xref: /linux/drivers/base/power/main.c (revision f728c17fc97aea7a33151d9ba64106291c62bb02)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * drivers/base/power/main.c - Where the driver meets power management.
4  *
5  * Copyright (c) 2003 Patrick Mochel
6  * Copyright (c) 2003 Open Source Development Lab
7  *
8  * The driver model core calls device_pm_add() when a device is registered.
9  * This will initialize the embedded device_pm_info object in the device
10  * and add it to the list of power-controlled devices. sysfs entries for
11  * controlling device power management will also be added.
12  *
13  * A separate list is used for keeping track of power info, because the power
14  * domain dependencies may differ from the ancestral dependencies that the
15  * subsystem list maintains.
16  */
17 
18 #define pr_fmt(fmt) "PM: " fmt
19 #define dev_fmt pr_fmt
20 
21 #include <linux/device.h>
22 #include <linux/export.h>
23 #include <linux/mutex.h>
24 #include <linux/pm.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/pm-trace.h>
27 #include <linux/pm_wakeirq.h>
28 #include <linux/interrupt.h>
29 #include <linux/sched.h>
30 #include <linux/sched/debug.h>
31 #include <linux/async.h>
32 #include <linux/suspend.h>
33 #include <trace/events/power.h>
34 #include <linux/cpufreq.h>
35 #include <linux/devfreq.h>
36 #include <linux/timer.h>
37 
38 #include "../base.h"
39 #include "power.h"
40 
41 typedef int (*pm_callback_t)(struct device *);
42 
43 #define list_for_each_entry_rcu_locked(pos, head, member) \
44 	list_for_each_entry_rcu(pos, head, member, \
45 			device_links_read_lock_held())
46 
47 /*
48  * The entries in the dpm_list list are in a depth first order, simply
49  * because children are guaranteed to be discovered after parents, and
50  * are inserted at the back of the list on discovery.
51  *
52  * Since device_pm_add() may be called with a device lock held,
53  * we must never try to acquire a device lock while holding
54  * dpm_list_mutex.
55  */
56 
57 LIST_HEAD(dpm_list);
58 static LIST_HEAD(dpm_prepared_list);
59 static LIST_HEAD(dpm_suspended_list);
60 static LIST_HEAD(dpm_late_early_list);
61 static LIST_HEAD(dpm_noirq_list);
62 
63 struct suspend_stats suspend_stats;
64 static DEFINE_MUTEX(dpm_list_mtx);
65 static pm_message_t pm_transition;
66 
67 static int async_error;
68 
69 static const char *pm_verb(int event)
70 {
71 	switch (event) {
72 	case PM_EVENT_SUSPEND:
73 		return "suspend";
74 	case PM_EVENT_RESUME:
75 		return "resume";
76 	case PM_EVENT_FREEZE:
77 		return "freeze";
78 	case PM_EVENT_QUIESCE:
79 		return "quiesce";
80 	case PM_EVENT_HIBERNATE:
81 		return "hibernate";
82 	case PM_EVENT_THAW:
83 		return "thaw";
84 	case PM_EVENT_RESTORE:
85 		return "restore";
86 	case PM_EVENT_RECOVER:
87 		return "recover";
88 	default:
89 		return "(unknown PM event)";
90 	}
91 }
92 
93 /**
94  * device_pm_sleep_init - Initialize system suspend-related device fields.
95  * @dev: Device object being initialized.
96  */
97 void device_pm_sleep_init(struct device *dev)
98 {
99 	dev->power.is_prepared = false;
100 	dev->power.is_suspended = false;
101 	dev->power.is_noirq_suspended = false;
102 	dev->power.is_late_suspended = false;
103 	init_completion(&dev->power.completion);
104 	complete_all(&dev->power.completion);
105 	dev->power.wakeup = NULL;
106 	INIT_LIST_HEAD(&dev->power.entry);
107 }
108 
109 /**
110  * device_pm_lock - Lock the list of active devices used by the PM core.
111  */
112 void device_pm_lock(void)
113 {
114 	mutex_lock(&dpm_list_mtx);
115 }
116 
117 /**
118  * device_pm_unlock - Unlock the list of active devices used by the PM core.
119  */
120 void device_pm_unlock(void)
121 {
122 	mutex_unlock(&dpm_list_mtx);
123 }
124 
125 /**
126  * device_pm_add - Add a device to the PM core's list of active devices.
127  * @dev: Device to add to the list.
128  */
129 void device_pm_add(struct device *dev)
130 {
131 	/* Skip PM setup/initialization. */
132 	if (device_pm_not_required(dev))
133 		return;
134 
135 	pr_debug("Adding info for %s:%s\n",
136 		 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
137 	device_pm_check_callbacks(dev);
138 	mutex_lock(&dpm_list_mtx);
139 	if (dev->parent && dev->parent->power.is_prepared)
140 		dev_warn(dev, "parent %s should not be sleeping\n",
141 			dev_name(dev->parent));
142 	list_add_tail(&dev->power.entry, &dpm_list);
143 	dev->power.in_dpm_list = true;
144 	mutex_unlock(&dpm_list_mtx);
145 }
146 
147 /**
148  * device_pm_remove - Remove a device from the PM core's list of active devices.
149  * @dev: Device to be removed from the list.
150  */
151 void device_pm_remove(struct device *dev)
152 {
153 	if (device_pm_not_required(dev))
154 		return;
155 
156 	pr_debug("Removing info for %s:%s\n",
157 		 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
158 	complete_all(&dev->power.completion);
159 	mutex_lock(&dpm_list_mtx);
160 	list_del_init(&dev->power.entry);
161 	dev->power.in_dpm_list = false;
162 	mutex_unlock(&dpm_list_mtx);
163 	device_wakeup_disable(dev);
164 	pm_runtime_remove(dev);
165 	device_pm_check_callbacks(dev);
166 }
167 
168 /**
169  * device_pm_move_before - Move device in the PM core's list of active devices.
170  * @deva: Device to move in dpm_list.
171  * @devb: Device @deva should come before.
172  */
173 void device_pm_move_before(struct device *deva, struct device *devb)
174 {
175 	pr_debug("Moving %s:%s before %s:%s\n",
176 		 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
177 		 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
178 	/* Delete deva from dpm_list and reinsert before devb. */
179 	list_move_tail(&deva->power.entry, &devb->power.entry);
180 }
181 
182 /**
183  * device_pm_move_after - Move device in the PM core's list of active devices.
184  * @deva: Device to move in dpm_list.
185  * @devb: Device @deva should come after.
186  */
187 void device_pm_move_after(struct device *deva, struct device *devb)
188 {
189 	pr_debug("Moving %s:%s after %s:%s\n",
190 		 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
191 		 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
192 	/* Delete deva from dpm_list and reinsert after devb. */
193 	list_move(&deva->power.entry, &devb->power.entry);
194 }
195 
196 /**
197  * device_pm_move_last - Move device to end of the PM core's list of devices.
198  * @dev: Device to move in dpm_list.
199  */
200 void device_pm_move_last(struct device *dev)
201 {
202 	pr_debug("Moving %s:%s to end of list\n",
203 		 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
204 	list_move_tail(&dev->power.entry, &dpm_list);
205 }
206 
207 static ktime_t initcall_debug_start(struct device *dev, void *cb)
208 {
209 	if (!pm_print_times_enabled)
210 		return 0;
211 
212 	dev_info(dev, "calling %pS @ %i, parent: %s\n", cb,
213 		 task_pid_nr(current),
214 		 dev->parent ? dev_name(dev->parent) : "none");
215 	return ktime_get();
216 }
217 
218 static void initcall_debug_report(struct device *dev, ktime_t calltime,
219 				  void *cb, int error)
220 {
221 	ktime_t rettime;
222 
223 	if (!pm_print_times_enabled)
224 		return;
225 
226 	rettime = ktime_get();
227 	dev_info(dev, "%pS returned %d after %Ld usecs\n", cb, error,
228 		 (unsigned long long)ktime_us_delta(rettime, calltime));
229 }
230 
231 /**
232  * dpm_wait - Wait for a PM operation to complete.
233  * @dev: Device to wait for.
234  * @async: If unset, wait only if the device's power.async_suspend flag is set.
235  */
236 static void dpm_wait(struct device *dev, bool async)
237 {
238 	if (!dev)
239 		return;
240 
241 	if (async || (pm_async_enabled && dev->power.async_suspend))
242 		wait_for_completion(&dev->power.completion);
243 }
244 
245 static int dpm_wait_fn(struct device *dev, void *async_ptr)
246 {
247 	dpm_wait(dev, *((bool *)async_ptr));
248 	return 0;
249 }
250 
251 static void dpm_wait_for_children(struct device *dev, bool async)
252 {
253        device_for_each_child(dev, &async, dpm_wait_fn);
254 }
255 
256 static void dpm_wait_for_suppliers(struct device *dev, bool async)
257 {
258 	struct device_link *link;
259 	int idx;
260 
261 	idx = device_links_read_lock();
262 
263 	/*
264 	 * If the supplier goes away right after we've checked the link to it,
265 	 * we'll wait for its completion to change the state, but that's fine,
266 	 * because the only things that will block as a result are the SRCU
267 	 * callbacks freeing the link objects for the links in the list we're
268 	 * walking.
