1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * drivers/base/power/main.c - Where the driver meets power management. 4 * 5 * Copyright (c) 2003 Patrick Mochel 6 * Copyright (c) 2003 Open Source Development Lab 7 * 8 * The driver model core calls device_pm_add() when a device is registered. 9 * This will initialize the embedded device_pm_info object in the device 10 * and add it to the list of power-controlled devices. sysfs entries for 11 * controlling device power management will also be added. 12 * 13 * A separate list is used for keeping track of power info, because the power 14 * domain dependencies may differ from the ancestral dependencies that the 15 * subsystem list maintains. 16 */ 17 18 #define pr_fmt(fmt) "PM: " fmt 19 #define dev_fmt pr_fmt 20 21 #include <linux/device.h> 22 #include <linux/export.h> 23 #include <linux/mutex.h> 24 #include <linux/pm.h> 25 #include <linux/pm_runtime.h> 26 #include <linux/pm-trace.h> 27 #include <linux/pm_wakeirq.h> 28 #include <linux/interrupt.h> 29 #include <linux/sched.h> 30 #include <linux/sched/debug.h> 31 #include <linux/async.h> 32 #include <linux/suspend.h> 33 #include <trace/events/power.h> 34 #include <linux/cpufreq.h> 35 #include <linux/devfreq.h> 36 #include <linux/timer.h> 37 38 #include "../base.h" 39 #include "power.h" 40 41 typedef int (*pm_callback_t)(struct device *); 42 43 #define list_for_each_entry_rcu_locked(pos, head, member) \ 44 list_for_each_entry_rcu(pos, head, member, \ 45 device_links_read_lock_held()) 46 47 /* 48 * The entries in the dpm_list list are in a depth first order, simply 49 * because children are guaranteed to be discovered after parents, and 50 * are inserted at the back of the list on discovery. 51 * 52 * Since device_pm_add() may be called with a device lock held, 53 * we must never try to acquire a device lock while holding 54 * dpm_list_mutex. 55 */ 56 57 LIST_HEAD(dpm_list); 58 static LIST_HEAD(dpm_prepared_list); 59 static LIST_HEAD(dpm_suspended_list); 60 static LIST_HEAD(dpm_late_early_list); 61 static LIST_HEAD(dpm_noirq_list); 62 63 static DEFINE_MUTEX(dpm_list_mtx); 64 static pm_message_t pm_transition; 65 66 static DEFINE_MUTEX(async_wip_mtx); 67 static int async_error; 68 69 static const char *pm_verb(int event) 70 { 71 switch (event) { 72 case PM_EVENT_SUSPEND: 73 return "suspend"; 74 case PM_EVENT_RESUME: 75 return "resume"; 76 case PM_EVENT_FREEZE: 77 return "freeze"; 78 case PM_EVENT_QUIESCE: 79 return "quiesce"; 80 case PM_EVENT_HIBERNATE: 81 return "hibernate"; 82 case PM_EVENT_THAW: 83 return "thaw"; 84 case PM_EVENT_RESTORE: 85 return "restore"; 86 case PM_EVENT_RECOVER: 87 return "recover"; 88 default: 89 return "(unknown PM event)"; 90 } 91 } 92 93 /** 94 * device_pm_sleep_init - Initialize system suspend-related device fields. 95 * @dev: Device object being initialized. 96 */ 97 void device_pm_sleep_init(struct device *dev) 98 { 99 dev->power.is_prepared = false; 100 dev->power.is_suspended = false; 101 dev->power.is_noirq_suspended = false; 102 dev->power.is_late_suspended = false; 103 init_completion(&dev->power.completion); 104 complete_all(&dev->power.completion); 105 dev->power.wakeup = NULL; 106 INIT_LIST_HEAD(&dev->power.entry); 107 } 108 109 /** 110 * device_pm_lock - Lock the list of active devices used by the PM core. 111 */ 112 void device_pm_lock(void) 113 { 114 mutex_lock(&dpm_list_mtx); 115 } 116 117 /** 118 * device_pm_unlock - Unlock the list of active devices used by the PM core. 119 */ 120 void device_pm_unlock(void) 121 { 122 mutex_unlock(&dpm_list_mtx); 123 } 124 125 /** 126 * device_pm_add - Add a device to the PM core's list of active devices. 127 * @dev: Device to add to the list. 128 */ 129 void device_pm_add(struct device *dev) 130 { 131 /* Skip PM setup/initialization. */ 132 if (device_pm_not_required(dev)) 133 return; 134 135 pr_debug("Adding info for %s:%s\n", 136 dev->bus ? dev->bus->name : "No Bus", dev_name(dev)); 137 device_pm_check_callbacks(dev); 138 mutex_lock(&dpm_list_mtx); 139 if (dev->parent && dev->parent->power.is_prepared) 140 dev_warn(dev, "parent %s should not be sleeping\n", 141 dev_name(dev->parent)); 142 list_add_tail(&dev->power.entry, &dpm_list); 143 dev->power.in_dpm_list = true; 144 mutex_unlock(&dpm_list_mtx); 145 } 146 147 /** 148 * device_pm_remove - Remove a device from the PM core's list of active devices. 149 * @dev: Device to be removed from the list. 150 */ 151 void device_pm_remove(struct device *dev) 152 { 153 if (device_pm_not_required(dev)) 154 return; 155 156 pr_debug("Removing info for %s:%s\n", 157 dev->bus ? dev->bus->name : "No Bus", dev_name(dev)); 158 complete_all(&dev->power.completion); 159 mutex_lock(&dpm_list_mtx); 160 list_del_init(&dev->power.entry); 161 dev->power.in_dpm_list = false; 162 mutex_unlock(&dpm_list_mtx); 163 device_wakeup_disable(dev); 164 pm_runtime_remove(dev); 165 device_pm_check_callbacks(dev); 166 } 167 168 /** 169 * device_pm_move_before - Move device in the PM core's list of active devices. 170 * @deva: Device to move in dpm_list. 171 * @devb: Device @deva should come before. 172 */ 173 void device_pm_move_before(struct device *deva, struct device *devb) 174 { 175 pr_debug("Moving %s:%s before %s:%s\n", 176 deva->bus ? deva->bus->name : "No Bus", dev_name(deva), 177 devb->bus ? devb->bus->name : "No Bus", dev_name(devb)); 178 /* Delete deva from dpm_list and reinsert before devb. */ 179 list_move_tail(&deva->power.entry, &devb->power.entry); 180 } 181 182 /** 183 * device_pm_move_after - Move device in the PM core's list of active devices. 184 * @deva: Device to move in dpm_list. 185 * @devb: Device @deva should come after. 186 */ 187 void device_pm_move_after(struct device *deva, struct device *devb) 188 { 189 pr_debug("Moving %s:%s after %s:%s\n", 190 deva->bus ? deva->bus->name : "No Bus", dev_name(deva), 191 devb->bus ? devb->bus->name : "No Bus", dev_name(devb)); 192 /* Delete deva from dpm_list and reinsert after devb. */ 193 list_move(&deva->power.entry, &devb->power.entry); 194 } 195 196 /** 197 * device_pm_move_last - Move device to end of the PM core's list of devices. 198 * @dev: Device to move in dpm_list. 199 */ 200 void device_pm_move_last(struct device *dev) 201 { 202 pr_debug("Moving %s:%s to end of list\n", 203 dev->bus ? dev->bus->name : "No Bus", dev_name(dev)); 204 list_move_tail(&dev->power.entry, &dpm_list); 205 } 206 207 static ktime_t initcall_debug_start(struct device *dev, void *cb) 208 { 209 if (!pm_print_times_enabled) 210 return 0; 211 212 dev_info(dev, "calling %ps @ %i, parent: %s\n", cb, 213 task_pid_nr(current), 214 dev->parent ? dev_name(dev->parent) : "none"); 215 return ktime_get(); 216 } 217 218 static void initcall_debug_report(struct device *dev, ktime_t calltime, 219 void *cb, int error) 220 { 221 ktime_t rettime; 222 223 if (!pm_print_times_enabled) 224 return; 225 226 rettime = ktime_get(); 227 dev_info(dev, "%ps returned %d after %Ld usecs\n", cb, error, 228 (unsigned long long)ktime_us_delta(rettime, calltime)); 229 } 230 231 /** 232 * dpm_wait - Wait for a PM operation to complete. 233 * @dev: Device to wait for. 234 * @async: If unset, wait only if the device's power.async_suspend flag is set. 235 */ 236 static void dpm_wait(struct device *dev, bool async) 237 { 238 if (!dev) 239 return; 240 241 if (async || (pm_async_enabled && dev->power.async_suspend)) 242 wait_for_completion(&dev->power.completion); 243 } 244 245 static int dpm_wait_fn(struct device *dev, void *async_ptr) 246 { 247 dpm_wait(dev, *((bool *)async_ptr)); 248 return 0; 249 } 250 251 static void dpm_wait_for_children(struct device *dev, bool async) 252 { 253 device_for_each_child(dev, &async, dpm_wait_fn); 254 } 255 256 static void dpm_wait_for_suppliers(struct device *dev, bool async) 257 { 258 struct device_link *link; 259 int idx; 260 261 idx = device_links_read_lock(); 262 263 /* 264 * If the supplier goes away right after we've checked the link to it, 265 * we'll wait for its completion to change the state, but that's fine, 266 * because the only things that will block as a result are the SRCU 267 * callbacks freeing the link objects for the links in the list we're 268 * walking. 