXPORT_SYMBOL_GPL(device_property_read_string); 233 234 /** 235 * device_property_match_string - find a string in an array and return index 236 * @dev: Device to get the property of 237 * @propname: Name of the property holding the array 238 * @string: String to look for 239 * 240 * Find a given string in a string array and if it is found return the 241 * index back. 242 * 243 * Return: index, starting from %0, if the property was found (success), 244 * %-EINVAL if given arguments are not valid, 245 * %-ENODATA if the property does not have a value, 246 * %-EPROTO if the property is not an array of strings, 247 * %-ENXIO if no suitable firmware interface is present. 248 */ 249 int device_property_match_string(const struct device *dev, const char *propname, 250 const char *string) 251 { 252 return fwnode_property_match_string(dev_fwnode(dev), propname, string); 253 } 254 EXPORT_SYMBOL_GPL(device_property_match_string); 255 256 static int fwnode_property_read_int_array(const struct fwnode_handle *fwnode, 257 const char *propname, 258 unsigned int elem_size, void *val, 259 size_t nval) 260 { 261 int ret; 262 263 if (IS_ERR_OR_NULL(fwnode)) 264 return -EINVAL; 265 266 ret = fwnode_call_int_op(fwnode, property_read_int_array, propname, 267 elem_size, val, nval); 268 if (ret != -EINVAL) 269 return ret; 270 271 return fwnode_call_int_op(fwnode->secondary, property_read_int_array, propname, 272 elem_size, val, nval); 273 } 274 275 /** 276 * fwnode_property_read_u8_array - return a u8 array property of firmware node 277 * @fwnode: Firmware node to get the property of 278 * @propname: Name of the property 279 * @val: The values are stored here or %NULL to return the number of values 280 * @nval: Size of the @val array 281 * 282 * Read an array of u8 properties with @propname from @fwnode and stores them to 283 * @val if found. 284 * 285 * It's recommended to call fwnode_property_count_u8() instead of calling 286 * this function with @val equals %NULL and @nval equals 0. 287 * 288 * Return: number of values if @val was %NULL, 289 * %0 if the property was found (success), 290 * %-EINVAL if given arguments are not valid, 291 * %-ENODATA if the property does not have a value, 292 * %-EPROTO if the property is not an array of numbers, 293 * %-EOVERFLOW if the size of the property is not as expected, 294 * %-ENXIO if no suitable firmware interface is present. 295 */ 296 int fwnode_property_read_u8_array(const struct fwnode_handle *fwnode, 297 const char *propname, u8 *val, size_t nval) 298 { 299 return fwnode_property_read_int_array(fwnode, propname, sizeof(u8), 300 val, nval); 301 } 302 EXPORT_SYMBOL_GPL(fwnode_property_read_u8_array); 303 304 /** 305 * fwnode_property_read_u16_array - return a u16 array property of firmware node 306 * @fwnode: Firmware node to get the property of 307 * @propname: Name of the property 308 * @val: The values are stored here or %NULL to return the number of values 309 * @nval: Size of the @val array 310 * 311 * Read an array of u16 properties with @propname from @fwnode and store them to 312 * @val if found. 313 * 314 * It's recommended to call fwnode_property_count_u16() instead of calling 315 * this function with @val equals %NULL and @nval equals 0. 316 * 317 * Return: number of values if @val was %NULL, 318 * %0 if the property was found (success), 319 * %-EINVAL if given arguments are not valid, 320 * %-ENODATA if the property does not have a value, 321 * %-EPROTO if the property is not an array of numbers, 322 * %-EOVERFLOW if the size of the property is not as expected, 323 * %-ENXIO if no suitable firmware interface is present. 324 */ 325 int fwnode_property_read_u16_array(const struct fwnode_handle *fwnode, 326 const char *propname, u16 *val, size_t nval) 327 { 328 return fwnode_property_read_int_array(fwnode, propname, sizeof(u16), 329 val, nval); 330 } 331 EXPORT_SYMBOL_GPL(fwnode_property_read_u16_array); 332 333 /** 334 * fwnode_property_read_u32_array - return a u32 array property of firmware node 335 * @fwnode: Firmware node to get the property of 336 * @propname: Name of the property 337 * @val: The values are stored here or %NULL to return the number of values 338 * @nval: Size of the @val array 339 * 340 * Read an array of u32 properties with @propname from @fwnode store them to 341 * @val if found. 342 * 343 * It's recommended to call fwnode_property_count_u32() instead of calling 344 * this function with @val equals %NULL and @nval equals 0. 345 * 346 * Return: number of values if @val was %NULL, 347 * %0 if the property was found (success), 348 * %-EINVAL if given arguments are not valid, 349 * %-ENODATA if the property does not have a value, 350 * %-EPROTO if the property is not an array of numbers, 351 * %-EOVERFLOW if the size of the property is not as expected, 352 * %-ENXIO if no suitable firmware interface is present. 353 */ 354 int fwnode_property_read_u32_array(const struct fwnode_handle *fwnode, 355 const char *propname, u32 *val, size_t nval) 356 { 357 return fwnode_property_read_int_array(fwnode, propname, sizeof(u32), 358 val, nval); 359 } 360 EXPORT_SYMBOL_GPL(fwnode_property_read_u32_array); 361 362 /** 363 * fwnode_property_read_u64_array - return a u64 array property firmware node 364 * @fwnode: Firmware node to get the property of 365 * @propname: Name of the property 366 * @val: The values are stored here or %NULL to return the number of values 367 * @nval: Size of the @val array 368 * 369 * Read an array of u64 properties with @propname from @fwnode and store them to 370 * @val if found. 