269 	 */
270 	list_for_each_entry_rcu_locked(link, &dev->links.suppliers, c_node)
271 		if (READ_ONCE(link->status) != DL_STATE_DORMANT)
272 			dpm_wait(link->supplier, async);
273 
274 	device_links_read_unlock(idx);
275 }
276 
277 static bool dpm_wait_for_superior(struct device *dev, bool async)
278 {
279 	struct device *parent;
280 
281 	/*
282 	 * If the device is resumed asynchronously and the parent's callback
283 	 * deletes both the device and the parent itself, the parent object may
284 	 * be freed while this function is running, so avoid that by reference
285 	 * counting the parent once more unless the device has been deleted
286 	 * already (in which case return right away).
287 	 */
288 	mutex_lock(&dpm_list_mtx);
289 
290 	if (!device_pm_initialized(dev)) {
291 		mutex_unlock(&dpm_list_mtx);
292 		return false;
293 	}
294 
295 	parent = get_device(dev->parent);
296 
297 	mutex_unlock(&dpm_list_mtx);
298 
299 	dpm_wait(parent, async);
300 	put_device(parent);
301 
302 	dpm_wait_for_suppliers(dev, async);
303 
304 	/*
305 	 * If the parent's callback has deleted the device, attempting to resume
306 	 * it would be invalid, so avoid doing that then.
307 	 */
308 	return device_pm_initialized(dev);
309 }
310 
311 static void dpm_wait_for_consumers(struct device *dev, bool async)
312 {
313 	struct device_link *link;
314 	int idx;
315 
316 	idx = device_links_read_lock();
317 
318 	/*
319 	 * The status of a device link can only be changed from "dormant" by a
320 	 * probe, but that cannot happen during system suspend/resume.  In
321 	 * theory it can change to "dormant" at that time, but then it is
322 	 * reasonable to wait for the target device anyway (eg. if it goes
323 	 * away, it's better to wait for it to go away completely and then
324 	 * continue instead of trying to continue in parallel with its
325 	 * unregistration).
326 	 */
327 	list_for_each_entry_rcu_locked(link, &dev->links.consumers, s_node)
328 		if (READ_ONCE(link->status) != DL_STATE_DORMANT)
329 			dpm_wait(link->consumer, async);
330 
331 	device_links_read_unlock(idx);
332 }
333 
334 static void dpm_wait_for_subordinate(struct device *dev, bool async)
335 {
336 	dpm_wait_for_children(dev, async);
337 	dpm_wait_for_consumers(dev, async);
338 }
339 
340 /**
341  * pm_op - Return the PM operation appropriate for given PM event.
342  * @ops: PM operations to choose from.
343  * @state: PM transition of the system being carried out.
344  */
345 static pm_callback_t pm_op(const struct dev_pm_ops *ops, pm_message_t state)
346 {
347 	switch (state.event) {
348 #ifdef CONFIG_SUSPEND
349 	case PM_EVENT_SUSPEND:
350 		return ops->suspend;
351 	case PM_EVENT_RESUME:
352 		return ops->resume;
353 #endif /* CONFIG_SUSPEND */
354 #ifdef CONFIG_HIBERNATE_CALLBACKS
355 	case PM_EVENT_FREEZE:
356 	case PM_EVENT_QUIESCE:
357 		return ops->freeze;
358 	case PM_EVENT_HIBERNATE:
359 		return ops->poweroff;
360 	case PM_EVENT_THAW:
361 	case PM_EVENT_RECOVER:
362 		return ops->thaw;
363 	case PM_EVENT_RESTORE:
364 		return ops->restore;
365 #endif /* CONFIG_HIBERNATE_CALLBACKS */
366 	}
367 
368 	return NULL;
369 }
370 
371 /**
372  * pm_late_early_op - Return the PM operation appropriate for given PM event.
373  * @ops: PM operations to choose from.
374  * @state: PM transition of the system being carried out.
375  *
376  * Runtime PM is disabled for @dev while this function is being executed.
377  */
378 static pm_callback_t pm_late_early_op(const struct dev_pm_ops *ops,
379 				      pm_message_t state)
380 {
381 	switch (state.event) {
382 #ifdef CONFIG_SUSPEND
383 	case PM_EVENT_SUSPEND:
384 		return ops->suspend_late;
385 	case PM_EVENT_RESUME:
386 		return ops->resume_early;
387 #endif /* CONFIG_SUSPEND */
388 #ifdef CONFIG_HIBERNATE_CALLBACKS
389 	case PM_EVENT_FREEZE:
390 	case PM_EVENT_QUIESCE:
391 		return ops->freeze_late;
392 	case PM_EVENT_HIBERNATE:
393 		return ops->poweroff_late;
394 	case PM_EVENT_THAW:
395 	case PM_EVENT_RECOVER:
396 		return ops->thaw_early;
397 	case PM_EVENT_RESTORE:
398 		return ops->restore_early;
399 #endif /* CONFIG_HIBERNATE_CALLBACKS */
400 	}
401 
402 	return NULL;
403 }
404 
405 /**
406  * pm_noirq_op - Return the PM operation appropriate for given PM event.
407  * @ops: PM operations to choose from.
408  * @state: PM transition of the system being carried out.
409  *
410  * The driver of @dev will not receive interrupts while this function is being
411  * executed.
412  */
413 static pm_callback_t pm_noirq_op(const struct dev_pm_ops *ops, pm_message_t state)
414 {
415 	switch (state.event) {
416 #ifdef CONFIG_SUSPEND
417 	case PM_EVENT_SUSPEND:
418 		return ops->suspend_noirq;
419 	case PM_EVENT_RESUME:
420 		return ops->resume_noirq;
421 #endif /* CONFIG_SUSPEND */
422 #ifdef CONFIG_HIBERNATE_CALLBACKS
423 	case PM_EVENT_FREEZE:
424 	case PM_EVENT_QUIESCE:
425 		return ops->freeze_noirq;
426 	case PM_EVENT_HIBERNATE:
427 		return ops->poweroff_noirq;
428 	case PM_EVENT_THAW:
429 	case PM_EVENT_RECOVER:
430 		return ops->thaw_noirq;
431 	case PM_EVENT_RESTORE:
432 		return ops->restore_noirq;
433 #endif /* CONFIG_HIBERNATE_CALLBACKS */
434 	}
435 
436 	return NULL;
437 }
438 
439 static void pm_dev_dbg(struct device *dev, pm_message_t state, const char *info)
440 {
441 	dev_dbg(dev, "%s%s%s driver flags: %x\n", info, pm_verb(state.event),
442 		((state.event & PM_EVENT_SLEEP) && device_may_wakeup(dev)) ?
443 		", may wakeup" : "", dev->power.driver_flags);
444 }
445 
446 static void pm_dev_err(struct device *dev, pm_message_t state, const char *info,
447 			int error)
448 {
449 	dev_err(dev, "failed to %s%s: error %d\n", pm_verb(state.event), info,
450 		error);
451 }
452 
453 static void dpm_show_time(ktime_t starttime, pm_message_t state, int error,
454 			  const char *info)
455 {
456 	ktime_t calltime;
457 	u64 usecs64;
458 	int usecs;
459 
460 	calltime = ktime_get();
461 	usecs64 = ktime_to_ns(ktime_sub(calltime, starttime));
462 	do_div(usecs64, NSEC_PER_USEC);
463 	usecs = usecs64;
464 	if (usecs == 0)
465 		usecs = 1;
466 
467 	pm_pr_dbg("%s%s%s of devices %s after %ld.%03ld msecs\n",
468 		  info ?: "", info ? " " : "", pm_verb(state.event),
469 		  error ? "aborted" : "complete",
470 		  usecs / USEC_PER_MSEC, usecs % USEC_PER_MSEC);
471 }
472 
473 static int dpm_run_callback(pm_callback_t cb, struct device *dev,
474 			    pm_message_t state, const char *info)
475 {
476 	ktime_t calltime;
477 	int error;
478 
479 	if (!cb)
480 		return 0;
481 
482 	calltime = initcall_debug_start(dev, cb);
483 
484 	pm_dev_dbg(dev, state, info);
485 	trace_device_pm_callback_start(dev, info, state.event);
486 	error = cb(dev);
487 	trace_device_pm_callback_end(dev, error);
488 	suspend_report_result(dev, cb, error);
489 
490 	initcall_debug_report(dev, calltime, cb, error);
491 
492 	return error;
493 }
494 
495 #ifdef CONFIG_DPM_WATCHDOG
496 struct dpm_watchdog {
497 	struct device		*dev;
498 	struct task_struct	*tsk;
499 	struct timer_list	timer;
500 };
501 
502 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd) \
503 	struct dpm_watchdog wd
504 
505 /**
506  * dpm_watchdog_handler - Driver suspend / resume watchdog handler.
507  * @t: The timer that PM watchdog depends on.