269 */ 270 list_for_each_entry_rcu_locked(link, &dev->links.suppliers, c_node) 271 if (READ_ONCE(link->status) != DL_STATE_DORMANT) 272 dpm_wait(link->supplier, async); 273 274 device_links_read_unlock(idx); 275 } 276 277 static bool dpm_wait_for_superior(struct device *dev, bool async) 278 { 279 struct device *parent; 280 281 /* 282 * If the device is resumed asynchronously and the parent's callback 283 * deletes both the device and the parent itself, the parent object may 284 * be freed while this function is running, so avoid that by reference 285 * counting the parent once more unless the device has been deleted 286 * already (in which case return right away). 287 */ 288 mutex_lock(&dpm_list_mtx); 289 290 if (!device_pm_initialized(dev)) { 291 mutex_unlock(&dpm_list_mtx); 292 return false; 293 } 294 295 parent = get_device(dev->parent); 296 297 mutex_unlock(&dpm_list_mtx); 298 299 dpm_wait(parent, async); 300 put_device(parent); 301 302 dpm_wait_for_suppliers(dev, async); 303 304 /* 305 * If the parent's callback has deleted the device, attempting to resume 306 * it would be invalid, so avoid doing that then. 307 */ 308 return device_pm_initialized(dev); 309 } 310 311 static void dpm_wait_for_consumers(struct device *dev, bool async) 312 { 313 struct device_link *link; 314 int idx; 315 316 idx = device_links_read_lock(); 317 318 /* 319 * The status of a device link can only be changed from "dormant" by a 320 * probe, but that cannot happen during system suspend/resume. In 321 * theory it can change to "dormant" at that time, but then it is 322 * reasonable to wait for the target device anyway (eg. if it goes 323 * away, it's better to wait for it to go away completely and then 324 * continue instead of trying to continue in parallel with its 325 * unregistration). 326 */ 327 list_for_each_entry_rcu_locked(link, &dev->links.consumers, s_node) 328 if (READ_ONCE(link->status) != DL_STATE_DORMANT) 329 dpm_wait(link->consumer, async); 330 331 device_links_read_unlock(idx); 332 } 333 334 static void dpm_wait_for_subordinate(struct device *dev, bool async) 335 { 336 dpm_wait_for_children(dev, async); 337 dpm_wait_for_consumers(dev, async); 338 } 339 340 /** 341 * pm_op - Return the PM operation appropriate for given PM event. 342 * @ops: PM operations to choose from. 343 * @state: PM transition of the system being carried out. 344 */ 345 static pm_callback_t pm_op(const struct dev_pm_ops *ops, pm_message_t state) 346 { 347 switch (state.event) { 348 #ifdef CONFIG_SUSPEND 349 case PM_EVENT_SUSPEND: 350 return ops->suspend; 351 case PM_EVENT_RESUME: 352 return ops->resume; 353 #endif /* CONFIG_SUSPEND */ 354 #ifdef CONFIG_HIBERNATE_CALLBACKS 355 case PM_EVENT_FREEZE: 356 case PM_EVENT_QUIESCE: 357 return ops->freeze; 358 case PM_EVENT_HIBERNATE: 359 return ops->poweroff; 360 case PM_EVENT_THAW: 361 case PM_EVENT_RECOVER: 362 return ops->thaw; 363 case PM_EVENT_RESTORE: 364 return ops->restore; 365 #endif /* CONFIG_HIBERNATE_CALLBACKS */ 366 } 367 368 return NULL; 369 } 370 371 /** 372 * pm_late_early_op - Return the PM operation appropriate for given PM event. 373 * @ops: PM operations to choose from. 374 * @state: PM transition of the system being carried out. 375 * 376 * Runtime PM is disabled for @dev while this function is being executed. 377 */ 378 static pm_callback_t pm_late_early_op(const struct dev_pm_ops *ops, 379 pm_message_t state) 380 { 381 switch (state.event) { 382 #ifdef CONFIG_SUSPEND 383 case PM_EVENT_SUSPEND: 384 return ops->suspend_late; 385 case PM_EVENT_RESUME: 386 return ops->resume_early; 387 #endif /* CONFIG_SUSPEND */ 388 #ifdef CONFIG_HIBERNATE_CALLBACKS 389 case PM_EVENT_FREEZE: 390 case PM_EVENT_QUIESCE: 391 return ops->freeze_late; 392 case PM_EVENT_HIBERNATE: 393 return ops->poweroff_late; 394 case PM_EVENT_THAW: 395 case PM_EVENT_RECOVER: 396 return ops->thaw_early; 397 case PM_EVENT_RESTORE: 398 return ops->restore_early; 399 #endif /* CONFIG_HIBERNATE_CALLBACKS */ 400 } 401 402 return NULL; 403 } 404 405 /** 406 * pm_noirq_op - Return the PM operation appropriate for given PM event. 407 * @ops: PM operations to choose from. 408 * @state: PM transition of the system being carried out. 409 * 410 * The driver of @dev will not receive interrupts while this function is being 411 * executed. 412 */ 413 static pm_callback_t pm_noirq_op(const struct dev_pm_ops *ops, pm_message_t state) 414 { 415 switch (state.event) { 416 #ifdef CONFIG_SUSPEND 417 case PM_EVENT_SUSPEND: 418 return ops->suspend_noirq; 419 case PM_EVENT_RESUME: 420 return ops->resume_noirq; 421 #endif /* CONFIG_SUSPEND */ 422 #ifdef CONFIG_HIBERNATE_CALLBACKS 423 case PM_EVENT_FREEZE: 424 case PM_EVENT_QUIESCE: 425 return ops->freeze_noirq; 426 case PM_EVENT_HIBERNATE: 427 return ops->poweroff_noirq; 428 case PM_EVENT_THAW: 429 case PM_EVENT_RECOVER: 430 return ops->thaw_noirq; 431 case PM_EVENT_RESTORE: 432 return ops->restore_noirq; 433 #endif /* CONFIG_HIBERNATE_CALLBACKS */ 434 } 435 436 return NULL; 437 } 438 439 static void pm_dev_dbg(struct device *dev, pm_message_t state, const char *info) 440 { 441 dev_dbg(dev, "%s%s%s driver flags: %x\n", info, pm_verb(state.event), 442 ((state.event & PM_EVENT_SLEEP) && device_may_wakeup(dev)) ? 443 ", may wakeup" : "", dev->power.driver_flags); 444 } 445 446 static void pm_dev_err(struct device *dev, pm_message_t state, const char *info, 447 int error) 448 { 449 dev_err(dev, "failed to %s%s: error %d\n", pm_verb(state.event), info, 450 error); 451 } 452 453 static void dpm_show_time(ktime_t starttime, pm_message_t state, int error, 454 const char *info) 455 { 456 ktime_t calltime; 457 u64 usecs64; 458 int usecs; 459 460 calltime = ktime_get(); 461 usecs64 = ktime_to_ns(ktime_sub(calltime, starttime)); 462 do_div(usecs64, NSEC_PER_USEC); 463 usecs = usecs64; 464 if (usecs == 0) 465 usecs = 1; 466 467 pm_pr_dbg("%s%s%s of devices %s after %ld.%03ld msecs\n", 468 info ?: "", info ? " " : "", pm_verb(state.event), 469 error ? "aborted" : "complete", 470 usecs / USEC_PER_MSEC, usecs % USEC_PER_MSEC); 471 } 472 473 static int dpm_run_callback(pm_callback_t cb, struct device *dev, 474 pm_message_t state, const char *info) 475 { 476 ktime_t calltime; 477 int error; 478 479 if (!cb) 480 return 0; 481 482 calltime = initcall_debug_start(dev, cb); 483 484 pm_dev_dbg(dev, state, info); 485 trace_device_pm_callback_start(dev, info, state.event); 486 error = cb(dev); 487 trace_device_pm_callback_end(dev, error); 488 suspend_report_result(dev, cb, error); 489 490 initcall_debug_report(dev, calltime, cb, error); 491 492 return error; 493 } 494 495 #ifdef CONFIG_DPM_WATCHDOG 496 struct dpm_watchdog { 497 struct device *dev; 498 struct task_struct *tsk; 499 struct timer_list timer; 500 bool fatal; 501 }; 502 503 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd) \ 504 struct dpm_watchdog wd 505 506 /** 507 * dpm_watchdog_handler - Driver suspend / resume watchdog handler. 508 * @t: The timer that PM watchdog depends on. 509 * 510 * Called when a driver has timed out suspending or resuming. 511 * There's not much we can do here to recover so panic() to 512 * capture a crash-dump in pstore. 513 */ 514 static void dpm_watchdog_handler(struct timer_list *t) 515 { 516 struct dpm_watchdog *wd = timer_container_of(wd, t, timer); 517 struct timer_list *timer = &wd->timer; 518 unsigned int time_left; 519 520 if (wd->fatal) { 521 dev_emerg(wd->dev, "**** DPM device timeout ****\n"); 522 show_stack(wd->tsk, NULL, KERN_EMERG); 523 panic("%s %s: unrecoverable failure\n", 524 dev_driver_string(wd->dev), dev_name(wd->dev)); 525 } 526 527 time_left = CONFIG_DPM_WATCHDOG_TIMEOUT - CONFIG_DPM_WATCHDOG_WARNING_TIMEOUT; 528 dev_warn(wd->dev, "**** DPM device timeout after %u seconds; %u seconds until panic ****\n", 529 CONFIG_DPM_WATCHDOG_WARNING_TIMEOUT, time_left); 530 show_stack(wd->tsk, NULL, KERN_WARNING); 531 532 wd->fatal = true; 533 mod_timer(timer, jiffies + HZ * time_left); 534 } 535 536 /** 537 * dpm_watchdog_set - Enable pm watchdog for given device. 