xref: /linux/drivers/base/power/main.c (revision e0c1b49f5b674cca7b10549c53b3791d0bbc90a8)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * drivers/base/power/main.c - Where the driver meets power management.
4  *
5  * Copyright (c) 2003 Patrick Mochel
6  * Copyright (c) 2003 Open Source Development Lab
7  *
8  * The driver model core calls device_pm_add() when a device is registered.
9  * This will initialize the embedded device_pm_info object in the device
10  * and add it to the list of power-controlled devices. sysfs entries for
11  * controlling device power management will also be added.
12  *
13  * A separate list is used for keeping track of power info, because the power
14  * domain dependencies may differ from the ancestral dependencies that the
15  * subsystem list maintains.
16  */
17 
18 #define pr_fmt(fmt) "PM: " fmt
19 #define dev_fmt pr_fmt
20 
21 #include <linux/device.h>
22 #include <linux/export.h>
23 #include <linux/mutex.h>
24 #include <linux/pm.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/pm-trace.h>
27 #include <linux/pm_wakeirq.h>
28 #include <linux/interrupt.h>
29 #include <linux/sched.h>
30 #include <linux/sched/debug.h>
31 #include <linux/async.h>
32 #include <linux/suspend.h>
33 #include <trace/events/power.h>
34 #include <linux/cpufreq.h>
35 #include <linux/devfreq.h>
36 #include <linux/timer.h>
37 
38 #include "../base.h"
39 #include "power.h"
40 
41 typedef int (*pm_callback_t)(struct device *);
42 
43 #define list_for_each_entry_rcu_locked(pos, head, member) \
44 	list_for_each_entry_rcu(pos, head, member, \
45 			device_links_read_lock_held())
46 
47 /*
48  * The entries in the dpm_list list are in a depth first order, simply
49  * because children are guaranteed to be discovered after parents, and
50  * are inserted at the back of the list on discovery.
51  *
52  * Since device_pm_add() may be called with a device lock held,
53  * we must never try to acquire a device lock while holding
54  * dpm_list_mutex.
55  */
56 
57 LIST_HEAD(dpm_list);
58 static LIST_HEAD(dpm_prepared_list);
59 static LIST_HEAD(dpm_suspended_list);
60 static LIST_HEAD(dpm_late_early_list);
61 static LIST_HEAD(dpm_noirq_list);
62 
63 struct suspend_stats suspend_stats;
64 static DEFINE_MUTEX(dpm_list_mtx);
65 static pm_message_t pm_transition;
66 
67 static int async_error;
68 
69 static const char *pm_verb(int event)
70 {
71 	switch (event) {
72 	case PM_EVENT_SUSPEND:
73 		return "suspend";
74 	case PM_EVENT_RESUME:
75 		return "resume";
76 	case PM_EVENT_FREEZE:
77 		return "freeze";
78 	case PM_EVENT_QUIESCE:
79 		return "quiesce";
80 	case PM_EVENT_HIBERNATE:
81 		return "hibernate";
82 	case PM_EVENT_THAW:
83 		return "thaw";
84 	case PM_EVENT_RESTORE:
85 		return "restore";
86 	case PM_EVENT_RECOVER:
87 		return "recover";
88 	default:
89 		return "(unknown PM event)";
90 	}
91 }
92 
93 /**
94  * device_pm_sleep_init - Initialize system suspend-related device fields.
95  * @dev: Device object being initialized.
96  */
97 void device_pm_sleep_init(struct device *dev)
98 {
99 	dev->power.is_prepared = false;
100 	dev->power.is_suspended = false;
101 	dev->power.is_noirq_suspended = false;
102 	dev->power.is_late_suspended = false;
103 	init_completion(&dev->power.completion);
104 	complete_all(&dev->power.completion);
105 	dev->power.wakeup = NULL;
106 	INIT_LIST_HEAD(&dev->power.entry);
107 }
108 
109 /**
110  * device_pm_lock - Lock the list of active devices used by the PM core.
111  */
112 void device_pm_lock(void)
113 {
114 	mutex_lock(&dpm_list_mtx);
115 }
116 
117 /**
118  * device_pm_unlock - Unlock the list of active devices used by the PM core.
119  */
120 void device_pm_unlock(void)
121 {
122 	mutex_unlock(&dpm_list_mtx);
123 }
124 
125 /**
126  * device_pm_add - Add a device to the PM core's list of active devices.
127  * @dev: Device to add to the list.
128  */
129 void device_pm_add(struct device *dev)
130 {
131 	/* Skip PM setup/initialization. */
132 	if (device_pm_not_required(dev))
133 		return;
134 
135 	pr_debug("Adding info for %s:%s\n",
136 		 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
137 	device_pm_check_callbacks(dev);
138 	mutex_lock(&dpm_list_mtx);
139 	if (dev->parent && dev->parent->power.is_prepared)
140 		dev_warn(dev, "parent %s should not be sleeping\n",
141 			dev_name(dev->parent));
142 	list_add_tail(&dev->power.entry, &dpm_list);
143 	dev->power.in_dpm_list = true;
144 	mutex_unlock(&dpm_list_mtx);
145 }
146 
147 /**
148  * device_pm_remove - Remove a device from the PM core's list of active devices.
149  * @dev: Device to be removed from the list.
150  */
151 void device_pm_remove(struct device *dev)
152 {
153 	if (device_pm_not_required(dev))
154 		return;
155 
156 	pr_debug("Removing info for %s:%s\n",
157 		 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
158 	complete_all(&dev->power.completion);
159 	mutex_lock(&dpm_list_mtx);
160 	list_del_init(&dev->power.entry);
161 	dev->power.in_dpm_list = false;
162 	mutex_unlock(&dpm_list_mtx);
163 	device_wakeup_disable(dev);
164 	pm_runtime_remove(dev);
165 	device_pm_check_callbacks(dev);
166 }
167 
168 /**
169  * device_pm_move_before - Move device in the PM core's list of active devices.
170  * @deva: Device to move in dpm_list.
171  * @devb: Device @deva should come before.
172  */
173 void device_pm_move_before(struct device *deva, struct device *devb)
174 {
175 	pr_debug("Moving %s:%s before %s:%s\n",
176 		 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
177 		 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
178 	/* Delete deva from dpm_list and reinsert before devb. */
179 	list_move_tail(&deva->power.entry, &devb->power.entry);
180 }
181 
182 /**
183  * device_pm_move_after - Move device in the PM core's list of active devices.
184  * @deva: Device to move in dpm_list.
185  * @devb: Device @deva should come after.
186  */
187 void device_pm_move_after(struct device *deva, struct device *devb)
188 {
189 	pr_debug("Moving %s:%s after %s:%s\n",
190 		 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
191 		 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
192 	/* Delete deva from dpm_list and reinsert after devb. */
193 	list_move(&deva->power.entry, &devb->power.entry);
194 }
195 
196 /**
197  * device_pm_move_last - Move device to end of the PM core's list of devices.
198  * @dev: Device to move in dpm_list.
199  */
200 void device_pm_move_last(struct device *dev)
201 {
202 	pr_debug("Moving %s:%s to end of list\n",
203 		 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
204 	list_move_tail(&dev->power.entry, &dpm_list);
205 }
206 
207 static ktime_t initcall_debug_start(struct device *dev, void *cb)
208 {
209 	if (!pm_print_times_enabled)
210 		return 0;
211 
212 	dev_info(dev, "calling %pS @ %i, parent: %s\n", cb,
213 		 task_pid_nr(current),
214 		 dev->parent ? dev_name(dev->parent) : "none");
215 	return ktime_get();
216 }
217 
218 static void initcall_debug_report(struct device *dev, ktime_t calltime,
219 				  void *cb, int error)
220 {
221 	ktime_t rettime;
222 
223 	if (!pm_print_times_enabled)
224 		return;
225 
226 	rettime = ktime_get();
227 	dev_info(dev, "%pS returned %d after %Ld usecs\n", cb, error,
228 		 (unsigned long long)ktime_us_delta(rettime, calltime));
229 }
230 
231 /**
232  * dpm_wait - Wait for a PM operation to complete.
233  * @dev: Device to wait for.
234  * @async: If unset, wait only if the device's power.async_suspend flag is set.
235  */
236 static void dpm_wait(struct device *dev, bool async)
237 {
238 	if (!dev)
239 		return;
240 
241 	if (async || (pm_async_enabled && dev->power.async_suspend))
242 		wait_for_completion(&dev->power.completion);
243 }
244 
245 static int dpm_wait_fn(struct device *dev, void *async_ptr)
246 {
247 	dpm_wait(dev, *((bool *)async_ptr));
248 	return 0;
249 }
250 
251 static void dpm_wait_for_children(struct device *dev, bool async)
252 {
253        device_for_each_child(dev, &async, dpm_wait_fn);
254 }
255 
256 static void dpm_wait_for_suppliers(struct device *dev, bool async)
257 {
258 	struct device_link *link;
259 	int idx;
260 
261 	idx = device_links_read_lock();
262 
263 	/*
264 	 * If the supplier goes away right after we've checked the link to it,
265 	 * we'll wait for its completion to change the state, but that's fine,
266 	 * because the only things that will block as a result are the SRCU
267 	 * callbacks freeing the link objects for the links in the list we're
268 	 * walking.