508  *
509  * Called when a driver has timed out suspending or resuming.
510  * There's not much we can do here to recover so panic() to
511  * capture a crash-dump in pstore.
512  */
513 static void dpm_watchdog_handler(struct timer_list *t)
514 {
515 	struct dpm_watchdog *wd = from_timer(wd, t, timer);
516 
517 	dev_emerg(wd->dev, "**** DPM device timeout ****\n");
518 	show_stack(wd->tsk, NULL, KERN_EMERG);
519 	panic("%s %s: unrecoverable failure\n",
520 		dev_driver_string(wd->dev), dev_name(wd->dev));
521 }
522 
523 /**
524  * dpm_watchdog_set - Enable pm watchdog for given device.
525  * @wd: Watchdog. Must be allocated on the stack.
526  * @dev: Device to handle.
527  */
528 static void dpm_watchdog_set(struct dpm_watchdog *wd, struct device *dev)
529 {
530 	struct timer_list *timer = &wd->timer;
531 
532 	wd->dev = dev;
533 	wd->tsk = current;
534 
535 	timer_setup_on_stack(timer, dpm_watchdog_handler, 0);
536 	/* use same timeout value for both suspend and resume */
537 	timer->expires = jiffies + HZ * CONFIG_DPM_WATCHDOG_TIMEOUT;
538 	add_timer(timer);
539 }
540 
541 /**
542  * dpm_watchdog_clear - Disable suspend/resume watchdog.
543  * @wd: Watchdog to disable.
544  */
545 static void dpm_watchdog_clear(struct dpm_watchdog *wd)
546 {
547 	struct timer_list *timer = &wd->timer;
548 
549 	del_timer_sync(timer);
550 	destroy_timer_on_stack(timer);
551 }
552 #else
553 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd)
554 #define dpm_watchdog_set(x, y)
555 #define dpm_watchdog_clear(x)
556 #endif
557 
558 /*------------------------- Resume routines -------------------------*/
559 
560 /**
561  * dev_pm_skip_resume - System-wide device resume optimization check.
562  * @dev: Target device.
563  *
564  * Return:
565  * - %false if the transition under way is RESTORE.
566  * - Return value of dev_pm_skip_suspend() if the transition under way is THAW.
567  * - The logical negation of %power.must_resume otherwise (that is, when the
568  *   transition under way is RESUME).
569  */
570 bool dev_pm_skip_resume(struct device *dev)
571 {
572 	if (pm_transition.event == PM_EVENT_RESTORE)
573 		return false;
574 
575 	if (pm_transition.event == PM_EVENT_THAW)
576 		return dev_pm_skip_suspend(dev);
577 
578 	return !dev->power.must_resume;
579 }
580 
581 /**
582  * device_resume_noirq - Execute a "noirq resume" callback for given device.
583  * @dev: Device to handle.
584  * @state: PM transition of the system being carried out.
585  * @async: If true, the device is being resumed asynchronously.
586  *
587  * The driver of @dev will not receive interrupts while this function is being
588  * executed.
589  */
590 static void device_resume_noirq(struct device *dev, pm_message_t state, bool async)
591 {
592 	pm_callback_t callback = NULL;
593 	const char *info = NULL;
594 	bool skip_resume;
595 	int error = 0;
596 
597 	TRACE_DEVICE(dev);
598 	TRACE_RESUME(0);
599 
600 	if (dev->power.syscore || dev->power.direct_complete)
601 		goto Out;
602 
603 	if (!dev->power.is_noirq_suspended)
604 		goto Out;
605 
606 	if (!dpm_wait_for_superior(dev, async))
607 		goto Out;
608 
609 	skip_resume = dev_pm_skip_resume(dev);
610 	/*
611 	 * If the driver callback is skipped below or by the middle layer
612 	 * callback and device_resume_early() also skips the driver callback for
613 	 * this device later, it needs to appear as "suspended" to PM-runtime,
614 	 * so change its status accordingly.
615 	 *
616 	 * Otherwise, the device is going to be resumed, so set its PM-runtime
617 	 * status to "active", but do that only if DPM_FLAG_SMART_SUSPEND is set
618 	 * to avoid confusing drivers that don't use it.
619 	 */
620 	if (skip_resume)
621 		pm_runtime_set_suspended(dev);
622 	else if (dev_pm_skip_suspend(dev))
623 		pm_runtime_set_active(dev);
624 
625 	if (dev->pm_domain) {
626 		info = "noirq power domain ";
627 		callback = pm_noirq_op(&dev->pm_domain->ops, state);
628 	} else if (dev->type && dev->type->pm) {
629 		info = "noirq type ";
630 		callback = pm_noirq_op(dev->type->pm, state);
631 	} else if (dev->class && dev->class->pm) {
632 		info = "noirq class ";
633 		callback = pm_noirq_op(dev->class->pm, state);
634 	} else if (dev->bus && dev->bus->pm) {
635 		info = "noirq bus ";
636 		callback = pm_noirq_op(dev->bus->pm, state);
637 	}
638 	if (callback)
639 		goto Run;
640 
641 	if (skip_resume)
642 		goto Skip;
643 
644 	if (dev->driver && dev->driver->pm) {
645 		info = "noirq driver ";
646 		callback = pm_noirq_op(dev->driver->pm, state);
647 	}
648 
649 Run:
650 	error = dpm_run_callback(callback, dev, state, info);
651 
652 Skip:
653 	dev->power.is_noirq_suspended = false;
654 
655 Out:
656 	complete_all(&dev->power.completion);
657 	TRACE_RESUME(error);
658 
659 	if (error) {
660 		suspend_stats.failed_resume_noirq++;
661 		dpm_save_failed_step(SUSPEND_RESUME_NOIRQ);
662 		dpm_save_failed_dev(dev_name(dev));
663 		pm_dev_err(dev, state, async ? " async noirq" : " noirq", error);
664 	}
665 }
666 
667 static bool is_async(struct device *dev)
668 {
669 	return dev->power.async_suspend && pm_async_enabled
670 		&& !pm_trace_is_enabled();
671 }
672 
673 static bool dpm_async_fn(struct device *dev, async_func_t func)
674 {
675 	reinit_completion(&dev->power.completion);
676 
677 	if (is_async(dev)) {
678 		dev->power.async_in_progress = true;
679 
680 		get_device(dev);
681 
682 		if (async_schedule_dev_nocall(func, dev))
683 			return true;
684 
685 		put_device(dev);
686 	}
687 	/*
688 	 * Because async_schedule_dev_nocall() above has returned false or it
689 	 * has not been called at all, func() is not running and it is safe to
690 	 * update the async_in_progress flag without extra synchronization.
691 	 */
692 	dev->power.async_in_progress = false;
693 	return false;
694 }
695 
696 static void async_resume_noirq(void *data, async_cookie_t cookie)
697 {
698 	struct device *dev = data;
699 
700 	device_resume_noirq(dev, pm_transition, true);
701 	put_device(dev);
702 }
703 
704 static void dpm_noirq_resume_devices(pm_message_t state)
705 {
706 	struct device *dev;
707 	ktime_t starttime = ktime_get();
708 
709 	trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, true);
710 	mutex_lock(&dpm_list_mtx);
711 	pm_transition = state;
712 
713 	/*
714 	 * Trigger the resume of "async" devices upfront so they don't have to
715 	 * wait for the "non-async" ones they don't depend on.
716 	 */
717 	list_for_each_entry(dev, &dpm_noirq_list, power.entry)
718 		dpm_async_fn(dev, async_resume_noirq);
719 
720 	while (!list_empty(&dpm_noirq_list)) {
721 		dev = to_device(dpm_noirq_list.next);
722 		list_move_tail(&dev->power.entry, &dpm_late_early_list);
723 
724 		if (!dev->power.async_in_progress) {
725 			get_device(dev);
726 
727 			mutex_unlock(&dpm_list_mtx);
728 
729 			device_resume_noirq(dev, state, false);
730 
731 			put_device(dev);
732 
733 			mutex_lock(&dpm_list_mtx);
734 		}
735 	}
736 	mutex_unlock(&dpm_list_mtx);
737 	async_synchronize_full();
738 	dpm_show_time(starttime, state, 0, "noirq");
739 	trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, false);
740 }
741 
742 /**
743  * dpm_resume_noirq - Execute "noirq resume" callbacks for all devices.
744  * @state: PM transition of the system being carried out.
745  *
746  * Invoke the "noirq" resume callbacks for all devices in dpm_noirq_list and
747  * allow device drivers' interrupt handlers to be called.
748  */
749 void dpm_resume_noirq(pm_message_t state)
750 {
751 	dpm_noirq_resume_devices(state);
752 
753 	resume_device_irqs();
754 	device_wakeup_disarm_wake_irqs();
755 }
756 
757 /**
758  * device_resume_early - Execute an "early resume" callback for given device.
759  * @dev: Device to handle.
760  * @state: PM transition of the system being carried out.
761  * @async: If true, the device is being resumed asynchronously.
762  *
763  * Runtime PM is disabled for @dev while this function is being executed.
