xref: /linux/drivers/base/property.c (revision 470ac62dfa5732c149adce2cbce84ac678de701f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * property.c - Unified device property interface.
4  *
5  * Copyright (C) 2014, Intel Corporation
6  * Authors: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
7  *          Mika Westerberg <mika.westerberg@linux.intel.com>
8  */
9 
10 #include <linux/acpi.h>
11 #include <linux/export.h>
12 #include <linux/kernel.h>
13 #include <linux/of.h>
14 #include <linux/of_address.h>
15 #include <linux/of_graph.h>
16 #include <linux/of_irq.h>
17 #include <linux/property.h>
18 #include <linux/phy.h>
19 
20 struct fwnode_handle *__dev_fwnode(struct device *dev)
21 {
22 	return IS_ENABLED(CONFIG_OF) && dev->of_node ?
23 		of_fwnode_handle(dev->of_node) : dev->fwnode;
24 }
25 EXPORT_SYMBOL_GPL(__dev_fwnode);
26 
27 const struct fwnode_handle *__dev_fwnode_const(const struct device *dev)
28 {
29 	return IS_ENABLED(CONFIG_OF) && dev->of_node ?
30 		of_fwnode_handle(dev->of_node) : dev->fwnode;
31 }
32 EXPORT_SYMBOL_GPL(__dev_fwnode_const);
33 
34 /**
35  * device_property_present - check if a property of a device is present
36  * @dev: Device whose property is being checked
37  * @propname: Name of the property
38  *
39  * Check if property @propname is present in the device firmware description.
40  */
41 bool device_property_present(struct device *dev, const char *propname)
42 {
43 	return fwnode_property_present(dev_fwnode(dev), propname);
44 }
45 EXPORT_SYMBOL_GPL(device_property_present);
46 
47 /**
48  * fwnode_property_present - check if a property of a firmware node is present
49  * @fwnode: Firmware node whose property to check
50  * @propname: Name of the property
51  */
52 bool fwnode_property_present(const struct fwnode_handle *fwnode,
53 			     const char *propname)
54 {
55 	bool ret;
56 
57 	if (IS_ERR_OR_NULL(fwnode))
58 		return false;
59 
60 	ret = fwnode_call_bool_op(fwnode, property_present, propname);
61 	if (ret)
62 		return ret;
63 
64 	return fwnode_call_bool_op(fwnode->secondary, property_present, propname);
65 }
66 EXPORT_SYMBOL_GPL(fwnode_property_present);
67 
68 /**
69  * device_property_read_u8_array - return a u8 array property of a device
70  * @dev: Device to get the property of
71  * @propname: Name of the property
72  * @val: The values are stored here or %NULL to return the number of values
73  * @nval: Size of the @val array
74  *
75  * Function reads an array of u8 properties with @propname from the device
76  * firmware description and stores them to @val if found.
77  *
78  * It's recommended to call device_property_count_u8() instead of calling
79  * this function with @val equals %NULL and @nval equals 0.
80  *
81  * Return: number of values if @val was %NULL,
82  *         %0 if the property was found (success),
83  *	   %-EINVAL if given arguments are not valid,
84  *	   %-ENODATA if the property does not have a value,
85  *	   %-EPROTO if the property is not an array of numbers,
86  *	   %-EOVERFLOW if the size of the property is not as expected.
87  *	   %-ENXIO if no suitable firmware interface is present.
88  */
89 int device_property_read_u8_array(struct device *dev, const char *propname,
90 				  u8 *val, size_t nval)
91 {
92 	return fwnode_property_read_u8_array(dev_fwnode(dev), propname, val, nval);
93 }
94 EXPORT_SYMBOL_GPL(device_property_read_u8_array);
95 
96 /**
97  * device_property_read_u16_array - return a u16 array property of a device
98  * @dev: Device to get the property of
99  * @propname: Name of the property
100  * @val: The values are stored here or %NULL to return the number of values
101  * @nval: Size of the @val array
102  *
103  * Function reads an array of u16 properties with @propname from the device
104  * firmware description and stores them to @val if found.
105  *
106  * It's recommended to call device_property_count_u16() instead of calling
107  * this function with @val equals %NULL and @nval equals 0.
108  *
109  * Return: number of values if @val was %NULL,
110  *         %0 if the property was found (success),
111  *	   %-EINVAL if given arguments are not valid,
112  *	   %-ENODATA if the property does not have a value,
113  *	   %-EPROTO if the property is not an array of numbers,
114  *	   %-EOVERFLOW if the size of the property is not as expected.
115  *	   %-ENXIO if no suitable firmware interface is present.
116  */
117 int device_property_read_u16_array(struct device *dev, const char *propname,
118 				   u16 *val, size_t nval)
119 {
120 	return fwnode_property_read_u16_array(dev_fwnode(dev), propname, val, nval);
121 }
122 EXPORT_SYMBOL_GPL(device_property_read_u16_array);
123 
124 /**
125  * device_property_read_u32_array - return a u32 array property of a device
126  * @dev: Device to get the property of
127  * @propname: Name of the property
128  * @val: The values are stored here or %NULL to return the number of values
129  * @nval: Size of the @val array
130  *
131  * Function reads an array of u32 properties with @propname from the device
132  * firmware description and stores them to @val if found.
133  *
134  * It's recommended to call device_property_count_u32() instead of calling
135  * this function with @val equals %NULL and @nval equals 0.
136  *
137  * Return: number of values if @val was %NULL,
138  *         %0 if the property was found (success),
139  *	   %-EINVAL if given arguments are not valid,
140  *	   %-ENODATA if the property does not have a value,
141  *	   %-EPROTO if the property is not an array of numbers,
142  *	   %-EOVERFLOW if the size of the property is not as expected.
143  *	   %-ENXIO if no suitable firmware interface is present.
144  */
145 int device_property_read_u32_array(struct device *dev, const char *propname,
146 				   u32 *val, size_t nval)
147 {
148 	return fwnode_property_read_u32_array(dev_fwnode(dev), propname, val, nval);
149 }
150 EXPORT_SYMBOL_GPL(device_property_read_u32_array);
151 
152 /**
153  * device_property_read_u64_array - return a u64 array property of a device
154  * @dev: Device to get the property of
155  * @propname: Name of the property
156  * @val: The values are stored here or %NULL to return the number of values
157  * @nval: Size of the @val array
158  *
159  * Function reads an array of u64 properties with @propname from the device
160  * firmware description and stores them to @val if found.
161  *
162  * It's recommended to call device_property_count_u64() instead of calling
163  * this function with @val equals %NULL and @nval equals 0.
