1 /* 2 * drivers/base/power/main.c - Where the driver meets power management. 3 * 4 * Copyright (c) 2003 Patrick Mochel 5 * Copyright (c) 2003 Open Source Development Lab 6 * 7 * This file is released under the GPLv2 8 * 9 * 10 * The driver model core calls device_pm_add() when a device is registered. 11 * This will intialize the embedded device_pm_info object in the device 12 * and add it to the list of power-controlled devices. sysfs entries for 13 * controlling device power management will also be added. 14 * 15 * A separate list is used for keeping track of power info, because the power 16 * domain dependencies may differ from the ancestral dependencies that the 17 * subsystem list maintains. 18 */ 19 20 #include <linux/device.h> 21 #include <linux/kallsyms.h> 22 #include <linux/mutex.h> 23 #include <linux/pm.h> 24 #include <linux/pm_runtime.h> 25 #include <linux/resume-trace.h> 26 #include <linux/interrupt.h> 27 #include <linux/sched.h> 28 #include <linux/async.h> 29 30 #include "../base.h" 31 #include "power.h" 32 33 /* 34 * The entries in the dpm_list list are in a depth first order, simply 35 * because children are guaranteed to be discovered after parents, and 36 * are inserted at the back of the list on discovery. 37 * 38 * Since device_pm_add() may be called with a device lock held, 39 * we must never try to acquire a device lock while holding 40 * dpm_list_mutex. 41 */ 42 43 LIST_HEAD(dpm_list); 44 45 static DEFINE_MUTEX(dpm_list_mtx); 46 static pm_message_t pm_transition; 47 48 /* 49 * Set once the preparation of devices for a PM transition has started, reset 50 * before starting to resume devices. Protected by dpm_list_mtx. 51 */ 52 static bool transition_started; 53 54 /** 55 * device_pm_init - Initialize the PM-related part of a device object. 56 * @dev: Device object being initialized. 57 */ 58 void device_pm_init(struct device *dev) 59 { 60 dev->power.status = DPM_ON; 61 init_completion(&dev->power.completion); 62 dev->power.wakeup_count = 0; 63 pm_runtime_init(dev); 64 } 65 66 /** 67 * device_pm_lock - Lock the list of active devices used by the PM core. 68 */ 69 void device_pm_lock(void) 70 { 71 mutex_lock(&dpm_list_mtx); 72 } 73 74 /** 75 * device_pm_unlock - Unlock the list of active devices used by the PM core. 76 */ 77 void device_pm_unlock(void) 78 { 79 mutex_unlock(&dpm_list_mtx); 80 } 81 82 /** 83 * device_pm_add - Add a device to the PM core's list of active devices. 84 * @dev: Device to add to the list. 85 */ 86 void device_pm_add(struct device *dev) 87 { 88 pr_debug("PM: Adding info for %s:%s\n", 89 dev->bus ? dev->bus->name : "No Bus", 90 kobject_name(&dev->kobj)); 91 mutex_lock(&dpm_list_mtx); 92 if (dev->parent) { 93 if (dev->parent->power.status >= DPM_SUSPENDING) 94 dev_warn(dev, "parent %s should not be sleeping\n", 95 dev_name(dev->parent)); 96 } else if (transition_started) { 97 /* 98 * We refuse to register parentless devices while a PM 99 * transition is in progress in order to avoid leaving them 100 * unhandled down the road 101 */ 102 dev_WARN(dev, "Parentless device registered during a PM transaction\n"); 103 } 104 105 list_add_tail(&dev->power.entry, &dpm_list); 106 mutex_unlock(&dpm_list_mtx); 107 } 108 109 /** 110 * device_pm_remove - Remove a device from the PM core's list of active devices. 