269 	 */
270 	list_for_each_entry_rcu_locked(link, &dev->links.suppliers, c_node)
271 		if (READ_ONCE(link->status) != DL_STATE_DORMANT)
272 			dpm_wait(link->supplier, async);
273 
274 	device_links_read_unlock(idx);
275 }
276 
277 static bool dpm_wait_for_superior(struct device *dev, bool async)
278 {
279 	struct device *parent;
280 
281 	/*
282 	 * If the device is resumed asynchronously and the parent's callback
283 	 * deletes both the device and the parent itself, the parent object may
284 	 * be freed while this function is running, so avoid that by reference
285 	 * counting the parent once more unless the device has been deleted
286 	 * already (in which case return right away).
287 	 */
288 	mutex_lock(&dpm_list_mtx);
289 
290 	if (!device_pm_initialized(dev)) {
291 		mutex_unlock(&dpm_list_mtx);
292 		return false;
293 	}
294 
295 	parent = get_device(dev->parent);
296 
297 	mutex_unlock(&dpm_list_mtx);
298 
299 	dpm_wait(parent, async);
300 	put_device(parent);
301 
302 	dpm_wait_for_suppliers(dev, async);
303 
304 	/*
305 	 * If the parent's callback has deleted the device, attempting to resume
306 	 * it would be invalid, so avoid doing that then.
307 	 */
308 	return device_pm_initialized(dev);
309 }
310 
311 static void dpm_wait_for_consumers(struct device *dev, bool async)
312 {
313 	struct device_link *link;
314 	int idx;
315 
316 	idx = device_links_read_lock();
317 
318 	/*
319 	 * The status of a device link can only be changed from "dormant" by a
320 	 * probe, but that cannot happen during system suspend/resume.  In
321 	 * theory it can change to "dormant" at that time, but then it is
322 	 * reasonable to wait for the target device anyway (eg. if it goes
323 	 * away, it's better to wait for it to go away completely and then
324 	 * continue instead of trying to continue in parallel with its
325 	 * unregistration).
326 	 */
327 	list_for_each_entry_rcu_locked(link, &dev->links.consumers, s_node)
328 		if (READ_ONCE(link->status) != DL_STATE_DORMANT)
329 			dpm_wait(link->consumer, async);
330 
331 	device_links_read_unlock(idx);
332 }
333 
334 static void dpm_wait_for_subordinate(struct device *dev, bool async)
335 {
336 	dpm_wait_for_children(dev, async);
337 	dpm_wait_for_consumers(dev, async);
338 }
339 
340 /**
341  * pm_op - Return the PM operation appropriate for given PM event.
342  * @ops: PM operations to choose from.
343  * @state: PM transition of the system being carried out.
344  */
345 static pm_callback_t pm_op(const struct dev_pm_ops *ops, pm_message_t state)
346 {
347 	switch (state.event) {
348 #ifdef CONFIG_SUSPEND
349 	case PM_EVENT_SUSPEND:
350 		return ops->suspend;
351 	case PM_EVENT_RESUME:
352 		return ops->resume;
353 #endif /* CONFIG_SUSPEND */
354 #ifdef CONFIG_HIBERNATE_CALLBACKS
355 	case PM_EVENT_FREEZE:
356 	case PM_EVENT_QUIESCE:
357 		return ops->freeze;
358 	case PM_EVENT_HIBERNATE:
359 		return ops->poweroff;
360 	case PM_EVENT_THAW:
361 	case PM_EVENT_RECOVER:
362 		return ops->thaw;
363 	case PM_EVENT_RESTORE:
364 		return ops->restore;
365 #endif /* CONFIG_HIBERNATE_CALLBACKS */
366 	}
367 
368 	return NULL;
369 }
370 
371 /**
372  * pm_late_early_op - Return the PM operation appropriate for given PM event.
373  * @ops: PM operations to choose from.
374  * @state: PM transition of the system being carried out.
375  *
376  * Runtime PM is disabled for @dev while this function is being executed.
377  */
378 static pm_callback_t pm_late_early_op(const struct dev_pm_ops *ops,
379 				      pm_message_t state)
380 {
381 	switch (state.event) {
382 #ifdef CONFIG_SUSPEND
383 	case PM_EVENT_SUSPEND:
384 		return ops->suspend_late;
385 	case PM_EVENT_RESUME:
386 		return ops->resume_early;
387 #endif /* CONFIG_SUSPEND */
388 #ifdef CONFIG_HIBERNATE_CALLBACKS
389 	case PM_EVENT_FREEZE:
390 	case PM_EVENT_QUIESCE:
391 		return ops->freeze_late;
392 	case PM_EVENT_HIBERNATE:
393 		return ops->poweroff_late;
394 	case PM_EVENT_THAW:
395 	case PM_EVENT_RECOVER:
396 		return ops->thaw_early;
397 	case PM_EVENT_RESTORE:
398 		return ops->restore_early;
399 #endif /* CONFIG_HIBERNATE_CALLBACKS */
400 	}
401 
402 	return NULL;
403 }
404 
405 /**
406  * pm_noirq_op - Return the PM operation appropriate for given PM event.
407  * @ops: PM operations to choose from.
408  * @state: PM transition of the system being carried out.
409  *
410  * The driver of @dev will not receive interrupts while this function is being
411  * executed.
412  */
413 static pm_callback_t pm_noirq_op(const struct dev_pm_ops *ops, pm_message_t state)
414 {
415 	switch (state.event) {
416 #ifdef CONFIG_SUSPEND
417 	case PM_EVENT_SUSPEND:
418 		return ops->suspend_noirq;
419 	case PM_EVENT_RESUME:
420 		return ops->resume_noirq;
421 #endif /* CONFIG_SUSPEND */
422 #ifdef CONFIG_HIBERNATE_CALLBACKS
423 	case PM_EVENT_FREEZE:
424 	case PM_EVENT_QUIESCE:
425 		return ops->freeze_noirq;
426 	case PM_EVENT_HIBERNATE:
427 		return ops->poweroff_noirq;
428 	case PM_EVENT_THAW:
429 	case PM_EVENT_RECOVER:
430 		return ops->thaw_noirq;
431 	case PM_EVENT_RESTORE:
432 		return ops->restore_noirq;
433 #endif /* CONFIG_HIBERNATE_CALLBACKS */
434 	}
435 
436 	return NULL;
437 }
438 
439 static void pm_dev_dbg(struct device *dev, pm_message_t state, const char *info)
440 {
441 	dev_dbg(dev, "%s%s%s driver flags: %x\n", info, pm_verb(state.event),
442 		((state.event & PM_EVENT_SLEEP) && device_may_wakeup(dev)) ?
443 		", may wakeup" : "", dev->power.driver_flags);
444 }
445 
446 static void pm_dev_err(struct device *dev, pm_message_t state, const char *info,
447 			int error)
448 {
449 	dev_err(dev, "failed to %s%s: error %d\n", pm_verb(state.event), info,
450 		error);
451 }
452 
453 static void dpm_show_time(ktime_t starttime, pm_message_t state, int error,
454 			  const char *info)
455 {
456 	ktime_t calltime;
457 	u64 usecs64;
458 	int usecs;
459 
460 	calltime = ktime_get();
461 	usecs64 = ktime_to_ns(ktime_sub(calltime, starttime));
462 	do_div(usecs64, NSEC_PER_USEC);
463 	usecs = usecs64;
464 	if (usecs == 0)
465 		usecs = 1;
466 
467 	pm_pr_dbg("%s%s%s of devices %s after %ld.%03ld msecs\n",
468 		  info ?: "", info ? " " : "", pm_verb(state.event),
469 		  error ? "aborted" : "complete",
470 		  usecs / USEC_PER_MSEC, usecs % USEC_PER_MSEC);
471 }
472 
473 static int dpm_run_callback(pm_callback_t cb, struct device *dev,
474 			    pm_message_t state, const char *info)
475 {
476 	ktime_t calltime;
477 	int error;
478 
479 	if (!cb)
480 		return 0;
481 
482 	calltime = initcall_debug_start(dev, cb);
483 
484 	pm_dev_dbg(dev, state, info);
485 	trace_device_pm_callback_start(dev, info, state.event);
486 	error = cb(dev);
487 	trace_device_pm_callback_end(dev, error);
488 	suspend_report_result(cb, error);
489 
490 	initcall_debug_report(dev, calltime, cb, error);
491 
492 	return error;
493 }
494 
495 #ifdef CONFIG_DPM_WATCHDOG
496 struct dpm_watchdog {
497 	struct device		*dev;
498 	struct task_struct	*tsk;
499 	struct timer_list	timer;
500 };
501 
502 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd) \
503 	struct dpm_watchdog wd
504 
505 /**
506  * dpm_watchdog_handler - Driver suspend / resume watchdog handler.