164  *
165  * Return: number of values if @val was %NULL,
166  *         %0 if the property was found (success),
167  *	   %-EINVAL if given arguments are not valid,
168  *	   %-ENODATA if the property does not have a value,
169  *	   %-EPROTO if the property is not an array of numbers,
170  *	   %-EOVERFLOW if the size of the property is not as expected.
171  *	   %-ENXIO if no suitable firmware interface is present.
172  */
173 int device_property_read_u64_array(struct device *dev, const char *propname,
174 				   u64 *val, size_t nval)
175 {
176 	return fwnode_property_read_u64_array(dev_fwnode(dev), propname, val, nval);
177 }
178 EXPORT_SYMBOL_GPL(device_property_read_u64_array);
179 
180 /**
181  * device_property_read_string_array - return a string array property of device
182  * @dev: Device to get the property of
183  * @propname: Name of the property
184  * @val: The values are stored here or %NULL to return the number of values
185  * @nval: Size of the @val array
186  *
187  * Function reads an array of string properties with @propname from the device
188  * firmware description and stores them to @val if found.
189  *
190  * It's recommended to call device_property_string_array_count() instead of calling
191  * this function with @val equals %NULL and @nval equals 0.
192  *
193  * Return: number of values read on success if @val is non-NULL,
194  *	   number of values available on success if @val is NULL,
195  *	   %-EINVAL if given arguments are not valid,
196  *	   %-ENODATA if the property does not have a value,
197  *	   %-EPROTO or %-EILSEQ if the property is not an array of strings,
198  *	   %-EOVERFLOW if the size of the property is not as expected.
199  *	   %-ENXIO if no suitable firmware interface is present.
200  */
201 int device_property_read_string_array(struct device *dev, const char *propname,
202 				      const char **val, size_t nval)
203 {
204 	return fwnode_property_read_string_array(dev_fwnode(dev), propname, val, nval);
205 }
206 EXPORT_SYMBOL_GPL(device_property_read_string_array);
207 
208 /**
209  * device_property_read_string - return a string property of a device
210  * @dev: Device to get the property of
211  * @propname: Name of the property
212  * @val: The value is stored here
213  *
214  * Function reads property @propname from the device firmware description and
215  * stores the value into @val if found. The value is checked to be a string.
216  *
217  * Return: %0 if the property was found (success),
218  *	   %-EINVAL if given arguments are not valid,
219  *	   %-ENODATA if the property does not have a value,
220  *	   %-EPROTO or %-EILSEQ if the property type is not a string.
221  *	   %-ENXIO if no suitable firmware interface is present.
222  */
223 int device_property_read_string(struct device *dev, const char *propname,
224 				const char **val)
225 {
226 	return fwnode_property_read_string(dev_fwnode(dev), propname, val);
227 }
228 EXPORT_SYMBOL_GPL(device_property_read_string);
229 
230 /**
231  * device_property_match_string - find a string in an array and return index
232  * @dev: Device to get the property of
233  * @propname: Name of the property holding the array
234  * @string: String to look for
235  *
236  * Find a given string in a string array and if it is found return the
237  * index back.
238  *
239  * Return: index, starting from %0, if the property was found (success),
240  *	   %-EINVAL if given arguments are not valid,
241  *	   %-ENODATA if the property does not have a value,
242  *	   %-EPROTO if the property is not an array of strings,
243  *	   %-ENXIO if no suitable firmware interface is present.
244  */
245 int device_property_match_string(struct device *dev, const char *propname,
246 				 const char *string)
247 {
248 	return fwnode_property_match_string(dev_fwnode(dev), propname, string);
249 }
250 EXPORT_SYMBOL_GPL(device_property_match_string);
251 
252 static int fwnode_property_read_int_array(const struct fwnode_handle *fwnode,
253 					  const char *propname,
254 					  unsigned int elem_size, void *val,
255 					  size_t nval)
256 {
257 	int ret;
258 
259 	if (IS_ERR_OR_NULL(fwnode))
260 		return -EINVAL;
261 
262 	ret = fwnode_call_int_op(fwnode, property_read_int_array, propname,
263 				 elem_size, val, nval);
264 	if (ret != -EINVAL)
265 		return ret;
266 
267 	return fwnode_call_int_op(fwnode->secondary, property_read_int_array, propname,
268 				  elem_size, val, nval);
269 }
270 
271 /**
272  * fwnode_property_read_u8_array - return a u8 array property of firmware node
273  * @fwnode: Firmware node to get the property of
274  * @propname: Name of the property
275  * @val: The values are stored here or %NULL to return the number of values
276  * @nval: Size of the @val array
277  *
278  * Read an array of u8 properties with @propname from @fwnode and stores them to
279  * @val if found.
280  *
281  * It's recommended to call fwnode_property_count_u8() instead of calling
282  * this function with @val equals %NULL and @nval equals 0.
283  *
284  * Return: number of values if @val was %NULL,
285  *         %0 if the property was found (success),
286  *	   %-EINVAL if given arguments are not valid,
287  *	   %-ENODATA if the property does not have a value,
288  *	   %-EPROTO if the property is not an array of numbers,
289  *	   %-EOVERFLOW if the size of the property is not as expected,
290  *	   %-ENXIO if no suitable firmware interface is present.
291  */
292 int fwnode_property_read_u8_array(const struct fwnode_handle *fwnode,
293 				  const char *propname, u8 *val, size_t nval)
294 {
295 	return fwnode_property_read_int_array(fwnode, propname, sizeof(u8),
296 					      val, nval);
297 }
298 EXPORT_SYMBOL_GPL(fwnode_property_read_u8_array);
299 
300 /**
301  * fwnode_property_read_u16_array - return a u16 array property of firmware node
302  * @fwnode: Firmware node to get the property of
303  * @propname: Name of the property
304  * @val: The values are stored here or %NULL to return the number of values
305  * @nval: Size of the @val array
306  *
307  * Read an array of u16 properties with @propname from @fwnode and store them to
308  * @val if found.
309  *
310  * It's recommended to call fwnode_property_count_u16() instead of calling
311  * this function with @val equals %NULL and @nval equals 0.
312  *
313  * Return: number of values if @val was %NULL,
314  *         %0 if the property was found (success),
315  *	   %-EINVAL if given arguments are not valid,
316  *	   %-ENODATA if the property does not have a value,
317  *	   %-EPROTO if the property is not an array of numbers,
318  *	   %-EOVERFLOW if the size of the property is not as expected,
319  *	   %-ENXIO if no suitable firmware interface is present.