764  */
765 static void device_resume_early(struct device *dev, pm_message_t state, bool async)
766 {
767 	pm_callback_t callback = NULL;
768 	const char *info = NULL;
769 	int error = 0;
770 
771 	TRACE_DEVICE(dev);
772 	TRACE_RESUME(0);
773 
774 	if (dev->power.syscore || dev->power.direct_complete)
775 		goto Out;
776 
777 	if (!dev->power.is_late_suspended)
778 		goto Out;
779 
780 	if (!dpm_wait_for_superior(dev, async))
781 		goto Out;
782 
783 	if (dev->pm_domain) {
784 		info = "early power domain ";
785 		callback = pm_late_early_op(&dev->pm_domain->ops, state);
786 	} else if (dev->type && dev->type->pm) {
787 		info = "early type ";
788 		callback = pm_late_early_op(dev->type->pm, state);
789 	} else if (dev->class && dev->class->pm) {
790 		info = "early class ";
791 		callback = pm_late_early_op(dev->class->pm, state);
792 	} else if (dev->bus && dev->bus->pm) {
793 		info = "early bus ";
794 		callback = pm_late_early_op(dev->bus->pm, state);
795 	}
796 	if (callback)
797 		goto Run;
798 
799 	if (dev_pm_skip_resume(dev))
800 		goto Skip;
801 
802 	if (dev->driver && dev->driver->pm) {
803 		info = "early driver ";
804 		callback = pm_late_early_op(dev->driver->pm, state);
805 	}
806 
807 Run:
808 	error = dpm_run_callback(callback, dev, state, info);
809 
810 Skip:
811 	dev->power.is_late_suspended = false;
812 
813 Out:
814 	TRACE_RESUME(error);
815 
816 	pm_runtime_enable(dev);
817 	complete_all(&dev->power.completion);
818 
819 	if (error) {
820 		suspend_stats.failed_resume_early++;
821 		dpm_save_failed_step(SUSPEND_RESUME_EARLY);
822 		dpm_save_failed_dev(dev_name(dev));
823 		pm_dev_err(dev, state, async ? " async early" : " early", error);
824 	}
825 }
826 
827 static void async_resume_early(void *data, async_cookie_t cookie)
828 {
829 	struct device *dev = data;
830 
831 	device_resume_early(dev, pm_transition, true);
832 	put_device(dev);
833 }
834 
835 /**
836  * dpm_resume_early - Execute "early resume" callbacks for all devices.
837  * @state: PM transition of the system being carried out.
838  */
839 void dpm_resume_early(pm_message_t state)
840 {
841 	struct device *dev;
842 	ktime_t starttime = ktime_get();
843 
844 	trace_suspend_resume(TPS("dpm_resume_early"), state.event, true);
845 	mutex_lock(&dpm_list_mtx);
846 	pm_transition = state;
847 
848 	/*
849 	 * Trigger the resume of "async" devices upfront so they don't have to
850 	 * wait for the "non-async" ones they don't depend on.
851 	 */
852 	list_for_each_entry(dev, &dpm_late_early_list, power.entry)
853 		dpm_async_fn(dev, async_resume_early);
854 
855 	while (!list_empty(&dpm_late_early_list)) {
856 		dev = to_device(dpm_late_early_list.next);
857 		list_move_tail(&dev->power.entry, &dpm_suspended_list);
858 
859 		if (!dev->power.async_in_progress) {
860 			get_device(dev);
861 
862 			mutex_unlock(&dpm_list_mtx);
863 
864 			device_resume_early(dev, state, false);
865 
866 			put_device(dev);
867 
868 			mutex_lock(&dpm_list_mtx);
869 		}
870 	}
871 	mutex_unlock(&dpm_list_mtx);
872 	async_synchronize_full();
873 	dpm_show_time(starttime, state, 0, "early");
874 	trace_suspend_resume(TPS("dpm_resume_early"), state.event, false);
875 }
876 
877 /**
878  * dpm_resume_start - Execute "noirq" and "early" device callbacks.
879  * @state: PM transition of the system being carried out.
880  */
881 void dpm_resume_start(pm_message_t state)
882 {
883 	dpm_resume_noirq(state);
884 	dpm_resume_early(state);
885 }
886 EXPORT_SYMBOL_GPL(dpm_resume_start);
887 
888 /**
889  * device_resume - Execute "resume" callbacks for given device.
890  * @dev: Device to handle.
891  * @state: PM transition of the system being carried out.
892  * @async: If true, the device is being resumed asynchronously.
893  */
894 static void device_resume(struct device *dev, pm_message_t state, bool async)
895 {
896 	pm_callback_t callback = NULL;
897 	const char *info = NULL;
898 	int error = 0;
899 	DECLARE_DPM_WATCHDOG_ON_STACK(wd);
900 
901 	TRACE_DEVICE(dev);
902 	TRACE_RESUME(0);
903 
904 	if (dev->power.syscore)
905 		goto Complete;
906 
907 	if (dev->power.direct_complete) {
908 		/* Match the pm_runtime_disable() in __device_suspend(). */
909 		pm_runtime_enable(dev);
910 		goto Complete;
911 	}
912 
913 	if (!dpm_wait_for_superior(dev, async))
914 		goto Complete;
915 
916 	dpm_watchdog_set(&wd, dev);
917 	device_lock(dev);
918 
919 	/*
920 	 * This is a fib.  But we'll allow new children to be added below
921 	 * a resumed device, even if the device hasn't been completed yet.
922 	 */
923 	dev->power.is_prepared = false;
924 
925 	if (!dev->power.is_suspended)
926 		goto Unlock;
927 
928 	if (dev->pm_domain) {
929 		info = "power domain ";
930 		callback = pm_op(&dev->pm_domain->ops, state);
931 		goto Driver;
932 	}
933 
934 	if (dev->type && dev->type->pm) {
935 		info = "type ";
936 		callback = pm_op(dev->type->pm, state);
937 		goto Driver;
938 	}
939 
940 	if (dev->class && dev->class->pm) {
941 		info = "class ";
942 		callback = pm_op(dev->class->pm, state);
943 		goto Driver;
944 	}
945 
946 	if (dev->bus) {
947 		if (dev->bus->pm) {
948 			info = "bus ";
949 			callback = pm_op(dev->bus->pm, state);
950 		} else if (dev->bus->resume) {
951 			info = "legacy bus ";
952 			callback = dev->bus->resume;
953 			goto End;
954 		}
955 	}
956 
957  Driver:
958 	if (!callback && dev->driver && dev->driver->pm) {
959 		info = "driver ";
960 		callback = pm_op(dev->driver->pm, state);
961 	}
962 
963  End:
964 	error = dpm_run_callback(callback, dev, state, info);
965 	dev->power.is_suspended = false;
966 
967  Unlock:
968 	device_unlock(dev);
969 	dpm_watchdog_clear(&wd);
970 
971  Complete:
972 	complete_all(&dev->power.completion);
973 
974 	TRACE_RESUME(error);
975 
976 	if (error) {
977 		suspend_stats.failed_resume++;
978 		dpm_save_failed_step(SUSPEND_RESUME);
979 		dpm_save_failed_dev(dev_name(dev));
980 		pm_dev_err(dev, state, async ? " async" : "", error);
981 	}
982 }
983 
984 static void async_resume(void *data, async_cookie_t cookie)
985 {
986 	struct device *dev = data;
987 
988 	device_resume(dev, pm_transition, true);
989 	put_device(dev);
990 }
991 
992 /**
993  * dpm_resume - Execute "resume" callbacks for non-sysdev devices.
994  * @state: PM transition of the system being carried out.
995  *
996  * Execute the appropriate "resume" callback for all devices whose status
997  * indicates that they are suspended.
998  */
999 void dpm_resume(pm_message_t state)
1000 {
1001 	struct device *dev;
1002 	ktime_t starttime = ktime_get();
1003 
1004 	trace_suspend_resume(TPS("dpm_resume"), state.event, true);
1005 	might_sleep();
1006 
1007 	mutex_lock(&dpm_list_mtx);
1008 	pm_transition = state;
1009 	async_error = 0;
1010 
1011 	/*
1012 	 * Trigger the resume of "async" devices upfront so they don't have to
1013 	 * wait for the "non-async" ones they don't depend on.
1014 	 */
1015 	list_for_each_entry(dev, &dpm_suspended_list, power.entry)
1016 		dpm_async_fn(dev, async_resume);
1017 
1018 	while (!list_empty(&dpm_suspended_list)) {
1019 		dev = to_device(dpm_suspended_list.next);
1020 
1021 		get_device(dev);
1022 
1023 		if (!dev->power.async_in_progress) {
1024 			mutex_unlock(&dpm_list_mtx);
1025 
1026 			device_resume(dev, state, false);
1027 
1028 			mutex_lock(&dpm_list_mtx);
1029 		}
1030 
1031 		if (!list_empty(&dev->power.entry))
1032 			list_move_tail(&dev->power.entry, &dpm_prepared_list);
1033 
1034 		mutex_unlock(&dpm_list_mtx);
1035 
1036 		put_device(dev);
1037 
1038 		mutex_lock(&dpm_list_mtx);
1039 	}
1040 	mutex_unlock(&dpm_list_mtx);
1041 	async_synchronize_full();
1042 	dpm_show_time(starttime, state, 0, NULL);
1043 
1044 	cpufreq_resume();
1045 	devfreq_resume();
1046 	trace_suspend_resume(TPS("dpm_resume"), state.event, false);
1047 }
1048 
1049 /**
1050  * device_complete - Complete a PM transition for given device.