507  * @t: The timer that PM watchdog depends on.
508  *
509  * Called when a driver has timed out suspending or resuming.
510  * There's not much we can do here to recover so panic() to
511  * capture a crash-dump in pstore.
512  */
513 static void dpm_watchdog_handler(struct timer_list *t)
514 {
515 	struct dpm_watchdog *wd = from_timer(wd, t, timer);
516 
517 	dev_emerg(wd->dev, "**** DPM device timeout ****\n");
518 	show_stack(wd->tsk, NULL, KERN_EMERG);
519 	panic("%s %s: unrecoverable failure\n",
520 		dev_driver_string(wd->dev), dev_name(wd->dev));
521 }
522 
523 /**
524  * dpm_watchdog_set - Enable pm watchdog for given device.
525  * @wd: Watchdog. Must be allocated on the stack.
526  * @dev: Device to handle.
527  */
528 static void dpm_watchdog_set(struct dpm_watchdog *wd, struct device *dev)
529 {
530 	struct timer_list *timer = &wd->timer;
531 
532 	wd->dev = dev;
533 	wd->tsk = current;
534 
535 	timer_setup_on_stack(timer, dpm_watchdog_handler, 0);
536 	/* use same timeout value for both suspend and resume */
537 	timer->expires = jiffies + HZ * CONFIG_DPM_WATCHDOG_TIMEOUT;
538 	add_timer(timer);
539 }
540 
541 /**
542  * dpm_watchdog_clear - Disable suspend/resume watchdog.
543  * @wd: Watchdog to disable.
544  */
545 static void dpm_watchdog_clear(struct dpm_watchdog *wd)
546 {
547 	struct timer_list *timer = &wd->timer;
548 
549 	del_timer_sync(timer);
550 	destroy_timer_on_stack(timer);
551 }
552 #else
553 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd)
554 #define dpm_watchdog_set(x, y)
555 #define dpm_watchdog_clear(x)
556 #endif
557 
558 /*------------------------- Resume routines -------------------------*/
559 
560 /**
561  * dev_pm_skip_resume - System-wide device resume optimization check.
562  * @dev: Target device.
563  *
564  * Return:
565  * - %false if the transition under way is RESTORE.
566  * - Return value of dev_pm_skip_suspend() if the transition under way is THAW.
567  * - The logical negation of %power.must_resume otherwise (that is, when the
568  *   transition under way is RESUME).
569  */
570 bool dev_pm_skip_resume(struct device *dev)
571 {
572 	if (pm_transition.event == PM_EVENT_RESTORE)
573 		return false;
574 
575 	if (pm_transition.event == PM_EVENT_THAW)
576 		return dev_pm_skip_suspend(dev);
577 
578 	return !dev->power.must_resume;
579 }
580 
581 /**
582  * device_resume_noirq - Execute a "noirq resume" callback for given device.
583  * @dev: Device to handle.
584  * @state: PM transition of the system being carried out.
585  * @async: If true, the device is being resumed asynchronously.
586  *
587  * The driver of @dev will not receive interrupts while this function is being
588  * executed.
589  */
590 static int device_resume_noirq(struct device *dev, pm_message_t state, bool async)
591 {
592 	pm_callback_t callback = NULL;
593 	const char *info = NULL;
594 	bool skip_resume;
595 	int error = 0;
596 
597 	TRACE_DEVICE(dev);
598 	TRACE_RESUME(0);
599 
600 	if (dev->power.syscore || dev->power.direct_complete)
601 		goto Out;
602 
603 	if (!dev->power.is_noirq_suspended)
604 		goto Out;
605 
606 	if (!dpm_wait_for_superior(dev, async))
607 		goto Out;
608 
609 	skip_resume = dev_pm_skip_resume(dev);
610 	/*
611 	 * If the driver callback is skipped below or by the middle layer
612 	 * callback and device_resume_early() also skips the driver callback for
613 	 * this device later, it needs to appear as "suspended" to PM-runtime,
614 	 * so change its status accordingly.
615 	 *
616 	 * Otherwise, the device is going to be resumed, so set its PM-runtime
617 	 * status to "active", but do that only if DPM_FLAG_SMART_SUSPEND is set
618 	 * to avoid confusing drivers that don't use it.
619 	 */
620 	if (skip_resume)
621 		pm_runtime_set_suspended(dev);
622 	else if (dev_pm_skip_suspend(dev))
623 		pm_runtime_set_active(dev);
624 
625 	if (dev->pm_domain) {
626 		info = "noirq power domain ";
627 		callback = pm_noirq_op(&dev->pm_domain->ops, state);
628 	} else if (dev->type && dev->type->pm) {
629 		info = "noirq type ";
630 		callback = pm_noirq_op(dev->type->pm, state);
631 	} else if (dev->class && dev->class->pm) {
632 		info = "noirq class ";
633 		callback = pm_noirq_op(dev->class->pm, state);
634 	} else if (dev->bus && dev->bus->pm) {
635 		info = "noirq bus ";
636 		callback = pm_noirq_op(dev->bus->pm, state);
637 	}
638 	if (callback)
639 		goto Run;
640 
641 	if (skip_resume)
642 		goto Skip;
643 
644 	if (dev->driver && dev->driver->pm) {
645 		info = "noirq driver ";
646 		callback = pm_noirq_op(dev->driver->pm, state);
647 	}
648 
649 Run:
650 	error = dpm_run_callback(callback, dev, state, info);
651 
652 Skip:
653 	dev->power.is_noirq_suspended = false;
654 
655 Out:
656 	complete_all(&dev->power.completion);
657 	TRACE_RESUME(error);
658 	return error;
659 }
660 
661 static bool is_async(struct device *dev)
662 {
663 	return dev->power.async_suspend && pm_async_enabled
664 		&& !pm_trace_is_enabled();
665 }
666 
667 static bool dpm_async_fn(struct device *dev, async_func_t func)
668 {
669 	reinit_completion(&dev->power.completion);
670 
671 	if (is_async(dev)) {
672 		get_device(dev);
673 		async_schedule_dev(func, dev);
674 		return true;
675 	}
676 
677 	return false;
678 }
679 
680 static void async_resume_noirq(void *data, async_cookie_t cookie)
681 {
682 	struct device *dev = (struct device *)data;
683 	int error;
684 
685 	error = device_resume_noirq(dev, pm_transition, true);
686 	if (error)
687 		pm_dev_err(dev, pm_transition, " async", error);
688 
689 	put_device(dev);
690 }
691 
692 static void dpm_noirq_resume_devices(pm_message_t state)
693 {
694 	struct device *dev;
695 	ktime_t starttime = ktime_get();
696 
697 	trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, true);
698 	mutex_lock(&dpm_list_mtx);
699 	pm_transition = state;
700 
701 	/*
702 	 * Advanced the async threads upfront,
703 	 * in case the starting of async threads is
704 	 * delayed by non-async resuming devices.
705 	 */
706 	list_for_each_entry(dev, &dpm_noirq_list, power.entry)
707 		dpm_async_fn(dev, async_resume_noirq);
708 
709 	while (!list_empty(&dpm_noirq_list)) {
710 		dev = to_device(dpm_noirq_list.next);
711 		get_device(dev);
712 		list_move_tail(&dev->power.entry, &dpm_late_early_list);
713 		mutex_unlock(&dpm_list_mtx);
714 
715 		if (!is_async(dev)) {
716 			int error;
717 
718 			error = device_resume_noirq(dev, state, false);
719 			if (error) {
720 				suspend_stats.failed_resume_noirq++;
721 				dpm_save_failed_step(SUSPEND_RESUME_NOIRQ);
722 				dpm_save_failed_dev(dev_name(dev));
723 				pm_dev_err(dev, state, " noirq", error);
724 			}
725 		}
726 
727 		mutex_lock(&dpm_list_mtx);
728 		put_device(dev);
729 	}
730 	mutex_unlock(&dpm_list_mtx);
731 	async_synchronize_full();
732 	dpm_show_time(starttime, state, 0, "noirq");
733 	trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, false);
734 }
735 
736 /**
737  * dpm_resume_noirq - Execute "noirq resume" callbacks for all devices.
738  * @state: PM transition of the system being carried out.
739  *
740  * Invoke the "noirq" resume callbacks for all devices in dpm_noirq_list and
741  * allow device drivers' interrupt handlers to be called.
742  */
743 void dpm_resume_noirq(pm_message_t state)
744 {
745 	dpm_noirq_resume_devices(state);
746 
747 	resume_device_irqs();
748 	device_wakeup_disarm_wake_irqs();
749 }
750 
751 /**
752  * device_resume_early - Execute an "early resume" callback for given device.
753  * @dev: Device to handle.
754  * @state: PM transition of the system being carried out.
755  * @async: If true, the device is being resumed asynchronously.