320  */
321 int fwnode_property_read_u16_array(const struct fwnode_handle *fwnode,
322 				   const char *propname, u16 *val, size_t nval)
323 {
324 	return fwnode_property_read_int_array(fwnode, propname, sizeof(u16),
325 					      val, nval);
326 }
327 EXPORT_SYMBOL_GPL(fwnode_property_read_u16_array);
328 
329 /**
330  * fwnode_property_read_u32_array - return a u32 array property of firmware node
331  * @fwnode: Firmware node to get the property of
332  * @propname: Name of the property
333  * @val: The values are stored here or %NULL to return the number of values
334  * @nval: Size of the @val array
335  *
336  * Read an array of u32 properties with @propname from @fwnode store them to
337  * @val if found.
338  *
339  * It's recommended to call fwnode_property_count_u32() instead of calling
340  * this function with @val equals %NULL and @nval equals 0.
341  *
342  * Return: number of values if @val was %NULL,
343  *         %0 if the property was found (success),
344  *	   %-EINVAL if given arguments are not valid,
345  *	   %-ENODATA if the property does not have a value,
346  *	   %-EPROTO if the property is not an array of numbers,
347  *	   %-EOVERFLOW if the size of the property is not as expected,
348  *	   %-ENXIO if no suitable firmware interface is present.
349  */
350 int fwnode_property_read_u32_array(const struct fwnode_handle *fwnode,
351 				   const char *propname, u32 *val, size_t nval)
352 {
353 	return fwnode_property_read_int_array(fwnode, propname, sizeof(u32),
354 					      val, nval);
355 }
356 EXPORT_SYMBOL_GPL(fwnode_property_read_u32_array);
357 
358 /**
359  * fwnode_property_read_u64_array - return a u64 array property firmware node
360  * @fwnode: Firmware node to get the property of
361  * @propname: Name of the property
362  * @val: The values are stored here or %NULL to return the number of values
363  * @nval: Size of the @val array
364  *
365  * Read an array of u64 properties with @propname from @fwnode and store them to
366  * @val if found.
367  *
368  * It's recommended to call fwnode_property_count_u64() instead of calling
369  * this function with @val equals %NULL and @nval equals 0.
370  *
371  * Return: number of values if @val was %NULL,
372  *         %0 if the property was found (success),
373  *	   %-EINVAL if given arguments are not valid,
374  *	   %-ENODATA if the property does not have a value,
375  *	   %-EPROTO if the property is not an array of numbers,
376  *	   %-EOVERFLOW if the size of the property is not as expected,
377  *	   %-ENXIO if no suitable firmware interface is present.
378  */
379 int fwnode_property_read_u64_array(const struct fwnode_handle *fwnode,
380 				   const char *propname, u64 *val, size_t nval)
381 {
382 	return fwnode_property_read_int_array(fwnode, propname, sizeof(u64),
383 					      val, nval);
384 }
385 EXPORT_SYMBOL_GPL(fwnode_property_read_u64_array);
386 
387 /**
388  * fwnode_property_read_string_array - return string array property of a node
389  * @fwnode: Firmware node to get the property of
390  * @propname: Name of the property
391  * @val: The values are stored here or %NULL to return the number of values
392  * @nval: Size of the @val array
393  *
394  * Read an string list property @propname from the given firmware node and store
395  * them to @val if found.
396  *
397  * It's recommended to call fwnode_property_string_array_count() instead of calling
398  * this function with @val equals %NULL and @nval equals 0.
399  *
400  * Return: number of values read on success if @val is non-NULL,
401  *	   number of values available on success if @val is NULL,
402  *	   %-EINVAL if given arguments are not valid,
403  *	   %-ENODATA if the property does not have a value,
404  *	   %-EPROTO or %-EILSEQ if the property is not an array of strings,
405  *	   %-EOVERFLOW if the size of the property is not as expected,
406  *	   %-ENXIO if no suitable firmware interface is present.
407  */
408 int fwnode_property_read_string_array(const struct fwnode_handle *fwnode,
409 				      const char *propname, const char **val,
410 				      size_t nval)
411 {
412 	int ret;
413 
414 	if (IS_ERR_OR_NULL(fwnode))
415 		return -EINVAL;
416 
417 	ret = fwnode_call_int_op(fwnode, property_read_string_array, propname,
418 				 val, nval);
419 	if (ret != -EINVAL)
420 		return ret;
421 
422 	return fwnode_call_int_op(fwnode->secondary, property_read_string_array, propname,
423 				  val, nval);
424 }
425 EXPORT_SYMBOL_GPL(fwnode_property_read_string_array);
426 
427 /**
428  * fwnode_property_read_string - return a string property of a firmware node
429  * @fwnode: Firmware node to get the property of
430  * @propname: Name of the property
431  * @val: The value is stored here
432  *
433  * Read property @propname from the given firmware node and store the value into
434  * @val if found.  The value is checked to be a string.
435  *
436  * Return: %0 if the property was found (success),
437  *	   %-EINVAL if given arguments are not valid,
438  *	   %-ENODATA if the property does not have a value,
439  *	   %-EPROTO or %-EILSEQ if the property is not a string,
440  *	   %-ENXIO if no suitable firmware interface is present.
441  */
442 int fwnode_property_read_string(const struct fwnode_handle *fwnode,
443 				const char *propname, const char **val)
444 {
445 	int ret = fwnode_property_read_string_array(fwnode, propname, val, 1);
446 
447 	return ret < 0 ? ret : 0;
448 }
449 EXPORT_SYMBOL_GPL(fwnode_property_read_string);
450 
451 /**
452  * fwnode_property_match_string - find a string in an array and return index
453  * @fwnode: Firmware node to get the property of
454  * @propname: Name of the property holding the array
455  * @string: String to look for
456  *
457  * Find a given string in a string array and if it is found return the
458  * index back.
459  *
460  * Return: index, starting from %0, if the property was found (success),
461  *	   %-EINVAL if given arguments are not valid,
462  *	   %-ENODATA if the property does not have a value,
463  *	   %-EPROTO if the property is not an array of strings,
464  *	   %-ENXIO if no suitable firmware interface is present.