371 * 372 * It's recommended to call fwnode_property_count_u64() instead of calling 373 * this function with @val equals %NULL and @nval equals 0. 374 * 375 * Return: number of values if @val was %NULL, 376 * %0 if the property was found (success), 377 * %-EINVAL if given arguments are not valid, 378 * %-ENODATA if the property does not have a value, 379 * %-EPROTO if the property is not an array of numbers, 380 * %-EOVERFLOW if the size of the property is not as expected, 381 * %-ENXIO if no suitable firmware interface is present. 382 */ 383 int fwnode_property_read_u64_array(const struct fwnode_handle *fwnode, 384 const char *propname, u64 *val, size_t nval) 385 { 386 return fwnode_property_read_int_array(fwnode, propname, sizeof(u64), 387 val, nval); 388 } 389 EXPORT_SYMBOL_GPL(fwnode_property_read_u64_array); 390 391 /** 392 * fwnode_property_read_string_array - return string array property of a node 393 * @fwnode: Firmware node to get the property of 394 * @propname: Name of the property 395 * @val: The values are stored here or %NULL to return the number of values 396 * @nval: Size of the @val array 397 * 398 * Read an string list property @propname from the given firmware node and store 399 * them to @val if found. 400 * 401 * It's recommended to call fwnode_property_string_array_count() instead of calling 402 * this function with @val equals %NULL and @nval equals 0. 403 * 404 * Return: number of values read on success if @val is non-NULL, 405 * number of values available on success if @val is NULL, 406 * %-EINVAL if given arguments are not valid, 407 * %-ENODATA if the property does not have a value, 408 * %-EPROTO or %-EILSEQ if the property is not an array of strings, 409 * %-EOVERFLOW if the size of the property is not as expected, 410 * %-ENXIO if no suitable firmware interface is present. 411 */ 412 int fwnode_property_read_string_array(const struct fwnode_handle *fwnode, 413 const char *propname, const char **val, 414 size_t nval) 415 { 416 int ret; 417 418 if (IS_ERR_OR_NULL(fwnode)) 419 return -EINVAL; 420 421 ret = fwnode_call_int_op(fwnode, property_read_string_array, propname, 422 val, nval); 423 if (ret != -EINVAL) 424 return ret; 425 426 return fwnode_call_int_op(fwnode->secondary, property_read_string_array, propname, 427 val, nval); 428 } 429 EXPORT_SYMBOL_GPL(fwnode_property_read_string_array); 430 431 /** 432 * fwnode_property_read_string - return a string property of a firmware node 433 * @fwnode: Firmware node to get the property of 434 * @propname: Name of the property 435 * @val: The value is stored here 436 * 437 * Read property @propname from the given firmware node and store the value into 438 * @val if found. The value is checked to be a string. 439 * 440 * Return: %0 if the property was found (success), 441 * %-EINVAL if given arguments are not valid, 442 * %-ENODATA if the property does not have a value, 443 * %-EPROTO or %-EILSEQ if the property is not a string, 444 * %-ENXIO if no suitable firmware interface is present. 445 */ 446 int fwnode_property_read_string(const struct fwnode_handle *fwnode, 447 const char *propname, const char **val) 448 { 449 int ret = fwnode_property_read_string_array(fwnode, propname, val, 1); 450 451 return ret < 0 ? ret : 0; 452 } 453 EXPORT_SYMBOL_GPL(fwnode_property_read_string); 454 455 /** 456 * fwnode_property_match_string - find a string in an array and return index 457 * @fwnode: Firmware node to get the property of 458 * @propname: Name of the property holding the array 459 * @string: String to look for 460 * 461 * Find a given string in a string array and if it is found return the 462 * index back. 463 * 464 * Return: index, starting from %0, if the property was found (success), 465 * %-EINVAL if given arguments are not valid, 466 * %-ENODATA if the property does not have a value, 467 * %-EPROTO if the property is not an array of strings, 468 * %-ENXIO if no suitable firmware interface is present. 469 */ 470 int fwnode_property_match_string(const struct fwnode_handle *fwnode, 471 const char *propname, const char *string) 472 { 473 const char **values; 474 int nval, ret; 475 476 nval = fwnode_property_string_array_count(fwnode, propname); 477 if (nval < 0) 478 return nval; 479 480 if (nval == 0) 481 return -ENODATA; 482 483 values = kcalloc(nval, sizeof(*values), GFP_KERNEL); 484 if (!values) 485 return -ENOMEM; 486 487 ret = fwnode_property_read_string_array(fwnode, propname, values, nval); 488 if (ret < 0) 489 goto out_free; 490 491 ret = match_string(values, nval, string); 492 if (ret < 0) 493 ret = -ENODATA; 494 495 out_free: 496 kfree(values); 497 return ret; 498 } 499 EXPORT_SYMBOL_GPL(fwnode_property_match_string); 500 501 /** 502 * fwnode_property_match_property_string - find a property string value in an array and return index 503 * @fwnode: Firmware node to get the property of 504 * @propname: Name of the property holding the string value 505 * @array: String array to search in 506 * @n: Size of the @array 507 * 508 * Find a property string value in a given @array and if it is found return 509 * the index back. 510 * 511 * Return: index, starting from %0, if the string value was found in the @array (success), 512 * %-ENOENT when the string value was not found in the @array, 513 * %-EINVAL if given arguments are not valid, 514 * %-ENODATA if the property does not have a value, 515 * %-EPROTO or %-EILSEQ if the property is not a string, 516 * %-ENXIO if no suitable firmware interface is present. 