756  *
757  * Runtime PM is disabled for @dev while this function is being executed.
758  */
759 static int device_resume_early(struct device *dev, pm_message_t state, bool async)
760 {
761 	pm_callback_t callback = NULL;
762 	const char *info = NULL;
763 	int error = 0;
764 
765 	TRACE_DEVICE(dev);
766 	TRACE_RESUME(0);
767 
768 	if (dev->power.syscore || dev->power.direct_complete)
769 		goto Out;
770 
771 	if (!dev->power.is_late_suspended)
772 		goto Out;
773 
774 	if (!dpm_wait_for_superior(dev, async))
775 		goto Out;
776 
777 	if (dev->pm_domain) {
778 		info = "early power domain ";
779 		callback = pm_late_early_op(&dev->pm_domain->ops, state);
780 	} else if (dev->type && dev->type->pm) {
781 		info = "early type ";
782 		callback = pm_late_early_op(dev->type->pm, state);
783 	} else if (dev->class && dev->class->pm) {
784 		info = "early class ";
785 		callback = pm_late_early_op(dev->class->pm, state);
786 	} else if (dev->bus && dev->bus->pm) {
787 		info = "early bus ";
788 		callback = pm_late_early_op(dev->bus->pm, state);
789 	}
790 	if (callback)
791 		goto Run;
792 
793 	if (dev_pm_skip_resume(dev))
794 		goto Skip;
795 
796 	if (dev->driver && dev->driver->pm) {
797 		info = "early driver ";
798 		callback = pm_late_early_op(dev->driver->pm, state);
799 	}
800 
801 Run:
802 	error = dpm_run_callback(callback, dev, state, info);
803 
804 Skip:
805 	dev->power.is_late_suspended = false;
806 
807 Out:
808 	TRACE_RESUME(error);
809 
810 	pm_runtime_enable(dev);
811 	complete_all(&dev->power.completion);
812 	return error;
813 }
814 
815 static void async_resume_early(void *data, async_cookie_t cookie)
816 {
817 	struct device *dev = (struct device *)data;
818 	int error;
819 
820 	error = device_resume_early(dev, pm_transition, true);
821 	if (error)
822 		pm_dev_err(dev, pm_transition, " async", error);
823 
824 	put_device(dev);
825 }
826 
827 /**
828  * dpm_resume_early - Execute "early resume" callbacks for all devices.
829  * @state: PM transition of the system being carried out.
830  */
831 void dpm_resume_early(pm_message_t state)
832 {
833 	struct device *dev;
834 	ktime_t starttime = ktime_get();
835 
836 	trace_suspend_resume(TPS("dpm_resume_early"), state.event, true);
837 	mutex_lock(&dpm_list_mtx);
838 	pm_transition = state;
839 
840 	/*
841 	 * Advanced the async threads upfront,
842 	 * in case the starting of async threads is
843 	 * delayed by non-async resuming devices.
844 	 */
845 	list_for_each_entry(dev, &dpm_late_early_list, power.entry)
846 		dpm_async_fn(dev, async_resume_early);
847 
848 	while (!list_empty(&dpm_late_early_list)) {
849 		dev = to_device(dpm_late_early_list.next);
850 		get_device(dev);
851 		list_move_tail(&dev->power.entry, &dpm_suspended_list);
852 		mutex_unlock(&dpm_list_mtx);
853 
854 		if (!is_async(dev)) {
855 			int error;
856 
857 			error = device_resume_early(dev, state, false);
858 			if (error) {
859 				suspend_stats.failed_resume_early++;
860 				dpm_save_failed_step(SUSPEND_RESUME_EARLY);
861 				dpm_save_failed_dev(dev_name(dev));
862 				pm_dev_err(dev, state, " early", error);
863 			}
864 		}
865 		mutex_lock(&dpm_list_mtx);
866 		put_device(dev);
867 	}
868 	mutex_unlock(&dpm_list_mtx);
869 	async_synchronize_full();
870 	dpm_show_time(starttime, state, 0, "early");
871 	trace_suspend_resume(TPS("dpm_resume_early"), state.event, false);
872 }
873 
874 /**
875  * dpm_resume_start - Execute "noirq" and "early" device callbacks.
876  * @state: PM transition of the system being carried out.
877  */
878 void dpm_resume_start(pm_message_t state)
879 {
880 	dpm_resume_noirq(state);
881 	dpm_resume_early(state);
882 }
883 EXPORT_SYMBOL_GPL(dpm_resume_start);
884 
885 /**
886  * device_resume - Execute "resume" callbacks for given device.
887  * @dev: Device to handle.
888  * @state: PM transition of the system being carried out.
889  * @async: If true, the device is being resumed asynchronously.
890  */
891 static int device_resume(struct device *dev, pm_message_t state, bool async)
892 {
893 	pm_callback_t callback = NULL;
894 	const char *info = NULL;
895 	int error = 0;
896 	DECLARE_DPM_WATCHDOG_ON_STACK(wd);
897 
898 	TRACE_DEVICE(dev);
899 	TRACE_RESUME(0);
900 
901 	if (dev->power.syscore)
902 		goto Complete;
903 
904 	if (dev->power.direct_complete) {
905 		/* Match the pm_runtime_disable() in __device_suspend(). */
906 		pm_runtime_enable(dev);
907 		goto Complete;
908 	}
909 
910 	if (!dpm_wait_for_superior(dev, async))
911 		goto Complete;
912 
913 	dpm_watchdog_set(&wd, dev);
914 	device_lock(dev);
915 
916 	/*
917 	 * This is a fib.  But we'll allow new children to be added below
918 	 * a resumed device, even if the device hasn't been completed yet.
919 	 */
920 	dev->power.is_prepared = false;
921 
922 	if (!dev->power.is_suspended)
923 		goto Unlock;
924 
925 	if (dev->pm_domain) {
926 		info = "power domain ";
927 		callback = pm_op(&dev->pm_domain->ops, state);
928 		goto Driver;
929 	}
930 
931 	if (dev->type && dev->type->pm) {
932 		info = "type ";
933 		callback = pm_op(dev->type->pm, state);
934 		goto Driver;
935 	}
936 
937 	if (dev->class && dev->class->pm) {
938 		info = "class ";
939 		callback = pm_op(dev->class->pm, state);
940 		goto Driver;
941 	}
942 
943 	if (dev->bus) {
944 		if (dev->bus->pm) {
945 			info = "bus ";
946 			callback = pm_op(dev->bus->pm, state);
947 		} else if (dev->bus->resume) {
948 			info = "legacy bus ";
949 			callback = dev->bus->resume;
950 			goto End;
951 		}
952 	}
953 
954  Driver:
955 	if (!callback && dev->driver && dev->driver->pm) {
956 		info = "driver ";
957 		callback = pm_op(dev->driver->pm, state);
958 	}
959 
960  End:
961 	error = dpm_run_callback(callback, dev, state, info);
962 	dev->power.is_suspended = false;
963 
964  Unlock:
965 	device_unlock(dev);
966 	dpm_watchdog_clear(&wd);
967 
968  Complete:
969 	complete_all(&dev->power.completion);
970 
971 	TRACE_RESUME(error);
972 
973 	return error;
974 }
975 
976 static void async_resume(void *data, async_cookie_t cookie)
977 {
978 	struct device *dev = (struct device *)data;
979 	int error;
980 
981 	error = device_resume(dev, pm_transition, true);
982 	if (error)
983 		pm_dev_err(dev, pm_transition, " async", error);
984 	put_device(dev);
985 }
986 
987 /**
988  * dpm_resume - Execute "resume" callbacks for non-sysdev devices.
989  * @state: PM transition of the system being carried out.
990  *
991  * Execute the appropriate "resume" callback for all devices whose status
992  * indicates that they are suspended.
993  */
994 void dpm_resume(pm_message_t state)
995 {
996 	struct device *dev;
997 	ktime_t starttime = ktime_get();
998 
999 	trace_suspend_resume(TPS("dpm_resume"), state.event, true);
1000 	might_sleep();
1001 
1002 	mutex_lock(&dpm_list_mtx);
1003 	pm_transition = state;
1004 	async_error = 0;
1005 
1006 	list_for_each_entry(dev, &dpm_suspended_list, power.entry)
1007 		dpm_async_fn(dev, async_resume);
1008 
1009 	while (!list_empty(&dpm_suspended_list)) {
1010 		dev = to_device(dpm_suspended_list.next);
1011 		get_device(dev);
1012 		if (!is_async(dev)) {
1013 			int error;
1014 
1015 			mutex_unlock(&dpm_list_mtx);
1016 
1017 			error = device_resume(dev, state, false);
1018 			if (error) {
1019 				suspend_stats.failed_resume++;
1020 				dpm_save_failed_step(SUSPEND_RESUME);
1021 				dpm_save_failed_dev(dev_name(dev));
1022 				pm_dev_err(dev, state, "", error);
1023 			}
1024 
1025 			mutex_lock(&dpm_list_mtx);
1026 		}
1027 		if (!list_empty(&dev->power.entry))
1028 			list_move_tail(&dev->power.entry, &dpm_prepared_list);
1029 		put_device(dev);
1030 	}
1031 	mutex_unlock(&dpm_list_mtx);
1032 	async_synchronize_full();
1033 	dpm_show_time(starttime, state, 0, NULL);
1034 
1035 	cpufreq_resume();
1036 	devfreq_resume();
1037 	trace_suspend_resume(TPS("dpm_resume"), state.event, false);
1038 }
1039 
1040 /**
1041  * device_complete - Complete a PM transition for given device.