465  */
466 int fwnode_property_match_string(const struct fwnode_handle *fwnode,
467 	const char *propname, const char *string)
468 {
469 	const char **values;
470 	int nval, ret;
471 
472 	nval = fwnode_property_read_string_array(fwnode, propname, NULL, 0);
473 	if (nval < 0)
474 		return nval;
475 
476 	if (nval == 0)
477 		return -ENODATA;
478 
479 	values = kcalloc(nval, sizeof(*values), GFP_KERNEL);
480 	if (!values)
481 		return -ENOMEM;
482 
483 	ret = fwnode_property_read_string_array(fwnode, propname, values, nval);
484 	if (ret < 0)
485 		goto out_free;
486 
487 	ret = match_string(values, nval, string);
488 	if (ret < 0)
489 		ret = -ENODATA;
490 
491 out_free:
492 	kfree(values);
493 	return ret;
494 }
495 EXPORT_SYMBOL_GPL(fwnode_property_match_string);
496 
497 /**
498  * fwnode_property_get_reference_args() - Find a reference with arguments
499  * @fwnode:	Firmware node where to look for the reference
500  * @prop:	The name of the property
501  * @nargs_prop:	The name of the property telling the number of
502  *		arguments in the referred node. NULL if @nargs is known,
503  *		otherwise @nargs is ignored. Only relevant on OF.
504  * @nargs:	Number of arguments. Ignored if @nargs_prop is non-NULL.
505  * @index:	Index of the reference, from zero onwards.
506  * @args:	Result structure with reference and integer arguments.
507  *
508  * Obtain a reference based on a named property in an fwnode, with
509  * integer arguments.
510  *
511  * Caller is responsible to call fwnode_handle_put() on the returned
512  * args->fwnode pointer.
513  *
514  * Returns: %0 on success
515  *	    %-ENOENT when the index is out of bounds, the index has an empty
516  *		     reference or the property was not found
517  *	    %-EINVAL on parse error
518  */
519 int fwnode_property_get_reference_args(const struct fwnode_handle *fwnode,
520 				       const char *prop, const char *nargs_prop,
521 				       unsigned int nargs, unsigned int index,
522 				       struct fwnode_reference_args *args)
523 {
524 	int ret;
525 
526 	if (IS_ERR_OR_NULL(fwnode))
527 		return -ENOENT;
528 
529 	ret = fwnode_call_int_op(fwnode, get_reference_args, prop, nargs_prop,
530 				 nargs, index, args);
531 	if (ret == 0)
532 		return ret;
533 
534 	if (IS_ERR_OR_NULL(fwnode->secondary))
535 		return ret;
536 
537 	return fwnode_call_int_op(fwnode->secondary, get_reference_args, prop, nargs_prop,
538 				  nargs, index, args);
539 }
540 EXPORT_SYMBOL_GPL(fwnode_property_get_reference_args);
541 
542 /**
543  * fwnode_find_reference - Find named reference to a fwnode_handle
544  * @fwnode: Firmware node where to look for the reference
545  * @name: The name of the reference
546  * @index: Index of the reference
547  *
548  * @index can be used when the named reference holds a table of references.
549  *
550  * Returns pointer to the reference fwnode, or ERR_PTR. Caller is responsible to
551  * call fwnode_handle_put() on the returned fwnode pointer.
552  */
553 struct fwnode_handle *fwnode_find_reference(const struct fwnode_handle *fwnode,
554 					    const char *name,
555 					    unsigned int index)
556 {
557 	struct fwnode_reference_args args;
558 	int ret;
559 
560 	ret = fwnode_property_get_reference_args(fwnode, name, NULL, 0, index,
561 						 &args);
562 	return ret ? ERR_PTR(ret) : args.fwnode;
563 }
564 EXPORT_SYMBOL_GPL(fwnode_find_reference);
565 
566 /**
567  * fwnode_get_name - Return the name of a node
568  * @fwnode: The firmware node
569  *
570  * Returns a pointer to the node name.
571  */
572 const char *fwnode_get_name(const struct fwnode_handle *fwnode)
573 {
574 	return fwnode_call_ptr_op(fwnode, get_name);
575 }
576 EXPORT_SYMBOL_GPL(fwnode_get_name);
577 
578 /**
579  * fwnode_get_name_prefix - Return the prefix of node for printing purposes
580  * @fwnode: The firmware node
581  *
582  * Returns the prefix of a node, intended to be printed right before the node.
583  * The prefix works also as a separator between the nodes.
584  */
585 const char *fwnode_get_name_prefix(const struct fwnode_handle *fwnode)
586 {
587 	return fwnode_call_ptr_op(fwnode, get_name_prefix);
588 }
589 
590 /**
591  * fwnode_get_parent - Return parent firwmare node
592  * @fwnode: Firmware whose parent is retrieved
593  *
594  * Return parent firmware node of the given node if possible or %NULL if no
595  * parent was available.
596  */
597 struct fwnode_handle *fwnode_get_parent(const struct fwnode_handle *fwnode)
598 {
599 	return fwnode_call_ptr_op(fwnode, get_parent);
600 }
601 EXPORT_SYMBOL_GPL(fwnode_get_parent);
602 
603 /**
604  * fwnode_get_next_parent - Iterate to the node's parent
605  * @fwnode: Firmware whose parent is retrieved
606  *
607  * This is like fwnode_get_parent() except that it drops the refcount
608  * on the passed node, making it suitable for iterating through a
609  * node's parents.
610  *
611  * Returns a node pointer with refcount incremented, use
612  * fwnode_handle_put() on it when done.
613  */
614 struct fwnode_handle *fwnode_get_next_parent(struct fwnode_handle *fwnode)
615 {
616 	struct fwnode_handle *parent = fwnode_get_parent(fwnode);
617 
618 	fwnode_handle_put(fwnode);
619 
620 	return parent;
621 }
622 EXPORT_SYMBOL_GPL(fwnode_get_next_parent);
623 
624 /**
625  * fwnode_get_next_parent_dev - Find device of closest ancestor fwnode
626  * @fwnode: firmware node
627  *
628  * Given a firmware node (@fwnode), this function finds its closest ancestor
629  * firmware node that has a corresponding struct device and returns that struct
630  * device.
631  *
632  * The caller of this function is expected to call put_device() on the returned
633  * device when they are done.
634  */
635 struct device *fwnode_get_next_parent_dev(struct fwnode_handle *fwnode)
636 {
637 	struct fwnode_handle *parent;
638 	struct device *dev;
639 
640 	fwnode_for_each_parent_node(fwnode, parent) {
641 		dev = get_dev_from_fwnode(parent);
642 		if (dev) {
643 			fwnode_handle_put(parent);
644 			return dev;
645 		}
646 	}
647 	return NULL;
648 }
649 
650 /**
651  * fwnode_count_parents - Return the number of parents a node has
652  * @fwnode: The node the parents of which are to be counted
653  *
654  * Returns the number of parents a node has.