1051  * @dev: Device to handle.
1052  * @state: PM transition of the system being carried out.
1053  */
1054 static void device_complete(struct device *dev, pm_message_t state)
1055 {
1056 	void (*callback)(struct device *) = NULL;
1057 	const char *info = NULL;
1058 
1059 	if (dev->power.syscore)
1060 		goto out;
1061 
1062 	device_lock(dev);
1063 
1064 	if (dev->pm_domain) {
1065 		info = "completing power domain ";
1066 		callback = dev->pm_domain->ops.complete;
1067 	} else if (dev->type && dev->type->pm) {
1068 		info = "completing type ";
1069 		callback = dev->type->pm->complete;
1070 	} else if (dev->class && dev->class->pm) {
1071 		info = "completing class ";
1072 		callback = dev->class->pm->complete;
1073 	} else if (dev->bus && dev->bus->pm) {
1074 		info = "completing bus ";
1075 		callback = dev->bus->pm->complete;
1076 	}
1077 
1078 	if (!callback && dev->driver && dev->driver->pm) {
1079 		info = "completing driver ";
1080 		callback = dev->driver->pm->complete;
1081 	}
1082 
1083 	if (callback) {
1084 		pm_dev_dbg(dev, state, info);
1085 		callback(dev);
1086 	}
1087 
1088 	device_unlock(dev);
1089 
1090 out:
1091 	pm_runtime_put(dev);
1092 }
1093 
1094 /**
1095  * dpm_complete - Complete a PM transition for all non-sysdev devices.
1096  * @state: PM transition of the system being carried out.
1097  *
1098  * Execute the ->complete() callbacks for all devices whose PM status is not
1099  * DPM_ON (this allows new devices to be registered).
1100  */
1101 void dpm_complete(pm_message_t state)
1102 {
1103 	struct list_head list;
1104 
1105 	trace_suspend_resume(TPS("dpm_complete"), state.event, true);
1106 	might_sleep();
1107 
1108 	INIT_LIST_HEAD(&list);
1109 	mutex_lock(&dpm_list_mtx);
1110 	while (!list_empty(&dpm_prepared_list)) {
1111 		struct device *dev = to_device(dpm_prepared_list.prev);
1112 
1113 		get_device(dev);
1114 		dev->power.is_prepared = false;
1115 		list_move(&dev->power.entry, &list);
1116 
1117 		mutex_unlock(&dpm_list_mtx);
1118 
1119 		trace_device_pm_callback_start(dev, "", state.event);
1120 		device_complete(dev, state);
1121 		trace_device_pm_callback_end(dev, 0);
1122 
1123 		put_device(dev);
1124 
1125 		mutex_lock(&dpm_list_mtx);
1126 	}
1127 	list_splice(&list, &dpm_list);
1128 	mutex_unlock(&dpm_list_mtx);
1129 
1130 	/* Allow device probing and trigger re-probing of deferred devices */
1131 	device_unblock_probing();
1132 	trace_suspend_resume(TPS("dpm_complete"), state.event, false);
1133 }
1134 
1135 /**
1136  * dpm_resume_end - Execute "resume" callbacks and complete system transition.
1137  * @state: PM transition of the system being carried out.
1138  *
1139  * Execute "resume" callbacks for all devices and complete the PM transition of
1140  * the system.
1141  */
1142 void dpm_resume_end(pm_message_t state)
1143 {
1144 	dpm_resume(state);
1145 	dpm_complete(state);
1146 }
1147 EXPORT_SYMBOL_GPL(dpm_resume_end);
1148 
1149 
1150 /*------------------------- Suspend routines -------------------------*/
1151 
1152 /**
1153  * resume_event - Return a "resume" message for given "suspend" sleep state.
1154  * @sleep_state: PM message representing a sleep state.
1155  *
1156  * Return a PM message representing the resume event corresponding to given
1157  * sleep state.
1158  */
1159 static pm_message_t resume_event(pm_message_t sleep_state)
1160 {
1161 	switch (sleep_state.event) {
1162 	case PM_EVENT_SUSPEND:
1163 		return PMSG_RESUME;
1164 	case PM_EVENT_FREEZE:
1165 	case PM_EVENT_QUIESCE:
1166 		return PMSG_RECOVER;
1167 	case PM_EVENT_HIBERNATE:
1168 		return PMSG_RESTORE;
1169 	}
1170 	return PMSG_ON;
1171 }
1172 
1173 static void dpm_superior_set_must_resume(struct device *dev)
1174 {
1175 	struct device_link *link;
1176 	int idx;
1177 
1178 	if (dev->parent)
1179 		dev->parent->power.must_resume = true;
1180 
1181 	idx = device_links_read_lock();
1182 
1183 	list_for_each_entry_rcu_locked(link, &dev->links.suppliers, c_node)
1184 		link->supplier->power.must_resume = true;
1185 
1186 	device_links_read_unlock(idx);
1187 }
1188 
1189 /**
1190  * __device_suspend_noirq - Execute a "noirq suspend" callback for given device.
1191  * @dev: Device to handle.
1192  * @state: PM transition of the system being carried out.
1193  * @async: If true, the device is being suspended asynchronously.
1194  *
1195  * The driver of @dev will not receive interrupts while this function is being
1196  * executed.
1197  */
1198 static int __device_suspend_noirq(struct device *dev, pm_message_t state, bool async)
1199 {
1200 	pm_callback_t callback = NULL;
1201 	const char *info = NULL;
1202 	int error = 0;
1203 
1204 	TRACE_DEVICE(dev);
1205 	TRACE_SUSPEND(0);
1206 
1207 	dpm_wait_for_subordinate(dev, async);
1208 
1209 	if (async_error)
1210 		goto Complete;
1211 
1212 	if (dev->power.syscore || dev->power.direct_complete)
1213 		goto Complete;
1214 
1215 	if (dev->pm_domain) {
1216 		info = "noirq power domain ";
1217 		callback = pm_noirq_op(&dev->pm_domain->ops, state);
1218 	} else if (dev->type && dev->type->pm) {
1219 		info = "noirq type ";
1220 		callback = pm_noirq_op(dev->type->pm, state);
1221 	} else if (dev->class && dev->class->pm) {
1222 		info = "noirq class ";
1223 		callback = pm_noirq_op(dev->class->pm, state);
1224 	} else if (dev->bus && dev->bus->pm) {
1225 		info = "noirq bus ";
1226 		callback = pm_noirq_op(dev->bus->pm, state);
1227 	}
1228 	if (callback)
1229 		goto Run;
1230 
1231 	if (dev_pm_skip_suspend(dev))
1232 		goto Skip;
1233 
1234 	if (dev->driver && dev->driver->pm) {
1235 		info = "noirq driver ";
1236 		callback = pm_noirq_op(dev->driver->pm, state);
1237 	}
1238 
1239 Run:
1240 	error = dpm_run_callback(callback, dev, state, info);
1241 	if (error) {
1242 		async_error = error;
1243 		goto Complete;
1244 	}
1245 
1246 Skip:
1247 	dev->power.is_noirq_suspended = true;
1248 
1249 	/*
1250 	 * Skipping the resume of devices that were in use right before the
1251 	 * system suspend (as indicated by their PM-runtime usage counters)
1252 	 * would be suboptimal.  Also resume them if doing that is not allowed
1253 	 * to be skipped.