1042  * @dev: Device to handle.
1043  * @state: PM transition of the system being carried out.
1044  */
1045 static void device_complete(struct device *dev, pm_message_t state)
1046 {
1047 	void (*callback)(struct device *) = NULL;
1048 	const char *info = NULL;
1049 
1050 	if (dev->power.syscore)
1051 		goto out;
1052 
1053 	device_lock(dev);
1054 
1055 	if (dev->pm_domain) {
1056 		info = "completing power domain ";
1057 		callback = dev->pm_domain->ops.complete;
1058 	} else if (dev->type && dev->type->pm) {
1059 		info = "completing type ";
1060 		callback = dev->type->pm->complete;
1061 	} else if (dev->class && dev->class->pm) {
1062 		info = "completing class ";
1063 		callback = dev->class->pm->complete;
1064 	} else if (dev->bus && dev->bus->pm) {
1065 		info = "completing bus ";
1066 		callback = dev->bus->pm->complete;
1067 	}
1068 
1069 	if (!callback && dev->driver && dev->driver->pm) {
1070 		info = "completing driver ";
1071 		callback = dev->driver->pm->complete;
1072 	}
1073 
1074 	if (callback) {
1075 		pm_dev_dbg(dev, state, info);
1076 		callback(dev);
1077 	}
1078 
1079 	device_unlock(dev);
1080 
1081 out:
1082 	pm_runtime_put(dev);
1083 }
1084 
1085 /**
1086  * dpm_complete - Complete a PM transition for all non-sysdev devices.
1087  * @state: PM transition of the system being carried out.
1088  *
1089  * Execute the ->complete() callbacks for all devices whose PM status is not
1090  * DPM_ON (this allows new devices to be registered).
1091  */
1092 void dpm_complete(pm_message_t state)
1093 {
1094 	struct list_head list;
1095 
1096 	trace_suspend_resume(TPS("dpm_complete"), state.event, true);
1097 	might_sleep();
1098 
1099 	INIT_LIST_HEAD(&list);
1100 	mutex_lock(&dpm_list_mtx);
1101 	while (!list_empty(&dpm_prepared_list)) {
1102 		struct device *dev = to_device(dpm_prepared_list.prev);
1103 
1104 		get_device(dev);
1105 		dev->power.is_prepared = false;
1106 		list_move(&dev->power.entry, &list);
1107 		mutex_unlock(&dpm_list_mtx);
1108 
1109 		trace_device_pm_callback_start(dev, "", state.event);
1110 		device_complete(dev, state);
1111 		trace_device_pm_callback_end(dev, 0);
1112 
1113 		mutex_lock(&dpm_list_mtx);
1114 		put_device(dev);
1115 	}
1116 	list_splice(&list, &dpm_list);
1117 	mutex_unlock(&dpm_list_mtx);
1118 
1119 	/* Allow device probing and trigger re-probing of deferred devices */
1120 	device_unblock_probing();
1121 	trace_suspend_resume(TPS("dpm_complete"), state.event, false);
1122 }
1123 
1124 /**
1125  * dpm_resume_end - Execute "resume" callbacks and complete system transition.
1126  * @state: PM transition of the system being carried out.
1127  *
1128  * Execute "resume" callbacks for all devices and complete the PM transition of
1129  * the system.
1130  */
1131 void dpm_resume_end(pm_message_t state)
1132 {
1133 	dpm_resume(state);
1134 	dpm_complete(state);
1135 }
1136 EXPORT_SYMBOL_GPL(dpm_resume_end);
1137 
1138 
1139 /*------------------------- Suspend routines -------------------------*/
1140 
1141 /**
1142  * resume_event - Return a "resume" message for given "suspend" sleep state.
1143  * @sleep_state: PM message representing a sleep state.
1144  *
1145  * Return a PM message representing the resume event corresponding to given
1146  * sleep state.
1147  */
1148 static pm_message_t resume_event(pm_message_t sleep_state)
1149 {
1150 	switch (sleep_state.event) {
1151 	case PM_EVENT_SUSPEND:
1152 		return PMSG_RESUME;
1153 	case PM_EVENT_FREEZE:
1154 	case PM_EVENT_QUIESCE:
1155 		return PMSG_RECOVER;
1156 	case PM_EVENT_HIBERNATE:
1157 		return PMSG_RESTORE;
1158 	}
1159 	return PMSG_ON;
1160 }
1161 
1162 static void dpm_superior_set_must_resume(struct device *dev)
1163 {
1164 	struct device_link *link;
1165 	int idx;
1166 
1167 	if (dev->parent)
1168 		dev->parent->power.must_resume = true;
1169 
1170 	idx = device_links_read_lock();
1171 
1172 	list_for_each_entry_rcu_locked(link, &dev->links.suppliers, c_node)
1173 		link->supplier->power.must_resume = true;
1174 
1175 	device_links_read_unlock(idx);
1176 }
1177 
1178 /**
1179  * __device_suspend_noirq - Execute a "noirq suspend" callback for given device.
1180  * @dev: Device to handle.
1181  * @state: PM transition of the system being carried out.
1182  * @async: If true, the device is being suspended asynchronously.
1183  *
1184  * The driver of @dev will not receive interrupts while this function is being
1185  * executed.
1186  */
1187 static int __device_suspend_noirq(struct device *dev, pm_message_t state, bool async)
1188 {
1189 	pm_callback_t callback = NULL;
1190 	const char *info = NULL;
1191 	int error = 0;
1192 
1193 	TRACE_DEVICE(dev);
1194 	TRACE_SUSPEND(0);
1195 
1196 	dpm_wait_for_subordinate(dev, async);
1197 
1198 	if (async_error)
1199 		goto Complete;
1200 
1201 	if (dev->power.syscore || dev->power.direct_complete)
1202 		goto Complete;
1203 
1204 	if (dev->pm_domain) {
1205 		info = "noirq power domain ";
1206 		callback = pm_noirq_op(&dev->pm_domain->ops, state);
1207 	} else if (dev->type && dev->type->pm) {
1208 		info = "noirq type ";
1209 		callback = pm_noirq_op(dev->type->pm, state);
1210 	} else if (dev->class && dev->class->pm) {
1211 		info = "noirq class ";
1212 		callback = pm_noirq_op(dev->class->pm, state);
1213 	} else if (dev->bus && dev->bus->pm) {
1214 		info = "noirq bus ";
1215 		callback = pm_noirq_op(dev->bus->pm, state);
1216 	}
1217 	if (callback)
1218 		goto Run;
1219 
1220 	if (dev_pm_skip_suspend(dev))
1221 		goto Skip;
1222 
1223 	if (dev->driver && dev->driver->pm) {
1224 		info = "noirq driver ";
1225 		callback = pm_noirq_op(dev->driver->pm, state);
1226 	}
1227 
1228 Run:
1229 	error = dpm_run_callback(callback, dev, state, info);
1230 	if (error) {
1231 		async_error = error;
1232 		goto Complete;
1233 	}
1234 
1235 Skip:
1236 	dev->power.is_noirq_suspended = true;
1237 
1238 	/*
1239 	 * Skipping the resume of devices that were in use right before the
1240 	 * system suspend (as indicated by their PM-runtime usage counters)
1241 	 * would be suboptimal.  Also resume them if doing that is not allowed
1242 	 * to be skipped.