517 */ 518 int fwnode_property_match_property_string(const struct fwnode_handle *fwnode, 519 const char *propname, const char * const *array, size_t n) 520 { 521 const char *string; 522 int ret; 523 524 ret = fwnode_property_read_string(fwnode, propname, &string); 525 if (ret) 526 return ret; 527 528 ret = match_string(array, n, string); 529 if (ret < 0) 530 ret = -ENOENT; 531 532 return ret; 533 } 534 EXPORT_SYMBOL_GPL(fwnode_property_match_property_string); 535 536 /** 537 * fwnode_property_get_reference_args() - Find a reference with arguments 538 * @fwnode: Firmware node where to look for the reference 539 * @prop: The name of the property 540 * @nargs_prop: The name of the property telling the number of 541 * arguments in the referred node. NULL if @nargs is known, 542 * otherwise @nargs is ignored. Only relevant on OF. 543 * @nargs: Number of arguments. Ignored if @nargs_prop is non-NULL. 544 * @index: Index of the reference, from zero onwards. 545 * @args: Result structure with reference and integer arguments. 546 * May be NULL. 547 * 548 * Obtain a reference based on a named property in an fwnode, with 549 * integer arguments. 550 * 551 * The caller is responsible for calling fwnode_handle_put() on the returned 552 * @args->fwnode pointer. 553 * 554 * Return: %0 on success 555 * %-ENOENT when the index is out of bounds, the index has an empty 556 * reference or the property was not found 557 * %-EINVAL on parse error 558 */ 559 int fwnode_property_get_reference_args(const struct fwnode_handle *fwnode, 560 const char *prop, const char *nargs_prop, 561 unsigned int nargs, unsigned int index, 562 struct fwnode_reference_args *args) 563 { 564 int ret; 565 566 if (IS_ERR_OR_NULL(fwnode)) 567 return -ENOENT; 568 569 ret = fwnode_call_int_op(fwnode, get_reference_args, prop, nargs_prop, 570 nargs, index, args); 571 if (ret == 0) 572 return ret; 573 574 if (IS_ERR_OR_NULL(fwnode->secondary)) 575 return ret; 576 577 return fwnode_call_int_op(fwnode->secondary, get_reference_args, prop, nargs_prop, 578 nargs, index, args); 579 } 580 EXPORT_SYMBOL_GPL(fwnode_property_get_reference_args); 581 582 /** 583 * fwnode_find_reference - Find named reference to a fwnode_handle 584 * @fwnode: Firmware node where to look for the reference 585 * @name: The name of the reference 586 * @index: Index of the reference 587 * 588 * @index can be used when the named reference holds a table of references. 589 * 590 * The caller is responsible for calling fwnode_handle_put() on the returned 591 * fwnode pointer. 592 * 593 * Return: a pointer to the reference fwnode, when found. Otherwise, 594 * returns an error pointer. 595 */ 596 struct fwnode_handle *fwnode_find_reference(const struct fwnode_handle *fwnode, 597 const char *name, 598 unsigned int index) 599 { 600 struct fwnode_reference_args args; 601 int ret; 602 603 ret = fwnode_property_get_reference_args(fwnode, name, NULL, 0, index, 604 &args); 605 return ret ? ERR_PTR(ret) : args.fwnode; 606 } 607 EXPORT_SYMBOL_GPL(fwnode_find_reference); 608 609 /** 610 * fwnode_get_name - Return the name of a node 611 * @fwnode: The firmware node 612 * 613 * Return: a pointer to the node name, or %NULL. 614 */ 615 const char *fwnode_get_name(const struct fwnode_handle *fwnode) 616 { 617 return fwnode_call_ptr_op(fwnode, get_name); 618 } 619 EXPORT_SYMBOL_GPL(fwnode_get_name); 620 621 /** 622 * fwnode_get_name_prefix - Return the prefix of node for printing purposes 623 * @fwnode: The firmware node 624 * 625 * Return: the prefix of a node, intended to be printed right before the node. 626 * The prefix works also as a separator between the nodes. 627 */ 628 const char *fwnode_get_name_prefix(const struct fwnode_handle *fwnode) 629 { 630 return fwnode_call_ptr_op(fwnode, get_name_prefix); 631 } 632 633 /** 634 * fwnode_name_eq - Return true if node name is equal 635 * @fwnode: The firmware node 636 * @name: The name to which to compare the node name 637 * 638 * Compare the name provided as an argument to the name of the node, stopping 639 * the comparison at either NUL or '@' character, whichever comes first. This 640 * function is generally used for comparing node names while ignoring the 641 * possible unit address of the node. 642 * 643 * Return: true if the node name matches with the name provided in the @name 644 * argument, false otherwise. 645 */ 646 bool fwnode_name_eq(const struct fwnode_handle *fwnode, const char *name) 647 { 648 const char *node_name; 649 ptrdiff_t len; 650 651 node_name = fwnode_get_name(fwnode); 652 if (!node_name) 653 return false; 654 655 len = strchrnul(node_name, '@') - node_name; 656 657 return str_has_prefix(node_name, name) == len; 658 } 659 EXPORT_SYMBOL_GPL(fwnode_name_eq); 660 661 /** 662 * fwnode_get_parent - Return parent firwmare node 663 * @fwnode: Firmware whose parent is retrieved 664 * 665 * The caller is responsible for calling fwnode_handle_put() on the returned 666 * fwnode pointer. 