1254 	 */
1255 	if (atomic_read(&dev->power.usage_count) > 1 ||
1256 	    !(dev_pm_test_driver_flags(dev, DPM_FLAG_MAY_SKIP_RESUME) &&
1257 	      dev->power.may_skip_resume))
1258 		dev->power.must_resume = true;
1259 
1260 	if (dev->power.must_resume)
1261 		dpm_superior_set_must_resume(dev);
1262 
1263 Complete:
1264 	complete_all(&dev->power.completion);
1265 	TRACE_SUSPEND(error);
1266 	return error;
1267 }
1268 
1269 static void async_suspend_noirq(void *data, async_cookie_t cookie)
1270 {
1271 	struct device *dev = data;
1272 	int error;
1273 
1274 	error = __device_suspend_noirq(dev, pm_transition, true);
1275 	if (error) {
1276 		dpm_save_failed_dev(dev_name(dev));
1277 		pm_dev_err(dev, pm_transition, " async", error);
1278 	}
1279 
1280 	put_device(dev);
1281 }
1282 
1283 static int device_suspend_noirq(struct device *dev)
1284 {
1285 	if (dpm_async_fn(dev, async_suspend_noirq))
1286 		return 0;
1287 
1288 	return __device_suspend_noirq(dev, pm_transition, false);
1289 }
1290 
1291 static int dpm_noirq_suspend_devices(pm_message_t state)
1292 {
1293 	ktime_t starttime = ktime_get();
1294 	int error = 0;
1295 
1296 	trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, true);
1297 	mutex_lock(&dpm_list_mtx);
1298 	pm_transition = state;
1299 	async_error = 0;
1300 
1301 	while (!list_empty(&dpm_late_early_list)) {
1302 		struct device *dev = to_device(dpm_late_early_list.prev);
1303 
1304 		get_device(dev);
1305 		mutex_unlock(&dpm_list_mtx);
1306 
1307 		error = device_suspend_noirq(dev);
1308 
1309 		mutex_lock(&dpm_list_mtx);
1310 
1311 		if (error) {
1312 			pm_dev_err(dev, state, " noirq", error);
1313 			dpm_save_failed_dev(dev_name(dev));
1314 		} else if (!list_empty(&dev->power.entry)) {
1315 			list_move(&dev->power.entry, &dpm_noirq_list);
1316 		}
1317 
1318 		mutex_unlock(&dpm_list_mtx);
1319 
1320 		put_device(dev);
1321 
1322 		mutex_lock(&dpm_list_mtx);
1323 
1324 		if (error || async_error)
1325 			break;
1326 	}
1327 	mutex_unlock(&dpm_list_mtx);
1328 	async_synchronize_full();
1329 	if (!error)
1330 		error = async_error;
1331 
1332 	if (error) {
1333 		suspend_stats.failed_suspend_noirq++;
1334 		dpm_save_failed_step(SUSPEND_SUSPEND_NOIRQ);
1335 	}
1336 	dpm_show_time(starttime, state, error, "noirq");
1337 	trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, false);
1338 	return error;
1339 }
1340 
1341 /**
1342  * dpm_suspend_noirq - Execute "noirq suspend" callbacks for all devices.
1343  * @state: PM transition of the system being carried out.
1344  *
1345  * Prevent device drivers' interrupt handlers from being called and invoke
1346  * "noirq" suspend callbacks for all non-sysdev devices.
1347  */
1348 int dpm_suspend_noirq(pm_message_t state)
1349 {
1350 	int ret;
1351 
1352 	device_wakeup_arm_wake_irqs();
1353 	suspend_device_irqs();
1354 
1355 	ret = dpm_noirq_suspend_devices(state);
1356 	if (ret)
1357 		dpm_resume_noirq(resume_event(state));
1358 
1359 	return ret;
1360 }
1361 
1362 static void dpm_propagate_wakeup_to_parent(struct device *dev)
1363 {
1364 	struct device *parent = dev->parent;
1365 
1366 	if (!parent)
1367 		return;
1368 
1369 	spin_lock_irq(&parent->power.lock);
1370 
1371 	if (device_wakeup_path(dev) && !parent->power.ignore_children)
1372 		parent->power.wakeup_path = true;
1373 
1374 	spin_unlock_irq(&parent->power.lock);
1375 }
1376 
1377 /**
1378  * __device_suspend_late - Execute a "late suspend" callback for given device.
1379  * @dev: Device to handle.
1380  * @state: PM transition of the system being carried out.
1381  * @async: If true, the device is being suspended asynchronously.
1382  *
1383  * Runtime PM is disabled for @dev while this function is being executed.
1384  */
1385 static int __device_suspend_late(struct device *dev, pm_message_t state, bool async)
1386 {
1387 	pm_callback_t callback = NULL;
1388 	const char *info = NULL;
1389 	int error = 0;
1390 
1391 	TRACE_DEVICE(dev);
1392 	TRACE_SUSPEND(0);
1393 
1394 	__pm_runtime_disable(dev, false);
1395 
1396 	dpm_wait_for_subordinate(dev, async);
1397 
1398 	if (async_error)
1399 		goto Complete;
1400 
1401 	if (pm_wakeup_pending()) {
1402 		async_error = -EBUSY;
1403 		goto Complete;
1404 	}
1405 
1406 	if (dev->power.syscore || dev->power.direct_complete)
1407 		goto Complete;
1408 
1409 	if (dev->pm_domain) {
1410 		info = "late power domain ";
1411 		callback = pm_late_early_op(&dev->pm_domain->ops, state);
1412 	} else if (dev->type && dev->type->pm) {
1413 		info = "late type ";
1414 		callback = pm_late_early_op(dev->type->pm, state);
1415 	} else if (dev->class && dev->class->pm) {
1416 		info = "late class ";
1417 		callback = pm_late_early_op(dev->class->pm, state);
1418 	} else if (dev->bus && dev->bus->pm) {
1419 		info = "late bus ";
1420 		callback = pm_late_early_op(dev->bus->pm, state);
1421 	}
1422 	if (callback)
1423 		goto Run;
1424 
1425 	if (dev_pm_skip_suspend(dev))
1426 		goto Skip;
1427 
1428 	if (dev->driver && dev->driver->pm) {
1429 		info = "late driver ";
1430 		callback = pm_late_early_op(dev->driver->pm, state);
1431 	}
1432 
1433 Run:
1434 	error = dpm_run_callback(callback, dev, state, info);
1435 	if (error) {
1436 		async_error = error;
1437 		goto Complete;
1438 	}
1439 	dpm_propagate_wakeup_to_parent(dev);
1440 
1441 Skip:
1442 	dev->power.is_late_suspended = true;
1443 
1444 Complete:
1445 	TRACE_SUSPEND(error);
1446 	complete_all(&dev->power.completion);
1447 	return error;
1448 }
1449 
1450 static void async_suspend_late(void *data, async_cookie_t cookie)
1451 {
1452 	struct device *dev = data;
1453 	int error;
1454 
1455 	error = __device_suspend_late(dev, pm_transition, true);
1456 	if (error) {
1457 		dpm_save_failed_dev(dev_name(dev));
1458 		pm_dev_err(dev, pm_transition, " async", error);
1459 	}
1460 	put_device(dev);
1461 }
1462 
1463 static int device_suspend_late(struct device *dev)
1464 {
1465 	if (dpm_async_fn(dev, async_suspend_late))
1466 		return 0;
1467 
1468 	return __device_suspend_late(dev, pm_transition, false);
1469 }
1470 
1471 /**
1472  * dpm_suspend_late - Execute "late suspend" callbacks for all devices.
1473  * @state: PM transition of the system being carried out.
1474  */
1475 int dpm_suspend_late(pm_message_t state)
1476 {
1477 	ktime_t starttime = ktime_get();
1478 	int error = 0;
1479 
1480 	trace_suspend_resume(TPS("dpm_suspend_late"), state.event, true);
1481 	wake_up_all_idle_cpus();
1482 	mutex_lock(&dpm_list_mtx);
1483 	pm_transition = state;
1484 	async_error = 0;
1485 
1486 	while (!list_empty(&dpm_suspended_list)) {
1487 		struct device *dev = to_device(dpm_suspended_list.prev);
1488 
1489 		get_device(dev);
1490 
1491 		mutex_unlock(&dpm_list_mtx);
1492 
1493 		error = device_suspend_late(dev);
1494 
1495 		mutex_lock(&dpm_list_mtx);
1496 
1497 		if (!list_empty(&dev->power.entry))
1498 			list_move(&dev->power.entry, &dpm_late_early_list);
1499 
1500 		if (error) {
1501 			pm_dev_err(dev, state, " late", error);
1502 			dpm_save_failed_dev(dev_name(dev));
1503 		}
1504 
1505 		mutex_unlock(&dpm_list_mtx);
1506 
1507 		put_device(dev);
1508 
1509 		mutex_lock(&dpm_list_mtx);
1510 
1511 		if (error || async_error)
1512 			break;
1513 	}
1514 	mutex_unlock(&dpm_list_mtx);
1515 	async_synchronize_full();
1516 	if (!error)
1517 		error = async_error;
1518 	if (error) {
1519 		suspend_stats.failed_suspend_late++;
1520 		dpm_save_failed_step(SUSPEND_SUSPEND_LATE);
1521 		dpm_resume_early(resume_event(state));
1522 	}
1523 	dpm_show_time(starttime, state, error, "late");
1524 	trace_suspend_resume(TPS("dpm_suspend_late"), state.event, false);
1525 	return error;
1526 }
1527 
1528 /**
1529  * dpm_suspend_end - Execute "late" and "noirq" device suspend callbacks.
1530  * @state: PM transition of the system being carried out.
1531  */
1532 int dpm_suspend_end(pm_message_t state)
1533 {
1534 	ktime_t starttime = ktime_get();
1535 	int error;
1536 
1537 	error = dpm_suspend_late(state);
1538 	if (error)
1539 		goto out;
1540 
1541 	error = dpm_suspend_noirq(state);
1542 	if (error)
1543 		dpm_resume_early(resume_event(state));
1544 
1545 out:
1546 	dpm_show_time(starttime, state, error, "end");
1547 	return error;
1548 }
1549 EXPORT_SYMBOL_GPL(dpm_suspend_end);
1550 
1551 /**
1552  * legacy_suspend - Execute a legacy (bus or class) suspend callback for device.