655  */
656 unsigned int fwnode_count_parents(const struct fwnode_handle *fwnode)
657 {
658 	struct fwnode_handle *parent;
659 	unsigned int count = 0;
660 
661 	fwnode_for_each_parent_node(fwnode, parent)
662 		count++;
663 
664 	return count;
665 }
666 EXPORT_SYMBOL_GPL(fwnode_count_parents);
667 
668 /**
669  * fwnode_get_nth_parent - Return an nth parent of a node
670  * @fwnode: The node the parent of which is requested
671  * @depth: Distance of the parent from the node
672  *
673  * Returns the nth parent of a node. If there is no parent at the requested
674  * @depth, %NULL is returned. If @depth is 0, the functionality is equivalent to
675  * fwnode_handle_get(). For @depth == 1, it is fwnode_get_parent() and so on.
676  *
677  * The caller is responsible for calling fwnode_handle_put() for the returned
678  * node.
679  */
680 struct fwnode_handle *fwnode_get_nth_parent(struct fwnode_handle *fwnode,
681 					    unsigned int depth)
682 {
683 	struct fwnode_handle *parent;
684 
685 	if (depth == 0)
686 		return fwnode_handle_get(fwnode);
687 
688 	fwnode_for_each_parent_node(fwnode, parent) {
689 		if (--depth == 0)
690 			return parent;
691 	}
692 	return NULL;
693 }
694 EXPORT_SYMBOL_GPL(fwnode_get_nth_parent);
695 
696 /**
697  * fwnode_is_ancestor_of - Test if @ancestor is ancestor of @child
698  * @ancestor: Firmware which is tested for being an ancestor
699  * @child: Firmware which is tested for being the child
700  *
701  * A node is considered an ancestor of itself too.
702  *
703  * Returns true if @ancestor is an ancestor of @child. Otherwise, returns false.
704  */
705 bool fwnode_is_ancestor_of(struct fwnode_handle *ancestor, struct fwnode_handle *child)
706 {
707 	struct fwnode_handle *parent;
708 
709 	if (IS_ERR_OR_NULL(ancestor))
710 		return false;
711 
712 	if (child == ancestor)
713 		return true;
714 
715 	fwnode_for_each_parent_node(child, parent) {
716 		if (parent == ancestor) {
717 			fwnode_handle_put(parent);
718 			return true;
719 		}
720 	}
721 	return false;
722 }
723 
724 /**
725  * fwnode_get_next_child_node - Return the next child node handle for a node
726  * @fwnode: Firmware node to find the next child node for.
727  * @child: Handle to one of the node's child nodes or a %NULL handle.
728  */
729 struct fwnode_handle *
730 fwnode_get_next_child_node(const struct fwnode_handle *fwnode,
731 			   struct fwnode_handle *child)
732 {
733 	return fwnode_call_ptr_op(fwnode, get_next_child_node, child);
734 }
735 EXPORT_SYMBOL_GPL(fwnode_get_next_child_node);
736 
737 /**
738  * fwnode_get_next_available_child_node - Return the next
739  * available child node handle for a node
740  * @fwnode: Firmware node to find the next child node for.
741  * @child: Handle to one of the node's child nodes or a %NULL handle.
742  */
743 struct fwnode_handle *
744 fwnode_get_next_available_child_node(const struct fwnode_handle *fwnode,
745 				     struct fwnode_handle *child)
746 {
747 	struct fwnode_handle *next_child = child;
748 
749 	if (IS_ERR_OR_NULL(fwnode))
750 		return NULL;
751 
752 	do {
753 		next_child = fwnode_get_next_child_node(fwnode, next_child);
754 		if (!next_child)
755 			return NULL;
756 	} while (!fwnode_device_is_available(next_child));
757 
758 	return next_child;
759 }
760 EXPORT_SYMBOL_GPL(fwnode_get_next_available_child_node);
761 
762 /**
763  * device_get_next_child_node - Return the next child node handle for a device
764  * @dev: Device to find the next child node for.
765  * @child: Handle to one of the device's child nodes or a null handle.
766  */
767 struct fwnode_handle *device_get_next_child_node(const struct device *dev,
768 						 struct fwnode_handle *child)
769 {
770 	const struct fwnode_handle *fwnode = dev_fwnode(dev);
771 	struct fwnode_handle *next;
772 
773 	if (IS_ERR_OR_NULL(fwnode))
774 		return NULL;
775 
776 	/* Try to find a child in primary fwnode */
777 	next = fwnode_get_next_child_node(fwnode, child);
778 	if (next)
779 		return next;
780 
781 	/* When no more children in primary, continue with secondary */
782 	return fwnode_get_next_child_node(fwnode->secondary, child);
783 }
784 EXPORT_SYMBOL_GPL(device_get_next_child_node);
785 
786 /**
787  * fwnode_get_named_child_node - Return first matching named child node handle
788  * @fwnode: Firmware node to find the named child node for.
789  * @childname: String to match child node name against.
790  */
791 struct fwnode_handle *
792 fwnode_get_named_child_node(const struct fwnode_handle *fwnode,
793 			    const char *childname)
794 {
795 	return fwnode_call_ptr_op(fwnode, get_named_child_node, childname);
796 }
797 EXPORT_SYMBOL_GPL(fwnode_get_named_child_node);
798 
799 /**
800  * device_get_named_child_node - Return first matching named child node handle
801  * @dev: Device to find the named child node for.
802  * @childname: String to match child node name against.
803  */
804 struct fwnode_handle *device_get_named_child_node(const struct device *dev,
805 						  const char *childname)
806 {
807 	return fwnode_get_named_child_node(dev_fwnode(dev), childname);
808 }
809 EXPORT_SYMBOL_GPL(device_get_named_child_node);
810 
811 /**
812  * fwnode_handle_get - Obtain a reference to a device node
813  * @fwnode: Pointer to the device node to obtain the reference to.
814  *
815  * Returns the fwnode handle.
816  */
817 struct fwnode_handle *fwnode_handle_get(struct fwnode_handle *fwnode)
818 {
819 	if (!fwnode_has_op(fwnode, get))
820 		return fwnode;
821 
822 	return fwnode_call_ptr_op(fwnode, get);
823 }
824 EXPORT_SYMBOL_GPL(fwnode_handle_get);
825 
826 /**
827  * fwnode_handle_put - Drop reference to a device node
828  * @fwnode: Pointer to the device node to drop the reference to.
829  *
830  * This has to be used when terminating device_for_each_child_node() iteration
831  * with break or return to prevent stale device node references from being left
832  * behind.
833  */
834 void fwnode_handle_put(struct fwnode_handle *fwnode)
835 {
836 	fwnode_call_void_op(fwnode, put);
837 }
838 EXPORT_SYMBOL_GPL(fwnode_handle_put);
839 
840 /**
841  * fwnode_device_is_available - check if a device is available for use
842  * @fwnode: Pointer to the fwnode of the device.