538 * @wd: Watchdog. Must be allocated on the stack. 539 * @dev: Device to handle. 540 */ 541 static void dpm_watchdog_set(struct dpm_watchdog *wd, struct device *dev) 542 { 543 struct timer_list *timer = &wd->timer; 544 545 wd->dev = dev; 546 wd->tsk = current; 547 wd->fatal = CONFIG_DPM_WATCHDOG_TIMEOUT == CONFIG_DPM_WATCHDOG_WARNING_TIMEOUT; 548 549 timer_setup_on_stack(timer, dpm_watchdog_handler, 0); 550 /* use same timeout value for both suspend and resume */ 551 timer->expires = jiffies + HZ * CONFIG_DPM_WATCHDOG_WARNING_TIMEOUT; 552 add_timer(timer); 553 } 554 555 /** 556 * dpm_watchdog_clear - Disable suspend/resume watchdog. 557 * @wd: Watchdog to disable. 558 */ 559 static void dpm_watchdog_clear(struct dpm_watchdog *wd) 560 { 561 struct timer_list *timer = &wd->timer; 562 563 timer_delete_sync(timer); 564 timer_destroy_on_stack(timer); 565 } 566 #else 567 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd) 568 #define dpm_watchdog_set(x, y) 569 #define dpm_watchdog_clear(x) 570 #endif 571 572 /*------------------------- Resume routines -------------------------*/ 573 574 /** 575 * dev_pm_skip_resume - System-wide device resume optimization check. 576 * @dev: Target device. 577 * 578 * Return: 579 * - %false if the transition under way is RESTORE. 580 * - Return value of dev_pm_skip_suspend() if the transition under way is THAW. 581 * - The logical negation of %power.must_resume otherwise (that is, when the 582 * transition under way is RESUME). 583 */ 584 bool dev_pm_skip_resume(struct device *dev) 585 { 586 if (pm_transition.event == PM_EVENT_RESTORE) 587 return false; 588 589 if (pm_transition.event == PM_EVENT_THAW) 590 return dev_pm_skip_suspend(dev); 591 592 return !dev->power.must_resume; 593 } 594 595 static bool is_async(struct device *dev) 596 { 597 return dev->power.async_suspend && pm_async_enabled 598 && !pm_trace_is_enabled(); 599 } 600 601 static bool __dpm_async(struct device *dev, async_func_t func) 602 { 603 if (dev->power.work_in_progress) 604 return true; 605 606 if (!is_async(dev)) 607 return false; 608 609 dev->power.work_in_progress = true; 610 611 get_device(dev); 612 613 if (async_schedule_dev_nocall(func, dev)) 614 return true; 615 616 put_device(dev); 617 618 return false; 619 } 620 621 static bool dpm_async_fn(struct device *dev, async_func_t func) 622 { 623 guard(mutex)(&async_wip_mtx); 624 625 return __dpm_async(dev, func); 626 } 627 628 static int dpm_async_with_cleanup(struct device *dev, void *fn) 629 { 630 guard(mutex)(&async_wip_mtx); 631 632 if (!__dpm_async(dev, fn)) 633 dev->power.work_in_progress = false; 634 635 return 0; 636 } 637 638 static void dpm_async_resume_children(struct device *dev, async_func_t func) 639 { 640 /* 641 * Prevent racing with dpm_clear_async_state() during initial list 642 * walks in dpm_noirq_resume_devices(), dpm_resume_early(), and 643 * dpm_resume(). 644 */ 645 guard(mutex)(&dpm_list_mtx); 646 647 /* 648 * Start processing "async" children of the device unless it's been 649 * started already for them. 650 * 651 * This could have been done for the device's "async" consumers too, but 652 * they either need to wait for their parents or the processing has 653 * already started for them after their parents were processed. 654 */ 655 device_for_each_child(dev, func, dpm_async_with_cleanup); 656 } 657 658 static void dpm_clear_async_state(struct device *dev) 659 { 660 reinit_completion(&dev->power.completion); 661 dev->power.work_in_progress = false; 662 } 663 664 static bool dpm_root_device(struct device *dev) 665 { 666 return !dev->parent; 667 } 668 669 static void async_resume_noirq(void *data, async_cookie_t cookie); 670 671 /** 672 * device_resume_noirq - Execute a "noirq resume" callback for given device. 673 * @dev: Device to handle. 674 * @state: PM transition of the system being carried out. 675 * @async: If true, the device is being resumed asynchronously. 676 * 677 * The driver of @dev will not receive interrupts while this function is being 678 * executed. 679 */ 680 static void device_resume_noirq(struct device *dev, pm_message_t state, bool async) 681 { 682 pm_callback_t callback = NULL; 683 const char *info = NULL; 684 bool skip_resume; 685 int error = 0; 686 687 TRACE_DEVICE(dev); 688 TRACE_RESUME(0); 689 690 if (dev->power.syscore || dev->power.direct_complete) 691 goto Out; 692 693 if (!dev->power.is_noirq_suspended) 694 goto Out; 695 696 if (!dpm_wait_for_superior(dev, async)) 697 goto Out; 698 699 skip_resume = dev_pm_skip_resume(dev); 700 /* 701 * If the driver callback is skipped below or by the middle layer 702 * callback and device_resume_early() also skips the driver callback for 703 * this device later, it needs to appear as "suspended" to PM-runtime, 704 * so change its status accordingly. 705 * 706 * Otherwise, the device is going to be resumed, so set its PM-runtime 707 * status to "active" unless its power.smart_suspend flag is clear, in 708 * which case it is not necessary to update its PM-runtime status. 709 */ 710 if (skip_resume) 711 pm_runtime_set_suspended(dev); 712 else if (dev_pm_smart_suspend(dev)) 713 pm_runtime_set_active(dev); 714 715 if (dev->pm_domain) { 716 info = "noirq power domain "; 717 callback = pm_noirq_op(&dev->pm_domain->ops, state); 718 } else if (dev->type && dev->type->pm) { 719 info = "noirq type "; 720 callback = pm_noirq_op(dev->type->pm, state); 721 } else if (dev->class && dev->class->pm) { 722 info = "noirq class "; 723 callback = pm_noirq_op(dev->class->pm, state); 724 } else if (dev->bus && dev->bus->pm) { 725 info = "noirq bus "; 726 callback = pm_noirq_op(dev->bus->pm, state); 727 } 728 if (callback) 729 goto Run; 730 731 if (skip_resume) 732 goto Skip; 733 734 if (dev->driver && dev->driver->pm) { 735 info = "noirq driver "; 736 callback = pm_noirq_op(dev->driver->pm, state); 737 } 738 739 Run: 740 error = dpm_run_callback(callback, dev, state, info); 741 742 Skip: 743 dev->power.is_noirq_suspended = false; 744 745 Out: 746 complete_all(&dev->power.completion); 747 TRACE_RESUME(error); 748 749 if (error) { 750 async_error = error; 751 dpm_save_failed_dev(dev_name(dev)); 752 pm_dev_err(dev, state, async ? " async noirq" : " noirq", error); 753 } 754 755 dpm_async_resume_children(dev, async_resume_noirq); 756 } 757 758 static void async_resume_noirq(void *data, async_cookie_t cookie) 759 { 760 struct device *dev = data; 761 762 device_resume_noirq(dev, pm_transition, true); 763 put_device(dev); 764 } 765 766 static void dpm_noirq_resume_devices(pm_message_t state) 767 { 768 struct device *dev; 769 ktime_t starttime = ktime_get(); 770 771 trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, true); 772 773 async_error = 0; 774 pm_transition = state; 775 776 mutex_lock(&dpm_list_mtx); 777 778 /* 779 * Start processing "async" root devices upfront so they don't wait for 780 * the "sync" devices they don't depend on. 781 */ 782 list_for_each_entry(dev, &dpm_noirq_list, power.entry) { 783 dpm_clear_async_state(dev); 784 if (dpm_root_device(dev)) 785 dpm_async_with_cleanup(dev, async_resume_noirq); 786 } 787 788 while (!list_empty(&dpm_noirq_list)) { 789 dev = to_device(dpm_noirq_list.next); 790 list_move_tail(&dev->power.entry, &dpm_late_early_list); 791 792 if (!dpm_async_fn(dev, async_resume_noirq)) { 793 get_device(dev); 794 795 mutex_unlock(&dpm_list_mtx); 796 797 device_resume_noirq(dev, state, false); 798 799 put_device(dev); 800 801 mutex_lock(&dpm_list_mtx); 802 } 803 } 804 mutex_unlock(&dpm_list_mtx); 805 async_synchronize_full(); 806 dpm_show_time(starttime, state, 0, "noirq"); 807 if (async_error) 808 dpm_save_failed_step(SUSPEND_RESUME_NOIRQ); 809 810 trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, false); 811 } 812 813 /** 814 * dpm_resume_noirq - Execute "noirq resume" callbacks for all devices. 815 * @state: PM transition of the system being carried out. 816 * 817 * Invoke the "noirq" resume callbacks for all devices in dpm_noirq_list and 818 * allow device drivers' interrupt handlers to be called. 