667 * 668 * Return: parent firmware node of the given node if possible or %NULL if no 669 * parent was available. 670 */ 671 struct fwnode_handle *fwnode_get_parent(const struct fwnode_handle *fwnode) 672 { 673 return fwnode_call_ptr_op(fwnode, get_parent); 674 } 675 EXPORT_SYMBOL_GPL(fwnode_get_parent); 676 677 /** 678 * fwnode_get_next_parent - Iterate to the node's parent 679 * @fwnode: Firmware whose parent is retrieved 680 * 681 * This is like fwnode_get_parent() except that it drops the refcount 682 * on the passed node, making it suitable for iterating through a 683 * node's parents. 684 * 685 * The caller is responsible for calling fwnode_handle_put() on the returned 686 * fwnode pointer. Note that this function also puts a reference to @fwnode 687 * unconditionally. 688 * 689 * Return: parent firmware node of the given node if possible or %NULL if no 690 * parent was available. 691 */ 692 struct fwnode_handle *fwnode_get_next_parent(struct fwnode_handle *fwnode) 693 { 694 struct fwnode_handle *parent = fwnode_get_parent(fwnode); 695 696 fwnode_handle_put(fwnode); 697 698 return parent; 699 } 700 EXPORT_SYMBOL_GPL(fwnode_get_next_parent); 701 702 /** 703 * fwnode_get_next_parent_dev - Find device of closest ancestor fwnode 704 * @fwnode: firmware node 705 * 706 * Given a firmware node (@fwnode), this function finds its closest ancestor 707 * firmware node that has a corresponding struct device and returns that struct 708 * device. 709 * 710 * The caller is responsible for calling put_device() on the returned device 711 * pointer. 712 * 713 * Return: a pointer to the device of the @fwnode's closest ancestor. 714 */ 715 struct device *fwnode_get_next_parent_dev(const struct fwnode_handle *fwnode) 716 { 717 struct fwnode_handle *parent; 718 struct device *dev; 719 720 fwnode_for_each_parent_node(fwnode, parent) { 721 dev = get_dev_from_fwnode(parent); 722 if (dev) { 723 fwnode_handle_put(parent); 724 return dev; 725 } 726 } 727 return NULL; 728 } 729 730 /** 731 * fwnode_count_parents - Return the number of parents a node has 732 * @fwnode: The node the parents of which are to be counted 733 * 734 * Return: the number of parents a node has. 735 */ 736 unsigned int fwnode_count_parents(const struct fwnode_handle *fwnode) 737 { 738 struct fwnode_handle *parent; 739 unsigned int count = 0; 740 741 fwnode_for_each_parent_node(fwnode, parent) 742 count++; 743 744 return count; 745 } 746 EXPORT_SYMBOL_GPL(fwnode_count_parents); 747 748 /** 749 * fwnode_get_nth_parent - Return an nth parent of a node 750 * @fwnode: The node the parent of which is requested 751 * @depth: Distance of the parent from the node 752 * 753 * The caller is responsible for calling fwnode_handle_put() on the returned 754 * fwnode pointer. 755 * 756 * Return: the nth parent of a node. If there is no parent at the requested 757 * @depth, %NULL is returned. If @depth is 0, the functionality is equivalent to 758 * fwnode_handle_get(). For @depth == 1, it is fwnode_get_parent() and so on. 759 */ 760 struct fwnode_handle *fwnode_get_nth_parent(struct fwnode_handle *fwnode, 761 unsigned int depth) 762 { 763 struct fwnode_handle *parent; 764 765 if (depth == 0) 766 return fwnode_handle_get(fwnode); 767 768 fwnode_for_each_parent_node(fwnode, parent) { 769 if (--depth == 0) 770 return parent; 771 } 772 return NULL; 773 } 774 EXPORT_SYMBOL_GPL(fwnode_get_nth_parent); 775 776 /** 777 * fwnode_is_ancestor_of - Test if @ancestor is ancestor of @child 778 * @ancestor: Firmware which is tested for being an ancestor 779 * @child: Firmware which is tested for being the child 780 * 781 * A node is considered an ancestor of itself too. 782 * 783 * Return: true if @ancestor is an ancestor of @child. Otherwise, returns false. 784 */ 785 bool fwnode_is_ancestor_of(const struct fwnode_handle *ancestor, const struct fwnode_handle *child) 786 { 787 struct fwnode_handle *parent; 788 789 if (IS_ERR_OR_NULL(ancestor)) 790 return false; 791 792 if (child == ancestor) 793 return true; 794 795 fwnode_for_each_parent_node(child, parent) { 796 if (parent == ancestor) { 797 fwnode_handle_put(parent); 798 return true; 799 } 800 } 801 return false; 802 } 803 804 /** 805 * fwnode_get_next_child_node - Return the next child node handle for a node 806 * @fwnode: Firmware node to find the next child node for. 807 * @child: Handle to one of the node's child nodes or a %NULL handle. 808 * 809 * The caller is responsible for calling fwnode_handle_put() on the returned 810 * fwnode pointer. Note that this function also puts a reference to @child 811 * unconditionally. 812 */ 813 struct fwnode_handle * 814 fwnode_get_next_child_node(const struct fwnode_handle *fwnode, 815 struct fwnode_handle *child) 816 { 817 return fwnode_call_ptr_op(fwnode, get_next_child_node, child); 818 } 819 EXPORT_SYMBOL_GPL(fwnode_get_next_child_node); 820 821 /** 822 * fwnode_get_next_available_child_node - Return the next available child node handle for a node 823 * @fwnode: Firmware node to find the next child node for. 824 * @child: Handle to one of the node's child nodes or a %NULL handle. 825 * 826 * The caller is responsible for calling fwnode_handle_put() on the returned 827 * fwnode pointer. Note that this function also puts a reference to @child 828 * unconditionally. 