xref: /linux/drivers/base/power/trace.c (revision 765532c8aaac624b5f8687af6d319c6a1138a257)
1 /*
2  * drivers/base/power/trace.c
3  *
4  * Copyright (C) 2006 Linus Torvalds
5  *
6  * Trace facility for suspend/resume problems, when none of the
7  * devices may be working.
8  */
9 
10 #include <linux/resume-trace.h>
11 #include <linux/rtc.h>
12 
13 #include <asm/rtc.h>
14 
15 #include "power.h"
16 
17 /*
18  * Horrid, horrid, horrid.
19  *
20  * It turns out that the _only_ piece of hardware that actually
21  * keeps its value across a hard boot (and, more importantly, the
22  * POST init sequence) is literally the realtime clock.
23  *
24  * Never mind that an RTC chip has 114 bytes (and often a whole
25  * other bank of an additional 128 bytes) of nice SRAM that is
26  * _designed_ to keep data - the POST will clear it. So we literally
27  * can just use the few bytes of actual time data, which means that
28  * we're really limited.
29  *
30  * It means, for example, that we can't use the seconds at all
31  * (since the time between the hang and the boot might be more
32  * than a minute), and we'd better not depend on the low bits of
33  * the minutes either.
34  *
35  * There are the wday fields etc, but I wouldn't guarantee those
36  * are dependable either. And if the date isn't valid, either the
37  * hw or POST will do strange things.
38  *
39  * So we're left with:
40  *  - year: 0-99
41  *  - month: 0-11
42  *  - day-of-month: 1-28
43  *  - hour: 0-23
44  *  - min: (0-30)*2
45  *
46  * Giving us a total range of 0-16128000 (0xf61800), ie less
47  * than 24 bits of actual data we can save across reboots.
48  *
49  * And if your box can't boot in less than three minutes,
50  * you're screwed.
51  *
52  * Now, almost 24 bits of data is pitifully small, so we need
53  * to be pretty dense if we want to use it for anything nice.
54  * What we do is that instead of saving off nice readable info,
55  * we save off _hashes_ of information that we can hopefully
56  * regenerate after the reboot.
57  *
58  * In particular, this means that we might be unlucky, and hit
59  * a case where we have a hash collision, and we end up not
60  * being able to tell for certain exactly which case happened.
61  * But that's hopefully unlikely.
62  *
63  * What we do is to take the bits we can fit, and split them
64  * into three parts (16*997*1009 = 16095568), and use the values
65  * for:
66  *  - 0-15: user-settable
67  *  - 0-996: file + line number
68  *  - 0-1008: device
69  */
70 #define USERHASH (16)
71 #define FILEHASH (997)
72 #define DEVHASH (1009)
73 
74 #define DEVSEED (7919)
75 
76 static unsigned int dev_hash_value;
77 
78 static int set_magic_time(unsigned int user, unsigned int file, unsigned int device)
79 {
80 	unsigned int n = user + USERHASH*(file + FILEHASH*device);
81 
82 	// June 7th, 2006
83 	static struct rtc_time time = {
84 		.tm_sec = 0,
85 		.tm_min = 0,
86 		.tm_hour = 0,
87 		.tm_mday = 7,
88 		.tm_mon = 5,	// June - counting from zero
89 		.tm_year = 106,
90 		.tm_wday = 3,
91 		.tm_yday = 160,
92 		.tm_isdst = 1
93 	};
94 
95 	time.tm_year = (n % 100);
96 	n /= 100;
97 	time.tm_mon = (n % 12);
98 	n /= 12;
99 	time.tm_mday = (n % 28) + 1;
100 	n /= 28;
101 	time.tm_hour = (n % 24);
102 	n /= 24;
103 	time.tm_min = (n % 20) * 3;
104 	n /= 20;
105 	set_rtc_time(&time);
106 	return n ? -1 : 0;
107 }
108 
109 static unsigned int read_magic_time(void)
110 {
111 	struct rtc_time time;
112 	unsigned int val;
113 
114 	get_rtc_time(&time);
115 	printk("Time: %2d:%02d:%02d  Date: %02d/%02d/%02d\n",
116 		time.tm_hour, time.tm_min, time.tm_sec,
117 		time.tm_mon + 1, time.tm_mday, time.tm_year % 100);
118 	val = time.tm_year;				/* 100 years */
119 	if (val > 100)
120 		val -= 100;
121 	val += time.tm_mon * 100;			/* 12 months */
122 	val += (time.tm_mday-1) * 100 * 12;		/* 28 month-days */
123 	val += time.tm_hour * 100 * 12 * 28;		/* 24 hours */
124 	val += (time.tm_min / 3) * 100 * 12 * 28 * 24;	/* 20 3-minute intervals */
125 	return val;
126 }
127 
128 /*
129  * This is just the sdbm hash function with a user-supplied
130  * seed and final size parameter.