819 */ 820 void dpm_resume_noirq(pm_message_t state) 821 { 822 dpm_noirq_resume_devices(state); 823 824 resume_device_irqs(); 825 device_wakeup_disarm_wake_irqs(); 826 } 827 828 static void async_resume_early(void *data, async_cookie_t cookie); 829 830 /** 831 * device_resume_early - Execute an "early resume" callback for given device. 832 * @dev: Device to handle. 833 * @state: PM transition of the system being carried out. 834 * @async: If true, the device is being resumed asynchronously. 835 * 836 * Runtime PM is disabled for @dev while this function is being executed. 837 */ 838 static void device_resume_early(struct device *dev, pm_message_t state, bool async) 839 { 840 pm_callback_t callback = NULL; 841 const char *info = NULL; 842 int error = 0; 843 844 TRACE_DEVICE(dev); 845 TRACE_RESUME(0); 846 847 if (dev->power.syscore || dev->power.direct_complete) 848 goto Out; 849 850 if (!dev->power.is_late_suspended) 851 goto Out; 852 853 if (!dpm_wait_for_superior(dev, async)) 854 goto Out; 855 856 if (dev->pm_domain) { 857 info = "early power domain "; 858 callback = pm_late_early_op(&dev->pm_domain->ops, state); 859 } else if (dev->type && dev->type->pm) { 860 info = "early type "; 861 callback = pm_late_early_op(dev->type->pm, state); 862 } else if (dev->class && dev->class->pm) { 863 info = "early class "; 864 callback = pm_late_early_op(dev->class->pm, state); 865 } else if (dev->bus && dev->bus->pm) { 866 info = "early bus "; 867 callback = pm_late_early_op(dev->bus->pm, state); 868 } 869 if (callback) 870 goto Run; 871 872 if (dev_pm_skip_resume(dev)) 873 goto Skip; 874 875 if (dev->driver && dev->driver->pm) { 876 info = "early driver "; 877 callback = pm_late_early_op(dev->driver->pm, state); 878 } 879 880 Run: 881 error = dpm_run_callback(callback, dev, state, info); 882 883 Skip: 884 dev->power.is_late_suspended = false; 885 886 Out: 887 TRACE_RESUME(error); 888 889 pm_runtime_enable(dev); 890 complete_all(&dev->power.completion); 891 892 if (error) { 893 async_error = error; 894 dpm_save_failed_dev(dev_name(dev)); 895 pm_dev_err(dev, state, async ? " async early" : " early", error); 896 } 897 898 dpm_async_resume_children(dev, async_resume_early); 899 } 900 901 static void async_resume_early(void *data, async_cookie_t cookie) 902 { 903 struct device *dev = data; 904 905 device_resume_early(dev, pm_transition, true); 906 put_device(dev); 907 } 908 909 /** 910 * dpm_resume_early - Execute "early resume" callbacks for all devices. 911 * @state: PM transition of the system being carried out. 912 */ 913 void dpm_resume_early(pm_message_t state) 914 { 915 struct device *dev; 916 ktime_t starttime = ktime_get(); 917 918 trace_suspend_resume(TPS("dpm_resume_early"), state.event, true); 919 920 async_error = 0; 921 pm_transition = state; 922 923 mutex_lock(&dpm_list_mtx); 924 925 /* 926 * Start processing "async" root devices upfront so they don't wait for 927 * the "sync" devices they don't depend on. 928 */ 929 list_for_each_entry(dev, &dpm_late_early_list, power.entry) { 930 dpm_clear_async_state(dev); 931 if (dpm_root_device(dev)) 932 dpm_async_with_cleanup(dev, async_resume_early); 933 } 934 935 while (!list_empty(&dpm_late_early_list)) { 936 dev = to_device(dpm_late_early_list.next); 937 list_move_tail(&dev->power.entry, &dpm_suspended_list); 938 939 if (!dpm_async_fn(dev, async_resume_early)) { 940 get_device(dev); 941 942 mutex_unlock(&dpm_list_mtx); 943 944 device_resume_early(dev, state, false); 945 946 put_device(dev); 947 948 mutex_lock(&dpm_list_mtx); 949 } 950 } 951 mutex_unlock(&dpm_list_mtx); 952 async_synchronize_full(); 953 dpm_show_time(starttime, state, 0, "early"); 954 if (async_error) 955 dpm_save_failed_step(SUSPEND_RESUME_EARLY); 956 957 trace_suspend_resume(TPS("dpm_resume_early"), state.event, false); 958 } 959 960 /** 961 * dpm_resume_start - Execute "noirq" and "early" device callbacks. 962 * @state: PM transition of the system being carried out. 963 */ 964 void dpm_resume_start(pm_message_t state) 965 { 966 dpm_resume_noirq(state); 967 dpm_resume_early(state); 968 } 969 EXPORT_SYMBOL_GPL(dpm_resume_start); 970 971 static void async_resume(void *data, async_cookie_t cookie); 972 973 /** 974 * device_resume - Execute "resume" callbacks for given device. 975 * @dev: Device to handle. 976 * @state: PM transition of the system being carried out. 977 * @async: If true, the device is being resumed asynchronously. 978 */ 979 static void device_resume(struct device *dev, pm_message_t state, bool async) 980 { 981 pm_callback_t callback = NULL; 982 const char *info = NULL; 983 int error = 0; 984 DECLARE_DPM_WATCHDOG_ON_STACK(wd); 985 986 TRACE_DEVICE(dev); 987 TRACE_RESUME(0); 988 989 if (dev->power.syscore) 990 goto Complete; 991 992 if (!dev->power.is_suspended) 993 goto Complete; 994 995 dev->power.is_suspended = false; 996 997 if (dev->power.direct_complete) { 998 /* 999 * Allow new children to be added under the device after this 1000 * point if it has no PM callbacks. 1001 */ 1002 if (dev->power.no_pm_callbacks) 1003 dev->power.is_prepared = false; 1004 1005 /* Match the pm_runtime_disable() in device_suspend(). */ 1006 pm_runtime_enable(dev); 1007 goto Complete; 1008 } 1009 1010 if (!dpm_wait_for_superior(dev, async)) 1011 goto Complete; 1012 1013 dpm_watchdog_set(&wd, dev); 1014 device_lock(dev); 1015 1016 /* 1017 * This is a fib. But we'll allow new children to be added below 1018 * a resumed device, even if the device hasn't been completed yet. 1019 */ 1020 dev->power.is_prepared = false; 1021 1022 if (dev->pm_domain) { 1023 info = "power domain "; 1024 callback = pm_op(&dev->pm_domain->ops, state); 1025 goto Driver; 1026 } 1027 1028 if (dev->type && dev->type->pm) { 1029 info = "type "; 1030 callback = pm_op(dev->type->pm, state); 1031 goto Driver; 1032 } 1033 1034 if (dev->class && dev->class->pm) { 1035 info = "class "; 1036 callback = pm_op(dev->class->pm, state); 1037 goto Driver; 1038 } 1039 1040 if (dev->bus) { 1041 if (dev->bus->pm) { 1042 info = "bus "; 1043 callback = pm_op(dev->bus->pm, state); 1044 } else if (dev->bus->resume) { 1045 info = "legacy bus "; 1046 callback = dev->bus->resume; 1047 goto End; 1048 } 1049 } 1050 1051 Driver: 1052 if (!callback && dev->driver && dev->driver->pm) { 1053 info = "driver "; 1054 callback = pm_op(dev->driver->pm, state); 1055 } 1056 1057 End: 1058 error = dpm_run_callback(callback, dev, state, info); 1059 1060 device_unlock(dev); 1061 dpm_watchdog_clear(&wd); 1062 1063 Complete: 1064 complete_all(&dev->power.completion); 1065 1066 TRACE_RESUME(error); 1067 1068 if (error) { 1069 async_error = error; 1070 dpm_save_failed_dev(dev_name(dev)); 1071 pm_dev_err(dev, state, async ? " async" : "", error); 1072 } 1073 1074 dpm_async_resume_children(dev, async_resume); 1075 } 1076 1077 static void async_resume(void *data, async_cookie_t cookie) 1078 { 1079 struct device *dev = data; 1080 1081 device_resume(dev, pm_transition, true); 1082 put_device(dev); 1083 } 1084 1085 /** 1086 * dpm_resume - Execute "resume" callbacks for non-sysdev devices. 1087 * @state: PM transition of the system being carried out. 1088 * 1089 * Execute the appropriate "resume" callback for all devices whose status 1090 * indicates that they are suspended. 1091 */ 1092 void dpm_resume(pm_message_t state) 1093 { 1094 struct device *dev; 1095 ktime_t starttime = ktime_get(); 1096 1097 trace_suspend_resume(TPS("dpm_resume"), state.event, true); 1098 might_sleep(); 1099 1100 pm_transition = state; 1101 async_error = 0; 1102 1103 mutex_lock(&dpm_list_mtx); 1104 1105 /* 1106 * Start processing "async" root devices upfront so they don't wait for 1107 * the "sync" devices they don't depend on. 1108 */ 1109 list_for_each_entry(dev, &dpm_suspended_list, power.entry) { 1110 dpm_clear_async_state(dev); 1111 if (dpm_root_device(dev)) 1112 dpm_async_with_cleanup(dev, async_resume); 1113 } 1114 1115 while (!list_empty(&dpm_suspended_list)) { 1116 dev = to_device(dpm_suspended_list.next); 1117 list_move_tail(&dev->power.entry, &dpm_prepared_list); 1118 1119 if (!dpm_async_fn(dev, async_resume)) { 1120 get_device(dev); 1121 1122 mutex_unlock(&dpm_list_mtx); 1123 1124 device_resume(dev, state, false); 1125 1126 put_device(dev); 1127 1128 mutex_lock(&dpm_list_mtx); 1129 } 1130 } 1131 mutex_unlock(&dpm_list_mtx); 1132 async_synchronize_full(); 1133 dpm_show_time(starttime, state, 0, NULL); 1134 if (async_error) 1135 dpm_save_failed_step(SUSPEND_RESUME); 1136 1137 cpufreq_resume(); 1138 devfreq_resume(); 1139 trace_suspend_resume(TPS("dpm_resume"), state.event, false); 1140 } 1141 1142 /** 1143 * device_complete - Complete a PM transition for given device. 