829 */ 830 struct fwnode_handle * 831 fwnode_get_next_available_child_node(const struct fwnode_handle *fwnode, 832 struct fwnode_handle *child) 833 { 834 struct fwnode_handle *next_child = child; 835 836 if (IS_ERR_OR_NULL(fwnode)) 837 return NULL; 838 839 do { 840 next_child = fwnode_get_next_child_node(fwnode, next_child); 841 if (!next_child) 842 return NULL; 843 } while (!fwnode_device_is_available(next_child)); 844 845 return next_child; 846 } 847 EXPORT_SYMBOL_GPL(fwnode_get_next_available_child_node); 848 849 /** 850 * device_get_next_child_node - Return the next child node handle for a device 851 * @dev: Device to find the next child node for. 852 * @child: Handle to one of the device's child nodes or a %NULL handle. 853 * 854 * The caller is responsible for calling fwnode_handle_put() on the returned 855 * fwnode pointer. Note that this function also puts a reference to @child 856 * unconditionally. 857 */ 858 struct fwnode_handle *device_get_next_child_node(const struct device *dev, 859 struct fwnode_handle *child) 860 { 861 const struct fwnode_handle *fwnode = dev_fwnode(dev); 862 struct fwnode_handle *next; 863 864 if (IS_ERR_OR_NULL(fwnode)) 865 return NULL; 866 867 /* Try to find a child in primary fwnode */ 868 next = fwnode_get_next_child_node(fwnode, child); 869 if (next) 870 return next; 871 872 /* When no more children in primary, continue with secondary */ 873 return fwnode_get_next_child_node(fwnode->secondary, child); 874 } 875 EXPORT_SYMBOL_GPL(device_get_next_child_node); 876 877 /** 878 * fwnode_get_named_child_node - Return first matching named child node handle 879 * @fwnode: Firmware node to find the named child node for. 880 * @childname: String to match child node name against. 881 * 882 * The caller is responsible for calling fwnode_handle_put() on the returned 883 * fwnode pointer. 884 */ 885 struct fwnode_handle * 886 fwnode_get_named_child_node(const struct fwnode_handle *fwnode, 887 const char *childname) 888 { 889 return fwnode_call_ptr_op(fwnode, get_named_child_node, childname); 890 } 891 EXPORT_SYMBOL_GPL(fwnode_get_named_child_node); 892 893 /** 894 * device_get_named_child_node - Return first matching named child node handle 895 * @dev: Device to find the named child node for. 896 * @childname: String to match child node name against. 897 * 898 * The caller is responsible for calling fwnode_handle_put() on the returned 899 * fwnode pointer. 900 */ 901 struct fwnode_handle *device_get_named_child_node(const struct device *dev, 902 const char *childname) 903 { 904 return fwnode_get_named_child_node(dev_fwnode(dev), childname); 905 } 906 EXPORT_SYMBOL_GPL(device_get_named_child_node); 907 908 /** 909 * fwnode_handle_get - Obtain a reference to a device node 910 * @fwnode: Pointer to the device node to obtain the reference to. 911 * 912 * The caller is responsible for calling fwnode_handle_put() on the returned 913 * fwnode pointer. 914 * 915 * Return: the fwnode handle. 916 */ 917 struct fwnode_handle *fwnode_handle_get(struct fwnode_handle *fwnode) 918 { 919 if (!fwnode_has_op(fwnode, get)) 920 return fwnode; 921 922 return fwnode_call_ptr_op(fwnode, get); 923 } 924 EXPORT_SYMBOL_GPL(fwnode_handle_get); 925 926 /** 927 * fwnode_handle_put - Drop reference to a device node 928 * @fwnode: Pointer to the device node to drop the reference to. 929 * 930 * This has to be used when terminating device_for_each_child_node() iteration 931 * with break or return to prevent stale device node references from being left 932 * behind. 933 */ 934 void fwnode_handle_put(struct fwnode_handle *fwnode) 935 { 936 fwnode_call_void_op(fwnode, put); 937 } 938 EXPORT_SYMBOL_GPL(fwnode_handle_put); 939 940 /** 941 * fwnode_device_is_available - check if a device is available for use 942 * @fwnode: Pointer to the fwnode of the device. 943 * 944 * Return: true if device is available for use. Otherwise, returns false. 945 * 946 * For fwnode node types that don't implement the .device_is_available() 947 * operation, this function returns true. 948 */ 949 bool fwnode_device_is_available(const struct fwnode_handle *fwnode) 950 { 951 if (IS_ERR_OR_NULL(fwnode)) 952 return false; 953 954 if (!fwnode_has_op(fwnode, device_is_available)) 955 return true; 956 957 return fwnode_call_bool_op(fwnode, device_is_available); 958 } 959 EXPORT_SYMBOL_GPL(fwnode_device_is_available); 960 961 /** 962 * device_get_child_node_count - return the number of child nodes for device 963 * @dev: Device to cound the child nodes for 964 * 965 * Return: the number of child nodes for a given device. 