1553  * @dev: Device to suspend.
1554  * @state: PM transition of the system being carried out.
1555  * @cb: Suspend callback to execute.
1556  * @info: string description of caller.
1557  */
1558 static int legacy_suspend(struct device *dev, pm_message_t state,
1559 			  int (*cb)(struct device *dev, pm_message_t state),
1560 			  const char *info)
1561 {
1562 	int error;
1563 	ktime_t calltime;
1564 
1565 	calltime = initcall_debug_start(dev, cb);
1566 
1567 	trace_device_pm_callback_start(dev, info, state.event);
1568 	error = cb(dev, state);
1569 	trace_device_pm_callback_end(dev, error);
1570 	suspend_report_result(dev, cb, error);
1571 
1572 	initcall_debug_report(dev, calltime, cb, error);
1573 
1574 	return error;
1575 }
1576 
1577 static void dpm_clear_superiors_direct_complete(struct device *dev)
1578 {
1579 	struct device_link *link;
1580 	int idx;
1581 
1582 	if (dev->parent) {
1583 		spin_lock_irq(&dev->parent->power.lock);
1584 		dev->parent->power.direct_complete = false;
1585 		spin_unlock_irq(&dev->parent->power.lock);
1586 	}
1587 
1588 	idx = device_links_read_lock();
1589 
1590 	list_for_each_entry_rcu_locked(link, &dev->links.suppliers, c_node) {
1591 		spin_lock_irq(&link->supplier->power.lock);
1592 		link->supplier->power.direct_complete = false;
1593 		spin_unlock_irq(&link->supplier->power.lock);
1594 	}
1595 
1596 	device_links_read_unlock(idx);
1597 }
1598 
1599 /**
1600  * __device_suspend - Execute "suspend" callbacks for given device.
1601  * @dev: Device to handle.
1602  * @state: PM transition of the system being carried out.
1603  * @async: If true, the device is being suspended asynchronously.
1604  */
1605 static int __device_suspend(struct device *dev, pm_message_t state, bool async)
1606 {
1607 	pm_callback_t callback = NULL;
1608 	const char *info = NULL;
1609 	int error = 0;
1610 	DECLARE_DPM_WATCHDOG_ON_STACK(wd);
1611 
1612 	TRACE_DEVICE(dev);
1613 	TRACE_SUSPEND(0);
1614 
1615 	dpm_wait_for_subordinate(dev, async);
1616 
1617 	if (async_error) {
1618 		dev->power.direct_complete = false;
1619 		goto Complete;
1620 	}
1621 
1622 	/*
1623 	 * Wait for possible runtime PM transitions of the device in progress
1624 	 * to complete and if there's a runtime resume request pending for it,
1625 	 * resume it before proceeding with invoking the system-wide suspend
1626 	 * callbacks for it.
1627 	 *
1628 	 * If the system-wide suspend callbacks below change the configuration
1629 	 * of the device, they must disable runtime PM for it or otherwise
1630 	 * ensure that its runtime-resume callbacks will not be confused by that
1631 	 * change in case they are invoked going forward.
1632 	 */
1633 	pm_runtime_barrier(dev);
1634 
1635 	if (pm_wakeup_pending()) {
1636 		dev->power.direct_complete = false;
1637 		async_error = -EBUSY;
1638 		goto Complete;
1639 	}
1640 
1641 	if (dev->power.syscore)
1642 		goto Complete;
1643 
1644 	/* Avoid direct_complete to let wakeup_path propagate. */
1645 	if (device_may_wakeup(dev) || device_wakeup_path(dev))
1646 		dev->power.direct_complete = false;
1647 
1648 	if (dev->power.direct_complete) {
1649 		if (pm_runtime_status_suspended(dev)) {
1650 			pm_runtime_disable(dev);
1651 			if (pm_runtime_status_suspended(dev)) {
1652 				pm_dev_dbg(dev, state, "direct-complete ");
1653 				goto Complete;
1654 			}
1655 
1656 			pm_runtime_enable(dev);
1657 		}
1658 		dev->power.direct_complete = false;
1659 	}
1660 
1661 	dev->power.may_skip_resume = true;
1662 	dev->power.must_resume = !dev_pm_test_driver_flags(dev, DPM_FLAG_MAY_SKIP_RESUME);
1663 
1664 	dpm_watchdog_set(&wd, dev);
1665 	device_lock(dev);
1666 
1667 	if (dev->pm_domain) {
1668 		info = "power domain ";
1669 		callback = pm_op(&dev->pm_domain->ops, state);
1670 		goto Run;
1671 	}
1672 
1673 	if (dev->type && dev->type->pm) {
1674 		info = "type ";
1675 		callback = pm_op(dev->type->pm, state);
1676 		goto Run;
1677 	}
1678 
1679 	if (dev->class && dev->class->pm) {
1680 		info = "class ";
1681 		callback = pm_op(dev->class->pm, state);
1682 		goto Run;
1683 	}
1684 
1685 	if (dev->bus) {
1686 		if (dev->bus->pm) {
1687 			info = "bus ";
1688 			callback = pm_op(dev->bus->pm, state);
1689 		} else if (dev->bus->suspend) {
1690 			pm_dev_dbg(dev, state, "legacy bus ");
1691 			error = legacy_suspend(dev, state, dev->bus->suspend,
1692 						"legacy bus ");
1693 			goto End;
1694 		}
1695 	}
1696 
1697  Run:
1698 	if (!callback && dev->driver && dev->driver->pm) {
1699 		info = "driver ";
1700 		callback = pm_op(dev->driver->pm, state);
1701 	}
1702 
1703 	error = dpm_run_callback(callback, dev, state, info);
1704 
1705  End:
1706 	if (!error) {
1707 		dev->power.is_suspended = true;
1708 		if (device_may_wakeup(dev))
1709 			dev->power.wakeup_path = true;
1710 
1711 		dpm_propagate_wakeup_to_parent(dev);
1712 		dpm_clear_superiors_direct_complete(dev);
1713 	}
1714 
1715 	device_unlock(dev);
1716 	dpm_watchdog_clear(&wd);
1717 
1718  Complete:
1719 	if (error)
1720 		async_error = error;
1721 
1722 	complete_all(&dev->power.completion);
1723 	TRACE_SUSPEND(error);
1724 	return error;
1725 }
1726 
1727 static void async_suspend(void *data, async_cookie_t cookie)
1728 {
1729 	struct device *dev = data;
1730 	int error;
1731 
1732 	error = __device_suspend(dev, pm_transition, true);
1733 	if (error) {
1734 		dpm_save_failed_dev(dev_name(dev));
1735 		pm_dev_err(dev, pm_transition, " async", error);
1736 	}
1737 
1738 	put_device(dev);
1739 }
1740 
1741 static int device_suspend(struct device *dev)
1742 {
1743 	if (dpm_async_fn(dev, async_suspend))
1744 		return 0;
1745 
1746 	return __device_suspend(dev, pm_transition, false);
1747 }
1748 
1749 /**
1750  * dpm_suspend - Execute "suspend" callbacks for all non-sysdev devices.
1751  * @state: PM transition of the system being carried out.
1752  */
1753 int dpm_suspend(pm_message_t state)
1754 {
1755 	ktime_t starttime = ktime_get();
1756 	int error = 0;
1757 
1758 	trace_suspend_resume(TPS("dpm_suspend"), state.event, true);
1759 	might_sleep();
1760 
1761 	devfreq_suspend();
1762 	cpufreq_suspend();
1763 
1764 	mutex_lock(&dpm_list_mtx);
1765 	pm_transition = state;
1766 	async_error = 0;
1767 	while (!list_empty(&dpm_prepared_list)) {
1768 		struct device *dev = to_device(dpm_prepared_list.prev);
1769 
1770 		get_device(dev);
1771 
1772 		mutex_unlock(&dpm_list_mtx);
1773 
1774 		error = device_suspend(dev);
1775 
1776 		mutex_lock(&dpm_list_mtx);
1777 
1778 		if (error) {
1779 			pm_dev_err(dev, state, "", error);
1780 			dpm_save_failed_dev(dev_name(dev));
1781 		} else if (!list_empty(&dev->power.entry)) {
1782 			list_move(&dev->power.entry, &dpm_suspended_list);
1783 		}
1784 
1785 		mutex_unlock(&dpm_list_mtx);
1786 
1787 		put_device(dev);
1788 
1789 		mutex_lock(&dpm_list_mtx);
1790 
1791 		if (error || async_error)
1792 			break;
1793 	}
1794 	mutex_unlock(&dpm_list_mtx);
1795 	async_synchronize_full();
1796 	if (!error)
1797 		error = async_error;
1798 	if (error) {
1799 		suspend_stats.failed_suspend++;
1800 		dpm_save_failed_step(SUSPEND_SUSPEND);
1801 	}
1802 	dpm_show_time(starttime, state, error, NULL);
1803 	trace_suspend_resume(TPS("dpm_suspend"), state.event, false);
1804 	return error;
1805 }
1806 
1807 /**
1808  * device_prepare - Prepare a device for system power transition.