1243 	 */
1244 	if (atomic_read(&dev->power.usage_count) > 1 ||
1245 	    !(dev_pm_test_driver_flags(dev, DPM_FLAG_MAY_SKIP_RESUME) &&
1246 	      dev->power.may_skip_resume))
1247 		dev->power.must_resume = true;
1248 
1249 	if (dev->power.must_resume)
1250 		dpm_superior_set_must_resume(dev);
1251 
1252 Complete:
1253 	complete_all(&dev->power.completion);
1254 	TRACE_SUSPEND(error);
1255 	return error;
1256 }
1257 
1258 static void async_suspend_noirq(void *data, async_cookie_t cookie)
1259 {
1260 	struct device *dev = (struct device *)data;
1261 	int error;
1262 
1263 	error = __device_suspend_noirq(dev, pm_transition, true);
1264 	if (error) {
1265 		dpm_save_failed_dev(dev_name(dev));
1266 		pm_dev_err(dev, pm_transition, " async", error);
1267 	}
1268 
1269 	put_device(dev);
1270 }
1271 
1272 static int device_suspend_noirq(struct device *dev)
1273 {
1274 	if (dpm_async_fn(dev, async_suspend_noirq))
1275 		return 0;
1276 
1277 	return __device_suspend_noirq(dev, pm_transition, false);
1278 }
1279 
1280 static int dpm_noirq_suspend_devices(pm_message_t state)
1281 {
1282 	ktime_t starttime = ktime_get();
1283 	int error = 0;
1284 
1285 	trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, true);
1286 	mutex_lock(&dpm_list_mtx);
1287 	pm_transition = state;
1288 	async_error = 0;
1289 
1290 	while (!list_empty(&dpm_late_early_list)) {
1291 		struct device *dev = to_device(dpm_late_early_list.prev);
1292 
1293 		get_device(dev);
1294 		mutex_unlock(&dpm_list_mtx);
1295 
1296 		error = device_suspend_noirq(dev);
1297 
1298 		mutex_lock(&dpm_list_mtx);
1299 		if (error) {
1300 			pm_dev_err(dev, state, " noirq", error);
1301 			dpm_save_failed_dev(dev_name(dev));
1302 			put_device(dev);
1303 			break;
1304 		}
1305 		if (!list_empty(&dev->power.entry))
1306 			list_move(&dev->power.entry, &dpm_noirq_list);
1307 		put_device(dev);
1308 
1309 		if (async_error)
1310 			break;
1311 	}
1312 	mutex_unlock(&dpm_list_mtx);
1313 	async_synchronize_full();
1314 	if (!error)
1315 		error = async_error;
1316 
1317 	if (error) {
1318 		suspend_stats.failed_suspend_noirq++;
1319 		dpm_save_failed_step(SUSPEND_SUSPEND_NOIRQ);
1320 	}
1321 	dpm_show_time(starttime, state, error, "noirq");
1322 	trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, false);
1323 	return error;
1324 }
1325 
1326 /**
1327  * dpm_suspend_noirq - Execute "noirq suspend" callbacks for all devices.
1328  * @state: PM transition of the system being carried out.
1329  *
1330  * Prevent device drivers' interrupt handlers from being called and invoke
1331  * "noirq" suspend callbacks for all non-sysdev devices.
1332  */
1333 int dpm_suspend_noirq(pm_message_t state)
1334 {
1335 	int ret;
1336 
1337 	device_wakeup_arm_wake_irqs();
1338 	suspend_device_irqs();
1339 
1340 	ret = dpm_noirq_suspend_devices(state);
1341 	if (ret)
1342 		dpm_resume_noirq(resume_event(state));
1343 
1344 	return ret;
1345 }
1346 
1347 static void dpm_propagate_wakeup_to_parent(struct device *dev)
1348 {
1349 	struct device *parent = dev->parent;
1350 
1351 	if (!parent)
1352 		return;
1353 
1354 	spin_lock_irq(&parent->power.lock);
1355 
1356 	if (device_wakeup_path(dev) && !parent->power.ignore_children)
1357 		parent->power.wakeup_path = true;
1358 
1359 	spin_unlock_irq(&parent->power.lock);
1360 }
1361 
1362 /**
1363  * __device_suspend_late - Execute a "late suspend" callback for given device.
1364  * @dev: Device to handle.
1365  * @state: PM transition of the system being carried out.
1366  * @async: If true, the device is being suspended asynchronously.
1367  *
1368  * Runtime PM is disabled for @dev while this function is being executed.
1369  */
1370 static int __device_suspend_late(struct device *dev, pm_message_t state, bool async)
1371 {
1372 	pm_callback_t callback = NULL;
1373 	const char *info = NULL;
1374 	int error = 0;
1375 
1376 	TRACE_DEVICE(dev);
1377 	TRACE_SUSPEND(0);
1378 
1379 	__pm_runtime_disable(dev, false);
1380 
1381 	dpm_wait_for_subordinate(dev, async);
1382 
1383 	if (async_error)
1384 		goto Complete;
1385 
1386 	if (pm_wakeup_pending()) {
1387 		async_error = -EBUSY;
1388 		goto Complete;
1389 	}
1390 
1391 	if (dev->power.syscore || dev->power.direct_complete)
1392 		goto Complete;
1393 
1394 	if (dev->pm_domain) {
1395 		info = "late power domain ";
1396 		callback = pm_late_early_op(&dev->pm_domain->ops, state);
1397 	} else if (dev->type && dev->type->pm) {
1398 		info = "late type ";
1399 		callback = pm_late_early_op(dev->type->pm, state);
1400 	} else if (dev->class && dev->class->pm) {
1401 		info = "late class ";
1402 		callback = pm_late_early_op(dev->class->pm, state);
1403 	} else if (dev->bus && dev->bus->pm) {
1404 		info = "late bus ";
1405 		callback = pm_late_early_op(dev->bus->pm, state);
1406 	}
1407 	if (callback)
1408 		goto Run;
1409 
1410 	if (dev_pm_skip_suspend(dev))
1411 		goto Skip;
1412 
1413 	if (dev->driver && dev->driver->pm) {
1414 		info = "late driver ";
1415 		callback = pm_late_early_op(dev->driver->pm, state);
1416 	}
1417 
1418 Run:
1419 	error = dpm_run_callback(callback, dev, state, info);
1420 	if (error) {
1421 		async_error = error;
1422 		goto Complete;
1423 	}
1424 	dpm_propagate_wakeup_to_parent(dev);
1425 
1426 Skip:
1427 	dev->power.is_late_suspended = true;
1428 
1429 Complete:
1430 	TRACE_SUSPEND(error);
1431 	complete_all(&dev->power.completion);
1432 	return error;
1433 }
1434 
1435 static void async_suspend_late(void *data, async_cookie_t cookie)
1436 {
1437 	struct device *dev = (struct device *)data;
1438 	int error;
1439 
1440 	error = __device_suspend_late(dev, pm_transition, true);
1441 	if (error) {
1442 		dpm_save_failed_dev(dev_name(dev));
1443 		pm_dev_err(dev, pm_transition, " async", error);
1444 	}
1445 	put_device(dev);
1446 }
1447 
1448 static int device_suspend_late(struct device *dev)
1449 {
1450 	if (dpm_async_fn(dev, async_suspend_late))
1451 		return 0;
1452 
1453 	return __device_suspend_late(dev, pm_transition, false);
1454 }
1455 
1456 /**
1457  * dpm_suspend_late - Execute "late suspend" callbacks for all devices.
1458  * @state: PM transition of the system being carried out.
1459  */
1460 int dpm_suspend_late(pm_message_t state)
1461 {
1462 	ktime_t starttime = ktime_get();
1463 	int error = 0;
1464 
1465 	trace_suspend_resume(TPS("dpm_suspend_late"), state.event, true);
1466 	mutex_lock(&dpm_list_mtx);
1467 	pm_transition = state;
1468 	async_error = 0;
1469 
1470 	while (!list_empty(&dpm_suspended_list)) {
1471 		struct device *dev = to_device(dpm_suspended_list.prev);
1472 
1473 		get_device(dev);
1474 		mutex_unlock(&dpm_list_mtx);
1475 
1476 		error = device_suspend_late(dev);
1477 
1478 		mutex_lock(&dpm_list_mtx);
1479 		if (!list_empty(&dev->power.entry))
1480 			list_move(&dev->power.entry, &dpm_late_early_list);
1481 
1482 		if (error) {
1483 			pm_dev_err(dev, state, " late", error);
1484 			dpm_save_failed_dev(dev_name(dev));
1485 			put_device(dev);
1486 			break;
1487 		}
1488 		put_device(dev);
1489 
1490 		if (async_error)
1491 			break;
1492 	}
1493 	mutex_unlock(&dpm_list_mtx);
1494 	async_synchronize_full();
1495 	if (!error)
1496 		error = async_error;
1497 	if (error) {
1498 		suspend_stats.failed_suspend_late++;
1499 		dpm_save_failed_step(SUSPEND_SUSPEND_LATE);
1500 		dpm_resume_early(resume_event(state));
1501 	}
1502 	dpm_show_time(starttime, state, error, "late");
1503 	trace_suspend_resume(TPS("dpm_suspend_late"), state.event, false);
1504 	return error;
1505 }
1506 
1507 /**
1508  * dpm_suspend_end - Execute "late" and "noirq" device suspend callbacks.
1509  * @state: PM transition of the system being carried out.
1510  */
1511 int dpm_suspend_end(pm_message_t state)
1512 {
1513 	ktime_t starttime = ktime_get();
1514 	int error;
1515 
1516 	error = dpm_suspend_late(state);
1517 	if (error)
1518 		goto out;
1519 
1520 	error = dpm_suspend_noirq(state);
1521 	if (error)
1522 		dpm_resume_early(resume_event(state));
1523 
1524 out:
1525 	dpm_show_time(starttime, state, error, "end");
1526 	return error;
1527 }
1528 EXPORT_SYMBOL_GPL(dpm_suspend_end);
1529 
1530 /**
1531  * legacy_suspend - Execute a legacy (bus or class) suspend callback for device.