843  *
844  * For fwnode node types that don't implement the .device_is_available()
845  * operation, this function returns true.
846  */
847 bool fwnode_device_is_available(const struct fwnode_handle *fwnode)
848 {
849 	if (IS_ERR_OR_NULL(fwnode))
850 		return false;
851 
852 	if (!fwnode_has_op(fwnode, device_is_available))
853 		return true;
854 
855 	return fwnode_call_bool_op(fwnode, device_is_available);
856 }
857 EXPORT_SYMBOL_GPL(fwnode_device_is_available);
858 
859 /**
860  * device_get_child_node_count - return the number of child nodes for device
861  * @dev: Device to cound the child nodes for
862  */
863 unsigned int device_get_child_node_count(const struct device *dev)
864 {
865 	struct fwnode_handle *child;
866 	unsigned int count = 0;
867 
868 	device_for_each_child_node(dev, child)
869 		count++;
870 
871 	return count;
872 }
873 EXPORT_SYMBOL_GPL(device_get_child_node_count);
874 
875 bool device_dma_supported(const struct device *dev)
876 {
877 	return fwnode_call_bool_op(dev_fwnode(dev), device_dma_supported);
878 }
879 EXPORT_SYMBOL_GPL(device_dma_supported);
880 
881 enum dev_dma_attr device_get_dma_attr(const struct device *dev)
882 {
883 	if (!fwnode_has_op(dev_fwnode(dev), device_get_dma_attr))
884 		return DEV_DMA_NOT_SUPPORTED;
885 
886 	return fwnode_call_int_op(dev_fwnode(dev), device_get_dma_attr);
887 }
888 EXPORT_SYMBOL_GPL(device_get_dma_attr);
889 
890 /**
891  * fwnode_get_phy_mode - Get phy mode for given firmware node
892  * @fwnode:	Pointer to the given node
893  *
894  * The function gets phy interface string from property 'phy-mode' or
895  * 'phy-connection-type', and return its index in phy_modes table, or errno in
896  * error case.
897  */
898 int fwnode_get_phy_mode(struct fwnode_handle *fwnode)
899 {
900 	const char *pm;
901 	int err, i;
902 
903 	err = fwnode_property_read_string(fwnode, "phy-mode", &pm);
904 	if (err < 0)
905 		err = fwnode_property_read_string(fwnode,
906 						  "phy-connection-type", &pm);
907 	if (err < 0)
908 		return err;
909 
910 	for (i = 0; i < PHY_INTERFACE_MODE_MAX; i++)
911 		if (!strcasecmp(pm, phy_modes(i)))
912 			return i;
913 
914 	return -ENODEV;
915 }
916 EXPORT_SYMBOL_GPL(fwnode_get_phy_mode);
917 
918 /**
919  * device_get_phy_mode - Get phy mode for given device
920  * @dev:	Pointer to the given device
921  *
922  * The function gets phy interface string from property 'phy-mode' or
923  * 'phy-connection-type', and return its index in phy_modes table, or errno in
924  * error case.
925  */
926 int device_get_phy_mode(struct device *dev)
927 {
928 	return fwnode_get_phy_mode(dev_fwnode(dev));
929 }
930 EXPORT_SYMBOL_GPL(device_get_phy_mode);
931 
932 /**
933  * fwnode_iomap - Maps the memory mapped IO for a given fwnode
934  * @fwnode:	Pointer to the firmware node
935  * @index:	Index of the IO range
936  *
937  * Returns a pointer to the mapped memory.
938  */
939 void __iomem *fwnode_iomap(struct fwnode_handle *fwnode, int index)
940 {
941 	return fwnode_call_ptr_op(fwnode, iomap, index);
942 }
943 EXPORT_SYMBOL(fwnode_iomap);
944 
945 /**
946  * fwnode_irq_get - Get IRQ directly from a fwnode
947  * @fwnode:	Pointer to the firmware node
948  * @index:	Zero-based index of the IRQ
949  *
950  * Returns Linux IRQ number on success. Other values are determined
951  * accordingly to acpi_/of_ irq_get() operation.
952  */
953 int fwnode_irq_get(const struct fwnode_handle *fwnode, unsigned int index)
954 {
955 	return fwnode_call_int_op(fwnode, irq_get, index);
956 }
957 EXPORT_SYMBOL(fwnode_irq_get);
958 
959 /**
960  * fwnode_irq_get_byname - Get IRQ from a fwnode using its name
961  * @fwnode:	Pointer to the firmware node
962  * @name:	IRQ name
963  *
964  * Description:
965  * Find a match to the string @name in the 'interrupt-names' string array
966  * in _DSD for ACPI, or of_node for Device Tree. Then get the Linux IRQ
967  * number of the IRQ resource corresponding to the index of the matched
968  * string.
969  *
970  * Return:
971  * Linux IRQ number on success, or negative errno otherwise.
972  */
973 int fwnode_irq_get_byname(const struct fwnode_handle *fwnode, const char *name)
974 {
975 	int index;
976 
977 	if (!name)
978 		return -EINVAL;
979 
980 	index = fwnode_property_match_string(fwnode, "interrupt-names",  name);
981 	if (index < 0)
982 		return index;
983 
984 	return fwnode_irq_get(fwnode, index);
985 }
986 EXPORT_SYMBOL(fwnode_irq_get_byname);
987 
988 /**
989  * fwnode_graph_get_next_endpoint - Get next endpoint firmware node
990  * @fwnode: Pointer to the parent firmware node
991  * @prev: Previous endpoint node or %NULL to get the first
992  *
993  * Returns an endpoint firmware node pointer or %NULL if no more endpoints
994  * are available.
995  */
996 struct fwnode_handle *
997 fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode,
998 			       struct fwnode_handle *prev)
999 {
1000 	struct fwnode_handle *ep, *port_parent = NULL;
1001 	const struct fwnode_handle *parent;
1002 
1003 	/*
1004 	 * If this function is in a loop and the previous iteration returned
1005 	 * an endpoint from fwnode->secondary, then we need to use the secondary
1006 	 * as parent rather than @fwnode.
1007 	 */
1008 	if (prev) {
1009 		port_parent = fwnode_graph_get_port_parent(prev);
1010 		parent = port_parent;
1011 	} else {
1012 		parent = fwnode;
1013 	}
1014 	if (IS_ERR_OR_NULL(parent))
1015 		return NULL;
1016 
1017 	ep = fwnode_call_ptr_op(parent, graph_get_next_endpoint, prev);
1018 	if (ep)
1019 		goto out_put_port_parent;
1020 
1021 	ep = fwnode_graph_get_next_endpoint(parent->secondary, NULL);
1022 
1023 out_put_port_parent:
1024 	fwnode_handle_put(port_parent);
1025 	return ep;
1026 }
1027 EXPORT_SYMBOL_GPL(fwnode_graph_get_next_endpoint);
1028 
1029 /**
1030  * fwnode_graph_get_port_parent - Return the device fwnode of a port endpoint
1031  * @endpoint: Endpoint firmware node of the port
1032  *
1033  * Return: the firmware node of the device the @endpoint belongs to.