131  */
132 static unsigned int hash_string(unsigned int seed, const char *data, unsigned int mod)
133 {
134 	unsigned char c;
135 	while ((c = *data++) != 0) {
136 		seed = (seed << 16) + (seed << 6) - seed + c;
137 	}
138 	return seed % mod;
139 }
140 
141 void set_trace_device(struct device *dev)
142 {
143 	dev_hash_value = hash_string(DEVSEED, dev_name(dev), DEVHASH);
144 }
145 EXPORT_SYMBOL(set_trace_device);
146 
147 /*
148  * We could just take the "tracedata" index into the .tracedata
149  * section instead. Generating a hash of the data gives us a
150  * chance to work across kernel versions, and perhaps more
151  * importantly it also gives us valid/invalid check (ie we will
152  * likely not give totally bogus reports - if the hash matches,
153  * it's not any guarantee, but it's a high _likelihood_ that
154  * the match is valid).
155  */
156 void generate_resume_trace(const void *tracedata, unsigned int user)
157 {
158 	unsigned short lineno = *(unsigned short *)tracedata;
159 	const char *file = *(const char **)(tracedata + 2);
160 	unsigned int user_hash_value, file_hash_value;
161 
162 	user_hash_value = user % USERHASH;
163 	file_hash_value = hash_string(lineno, file, FILEHASH);
164 	set_magic_time(user_hash_value, file_hash_value, dev_hash_value);
165 }
166 EXPORT_SYMBOL(generate_resume_trace);
167 
168 extern char __tracedata_start, __tracedata_end;
169 static int show_file_hash(unsigned int value)
170 {
171 	int match;
172 	char *tracedata;
173 
174 	match = 0;
175 	for (tracedata = &__tracedata_start ; tracedata < &__tracedata_end ;
176 			tracedata += 2 + sizeof(unsigned long)) {
177 		unsigned short lineno = *(unsigned short *)tracedata;
178 		const char *file = *(const char **)(tracedata + 2);
179 		unsigned int hash = hash_string(lineno, file, FILEHASH);
180 		if (hash != value)
181 			continue;
182 		printk("  hash matches %s:%u\n", file, lineno);
183 		match++;
184 	}
185 	return match;
186 }
187 
188 static int show_dev_hash(unsigned int value)
189 {
190 	int match = 0;
191 	struct list_head *entry;
192 
193 	device_pm_lock();
194 	entry = dpm_list.prev;
195 	while (entry != &dpm_list) {
196 		struct device * dev = to_device(entry);
197 		unsigned int hash = hash_string(DEVSEED, dev_name(dev), DEVHASH);
198 		if (hash == value) {
199 			dev_info(dev, "hash matches\n");
200 			match++;
201 		}
202 		entry = entry->prev;
203 	}
204 	device_pm_unlock();
205 	return match;
206 }
207 
208 static unsigned int hash_value_early_read;
209 
210 int show_trace_dev_match(char *buf, size_t size)
211 {
212 	unsigned int value = hash_value_early_read / (USERHASH * FILEHASH);
213 	int ret = 0;
214 	struct list_head *entry;
215 
216 	/*
217 	 * It's possible that multiple devices will match the hash and we can't
218 	 * tell which is the culprit, so it's best to output them all.
219 	 */
220 	device_pm_lock();
221 	entry = dpm_list.prev;
222 	while (size && entry != &dpm_list) {
223 		struct device *dev = to_device(entry);
224 		unsigned int hash = hash_string(DEVSEED, dev_name(dev),
225 						DEVHASH);
226 		if (hash == value) {
227 			int len = snprintf(buf, size, "%s\n",
228 					    dev_driver_string(dev));
229 			if (len > size)
230 				len = size;
231 			buf += len;
232 			ret += len;
233 			size -= len;
234 		}
235 		entry = entry->prev;
236 	}
237 	device_pm_unlock();
238 	return ret;
239 }
240 
241 static int early_resume_init(void)
242 {
243 	hash_value_early_read = read_magic_time();
244 	return 0;
245 }
246 
247 static int late_resume_init(void)
248 {
249 	unsigned int val = hash_value_early_read;
250 	unsigned int user, file, dev;
251 
252 	user = val % USERHASH;
253 	val = val / USERHASH;
254 	file = val % FILEHASH;
255 	val = val / FILEHASH;
256 	dev = val /* % DEVHASH */;
257 
258 	printk("  Magic number: %d:%d:%d\n", user, file, dev);
259 	show_file_hash(file);
260 	show_dev_hash(dev);
261 	return 0;
262 }
263 
264 core_initcall(early_resume_init);
265 late_initcall(late_resume_init);
266