1809  * @dev: Device to handle.
1810  * @state: PM transition of the system being carried out.
1811  *
1812  * Execute the ->prepare() callback(s) for given device.  No new children of the
1813  * device may be registered after this function has returned.
1814  */
1815 static int device_prepare(struct device *dev, pm_message_t state)
1816 {
1817 	int (*callback)(struct device *) = NULL;
1818 	int ret = 0;
1819 
1820 	/*
1821 	 * If a device's parent goes into runtime suspend at the wrong time,
1822 	 * it won't be possible to resume the device.  To prevent this we
1823 	 * block runtime suspend here, during the prepare phase, and allow
1824 	 * it again during the complete phase.
1825 	 */
1826 	pm_runtime_get_noresume(dev);
1827 
1828 	if (dev->power.syscore)
1829 		return 0;
1830 
1831 	device_lock(dev);
1832 
1833 	dev->power.wakeup_path = false;
1834 
1835 	if (dev->power.no_pm_callbacks)
1836 		goto unlock;
1837 
1838 	if (dev->pm_domain)
1839 		callback = dev->pm_domain->ops.prepare;
1840 	else if (dev->type && dev->type->pm)
1841 		callback = dev->type->pm->prepare;
1842 	else if (dev->class && dev->class->pm)
1843 		callback = dev->class->pm->prepare;
1844 	else if (dev->bus && dev->bus->pm)
1845 		callback = dev->bus->pm->prepare;
1846 
1847 	if (!callback && dev->driver && dev->driver->pm)
1848 		callback = dev->driver->pm->prepare;
1849 
1850 	if (callback)
1851 		ret = callback(dev);
1852 
1853 unlock:
1854 	device_unlock(dev);
1855 
1856 	if (ret < 0) {
1857 		suspend_report_result(dev, callback, ret);
1858 		pm_runtime_put(dev);
1859 		return ret;
1860 	}
1861 	/*
1862 	 * A positive return value from ->prepare() means "this device appears
1863 	 * to be runtime-suspended and its state is fine, so if it really is
1864 	 * runtime-suspended, you can leave it in that state provided that you
1865 	 * will do the same thing with all of its descendants".  This only
1866 	 * applies to suspend transitions, however.
1867 	 */
1868 	spin_lock_irq(&dev->power.lock);
1869 	dev->power.direct_complete = state.event == PM_EVENT_SUSPEND &&
1870 		(ret > 0 || dev->power.no_pm_callbacks) &&
1871 		!dev_pm_test_driver_flags(dev, DPM_FLAG_NO_DIRECT_COMPLETE);
1872 	spin_unlock_irq(&dev->power.lock);
1873 	return 0;
1874 }
1875 
1876 /**
1877  * dpm_prepare - Prepare all non-sysdev devices for a system PM transition.
1878  * @state: PM transition of the system being carried out.
1879  *
1880  * Execute the ->prepare() callback(s) for all devices.
1881  */
1882 int dpm_prepare(pm_message_t state)
1883 {
1884 	int error = 0;
1885 
1886 	trace_suspend_resume(TPS("dpm_prepare"), state.event, true);
1887 	might_sleep();
1888 
1889 	/*
1890 	 * Give a chance for the known devices to complete their probes, before
1891 	 * disable probing of devices. This sync point is important at least
1892 	 * at boot time + hibernation restore.
1893 	 */
1894 	wait_for_device_probe();
1895 	/*
1896 	 * It is unsafe if probing of devices will happen during suspend or
1897 	 * hibernation and system behavior will be unpredictable in this case.
1898 	 * So, let's prohibit device's probing here and defer their probes
1899 	 * instead. The normal behavior will be restored in dpm_complete().
1900 	 */
1901 	device_block_probing();
1902 
1903 	mutex_lock(&dpm_list_mtx);
1904 	while (!list_empty(&dpm_list) && !error) {
1905 		struct device *dev = to_device(dpm_list.next);
1906 
1907 		get_device(dev);
1908 
1909 		mutex_unlock(&dpm_list_mtx);
1910 
1911 		trace_device_pm_callback_start(dev, "", state.event);
1912 		error = device_prepare(dev, state);
1913 		trace_device_pm_callback_end(dev, error);
1914 
1915 		mutex_lock(&dpm_list_mtx);
1916 
1917 		if (!error) {
1918 			dev->power.is_prepared = true;
1919 			if (!list_empty(&dev->power.entry))
1920 				list_move_tail(&dev->power.entry, &dpm_prepared_list);
1921 		} else if (error == -EAGAIN) {
1922 			error = 0;
1923 		} else {
1924 			dev_info(dev, "not prepared for power transition: code %d\n",
1925 				 error);
1926 		}
1927 
1928 		mutex_unlock(&dpm_list_mtx);
1929 
1930 		put_device(dev);
1931 
1932 		mutex_lock(&dpm_list_mtx);
1933 	}
1934 	mutex_unlock(&dpm_list_mtx);
1935 	trace_suspend_resume(TPS("dpm_prepare"), state.event, false);
1936 	return error;
1937 }
1938 
1939 /**
1940  * dpm_suspend_start - Prepare devices for PM transition and suspend them.
1941  * @state: PM transition of the system being carried out.
1942  *
1943  * Prepare all non-sysdev devices for system PM transition and execute "suspend"
1944  * callbacks for them.
1945  */
1946 int dpm_suspend_start(pm_message_t state)
1947 {
1948 	ktime_t starttime = ktime_get();
1949 	int error;
1950 
1951 	error = dpm_prepare(state);
1952 	if (error) {
1953 		suspend_stats.failed_prepare++;
1954 		dpm_save_failed_step(SUSPEND_PREPARE);
1955 	} else
1956 		error = dpm_suspend(state);
1957 	dpm_show_time(starttime, state, error, "start");
1958 	return error;
1959 }
1960 EXPORT_SYMBOL_GPL(dpm_suspend_start);
1961 
1962 void __suspend_report_result(const char *function, struct device *dev, void *fn, int ret)
1963 {
1964 	if (ret)
1965 		dev_err(dev, "%s(): %pS returns %d\n", function, fn, ret);
1966 }
1967 EXPORT_SYMBOL_GPL(__suspend_report_result);
1968 
1969 /**
1970  * device_pm_wait_for_dev - Wait for suspend/resume of a device to complete.
1971  * @subordinate: Device that needs to wait for @dev.
1972  * @dev: Device to wait for.
1973  */
1974 int device_pm_wait_for_dev(struct device *subordinate, struct device *dev)
1975 {
1976 	dpm_wait(dev, subordinate->power.async_suspend);
1977 	return async_error;
1978 }
1979 EXPORT_SYMBOL_GPL(device_pm_wait_for_dev);
1980 
1981 /**
1982  * dpm_for_each_dev - device iterator.
1983  * @data: data for the callback.
1984  * @fn: function to be called for each device.
1985  *
1986  * Iterate over devices in dpm_list, and call @fn for each device,
1987  * passing it @data.
1988  */
1989 void dpm_for_each_dev(void *data, void (*fn)(struct device *, void *))
1990 {
1991 	struct device *dev;
1992 
1993 	if (!fn)
1994 		return;
1995 
1996 	device_pm_lock();
1997 	list_for_each_entry(dev, &dpm_list, power.entry)
1998 		fn(dev, data);
1999 	device_pm_unlock();
2000 }
2001 EXPORT_SYMBOL_GPL(dpm_for_each_dev);
2002 
2003 static bool pm_ops_is_empty(const struct dev_pm_ops *ops)
2004 {
2005 	if (!ops)
2006 		return true;
2007 
2008 	return !ops->prepare &&
2009 	       !ops->suspend &&
2010 	       !ops->suspend_late &&
2011 	       !ops->suspend_noirq &&
2012 	       !ops->resume_noirq &&
2013 	       !ops->resume_early &&
2014 	       !ops->resume &&
2015 	       !ops->complete;
2016 }
2017 
2018 void device_pm_check_callbacks(struct device *dev)
2019 {
2020 	unsigned long flags;
2021 
2022 	spin_lock_irqsave(&dev->power.lock, flags);
2023 	dev->power.no_pm_callbacks =
2024 		(!dev->bus || (pm_ops_is_empty(dev->bus->pm) &&
2025 		 !dev->bus->suspend && !dev->bus->resume)) &&
2026 		(!dev->class || pm_ops_is_empty(dev->class->pm)) &&
2027 		(!dev->type || pm_ops_is_empty(dev->type->pm)) &&
2028 		(!dev->pm_domain || pm_ops_is_empty(&dev->pm_domain->ops)) &&
2029 		(!dev->driver || (pm_ops_is_empty(dev->driver->pm) &&
2030 		 !dev->driver->suspend && !dev->driver->resume));
2031 	spin_unlock_irqrestore(&dev->power.lock, flags);
2032 }
2033 
2034 bool dev_pm_skip_suspend(struct device *dev)
2035 {
2036 	return dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND) &&
2037 		pm_runtime_status_suspended(dev);
2038 }
2039