966 */ 967 unsigned int device_get_child_node_count(const struct device *dev) 968 { 969 struct fwnode_handle *child; 970 unsigned int count = 0; 971 972 device_for_each_child_node(dev, child) 973 count++; 974 975 return count; 976 } 977 EXPORT_SYMBOL_GPL(device_get_child_node_count); 978 979 bool device_dma_supported(const struct device *dev) 980 { 981 return fwnode_call_bool_op(dev_fwnode(dev), device_dma_supported); 982 } 983 EXPORT_SYMBOL_GPL(device_dma_supported); 984 985 enum dev_dma_attr device_get_dma_attr(const struct device *dev) 986 { 987 if (!fwnode_has_op(dev_fwnode(dev), device_get_dma_attr)) 988 return DEV_DMA_NOT_SUPPORTED; 989 990 return fwnode_call_int_op(dev_fwnode(dev), device_get_dma_attr); 991 } 992 EXPORT_SYMBOL_GPL(device_get_dma_attr); 993 994 /** 995 * fwnode_get_phy_mode - Get phy mode for given firmware node 996 * @fwnode: Pointer to the given node 997 * 998 * The function gets phy interface string from property 'phy-mode' or 999 * 'phy-connection-type', and return its index in phy_modes table, or errno in 1000 * error case. 1001 */ 1002 int fwnode_get_phy_mode(const struct fwnode_handle *fwnode) 1003 { 1004 const char *pm; 1005 int err, i; 1006 1007 err = fwnode_property_read_string(fwnode, "phy-mode", &pm); 1008 if (err < 0) 1009 err = fwnode_property_read_string(fwnode, 1010 "phy-connection-type", &pm); 1011 if (err < 0) 1012 return err; 1013 1014 for (i = 0; i < PHY_INTERFACE_MODE_MAX; i++) 1015 if (!strcasecmp(pm, phy_modes(i))) 1016 return i; 1017 1018 return -ENODEV; 1019 } 1020 EXPORT_SYMBOL_GPL(fwnode_get_phy_mode); 1021 1022 /** 1023 * device_get_phy_mode - Get phy mode for given device 1024 * @dev: Pointer to the given device 1025 * 1026 * The function gets phy interface string from property 'phy-mode' or 1027 * 'phy-connection-type', and return its index in phy_modes table, or errno in 1028 * error case. 1029 */ 1030 int device_get_phy_mode(struct device *dev) 1031 { 1032 return fwnode_get_phy_mode(dev_fwnode(dev)); 1033 } 1034 EXPORT_SYMBOL_GPL(device_get_phy_mode); 1035 1036 /** 1037 * fwnode_iomap - Maps the memory mapped IO for a given fwnode 1038 * @fwnode: Pointer to the firmware node 1039 * @index: Index of the IO range 1040 * 1041 * Return: a pointer to the mapped memory. 1042 */ 1043 void __iomem *fwnode_iomap(struct fwnode_handle *fwnode, int index) 1044 { 1045 return fwnode_call_ptr_op(fwnode, iomap, index); 1046 } 1047 EXPORT_SYMBOL(fwnode_iomap); 1048 1049 /** 1050 * fwnode_irq_get - Get IRQ directly from a fwnode 1051 * @fwnode: Pointer to the firmware node 1052 * @index: Zero-based index of the IRQ 1053 * 1054 * Return: Linux IRQ number on success. Negative errno on failure. 1055 */ 1056 int fwnode_irq_get(const struct fwnode_handle *fwnode, unsigned int index) 1057 { 1058 int ret; 1059 1060 ret = fwnode_call_int_op(fwnode, irq_get, index); 1061 /* We treat mapping errors as invalid case */ 1062 if (ret == 0) 1063 return -EINVAL; 1064 1065 return ret; 1066 } 1067 EXPORT_SYMBOL(fwnode_irq_get); 1068 1069 /** 1070 * fwnode_irq_get_byname - Get IRQ from a fwnode using its name 1071 * @fwnode: Pointer to the firmware node 1072 * @name: IRQ name 1073 * 1074 * Description: 1075 * Find a match to the string @name in the 'interrupt-names' string array 1076 * in _DSD for ACPI, or of_node for Device Tree. Then get the Linux IRQ 1077 * number of the IRQ resource corresponding to the index of the matched 1078 * string. 1079 * 1080 * Return: Linux IRQ number on success, or negative errno otherwise. 1081 */ 1082 int fwnode_irq_get_byname(const struct fwnode_handle *fwnode, const char *name) 1083 { 1084 int index; 1085 1086 if (!name) 1087 return -EINVAL; 1088 1089 index = fwnode_property_match_string(fwnode, "interrupt-names", name); 1090 if (index < 0) 1091 return index; 1092 1093 return fwnode_irq_get(fwnode, index); 1094 } 1095 EXPORT_SYMBOL(fwnode_irq_get_byname); 1096 1097 /** 1098 * fwnode_graph_get_next_endpoint - Get next endpoint firmware node 1099 * @fwnode: Pointer to the parent firmware node 1100 * @prev: Previous endpoint node or %NULL to get the first 1101 * 1102 * The caller is responsible for calling fwnode_handle_put() on the returned 1103 * fwnode pointer. Note that this function also puts a reference to @prev 1104 * unconditionally. 1105 * 1106 * Return: an endpoint firmware node pointer or %NULL if no more endpoints 1107 * are available. 1108 */ 1109 struct fwnode_handle * 1110 fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode, 1111 struct fwnode_handle *prev) 1112 { 1113 struct fwnode_handle *ep, *port_parent = NULL; 1114 const struct fwnode_handle *parent; 1115 1116 /* 1117 * If this function is in a loop and the previous iteration returned 1118 * an endpoint from fwnode->secondary, then we need to use the secondary 1119 * as parent rather than @fwnode. 1120 */ 1121 if (prev) { 1122 port_parent = fwnode_graph_get_port_parent(prev); 1123 parent = port_parent; 1124 } else { 1125 parent = fwnode; 1126 } 1127 if (IS_ERR_OR_NULL(parent)) 1128 return NULL; 1129 1130 ep = fwnode_call_ptr_op(parent, graph_get_next_endpoint, prev); 1131 if (ep) 1132 goto out_put_port_parent; 1133 1134 ep = fwnode_graph_get_next_endpoint(parent->secondary, NULL); 1135 1136 out_put_port_parent: 1137 fwnode_handle_put(port_parent); 1138 return ep; 1139 } 1140 EXPORT_SYMBOL_GPL(fwnode_graph_get_next_endpoint); 1141 1142 /** 1143 * fwnode_graph_get_port_parent - Return the device fwnode of a port endpoint 1144 * @endpoint: Endpoint firmware node of the port 1145 * 1146 * The caller is responsible for calling fwnode_handle_put() on the returned 1147 * fwnode pointer. 