1144 * @dev: Device to handle. 1145 * @state: PM transition of the system being carried out. 1146 */ 1147 static void device_complete(struct device *dev, pm_message_t state) 1148 { 1149 void (*callback)(struct device *) = NULL; 1150 const char *info = NULL; 1151 1152 if (dev->power.syscore) 1153 goto out; 1154 1155 device_lock(dev); 1156 1157 if (dev->pm_domain) { 1158 info = "completing power domain "; 1159 callback = dev->pm_domain->ops.complete; 1160 } else if (dev->type && dev->type->pm) { 1161 info = "completing type "; 1162 callback = dev->type->pm->complete; 1163 } else if (dev->class && dev->class->pm) { 1164 info = "completing class "; 1165 callback = dev->class->pm->complete; 1166 } else if (dev->bus && dev->bus->pm) { 1167 info = "completing bus "; 1168 callback = dev->bus->pm->complete; 1169 } 1170 1171 if (!callback && dev->driver && dev->driver->pm) { 1172 info = "completing driver "; 1173 callback = dev->driver->pm->complete; 1174 } 1175 1176 if (callback) { 1177 pm_dev_dbg(dev, state, info); 1178 callback(dev); 1179 } 1180 1181 device_unlock(dev); 1182 1183 out: 1184 /* If enabling runtime PM for the device is blocked, unblock it. */ 1185 pm_runtime_unblock(dev); 1186 pm_runtime_put(dev); 1187 } 1188 1189 /** 1190 * dpm_complete - Complete a PM transition for all non-sysdev devices. 1191 * @state: PM transition of the system being carried out. 1192 * 1193 * Execute the ->complete() callbacks for all devices whose PM status is not 1194 * DPM_ON (this allows new devices to be registered). 1195 */ 1196 void dpm_complete(pm_message_t state) 1197 { 1198 struct list_head list; 1199 1200 trace_suspend_resume(TPS("dpm_complete"), state.event, true); 1201 might_sleep(); 1202 1203 INIT_LIST_HEAD(&list); 1204 mutex_lock(&dpm_list_mtx); 1205 while (!list_empty(&dpm_prepared_list)) { 1206 struct device *dev = to_device(dpm_prepared_list.prev); 1207 1208 get_device(dev); 1209 dev->power.is_prepared = false; 1210 list_move(&dev->power.entry, &list); 1211 1212 mutex_unlock(&dpm_list_mtx); 1213 1214 trace_device_pm_callback_start(dev, "", state.event); 1215 device_complete(dev, state); 1216 trace_device_pm_callback_end(dev, 0); 1217 1218 put_device(dev); 1219 1220 mutex_lock(&dpm_list_mtx); 1221 } 1222 list_splice(&list, &dpm_list); 1223 mutex_unlock(&dpm_list_mtx); 1224 1225 /* Allow device probing and trigger re-probing of deferred devices */ 1226 device_unblock_probing(); 1227 trace_suspend_resume(TPS("dpm_complete"), state.event, false); 1228 } 1229 1230 /** 1231 * dpm_resume_end - Execute "resume" callbacks and complete system transition. 1232 * @state: PM transition of the system being carried out. 1233 * 1234 * Execute "resume" callbacks for all devices and complete the PM transition of 1235 * the system. 1236 */ 1237 void dpm_resume_end(pm_message_t state) 1238 { 1239 pm_restore_gfp_mask(); 1240 dpm_resume(state); 1241 dpm_complete(state); 1242 } 1243 EXPORT_SYMBOL_GPL(dpm_resume_end); 1244 1245 1246 /*------------------------- Suspend routines -------------------------*/ 1247 1248 static bool dpm_leaf_device(struct device *dev) 1249 { 1250 struct device *child; 1251 1252 lockdep_assert_held(&dpm_list_mtx); 1253 1254 child = device_find_any_child(dev); 1255 if (child) { 1256 put_device(child); 1257 1258 return false; 1259 } 1260 1261 return true; 1262 } 1263 1264 static void dpm_async_suspend_parent(struct device *dev, async_func_t func) 1265 { 1266 guard(mutex)(&dpm_list_mtx); 1267 1268 /* 1269 * If the device is suspended asynchronously and the parent's callback 1270 * deletes both the device and the parent itself, the parent object may 1271 * be freed while this function is running, so avoid that by checking 1272 * if the device has been deleted already as the parent cannot be 1273 * deleted before it. 1274 */ 1275 if (!device_pm_initialized(dev)) 1276 return; 1277 1278 /* Start processing the device's parent if it is "async". */ 1279 if (dev->parent) 1280 dpm_async_with_cleanup(dev->parent, func); 1281 } 1282 1283 /** 1284 * resume_event - Return a "resume" message for given "suspend" sleep state. 1285 * @sleep_state: PM message representing a sleep state. 1286 * 1287 * Return a PM message representing the resume event corresponding to given 1288 * sleep state. 1289 */ 1290 static pm_message_t resume_event(pm_message_t sleep_state) 1291 { 1292 switch (sleep_state.event) { 1293 case PM_EVENT_SUSPEND: 1294 return PMSG_RESUME; 1295 case PM_EVENT_FREEZE: 1296 case PM_EVENT_QUIESCE: 1297 return PMSG_RECOVER; 1298 case PM_EVENT_HIBERNATE: 1299 return PMSG_RESTORE; 1300 } 1301 return PMSG_ON; 1302 } 1303 1304 static void dpm_superior_set_must_resume(struct device *dev) 1305 { 1306 struct device_link *link; 1307 int idx; 1308 1309 if (dev->parent) 1310 dev->parent->power.must_resume = true; 1311 1312 idx = device_links_read_lock(); 1313 1314 list_for_each_entry_rcu_locked(link, &dev->links.suppliers, c_node) 1315 link->supplier->power.must_resume = true; 1316 1317 device_links_read_unlock(idx); 1318 } 1319 1320 static void async_suspend_noirq(void *data, async_cookie_t cookie); 1321 1322 /** 1323 * device_suspend_noirq - Execute a "noirq suspend" callback for given device. 1324 * @dev: Device to handle. 1325 * @state: PM transition of the system being carried out. 1326 * @async: If true, the device is being suspended asynchronously. 1327 * 1328 * The driver of @dev will not receive interrupts while this function is being 1329 * executed. 1330 */ 1331 static int device_suspend_noirq(struct device *dev, pm_message_t state, bool async) 1332 { 1333 pm_callback_t callback = NULL; 1334 const char *info = NULL; 1335 int error = 0; 1336 1337 TRACE_DEVICE(dev); 1338 TRACE_SUSPEND(0); 1339 1340 dpm_wait_for_subordinate(dev, async); 1341 1342 if (async_error) 1343 goto Complete; 1344 1345 if (dev->power.syscore || dev->power.direct_complete) 1346 goto Complete; 1347 1348 if (dev->pm_domain) { 1349 info = "noirq power domain "; 1350 callback = pm_noirq_op(&dev->pm_domain->ops, state); 1351 } else if (dev->type && dev->type->pm) { 1352 info = "noirq type "; 1353 callback = pm_noirq_op(dev->type->pm, state); 1354 } else if (dev->class && dev->class->pm) { 1355 info = "noirq class "; 1356 callback = pm_noirq_op(dev->class->pm, state); 1357 } else if (dev->bus && dev->bus->pm) { 1358 info = "noirq bus "; 1359 callback = pm_noirq_op(dev->bus->pm, state); 1360 } 1361 if (callback) 1362 goto Run; 1363 1364 if (dev_pm_skip_suspend(dev)) 1365 goto Skip; 1366 1367 if (dev->driver && dev->driver->pm) { 1368 info = "noirq driver "; 1369 callback = pm_noirq_op(dev->driver->pm, state); 1370 } 1371 1372 Run: 1373 error = dpm_run_callback(callback, dev, state, info); 1374 if (error) { 1375 async_error = error; 1376 dpm_save_failed_dev(dev_name(dev)); 1377 pm_dev_err(dev, state, async ? " async noirq" : " noirq", error); 1378 goto Complete; 1379 } 1380 1381 Skip: 1382 dev->power.is_noirq_suspended = true; 1383 1384 /* 1385 * Devices must be resumed unless they are explicitly allowed to be left 1386 * in suspend, but even in that case skipping the resume of devices that 1387 * were in use right before the system suspend (as indicated by their 1388 * runtime PM usage counters and child counters) would be suboptimal. 1389 */ 1390 if (!