1532  * @dev: Device to suspend.
1533  * @state: PM transition of the system being carried out.
1534  * @cb: Suspend callback to execute.
1535  * @info: string description of caller.
1536  */
1537 static int legacy_suspend(struct device *dev, pm_message_t state,
1538 			  int (*cb)(struct device *dev, pm_message_t state),
1539 			  const char *info)
1540 {
1541 	int error;
1542 	ktime_t calltime;
1543 
1544 	calltime = initcall_debug_start(dev, cb);
1545 
1546 	trace_device_pm_callback_start(dev, info, state.event);
1547 	error = cb(dev, state);
1548 	trace_device_pm_callback_end(dev, error);
1549 	suspend_report_result(cb, error);
1550 
1551 	initcall_debug_report(dev, calltime, cb, error);
1552 
1553 	return error;
1554 }
1555 
1556 static void dpm_clear_superiors_direct_complete(struct device *dev)
1557 {
1558 	struct device_link *link;
1559 	int idx;
1560 
1561 	if (dev->parent) {
1562 		spin_lock_irq(&dev->parent->power.lock);
1563 		dev->parent->power.direct_complete = false;
1564 		spin_unlock_irq(&dev->parent->power.lock);
1565 	}
1566 
1567 	idx = device_links_read_lock();
1568 
1569 	list_for_each_entry_rcu_locked(link, &dev->links.suppliers, c_node) {
1570 		spin_lock_irq(&link->supplier->power.lock);
1571 		link->supplier->power.direct_complete = false;
1572 		spin_unlock_irq(&link->supplier->power.lock);
1573 	}
1574 
1575 	device_links_read_unlock(idx);
1576 }
1577 
1578 /**
1579  * __device_suspend - Execute "suspend" callbacks for given device.
1580  * @dev: Device to handle.
1581  * @state: PM transition of the system being carried out.
1582  * @async: If true, the device is being suspended asynchronously.
1583  */
1584 static int __device_suspend(struct device *dev, pm_message_t state, bool async)
1585 {
1586 	pm_callback_t callback = NULL;
1587 	const char *info = NULL;
1588 	int error = 0;
1589 	DECLARE_DPM_WATCHDOG_ON_STACK(wd);
1590 
1591 	TRACE_DEVICE(dev);
1592 	TRACE_SUSPEND(0);
1593 
1594 	dpm_wait_for_subordinate(dev, async);
1595 
1596 	if (async_error) {
1597 		dev->power.direct_complete = false;
1598 		goto Complete;
1599 	}
1600 
1601 	/*
1602 	 * Wait for possible runtime PM transitions of the device in progress
1603 	 * to complete and if there's a runtime resume request pending for it,
1604 	 * resume it before proceeding with invoking the system-wide suspend
1605 	 * callbacks for it.
1606 	 *
1607 	 * If the system-wide suspend callbacks below change the configuration
1608 	 * of the device, they must disable runtime PM for it or otherwise
1609 	 * ensure that its runtime-resume callbacks will not be confused by that
1610 	 * change in case they are invoked going forward.
1611 	 */
1612 	pm_runtime_barrier(dev);
1613 
1614 	if (pm_wakeup_pending()) {
1615 		dev->power.direct_complete = false;
1616 		async_error = -EBUSY;
1617 		goto Complete;
1618 	}
1619 
1620 	if (dev->power.syscore)
1621 		goto Complete;
1622 
1623 	/* Avoid direct_complete to let wakeup_path propagate. */
1624 	if (device_may_wakeup(dev) || device_wakeup_path(dev))
1625 		dev->power.direct_complete = false;
1626 
1627 	if (dev->power.direct_complete) {
1628 		if (pm_runtime_status_suspended(dev)) {
1629 			pm_runtime_disable(dev);
1630 			if (pm_runtime_status_suspended(dev)) {
1631 				pm_dev_dbg(dev, state, "direct-complete ");
1632 				goto Complete;
1633 			}
1634 
1635 			pm_runtime_enable(dev);
1636 		}
1637 		dev->power.direct_complete = false;
1638 	}
1639 
1640 	dev->power.may_skip_resume = true;
1641 	dev->power.must_resume = !dev_pm_test_driver_flags(dev, DPM_FLAG_MAY_SKIP_RESUME);
1642 
1643 	dpm_watchdog_set(&wd, dev);
1644 	device_lock(dev);
1645 
1646 	if (dev->pm_domain) {
1647 		info = "power domain ";
1648 		callback = pm_op(&dev->pm_domain->ops, state);
1649 		goto Run;
1650 	}
1651 
1652 	if (dev->type && dev->type->pm) {
1653 		info = "type ";
1654 		callback = pm_op(dev->type->pm, state);
1655 		goto Run;
1656 	}
1657 
1658 	if (dev->class && dev->class->pm) {
1659 		info = "class ";
1660 		callback = pm_op(dev->class->pm, state);
1661 		goto Run;
1662 	}
1663 
1664 	if (dev->bus) {
1665 		if (dev->bus->pm) {
1666 			info = "bus ";
1667 			callback = pm_op(dev->bus->pm, state);
1668 		} else if (dev->bus->suspend) {
1669 			pm_dev_dbg(dev, state, "legacy bus ");
1670 			error = legacy_suspend(dev, state, dev->bus->suspend,
1671 						"legacy bus ");
1672 			goto End;
1673 		}
1674 	}
1675 
1676  Run:
1677 	if (!callback && dev->driver && dev->driver->pm) {
1678 		info = "driver ";
1679 		callback = pm_op(dev->driver->pm, state);
1680 	}
1681 
1682 	error = dpm_run_callback(callback, dev, state, info);
1683 
1684  End:
1685 	if (!error) {
1686 		dev->power.is_suspended = true;
1687 		if (device_may_wakeup(dev))
1688 			dev->power.wakeup_path = true;
1689 
1690 		dpm_propagate_wakeup_to_parent(dev);
1691 		dpm_clear_superiors_direct_complete(dev);
1692 	}
1693 
1694 	device_unlock(dev);
1695 	dpm_watchdog_clear(&wd);
1696 
1697  Complete:
1698 	if (error)
1699 		async_error = error;
1700 
1701 	complete_all(&dev->power.completion);
1702 	TRACE_SUSPEND(error);
1703 	return error;
1704 }
1705 
1706 static void async_suspend(void *data, async_cookie_t cookie)
1707 {
1708 	struct device *dev = (struct device *)data;
1709 	int error;
1710 
1711 	error = __device_suspend(dev, pm_transition, true);
1712 	if (error) {
1713 		dpm_save_failed_dev(dev_name(dev));
1714 		pm_dev_err(dev, pm_transition, " async", error);
1715 	}
1716 
1717 	put_device(dev);
1718 }
1719 
1720 static int device_suspend(struct device *dev)
1721 {
1722 	if (dpm_async_fn(dev, async_suspend))
1723 		return 0;
1724 
1725 	return __device_suspend(dev, pm_transition, false);
1726 }
1727 
1728 /**
1729  * dpm_suspend - Execute "suspend" callbacks for all non-sysdev devices.
1730  * @state: PM transition of the system being carried out.
1731  */
1732 int dpm_suspend(pm_message_t state)
1733 {
1734 	ktime_t starttime = ktime_get();
1735 	int error = 0;
1736 
1737 	trace_suspend_resume(TPS("dpm_suspend"), state.event, true);
1738 	might_sleep();
1739 
1740 	devfreq_suspend();
1741 	cpufreq_suspend();
1742 
1743 	mutex_lock(&dpm_list_mtx);
1744 	pm_transition = state;
1745 	async_error = 0;
1746 	while (!list_empty(&dpm_prepared_list)) {
1747 		struct device *dev = to_device(dpm_prepared_list.prev);
1748 
1749 		get_device(dev);
1750 		mutex_unlock(&dpm_list_mtx);
1751 
1752 		error = device_suspend(dev);
1753 
1754 		mutex_lock(&dpm_list_mtx);
1755 		if (error) {
1756 			pm_dev_err(dev, state, "", error);
1757 			dpm_save_failed_dev(dev_name(dev));
1758 			put_device(dev);
1759 			break;
1760 		}
1761 		if (!list_empty(&dev->power.entry))
1762 			list_move(&dev->power.entry, &dpm_suspended_list);
1763 		put_device(dev);
1764 		if (async_error)
1765 			break;
1766 	}
1767 	mutex_unlock(&dpm_list_mtx);
1768 	async_synchronize_full();
1769 	if (!error)
1770 		error = async_error;
1771 	if (error) {
1772 		suspend_stats.failed_suspend++;
1773 		dpm_save_failed_step(SUSPEND_SUSPEND);
1774 	}
1775 	dpm_show_time(starttime, state, error, NULL);
1776 	trace_suspend_resume(TPS("dpm_suspend"), state.event, false);
1777 	return error;
1778 }
1779 
1780 /**
1781  * device_prepare - Prepare a device for system power transition.