1148 * 1149 * Return: the firmware node of the device the @endpoint belongs to. 1150 */ 1151 struct fwnode_handle * 1152 fwnode_graph_get_port_parent(const struct fwnode_handle *endpoint) 1153 { 1154 struct fwnode_handle *port, *parent; 1155 1156 port = fwnode_get_parent(endpoint); 1157 parent = fwnode_call_ptr_op(port, graph_get_port_parent); 1158 1159 fwnode_handle_put(port); 1160 1161 return parent; 1162 } 1163 EXPORT_SYMBOL_GPL(fwnode_graph_get_port_parent); 1164 1165 /** 1166 * fwnode_graph_get_remote_port_parent - Return fwnode of a remote device 1167 * @fwnode: Endpoint firmware node pointing to the remote endpoint 1168 * 1169 * Extracts firmware node of a remote device the @fwnode points to. 1170 * 1171 * The caller is responsible for calling fwnode_handle_put() on the returned 1172 * fwnode pointer. 1173 */ 1174 struct fwnode_handle * 1175 fwnode_graph_get_remote_port_parent(const struct fwnode_handle *fwnode) 1176 { 1177 struct fwnode_handle *endpoint, *parent; 1178 1179 endpoint = fwnode_graph_get_remote_endpoint(fwnode); 1180 parent = fwnode_graph_get_port_parent(endpoint); 1181 1182 fwnode_handle_put(endpoint); 1183 1184 return parent; 1185 } 1186 EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port_parent); 1187 1188 /** 1189 * fwnode_graph_get_remote_port - Return fwnode of a remote port 1190 * @fwnode: Endpoint firmware node pointing to the remote endpoint 1191 * 1192 * Extracts firmware node of a remote port the @fwnode points to. 1193 * 1194 * The caller is responsible for calling fwnode_handle_put() on the returned 1195 * fwnode pointer. 1196 */ 1197 struct fwnode_handle * 1198 fwnode_graph_get_remote_port(const struct fwnode_handle *fwnode) 1199 { 1200 return fwnode_get_next_parent(fwnode_graph_get_remote_endpoint(fwnode)); 1201 } 1202 EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port); 1203 1204 /** 1205 * fwnode_graph_get_remote_endpoint - Return fwnode of a remote endpoint 1206 * @fwnode: Endpoint firmware node pointing to the remote endpoint 1207 * 1208 * Extracts firmware node of a remote endpoint the @fwnode points to. 1209 * 1210 * The caller is responsible for calling fwnode_handle_put() on the returned 1211 * fwnode pointer. 1212 */ 1213 struct fwnode_handle * 1214 fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode) 1215 { 1216 return fwnode_call_ptr_op(fwnode, graph_get_remote_endpoint); 1217 } 1218 EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_endpoint); 1219 1220 static bool fwnode_graph_remote_available(struct fwnode_handle *ep) 1221 { 1222 struct fwnode_handle *dev_node; 1223 bool available; 1224 1225 dev_node = fwnode_graph_get_remote_port_parent(ep); 1226 available = fwnode_device_is_available(dev_node); 1227 fwnode_handle_put(dev_node); 1228 1229 return available; 1230 } 1231 1232 /** 1233 * fwnode_graph_get_endpoint_by_id - get endpoint by port and endpoint numbers 1234 * @fwnode: parent fwnode_handle containing the graph 1235 * @port: identifier of the port node 1236 * @endpoint: identifier of the endpoint node under the port node 1237 * @flags: fwnode lookup flags 1238 * 1239 * The caller is responsible for calling fwnode_handle_put() on the returned 1240 * fwnode pointer. 1241 * 1242 * Return: the fwnode handle of the local endpoint corresponding the port and 1243 * endpoint IDs or %NULL if not found. 1244 * 1245 * If FWNODE_GRAPH_ENDPOINT_NEXT is passed in @flags and the specified endpoint 1246 * has not been found, look for the closest endpoint ID greater than the 1247 * specified one and return the endpoint that corresponds to it, if present. 1248 * 1249 * Does not return endpoints that belong to disabled devices or endpoints that 1250 * are unconnected, unless FWNODE_GRAPH_DEVICE_DISABLED is passed in @flags. 1251 */ 1252 struct fwnode_handle * 1253 fwnode_graph_get_endpoint_by_id(const struct fwnode_handle *fwnode, 1254 u32 port, u32 endpoint, unsigned long flags) 1255 { 1256 struct fwnode_handle *ep, *best_ep = NULL; 1257 unsigned int best_ep_id = 0; 1258 bool endpoint_next = flags & FWNODE_GRAPH_ENDPOINT_NEXT; 1259 bool enabled_only = !(flags & FWNODE_GRAPH_DEVICE_DISABLED); 1260 1261 fwnode_graph_for_each_endpoint(fwnode, ep) { 1262 struct fwnode_endpoint fwnode_ep = { 0 }; 1263 int ret; 1264 1265 if (enabled_only && !fwnode_graph_remote_available(ep)) 1266 continue; 1267 1268 ret = fwnode_graph_parse_endpoint(ep, &fwnode_ep); 1269 if (ret < 0) 1270 continue; 1271 1272 if (fwnode_ep.port != port) 1273 continue; 1274 1275 if (fwnode_ep.id == endpoint) 1276 return ep; 1277 1278 if (!endpoint_next) 1279 continue; 1280 1281 /* 1282 * If the endpoint that has just been found is not the first 1283 * matching one and the ID of the one found previously is closer 1284 * to the requested endpoint ID, skip it. 1285 */ 1286 if (fwnode_ep.id < endpoint || 1287 (best_ep && best_ep_id < fwnode_ep.id)) 1288 continue; 1289 1290 fwnode_handle_put(best_ep); 1291 best_ep = fwnode_handle_get(ep); 1292 best_ep_id = fwnode_ep.id; 1293 } 1294 1295 return best_ep; 1296 } 1297 EXPORT_SYMBOL_GPL(fwnode_graph_get_endpoint_by_id); 1298 1299 /** 1300 * fwnode_graph_get_endpoint_count - Count endpoints on a device node 1301 * @fwnode: The node related to a device 1302 * @flags: fwnode lookup flags 1303 * Count endpoints in a device node. 1304 * 1305 * If FWNODE_GRAPH_DEVICE_DISABLED flag is specified, also unconnected endpoints 1306 * and endpoints connected to disabled devices are counted. 