(dev_pm_test_driver_flags(dev, DPM_FLAG_MAY_SKIP_RESUME) && 1391 dev->power.may_skip_resume) || !pm_runtime_need_not_resume(dev)) 1392 dev->power.must_resume = true; 1393 1394 if (dev->power.must_resume) 1395 dpm_superior_set_must_resume(dev); 1396 1397 Complete: 1398 complete_all(&dev->power.completion); 1399 TRACE_SUSPEND(error); 1400 1401 if (error || async_error) 1402 return error; 1403 1404 dpm_async_suspend_parent(dev, async_suspend_noirq); 1405 1406 return 0; 1407 } 1408 1409 static void async_suspend_noirq(void *data, async_cookie_t cookie) 1410 { 1411 struct device *dev = data; 1412 1413 device_suspend_noirq(dev, pm_transition, true); 1414 put_device(dev); 1415 } 1416 1417 static int dpm_noirq_suspend_devices(pm_message_t state) 1418 { 1419 ktime_t starttime = ktime_get(); 1420 struct device *dev; 1421 int error = 0; 1422 1423 trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, true); 1424 1425 pm_transition = state; 1426 async_error = 0; 1427 1428 mutex_lock(&dpm_list_mtx); 1429 1430 /* 1431 * Start processing "async" leaf devices upfront so they don't need to 1432 * wait for the "sync" devices they don't depend on. 1433 */ 1434 list_for_each_entry_reverse(dev, &dpm_late_early_list, power.entry) { 1435 dpm_clear_async_state(dev); 1436 if (dpm_leaf_device(dev)) 1437 dpm_async_with_cleanup(dev, async_suspend_noirq); 1438 } 1439 1440 while (!list_empty(&dpm_late_early_list)) { 1441 dev = to_device(dpm_late_early_list.prev); 1442 1443 list_move(&dev->power.entry, &dpm_noirq_list); 1444 1445 if (dpm_async_fn(dev, async_suspend_noirq)) 1446 continue; 1447 1448 get_device(dev); 1449 1450 mutex_unlock(&dpm_list_mtx); 1451 1452 error = device_suspend_noirq(dev, state, false); 1453 1454 put_device(dev); 1455 1456 mutex_lock(&dpm_list_mtx); 1457 1458 if (error || async_error) { 1459 /* 1460 * Move all devices to the target list to resume them 1461 * properly. 1462 */ 1463 list_splice_init(&dpm_late_early_list, &dpm_noirq_list); 1464 break; 1465 } 1466 } 1467 1468 mutex_unlock(&dpm_list_mtx); 1469 1470 async_synchronize_full(); 1471 if (!error) 1472 error = async_error; 1473 1474 if (error) 1475 dpm_save_failed_step(SUSPEND_SUSPEND_NOIRQ); 1476 1477 dpm_show_time(starttime, state, error, "noirq"); 1478 trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, false); 1479 return error; 1480 } 1481 1482 /** 1483 * dpm_suspend_noirq - Execute "noirq suspend" callbacks for all devices. 1484 * @state: PM transition of the system being carried out. 1485 * 1486 * Prevent device drivers' interrupt handlers from being called and invoke 1487 * "noirq" suspend callbacks for all non-sysdev devices. 1488 */ 1489 int dpm_suspend_noirq(pm_message_t state) 1490 { 1491 int ret; 1492 1493 device_wakeup_arm_wake_irqs(); 1494 suspend_device_irqs(); 1495 1496 ret = dpm_noirq_suspend_devices(state); 1497 if (ret) 1498 dpm_resume_noirq(resume_event(state)); 1499 1500 return ret; 1501 } 1502 1503 static void dpm_propagate_wakeup_to_parent(struct device *dev) 1504 { 1505 struct device *parent = dev->parent; 1506 1507 if (!parent) 1508 return; 1509 1510 spin_lock_irq(&parent->power.lock); 1511 1512 if (device_wakeup_path(dev) && !parent->power.ignore_children) 1513 parent->power.wakeup_path = true; 1514 1515 spin_unlock_irq(&parent->power.lock); 1516 } 1517 1518 static void async_suspend_late(void *data, async_cookie_t cookie); 1519 1520 /** 1521 * device_suspend_late - Execute a "late suspend" callback for given device. 1522 * @dev: Device to handle. 1523 * @state: PM transition of the system being carried out. 1524 * @async: If true, the device is being suspended asynchronously. 1525 * 1526 * Runtime PM is disabled for @dev while this function is being executed. 1527 */ 1528 static int device_suspend_late(struct device *dev, pm_message_t state, bool async) 1529 { 1530 pm_callback_t callback = NULL; 1531 const char *info = NULL; 1532 int error = 0; 1533 1534 TRACE_DEVICE(dev); 1535 TRACE_SUSPEND(0); 1536 1537 /* 1538 * Disable runtime PM for the device without checking if there is a 1539 * pending resume request for it. 1540 */ 1541 __pm_runtime_disable(dev, false); 1542 1543 dpm_wait_for_subordinate(dev, async); 1544 1545 if (async_error) 1546 goto Complete; 1547 1548 if (pm_wakeup_pending()) { 1549 async_error = -EBUSY; 1550 goto Complete; 1551 } 1552 1553 if (dev->power.syscore || dev->power.direct_complete) 1554 goto Complete; 1555 1556 if (dev->pm_domain) { 1557 info = "late power domain "; 1558 callback = pm_late_early_op(&dev->pm_domain->ops, state); 1559 } else if (dev->type && dev->type->pm) { 1560 info = "late type "; 1561 callback = pm_late_early_op(dev->type->pm, state); 1562 } else if (dev->class && dev->class->pm) { 1563 info = "late class "; 1564 callback = pm_late_early_op(dev->class->pm, state); 1565 } else if (dev->bus && dev->bus->pm) { 1566 info = "late bus "; 1567 callback = pm_late_early_op(dev->bus->pm, state); 1568 } 1569 if (callback) 1570 goto Run; 1571 1572 if (dev_pm_skip_suspend(dev)) 1573 goto Skip; 1574 1575 if (dev->driver && dev->driver->pm) { 1576 info = "late driver "; 1577 callback = pm_late_early_op(dev->driver->pm, state); 1578 } 1579 1580 Run: 1581 error = dpm_run_callback(callback, dev, state, info); 1582 if (error) { 1583 async_error = error; 1584 dpm_save_failed_dev(dev_name(dev)); 1585 pm_dev_err(dev, state, async ? " async late" : " late", error); 1586 goto Complete; 1587 } 1588 dpm_propagate_wakeup_to_parent(dev); 1589 1590 Skip: 1591 dev->power.is_late_suspended = true; 1592 1593 Complete: 1594 TRACE_SUSPEND(error); 1595 complete_all(&dev->power.completion); 1596 1597 if (error || async_error) 1598 return error; 1599 1600 dpm_async_suspend_parent(dev, async_suspend_late); 1601 1602 return 0; 1603 } 1604 1605 static void async_suspend_late(void *data, async_cookie_t cookie) 1606 { 1607 struct device *dev = data; 1608 1609 device_suspend_late(dev, pm_transition, true); 1610 put_device(dev); 1611 } 1612 1613 /** 1614 * dpm_suspend_late - Execute "late suspend" callbacks for all devices. 1615 * @state: PM transition of the system being carried out. 1616 */ 1617 int dpm_suspend_late(pm_message_t state) 1618 { 1619 ktime_t starttime = ktime_get(); 1620 struct device *dev; 1621 int error = 0; 1622 1623 trace_suspend_resume(TPS("dpm_suspend_late"), state.event, true); 1624 1625 pm_transition = state; 1626 async_error = 0; 1627 1628 wake_up_all_idle_cpus(); 1629 1630 mutex_lock(&dpm_list_mtx); 1631 1632 /* 1633 * Start processing "async" leaf devices upfront so they don't need to 1634 * wait for the "sync" devices they don't depend on. 1635 */ 1636 list_for_each_entry_reverse(dev, &dpm_suspended_list, power.entry) { 1637 dpm_clear_async_state(dev); 1638 if (dpm_leaf_device(dev)) 1639 dpm_async_with_cleanup(dev, async_suspend_late); 1640 } 1641 1642 while (!list_empty(&dpm_suspended_list)) { 1643 dev = to_device(dpm_suspended_list.prev); 1644 1645 list_move(&dev->power.entry, &dpm_late_early_list); 1646 1647 if (dpm_async_fn(dev, async_suspend_late)) 1648 continue; 1649 1650 get_device(dev); 1651 1652 mutex_unlock(&dpm_list_mtx); 1653 1654 error = device_suspend_late(dev, state, false); 1655 1656 put_device(dev); 1657 1658 mutex_lock(&dpm_list_mtx); 1659 1660 if (error || async_error) { 1661 /* 1662 * Move all devices to the target list to resume them 1663 * properly. 1664 */ 1665 list_splice_init(&dpm_suspended_list, &dpm_late_early_list); 1666 break; 1667 } 1668 } 1669 1670 mutex_unlock(&dpm_list_mtx); 1671 1672 async_synchronize_full(); 1673 if (!error) 1674 error = async_error; 1675 1676 if (error) { 1677 dpm_save_failed_step(SUSPEND_SUSPEND_LATE); 1678 dpm_resume_early(resume_event(state)); 1679 } 1680 dpm_show_time(starttime, state, error, "late"); 1681 trace_suspend_resume(TPS("dpm_suspend_late"), state.event, false); 1682 return error; 1683 } 1684 1685 /** 1686 * dpm_suspend_end - Execute "late" and "noirq" device suspend callbacks. 1687 * @state: PM transition of the system being carried out. 1688 */ 1689 int dpm_suspend_end(pm_message_t state) 1690 { 1691 ktime_t starttime = ktime_get(); 1692 int error; 1693 1694 error = dpm_suspend_late(state); 1695 if (error) 1696 goto out; 1697 1698 error = dpm_suspend_noirq(state); 1699 if (error) 1700 dpm_resume_early(resume_event(state)); 1701 1702 out: 1703 dpm_show_time(starttime, state, error, "end"); 1704 return error; 1705 } 1706 EXPORT_SYMBOL_GPL(dpm_suspend_end); 1707 1708 /** 1709 * legacy_suspend - Execute a legacy (bus or class) suspend callback for device. 