1034  */
1035 struct fwnode_handle *
1036 fwnode_graph_get_port_parent(const struct fwnode_handle *endpoint)
1037 {
1038 	struct fwnode_handle *port, *parent;
1039 
1040 	port = fwnode_get_parent(endpoint);
1041 	parent = fwnode_call_ptr_op(port, graph_get_port_parent);
1042 
1043 	fwnode_handle_put(port);
1044 
1045 	return parent;
1046 }
1047 EXPORT_SYMBOL_GPL(fwnode_graph_get_port_parent);
1048 
1049 /**
1050  * fwnode_graph_get_remote_port_parent - Return fwnode of a remote device
1051  * @fwnode: Endpoint firmware node pointing to the remote endpoint
1052  *
1053  * Extracts firmware node of a remote device the @fwnode points to.
1054  */
1055 struct fwnode_handle *
1056 fwnode_graph_get_remote_port_parent(const struct fwnode_handle *fwnode)
1057 {
1058 	struct fwnode_handle *endpoint, *parent;
1059 
1060 	endpoint = fwnode_graph_get_remote_endpoint(fwnode);
1061 	parent = fwnode_graph_get_port_parent(endpoint);
1062 
1063 	fwnode_handle_put(endpoint);
1064 
1065 	return parent;
1066 }
1067 EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port_parent);
1068 
1069 /**
1070  * fwnode_graph_get_remote_port - Return fwnode of a remote port
1071  * @fwnode: Endpoint firmware node pointing to the remote endpoint
1072  *
1073  * Extracts firmware node of a remote port the @fwnode points to.
1074  */
1075 struct fwnode_handle *
1076 fwnode_graph_get_remote_port(const struct fwnode_handle *fwnode)
1077 {
1078 	return fwnode_get_next_parent(fwnode_graph_get_remote_endpoint(fwnode));
1079 }
1080 EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port);
1081 
1082 /**
1083  * fwnode_graph_get_remote_endpoint - Return fwnode of a remote endpoint
1084  * @fwnode: Endpoint firmware node pointing to the remote endpoint
1085  *
1086  * Extracts firmware node of a remote endpoint the @fwnode points to.
1087  */
1088 struct fwnode_handle *
1089 fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode)
1090 {
1091 	return fwnode_call_ptr_op(fwnode, graph_get_remote_endpoint);
1092 }
1093 EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_endpoint);
1094 
1095 static bool fwnode_graph_remote_available(struct fwnode_handle *ep)
1096 {
1097 	struct fwnode_handle *dev_node;
1098 	bool available;
1099 
1100 	dev_node = fwnode_graph_get_remote_port_parent(ep);
1101 	available = fwnode_device_is_available(dev_node);
1102 	fwnode_handle_put(dev_node);
1103 
1104 	return available;
1105 }
1106 
1107 /**
1108  * fwnode_graph_get_endpoint_by_id - get endpoint by port and endpoint numbers
1109  * @fwnode: parent fwnode_handle containing the graph
1110  * @port: identifier of the port node
1111  * @endpoint: identifier of the endpoint node under the port node
1112  * @flags: fwnode lookup flags
1113  *
1114  * Return the fwnode handle of the local endpoint corresponding the port and
1115  * endpoint IDs or NULL if not found.
1116  *
1117  * If FWNODE_GRAPH_ENDPOINT_NEXT is passed in @flags and the specified endpoint
1118  * has not been found, look for the closest endpoint ID greater than the
1119  * specified one and return the endpoint that corresponds to it, if present.
1120  *
1121  * Does not return endpoints that belong to disabled devices or endpoints that
1122  * are unconnected, unless FWNODE_GRAPH_DEVICE_DISABLED is passed in @flags.
1123  *
1124  * The returned endpoint needs to be released by calling fwnode_handle_put() on
1125  * it when it is not needed any more.
1126  */
1127 struct fwnode_handle *
1128 fwnode_graph_get_endpoint_by_id(const struct fwnode_handle *fwnode,
1129 				u32 port, u32 endpoint, unsigned long flags)
1130 {
1131 	struct fwnode_handle *ep, *best_ep = NULL;
1132 	unsigned int best_ep_id = 0;
1133 	bool endpoint_next = flags & FWNODE_GRAPH_ENDPOINT_NEXT;
1134 	bool enabled_only = !(flags & FWNODE_GRAPH_DEVICE_DISABLED);
1135 
1136 	fwnode_graph_for_each_endpoint(fwnode, ep) {
1137 		struct fwnode_endpoint fwnode_ep = { 0 };
1138 		int ret;
1139 
1140 		if (enabled_only && !fwnode_graph_remote_available(ep))
1141 			continue;
1142 
1143 		ret = fwnode_graph_parse_endpoint(ep, &fwnode_ep);
1144 		if (ret < 0)
1145 			continue;
1146 
1147 		if (fwnode_ep.port != port)
1148 			continue;
1149 
1150 		if (fwnode_ep.id == endpoint)
1151 			return ep;
1152 
1153 		if (!endpoint_next)
1154 			continue;
1155 
1156 		/*
1157 		 * If the endpoint that has just been found is not the first
1158 		 * matching one and the ID of the one found previously is closer
1159 		 * to the requested endpoint ID, skip it.
1160 		 */
1161 		if (fwnode_ep.id < endpoint ||
1162 		    (best_ep && best_ep_id < fwnode_ep.id))
1163 			continue;
1164 
1165 		fwnode_handle_put(best_ep);
1166 		best_ep = fwnode_handle_get(ep);
1167 		best_ep_id = fwnode_ep.id;
1168 	}
1169 
1170 	return best_ep;
1171 }
1172 EXPORT_SYMBOL_GPL(fwnode_graph_get_endpoint_by_id);
1173 
1174 /**
1175  * fwnode_graph_get_endpoint_count - Count endpoints on a device node
1176  * @fwnode: The node related to a device
1177  * @flags: fwnode lookup flags
1178  * Count endpoints in a device node.
1179  *
1180  * If FWNODE_GRAPH_DEVICE_DISABLED flag is specified, also unconnected endpoints
1181  * and endpoints connected to disabled devices are counted.