1307 */ 1308 unsigned int fwnode_graph_get_endpoint_count(const struct fwnode_handle *fwnode, 1309 unsigned long flags) 1310 { 1311 struct fwnode_handle *ep; 1312 unsigned int count = 0; 1313 1314 fwnode_graph_for_each_endpoint(fwnode, ep) { 1315 if (flags & FWNODE_GRAPH_DEVICE_DISABLED || 1316 fwnode_graph_remote_available(ep)) 1317 count++; 1318 } 1319 1320 return count; 1321 } 1322 EXPORT_SYMBOL_GPL(fwnode_graph_get_endpoint_count); 1323 1324 /** 1325 * fwnode_graph_parse_endpoint - parse common endpoint node properties 1326 * @fwnode: pointer to endpoint fwnode_handle 1327 * @endpoint: pointer to the fwnode endpoint data structure 1328 * 1329 * Parse @fwnode representing a graph endpoint node and store the 1330 * information in @endpoint. The caller must hold a reference to 1331 * @fwnode. 1332 */ 1333 int fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode, 1334 struct fwnode_endpoint *endpoint) 1335 { 1336 memset(endpoint, 0, sizeof(*endpoint)); 1337 1338 return fwnode_call_int_op(fwnode, graph_parse_endpoint, endpoint); 1339 } 1340 EXPORT_SYMBOL(fwnode_graph_parse_endpoint); 1341 1342 const void *device_get_match_data(const struct device *dev) 1343 { 1344 return fwnode_call_ptr_op(dev_fwnode(dev), device_get_match_data, dev); 1345 } 1346 EXPORT_SYMBOL_GPL(device_get_match_data); 1347 1348 static unsigned int fwnode_graph_devcon_matches(const struct fwnode_handle *fwnode, 1349 const char *con_id, void *data, 1350 devcon_match_fn_t match, 1351 void **matches, 1352 unsigned int matches_len) 1353 { 1354 struct fwnode_handle *node; 1355 struct fwnode_handle *ep; 1356 unsigned int count = 0; 1357 void *ret; 1358 1359 fwnode_graph_for_each_endpoint(fwnode, ep) { 1360 if (matches && count >= matches_len) { 1361 fwnode_handle_put(ep); 1362 break; 1363 } 1364 1365 node = fwnode_graph_get_remote_port_parent(ep); 1366 if (!fwnode_device_is_available(node)) { 1367 fwnode_handle_put(node); 1368 continue; 1369 } 1370 1371 ret = match(node, con_id, data); 1372 fwnode_handle_put(node); 1373 if (ret) { 1374 if (matches) 1375 matches[count] = ret; 1376 count++; 1377 } 1378 } 1379 return count; 1380 } 1381 1382 static unsigned int fwnode_devcon_matches(const struct fwnode_handle *fwnode, 1383 const char *con_id, void *data, 1384 devcon_match_fn_t match, 1385 void **matches, 1386 unsigned int matches_len) 1387 { 1388 struct fwnode_handle *node; 1389 unsigned int count = 0; 1390 unsigned int i; 1391 void *ret; 1392 1393 for (i = 0; ; i++) { 1394 if (matches && count >= matches_len) 1395 break; 1396 1397 node = fwnode_find_reference(fwnode, con_id, i); 1398 if (IS_ERR(node)) 1399 break; 1400 1401 ret = match(node, NULL, data); 1402 fwnode_handle_put(node); 1403 if (ret) { 1404 if (matches) 1405 matches[count] = ret; 1406 count++; 1407 } 1408 } 1409 1410 return count; 1411 } 1412 1413 /** 1414 * fwnode_connection_find_match - Find connection from a device node 1415 * @fwnode: Device node with the connection 1416 * @con_id: Identifier for the connection 1417 * @data: Data for the match function 1418 * @match: Function to check and convert the connection description 1419 * 1420 * Find a connection with unique identifier @con_id between @fwnode and another 1421 * device node. @match will be used to convert the connection description to 1422 * data the caller is expecting to be returned. 1423 */ 1424 void *fwnode_connection_find_match(const struct fwnode_handle *fwnode, 1425 const char *con_id, void *data, 1426 devcon_match_fn_t match) 1427 { 1428 unsigned int count; 1429 void *ret; 1430 1431 if (!fwnode || !match) 1432 return NULL; 1433 1434 count = fwnode_graph_devcon_matches(fwnode, con_id, data, match, &ret, 1); 1435 if (count) 1436 return ret; 1437 1438 count = fwnode_devcon_matches(fwnode, con_id, data, match, &ret, 1); 1439 return count ? ret : NULL; 1440 } 1441 EXPORT_SYMBOL_GPL(fwnode_connection_find_match); 1442 1443 /** 1444 * fwnode_connection_find_matches - Find connections from a device node 1445 * @fwnode: Device node with the connection 1446 * @con_id: Identifier for the connection 1447 * @data: Data for the match function 1448 * @match: Function to check and convert the connection description 1449 * @matches: (Optional) array of pointers to fill with matches 1450 * @matches_len: Length of @matches 1451 * 1452 * Find up to @matches_len connections with unique identifier @con_id between 1453 * @fwnode and other device nodes. @match will be used to convert the 1454 * connection description to data the caller is expecting to be returned 1455 * through the @matches array. 1456 * 1457 * If @matches is %NULL @matches_len is ignored and the total number of resolved 1458 * matches is returned. 1459 * 1460 * Return: Number of matches resolved, or negative errno. 1461 */ 1462 int fwnode_connection_find_matches(const struct fwnode_handle *fwnode, 1463 const char *con_id, void *data, 1464 devcon_match_fn_t match, 1465 void **matches, unsigned int matches_len) 1466 { 1467 unsigned int count_graph; 1468 unsigned int count_ref; 1469 1470 if (!fwnode || !match) 1471 return -EINVAL; 1472 1473 count_graph = fwnode_graph_devcon_matches(fwnode, con_id, data, match, 1474 matches, matches_len); 1475 1476 if (matches) { 1477 matches += count_graph; 1478 matches_len -= count_graph; 1479 } 1480 1481 count_ref = fwnode_devcon_matches(fwnode, con_id, data, match, 1482 matches, matches_len); 1483 1484 return count_graph + count_ref; 1485 } 1486 EXPORT_SYMBOL_GPL(fwnode_connection_find_matches); 1487