1710 * @dev: Device to suspend. 1711 * @state: PM transition of the system being carried out. 1712 * @cb: Suspend callback to execute. 1713 * @info: string description of caller. 1714 */ 1715 static int legacy_suspend(struct device *dev, pm_message_t state, 1716 int (*cb)(struct device *dev, pm_message_t state), 1717 const char *info) 1718 { 1719 int error; 1720 ktime_t calltime; 1721 1722 calltime = initcall_debug_start(dev, cb); 1723 1724 trace_device_pm_callback_start(dev, info, state.event); 1725 error = cb(dev, state); 1726 trace_device_pm_callback_end(dev, error); 1727 suspend_report_result(dev, cb, error); 1728 1729 initcall_debug_report(dev, calltime, cb, error); 1730 1731 return error; 1732 } 1733 1734 static void dpm_clear_superiors_direct_complete(struct device *dev) 1735 { 1736 struct device_link *link; 1737 int idx; 1738 1739 if (dev->parent) { 1740 spin_lock_irq(&dev->parent->power.lock); 1741 dev->parent->power.direct_complete = false; 1742 spin_unlock_irq(&dev->parent->power.lock); 1743 } 1744 1745 idx = device_links_read_lock(); 1746 1747 list_for_each_entry_rcu_locked(link, &dev->links.suppliers, c_node) { 1748 spin_lock_irq(&link->supplier->power.lock); 1749 link->supplier->power.direct_complete = false; 1750 spin_unlock_irq(&link->supplier->power.lock); 1751 } 1752 1753 device_links_read_unlock(idx); 1754 } 1755 1756 static void async_suspend(void *data, async_cookie_t cookie); 1757 1758 /** 1759 * device_suspend - Execute "suspend" callbacks for given device. 1760 * @dev: Device to handle. 1761 * @state: PM transition of the system being carried out. 1762 * @async: If true, the device is being suspended asynchronously. 1763 */ 1764 static int device_suspend(struct device *dev, pm_message_t state, bool async) 1765 { 1766 pm_callback_t callback = NULL; 1767 const char *info = NULL; 1768 int error = 0; 1769 DECLARE_DPM_WATCHDOG_ON_STACK(wd); 1770 1771 TRACE_DEVICE(dev); 1772 TRACE_SUSPEND(0); 1773 1774 dpm_wait_for_subordinate(dev, async); 1775 1776 if (async_error) { 1777 dev->power.direct_complete = false; 1778 goto Complete; 1779 } 1780 1781 /* 1782 * Wait for possible runtime PM transitions of the device in progress 1783 * to complete and if there's a runtime resume request pending for it, 1784 * resume it before proceeding with invoking the system-wide suspend 1785 * callbacks for it. 1786 * 1787 * If the system-wide suspend callbacks below change the configuration 1788 * of the device, they must disable runtime PM for it or otherwise 1789 * ensure that its runtime-resume callbacks will not be confused by that 1790 * change in case they are invoked going forward. 1791 */ 1792 pm_runtime_barrier(dev); 1793 1794 if (pm_wakeup_pending()) { 1795 dev->power.direct_complete = false; 1796 async_error = -EBUSY; 1797 goto Complete; 1798 } 1799 1800 if (dev->power.syscore) 1801 goto Complete; 1802 1803 /* Avoid direct_complete to let wakeup_path propagate. */ 1804 if (device_may_wakeup(dev) || device_wakeup_path(dev)) 1805 dev->power.direct_complete = false; 1806 1807 if (dev->power.direct_complete) { 1808 if (pm_runtime_status_suspended(dev)) { 1809 pm_runtime_disable(dev); 1810 if (pm_runtime_status_suspended(dev)) { 1811 pm_dev_dbg(dev, state, "direct-complete "); 1812 dev->power.is_suspended = true; 1813 goto Complete; 1814 } 1815 1816 pm_runtime_enable(dev); 1817 } 1818 dev->power.direct_complete = false; 1819 } 1820 1821 dev->power.may_skip_resume = true; 1822 dev->power.must_resume = !dev_pm_test_driver_flags(dev, DPM_FLAG_MAY_SKIP_RESUME); 1823 1824 dpm_watchdog_set(&wd, dev); 1825 device_lock(dev); 1826 1827 if (dev->pm_domain) { 1828 info = "power domain "; 1829 callback = pm_op(&dev->pm_domain->ops, state); 1830 goto Run; 1831 } 1832 1833 if (dev->type && dev->type->pm) { 1834 info = "type "; 1835 callback = pm_op(dev->type->pm, state); 1836 goto Run; 1837 } 1838 1839 if (dev->class && dev->class->pm) { 1840 info = "class "; 1841 callback = pm_op(dev->class->pm, state); 1842 goto Run; 1843 } 1844 1845 if (dev->bus) { 1846 if (dev->bus->pm) { 1847 info = "bus "; 1848 callback = pm_op(dev->bus->pm, state); 1849 } else if (dev->bus->suspend) { 1850 pm_dev_dbg(dev, state, "legacy bus "); 1851 error = legacy_suspend(dev, state, dev->bus->suspend, 1852 "legacy bus "); 1853 goto End; 1854 } 1855 } 1856 1857 Run: 1858 if (!callback && dev->driver && dev->driver->pm) { 1859 info = "driver "; 1860 callback = pm_op(dev->driver->pm, state); 1861 } 1862 1863 error = dpm_run_callback(callback, dev, state, info); 1864 1865 End: 1866 if (!error) { 1867 dev->power.is_suspended = true; 1868 if (device_may_wakeup(dev)) 1869 dev->power.wakeup_path = true; 1870 1871 dpm_propagate_wakeup_to_parent(dev); 1872 dpm_clear_superiors_direct_complete(dev); 1873 } 1874 1875 device_unlock(dev); 1876 dpm_watchdog_clear(&wd); 1877 1878 Complete: 1879 if (error) { 1880 async_error = error; 1881 dpm_save_failed_dev(dev_name(dev)); 1882 pm_dev_err(dev, state, async ? " async" : "", error); 1883 } 1884 1885 complete_all(&dev->power.completion); 1886 TRACE_SUSPEND(error); 1887 1888 if (error || async_error) 1889 return error; 1890 1891 dpm_async_suspend_parent(dev, async_suspend); 1892 1893 return 0; 1894 } 1895 1896 static void async_suspend(void *data, async_cookie_t cookie) 1897 { 1898 struct device *dev = data; 1899 1900 device_suspend(dev, pm_transition, true); 1901 put_device(dev); 1902 } 1903 1904 /** 1905 * dpm_suspend - Execute "suspend" callbacks for all non-sysdev devices. 1906 * @state: PM transition of the system being carried out. 1907 */ 1908 int dpm_suspend(pm_message_t state) 1909 { 1910 ktime_t starttime = ktime_get(); 1911 struct device *dev; 1912 int error = 0; 1913 1914 trace_suspend_resume(TPS("dpm_suspend"), state.event, true); 1915 might_sleep(); 1916 1917 devfreq_suspend(); 1918 cpufreq_suspend(); 1919 1920 pm_transition = state; 1921 async_error = 0; 1922 1923 mutex_lock(&dpm_list_mtx); 1924 1925 /* 1926 * Start processing "async" leaf devices upfront so they don't need to 1927 * wait for the "sync" devices they don't depend on. 1928 */ 1929 list_for_each_entry_reverse(dev, &dpm_prepared_list, power.entry) { 1930 dpm_clear_async_state(dev); 1931 if (dpm_leaf_device(dev)) 1932 dpm_async_with_cleanup(dev, async_suspend); 1933 } 1934 1935 while (!list_empty(&dpm_prepared_list)) { 1936 dev = to_device(dpm_prepared_list.prev); 1937 1938 list_move(&dev->power.entry, &dpm_suspended_list); 1939 1940 if (dpm_async_fn(dev, async_suspend)) 1941 continue; 1942 1943 get_device(dev); 1944 1945 mutex_unlock(&dpm_list_mtx); 1946 1947 error = device_suspend(dev, state, false); 1948 1949 put_device(dev); 1950 1951 mutex_lock(&dpm_list_mtx); 1952 1953 if (error || async_error) { 1954 /* 1955 * Move all devices to the target list to resume them 1956 * properly. 1957 */ 1958 list_splice_init(&dpm_prepared_list, &dpm_suspended_list); 1959 break; 1960 } 1961 } 1962 1963 mutex_unlock(&dpm_list_mtx); 1964 1965 async_synchronize_full(); 1966 if (!error) 1967 error = async_error; 1968 1969 if (error) 1970 dpm_save_failed_step(SUSPEND_SUSPEND); 1971 1972 dpm_show_time(starttime, state, error, NULL); 1973 trace_suspend_resume(TPS("dpm_suspend"), state.event, false); 1974 return error; 1975 } 1976 1977 static bool device_prepare_smart_suspend(struct device *dev) 1978 { 1979 struct device_link *link; 1980 bool ret = true; 1981 int idx; 1982 1983 /* 1984 * The "smart suspend" feature is enabled for devices whose drivers ask 1985 * for it and for devices without PM callbacks. 1986 * 1987 * However, if "smart suspend" is not enabled for the device's parent 1988 * or any of its suppliers that take runtime PM into account, it cannot 1989 * be enabled for the device either. 1990 */ 1991 if (!dev->power.no_pm_callbacks && 1992 !dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND)) 1993 return false; 1994 1995 if (dev->parent && !dev_pm_smart_suspend(dev->parent) && 1996 !dev->parent->power.ignore_children && !pm_runtime_blocked(dev->parent)) 1997 return false; 1998 1999 idx = device_links_read_lock(); 2000 2001 list_for_each_entry_rcu_locked(link, &dev->links.suppliers, c_node) { 2002 if (!