1782  * @dev: Device to handle.
1783  * @state: PM transition of the system being carried out.
1784  *
1785  * Execute the ->prepare() callback(s) for given device.  No new children of the
1786  * device may be registered after this function has returned.
1787  */
1788 static int device_prepare(struct device *dev, pm_message_t state)
1789 {
1790 	int (*callback)(struct device *) = NULL;
1791 	int ret = 0;
1792 
1793 	/*
1794 	 * If a device's parent goes into runtime suspend at the wrong time,
1795 	 * it won't be possible to resume the device.  To prevent this we
1796 	 * block runtime suspend here, during the prepare phase, and allow
1797 	 * it again during the complete phase.
1798 	 */
1799 	pm_runtime_get_noresume(dev);
1800 
1801 	if (dev->power.syscore)
1802 		return 0;
1803 
1804 	device_lock(dev);
1805 
1806 	dev->power.wakeup_path = false;
1807 
1808 	if (dev->power.no_pm_callbacks)
1809 		goto unlock;
1810 
1811 	if (dev->pm_domain)
1812 		callback = dev->pm_domain->ops.prepare;
1813 	else if (dev->type && dev->type->pm)
1814 		callback = dev->type->pm->prepare;
1815 	else if (dev->class && dev->class->pm)
1816 		callback = dev->class->pm->prepare;
1817 	else if (dev->bus && dev->bus->pm)
1818 		callback = dev->bus->pm->prepare;
1819 
1820 	if (!callback && dev->driver && dev->driver->pm)
1821 		callback = dev->driver->pm->prepare;
1822 
1823 	if (callback)
1824 		ret = callback(dev);
1825 
1826 unlock:
1827 	device_unlock(dev);
1828 
1829 	if (ret < 0) {
1830 		suspend_report_result(callback, ret);
1831 		pm_runtime_put(dev);
1832 		return ret;
1833 	}
1834 	/*
1835 	 * A positive return value from ->prepare() means "this device appears
1836 	 * to be runtime-suspended and its state is fine, so if it really is
1837 	 * runtime-suspended, you can leave it in that state provided that you
1838 	 * will do the same thing with all of its descendants".  This only
1839 	 * applies to suspend transitions, however.
1840 	 */
1841 	spin_lock_irq(&dev->power.lock);
1842 	dev->power.direct_complete = state.event == PM_EVENT_SUSPEND &&
1843 		(ret > 0 || dev->power.no_pm_callbacks) &&
1844 		!dev_pm_test_driver_flags(dev, DPM_FLAG_NO_DIRECT_COMPLETE);
1845 	spin_unlock_irq(&dev->power.lock);
1846 	return 0;
1847 }
1848 
1849 /**
1850  * dpm_prepare - Prepare all non-sysdev devices for a system PM transition.
1851  * @state: PM transition of the system being carried out.
1852  *
1853  * Execute the ->prepare() callback(s) for all devices.
1854  */
1855 int dpm_prepare(pm_message_t state)
1856 {
1857 	int error = 0;
1858 
1859 	trace_suspend_resume(TPS("dpm_prepare"), state.event, true);
1860 	might_sleep();
1861 
1862 	/*
1863 	 * Give a chance for the known devices to complete their probes, before
1864 	 * disable probing of devices. This sync point is important at least
1865 	 * at boot time + hibernation restore.
1866 	 */
1867 	wait_for_device_probe();
1868 	/*
1869 	 * It is unsafe if probing of devices will happen during suspend or
1870 	 * hibernation and system behavior will be unpredictable in this case.
1871 	 * So, let's prohibit device's probing here and defer their probes
1872 	 * instead. The normal behavior will be restored in dpm_complete().
1873 	 */
1874 	device_block_probing();
1875 
1876 	mutex_lock(&dpm_list_mtx);
1877 	while (!list_empty(&dpm_list)) {
1878 		struct device *dev = to_device(dpm_list.next);
1879 
1880 		get_device(dev);
1881 		mutex_unlock(&dpm_list_mtx);
1882 
1883 		trace_device_pm_callback_start(dev, "", state.event);
1884 		error = device_prepare(dev, state);
1885 		trace_device_pm_callback_end(dev, error);
1886 
1887 		mutex_lock(&dpm_list_mtx);
1888 		if (error) {
1889 			if (error == -EAGAIN) {
1890 				put_device(dev);
1891 				error = 0;
1892 				continue;
1893 			}
1894 			dev_info(dev, "not prepared for power transition: code %d\n",
1895 				 error);
1896 			put_device(dev);
1897 			break;
1898 		}
1899 		dev->power.is_prepared = true;
1900 		if (!list_empty(&dev->power.entry))
1901 			list_move_tail(&dev->power.entry, &dpm_prepared_list);
1902 		put_device(dev);
1903 	}
1904 	mutex_unlock(&dpm_list_mtx);
1905 	trace_suspend_resume(TPS("dpm_prepare"), state.event, false);
1906 	return error;
1907 }
1908 
1909 /**
1910  * dpm_suspend_start - Prepare devices for PM transition and suspend them.
1911  * @state: PM transition of the system being carried out.
1912  *
1913  * Prepare all non-sysdev devices for system PM transition and execute "suspend"
1914  * callbacks for them.
1915  */
1916 int dpm_suspend_start(pm_message_t state)
1917 {
1918 	ktime_t starttime = ktime_get();
1919 	int error;
1920 
1921 	error = dpm_prepare(state);
1922 	if (error) {
1923 		suspend_stats.failed_prepare++;
1924 		dpm_save_failed_step(SUSPEND_PREPARE);
1925 	} else
1926 		error = dpm_suspend(state);
1927 	dpm_show_time(starttime, state, error, "start");
1928 	return error;
1929 }
1930 EXPORT_SYMBOL_GPL(dpm_suspend_start);
1931 
1932 void __suspend_report_result(const char *function, void *fn, int ret)
1933 {
1934 	if (ret)
1935 		pr_err("%s(): %pS returns %d\n", function, fn, ret);
1936 }
1937 EXPORT_SYMBOL_GPL(__suspend_report_result);
1938 
1939 /**
1940  * device_pm_wait_for_dev - Wait for suspend/resume of a device to complete.
1941  * @subordinate: Device that needs to wait for @dev.
1942  * @dev: Device to wait for.
1943  */
1944 int device_pm_wait_for_dev(struct device *subordinate, struct device *dev)
1945 {
1946 	dpm_wait(dev, subordinate->power.async_suspend);
1947 	return async_error;
1948 }
1949 EXPORT_SYMBOL_GPL(device_pm_wait_for_dev);
1950 
1951 /**
1952  * dpm_for_each_dev - device iterator.
1953  * @data: data for the callback.
1954  * @fn: function to be called for each device.
1955  *
1956  * Iterate over devices in dpm_list, and call @fn for each device,
1957  * passing it @data.
1958  */
1959 void dpm_for_each_dev(void *data, void (*fn)(struct device *, void *))
1960 {
1961 	struct device *dev;
1962 
1963 	if (!fn)
1964 		return;
1965 
1966 	device_pm_lock();
1967 	list_for_each_entry(dev, &dpm_list, power.entry)
1968 		fn(dev, data);
1969 	device_pm_unlock();
1970 }
1971 EXPORT_SYMBOL_GPL(dpm_for_each_dev);
1972 
1973 static bool pm_ops_is_empty(const struct dev_pm_ops *ops)
1974 {
1975 	if (!ops)
1976 		return true;
1977 
1978 	return !ops->prepare &&
1979 	       !ops->suspend &&
1980 	       !ops->suspend_late &&
1981 	       !ops->suspend_noirq &&
1982 	       !ops->resume_noirq &&
1983 	       !ops->resume_early &&
1984 	       !ops->resume &&
1985 	       !ops->complete;
1986 }
1987 
1988 void device_pm_check_callbacks(struct device *dev)
1989 {
1990 	spin_lock_irq(&dev->power.lock);
1991 	dev->power.no_pm_callbacks =
1992 		(!dev->bus || (pm_ops_is_empty(dev->bus->pm) &&
1993 		 !dev->bus->suspend && !dev->bus->resume)) &&
1994 		(!dev->class || pm_ops_is_empty(dev->class->pm)) &&
1995 		(!dev->type || pm_ops_is_empty(dev->type->pm)) &&
1996 		(!dev->pm_domain || pm_ops_is_empty(&dev->pm_domain->ops)) &&
1997 		(!dev->driver || (pm_ops_is_empty(dev->driver->pm) &&
1998 		 !dev->driver->suspend && !dev->driver->resume));
1999 	spin_unlock_irq(&dev->power.lock);
2000 }
2001 
2002 bool dev_pm_skip_suspend(struct device *dev)
2003 {
2004 	return dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND) &&
2005 		pm_runtime_status_suspended(dev);
2006 }
2007