1182  */
1183 unsigned int fwnode_graph_get_endpoint_count(struct fwnode_handle *fwnode,
1184 					     unsigned long flags)
1185 {
1186 	struct fwnode_handle *ep;
1187 	unsigned int count = 0;
1188 
1189 	fwnode_graph_for_each_endpoint(fwnode, ep) {
1190 		if (flags & FWNODE_GRAPH_DEVICE_DISABLED ||
1191 		    fwnode_graph_remote_available(ep))
1192 			count++;
1193 	}
1194 
1195 	return count;
1196 }
1197 EXPORT_SYMBOL_GPL(fwnode_graph_get_endpoint_count);
1198 
1199 /**
1200  * fwnode_graph_parse_endpoint - parse common endpoint node properties
1201  * @fwnode: pointer to endpoint fwnode_handle
1202  * @endpoint: pointer to the fwnode endpoint data structure
1203  *
1204  * Parse @fwnode representing a graph endpoint node and store the
1205  * information in @endpoint. The caller must hold a reference to
1206  * @fwnode.
1207  */
1208 int fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode,
1209 				struct fwnode_endpoint *endpoint)
1210 {
1211 	memset(endpoint, 0, sizeof(*endpoint));
1212 
1213 	return fwnode_call_int_op(fwnode, graph_parse_endpoint, endpoint);
1214 }
1215 EXPORT_SYMBOL(fwnode_graph_parse_endpoint);
1216 
1217 const void *device_get_match_data(const struct device *dev)
1218 {
1219 	return fwnode_call_ptr_op(dev_fwnode(dev), device_get_match_data, dev);
1220 }
1221 EXPORT_SYMBOL_GPL(device_get_match_data);
1222 
1223 static unsigned int fwnode_graph_devcon_matches(const struct fwnode_handle *fwnode,
1224 						const char *con_id, void *data,
1225 						devcon_match_fn_t match,
1226 						void **matches,
1227 						unsigned int matches_len)
1228 {
1229 	struct fwnode_handle *node;
1230 	struct fwnode_handle *ep;
1231 	unsigned int count = 0;
1232 	void *ret;
1233 
1234 	fwnode_graph_for_each_endpoint(fwnode, ep) {
1235 		if (matches && count >= matches_len) {
1236 			fwnode_handle_put(ep);
1237 			break;
1238 		}
1239 
1240 		node = fwnode_graph_get_remote_port_parent(ep);
1241 		if (!fwnode_device_is_available(node)) {
1242 			fwnode_handle_put(node);
1243 			continue;
1244 		}
1245 
1246 		ret = match(node, con_id, data);
1247 		fwnode_handle_put(node);
1248 		if (ret) {
1249 			if (matches)
1250 				matches[count] = ret;
1251 			count++;
1252 		}
1253 	}
1254 	return count;
1255 }
1256 
1257 static unsigned int fwnode_devcon_matches(const struct fwnode_handle *fwnode,
1258 					  const char *con_id, void *data,
1259 					  devcon_match_fn_t match,
1260 					  void **matches,
1261 					  unsigned int matches_len)
1262 {
1263 	struct fwnode_handle *node;
1264 	unsigned int count = 0;
1265 	unsigned int i;
1266 	void *ret;
1267 
1268 	for (i = 0; ; i++) {
1269 		if (matches && count >= matches_len)
1270 			break;
1271 
1272 		node = fwnode_find_reference(fwnode, con_id, i);
1273 		if (IS_ERR(node))
1274 			break;
1275 
1276 		ret = match(node, NULL, data);
1277 		fwnode_handle_put(node);
1278 		if (ret) {
1279 			if (matches)
1280 				matches[count] = ret;
1281 			count++;
1282 		}
1283 	}
1284 
1285 	return count;
1286 }
1287 
1288 /**
1289  * fwnode_connection_find_match - Find connection from a device node
1290  * @fwnode: Device node with the connection
1291  * @con_id: Identifier for the connection
1292  * @data: Data for the match function
1293  * @match: Function to check and convert the connection description
1294  *
1295  * Find a connection with unique identifier @con_id between @fwnode and another
1296  * device node. @match will be used to convert the connection description to
1297  * data the caller is expecting to be returned.
1298  */
1299 void *fwnode_connection_find_match(const struct fwnode_handle *fwnode,
1300 				   const char *con_id, void *data,
1301 				   devcon_match_fn_t match)
1302 {
1303 	unsigned int count;
1304 	void *ret;
1305 
1306 	if (!fwnode || !match)
1307 		return NULL;
1308 
1309 	count = fwnode_graph_devcon_matches(fwnode, con_id, data, match, &ret, 1);
1310 	if (count)
1311 		return ret;
1312 
1313 	count = fwnode_devcon_matches(fwnode, con_id, data, match, &ret, 1);
1314 	return count ? ret : NULL;
1315 }
1316 EXPORT_SYMBOL_GPL(fwnode_connection_find_match);
1317 
1318 /**
1319  * fwnode_connection_find_matches - Find connections from a device node
1320  * @fwnode: Device node with the connection
1321  * @con_id: Identifier for the connection
1322  * @data: Data for the match function
1323  * @match: Function to check and convert the connection description
1324  * @matches: (Optional) array of pointers to fill with matches
1325  * @matches_len: Length of @matches
1326  *
1327  * Find up to @matches_len connections with unique identifier @con_id between
1328  * @fwnode and other device nodes. @match will be used to convert the
1329  * connection description to data the caller is expecting to be returned
1330  * through the @matches array.
1331  * If @matches is NULL @matches_len is ignored and the total number of resolved
1332  * matches is returned.
1333  *
1334  * Return: Number of matches resolved, or negative errno.
1335  */
1336 int fwnode_connection_find_matches(const struct fwnode_handle *fwnode,
1337 				   const char *con_id, void *data,
1338 				   devcon_match_fn_t match,
1339 				   void **matches, unsigned int matches_len)
1340 {
1341 	unsigned int count_graph;
1342 	unsigned int count_ref;
1343 
1344 	if (!fwnode || !match)
1345 		return -EINVAL;
1346 
1347 	count_graph = fwnode_graph_devcon_matches(fwnode, con_id, data, match,
1348 						  matches, matches_len);
1349 
1350 	if (matches) {
1351 		matches += count_graph;
1352 		matches_len -= count_graph;
1353 	}
1354 
1355 	count_ref = fwnode_devcon_matches(fwnode, con_id, data, match,
1356 					  matches, matches_len);
1357 
1358 	return count_graph + count_ref;
1359 }
1360 EXPORT_SYMBOL_GPL(fwnode_connection_find_matches);
1361