(link->flags & DL_FLAG_PM_RUNTIME)) 2003 continue; 2004 2005 if (!dev_pm_smart_suspend(link->supplier) && 2006 !pm_runtime_blocked(link->supplier)) { 2007 ret = false; 2008 break; 2009 } 2010 } 2011 2012 device_links_read_unlock(idx); 2013 2014 return ret; 2015 } 2016 2017 /** 2018 * device_prepare - Prepare a device for system power transition. 2019 * @dev: Device to handle. 2020 * @state: PM transition of the system being carried out. 2021 * 2022 * Execute the ->prepare() callback(s) for given device. No new children of the 2023 * device may be registered after this function has returned. 2024 */ 2025 static int device_prepare(struct device *dev, pm_message_t state) 2026 { 2027 int (*callback)(struct device *) = NULL; 2028 bool smart_suspend; 2029 int ret = 0; 2030 2031 /* 2032 * If a device's parent goes into runtime suspend at the wrong time, 2033 * it won't be possible to resume the device. To prevent this we 2034 * block runtime suspend here, during the prepare phase, and allow 2035 * it again during the complete phase. 2036 */ 2037 pm_runtime_get_noresume(dev); 2038 /* 2039 * If runtime PM is disabled for the device at this point and it has 2040 * never been enabled so far, it should not be enabled until this system 2041 * suspend-resume cycle is complete, so prepare to trigger a warning on 2042 * subsequent attempts to enable it. 2043 */ 2044 smart_suspend = !pm_runtime_block_if_disabled(dev); 2045 2046 if (dev->power.syscore) 2047 return 0; 2048 2049 device_lock(dev); 2050 2051 dev->power.wakeup_path = false; 2052 2053 if (dev->power.no_pm_callbacks) 2054 goto unlock; 2055 2056 if (dev->pm_domain) 2057 callback = dev->pm_domain->ops.prepare; 2058 else if (dev->type && dev->type->pm) 2059 callback = dev->type->pm->prepare; 2060 else if (dev->class && dev->class->pm) 2061 callback = dev->class->pm->prepare; 2062 else if (dev->bus && dev->bus->pm) 2063 callback = dev->bus->pm->prepare; 2064 2065 if (!callback && dev->driver && dev->driver->pm) 2066 callback = dev->driver->pm->prepare; 2067 2068 if (callback) 2069 ret = callback(dev); 2070 2071 unlock: 2072 device_unlock(dev); 2073 2074 if (ret < 0) { 2075 suspend_report_result(dev, callback, ret); 2076 pm_runtime_put(dev); 2077 return ret; 2078 } 2079 /* Do not enable "smart suspend" for devices with disabled runtime PM. */ 2080 if (smart_suspend) 2081 smart_suspend = device_prepare_smart_suspend(dev); 2082 2083 spin_lock_irq(&dev->power.lock); 2084 2085 dev->power.smart_suspend = smart_suspend; 2086 /* 2087 * A positive return value from ->prepare() means "this device appears 2088 * to be runtime-suspended and its state is fine, so if it really is 2089 * runtime-suspended, you can leave it in that state provided that you 2090 * will do the same thing with all of its descendants". This only 2091 * applies to suspend transitions, however. 2092 */ 2093 dev->power.direct_complete = state.event == PM_EVENT_SUSPEND && 2094 (ret > 0 || dev->power.no_pm_callbacks) && 2095 !dev_pm_test_driver_flags(dev, DPM_FLAG_NO_DIRECT_COMPLETE); 2096 2097 spin_unlock_irq(&dev->power.lock); 2098 2099 return 0; 2100 } 2101 2102 /** 2103 * dpm_prepare - Prepare all non-sysdev devices for a system PM transition. 2104 * @state: PM transition of the system being carried out. 2105 * 2106 * Execute the ->prepare() callback(s) for all devices. 2107 */ 2108 int dpm_prepare(pm_message_t state) 2109 { 2110 int error = 0; 2111 2112 trace_suspend_resume(TPS("dpm_prepare"), state.event, true); 2113 might_sleep(); 2114 2115 /* 2116 * Give a chance for the known devices to complete their probes, before 2117 * disable probing of devices. This sync point is important at least 2118 * at boot time + hibernation restore. 2119 */ 2120 wait_for_device_probe(); 2121 /* 2122 * It is unsafe if probing of devices will happen during suspend or 2123 * hibernation and system behavior will be unpredictable in this case. 2124 * So, let's prohibit device's probing here and defer their probes 2125 * instead. The normal behavior will be restored in dpm_complete(). 2126 */ 2127 device_block_probing(); 2128 2129 mutex_lock(&dpm_list_mtx); 2130 while (!list_empty(&dpm_list) && !error) { 2131 struct device *dev = to_device(dpm_list.next); 2132 2133 get_device(dev); 2134 2135 mutex_unlock(&dpm_list_mtx); 2136 2137 trace_device_pm_callback_start(dev, "", state.event); 2138 error = device_prepare(dev, state); 2139 trace_device_pm_callback_end(dev, error); 2140 2141 mutex_lock(&dpm_list_mtx); 2142 2143 if (!error) { 2144 dev->power.is_prepared = true; 2145 if (!list_empty(&dev->power.entry)) 2146 list_move_tail(&dev->power.entry, &dpm_prepared_list); 2147 } else if (error == -EAGAIN) { 2148 error = 0; 2149 } else { 2150 dev_info(dev, "not prepared for power transition: code %d\n", 2151 error); 2152 } 2153 2154 mutex_unlock(&dpm_list_mtx); 2155 2156 put_device(dev); 2157 2158 mutex_lock(&dpm_list_mtx); 2159 } 2160 mutex_unlock(&dpm_list_mtx); 2161 trace_suspend_resume(TPS("dpm_prepare"), state.event, false); 2162 return error; 2163 } 2164 2165 /** 2166 * dpm_suspend_start - Prepare devices for PM transition and suspend them. 2167 * @state: PM transition of the system being carried out. 2168 * 2169 * Prepare all non-sysdev devices for system PM transition and execute "suspend" 2170 * callbacks for them. 2171 */ 2172 int dpm_suspend_start(pm_message_t state) 2173 { 2174 ktime_t starttime = ktime_get(); 2175 int error; 2176 2177 error = dpm_prepare(state); 2178 if (error) 2179 dpm_save_failed_step(SUSPEND_PREPARE); 2180 else { 2181 pm_restrict_gfp_mask(); 2182 error = dpm_suspend(state); 2183 } 2184 2185 dpm_show_time(starttime, state, error, "start"); 2186 return error; 2187 } 2188 EXPORT_SYMBOL_GPL(dpm_suspend_start); 2189 2190 void __suspend_report_result(const char *function, struct device *dev, void *fn, int ret) 2191 { 2192 if (ret) 2193 dev_err(dev, "%s(): %ps returns %d\n", function, fn, ret); 2194 } 2195 EXPORT_SYMBOL_GPL(__suspend_report_result); 2196 2197 /** 2198 * device_pm_wait_for_dev - Wait for suspend/resume of a device to complete. 2199 * @subordinate: Device that needs to wait for @dev. 2200 * @dev: Device to wait for. 2201 */ 2202 int device_pm_wait_for_dev(struct device *subordinate, struct device *dev) 2203 { 2204 dpm_wait(dev, subordinate->power.async_suspend); 2205 return async_error; 2206 } 2207 EXPORT_SYMBOL_GPL(device_pm_wait_for_dev); 2208 2209 /** 2210 * dpm_for_each_dev - device iterator. 2211 * @data: data for the callback. 2212 * @fn: function to be called for each device. 2213 * 2214 * Iterate over devices in dpm_list, and call @fn for each device, 2215 * passing it @data. 2216 */ 2217 void dpm_for_each_dev(void *data, void (*fn)(struct device *, void *)) 2218 { 2219 struct device *dev; 2220 2221 if (!fn) 2222 return; 2223 2224 device_pm_lock(); 2225 list_for_each_entry(dev, &dpm_list, power.entry) 2226 fn(dev, data); 2227 device_pm_unlock(); 2228 } 2229 EXPORT_SYMBOL_GPL(dpm_for_each_dev); 2230 2231 static bool pm_ops_is_empty(const struct dev_pm_ops *ops) 2232 { 2233 if (!ops) 2234 return true; 2235 2236 return !ops->prepare && 2237 !ops->suspend && 2238 !ops->suspend_late && 2239 !ops->suspend_noirq && 2240 !ops->resume_noirq && 2241 !ops->resume_early && 2242 !ops->resume && 2243 !ops->complete; 2244 } 2245 2246 void device_pm_check_callbacks(struct device *dev) 2247 { 2248 unsigned long flags; 2249 2250 spin_lock_irqsave(&dev->power.lock, flags); 2251 dev->power.no_pm_callbacks = 2252 (!dev->bus || (pm_ops_is_empty(dev->bus->pm) && 2253 !dev->bus->suspend && !dev->bus->resume)) && 2254 (!dev->class || pm_ops_is_empty(dev->class->pm)) && 2255 (!dev->type || pm_ops_is_empty(dev->type->pm)) && 2256 (!dev->pm_domain || pm_ops_is_empty(&dev->pm_domain->ops)) && 2257 (!dev->driver || (pm_ops_is_empty(dev->driver->pm) && 2258 !dev->driver->suspend && !dev->driver->resume)); 2259 spin_unlock_irqrestore(&dev->power.lock, flags); 2260 } 2261 2262 bool dev_pm_skip_suspend(struct device *dev) 2263 { 2264 return dev_pm_smart_suspend(dev) && pm_runtime_status_suspended(dev); 2265 } 2266