111 * @dev: Device to be removed from the list. 112 */ 113 void device_pm_remove(struct device *dev) 114 { 115 pr_debug("PM: Removing info for %s:%s\n", 116 dev->bus ? dev->bus->name : "No Bus", 117 kobject_name(&dev->kobj)); 118 complete_all(&dev->power.completion); 119 mutex_lock(&dpm_list_mtx); 120 list_del_init(&dev->power.entry); 121 mutex_unlock(&dpm_list_mtx); 122 pm_runtime_remove(dev); 123 } 124 125 /** 126 * device_pm_move_before - Move device in the PM core's list of active devices. 127 * @deva: Device to move in dpm_list. 128 * @devb: Device @deva should come before. 129 */ 130 void device_pm_move_before(struct device *deva, struct device *devb) 131 { 132 pr_debug("PM: Moving %s:%s before %s:%s\n", 133 deva->bus ? deva->bus->name : "No Bus", 134 kobject_name(&deva->kobj), 135 devb->bus ? devb->bus->name : "No Bus", 136 kobject_name(&devb->kobj)); 137 /* Delete deva from dpm_list and reinsert before devb. */ 138 list_move_tail(&deva->power.entry, &devb->power.entry); 139 } 140 141 /** 142 * device_pm_move_after - Move device in the PM core's list of active devices. 143 * @deva: Device to move in dpm_list. 144 * @devb: Device @deva should come after. 145 */ 146 void device_pm_move_after(struct device *deva, struct device *devb) 147 { 148 pr_debug("PM: Moving %s:%s after %s:%s\n", 149 deva->bus ? deva->bus->name : "No Bus", 150 kobject_name(&deva->kobj), 151 devb->bus ? devb->bus->name : "No Bus", 152 kobject_name(&devb->kobj)); 153 /* Delete deva from dpm_list and reinsert after devb. */ 154 list_move(&deva->power.entry, &devb->power.entry); 155 } 156 157 /** 158 * device_pm_move_last - Move device to end of the PM core's list of devices. 159 * @dev: Device to move in dpm_list. 160 */ 161 void device_pm_move_last(struct device *dev) 162 { 163 pr_debug("PM: Moving %s:%s to end of list\n", 164 dev->bus ? dev->bus->name : "No Bus", 165 kobject_name(&dev->kobj)); 166 list_move_tail(&dev->power.entry, &dpm_list); 167 } 168 169 static ktime_t initcall_debug_start(struct device *dev) 170 { 171 ktime_t calltime = ktime_set(0, 0); 172 173 if (initcall_debug) { 174 pr_info("calling %s+ @ %i\n", 175 dev_name(dev), task_pid_nr(current)); 176 calltime = ktime_get(); 177 } 178 179 return calltime; 180 } 181 182 static void initcall_debug_report(struct device *dev, ktime_t calltime, 183 int error) 184 { 185 ktime_t delta, rettime; 186 187 if (initcall_debug) { 188 rettime = ktime_get(); 189 delta = ktime_sub(rettime, calltime); 190 pr_info("call %s+ returned %d after %Ld usecs\n", dev_name(dev), 191 error, (unsigned long long)ktime_to_ns(delta) >> 10); 192 } 193 } 194 195 /** 196 * dpm_wait - Wait for a PM operation to complete. 197 * @dev: Device to wait for. 198 * @async: If unset, wait only if the device's power.async_suspend flag is set. 199 */ 200 static void dpm_wait(struct device *dev, bool async) 201 { 202 if (!dev) 203 return; 204 205 if (async || (pm_async_enabled && dev->power.async_suspend)) 206 wait_for_completion(&dev->power.completion); 207 } 208 209 static int dpm_wait_fn(struct device *dev, void *async_ptr) 210 { 211 dpm_wait(dev, *((bool *)async_ptr)); 212 return 0; 213 } 214 215 static void dpm_wait_for_children(struct device *dev, bool async) 216 { 217 device_for_each_child(dev, &async, dpm_wait_fn); 218 } 219 220 /** 221 * pm_op - Execute the PM operation appropriate for given PM event. 222 * @dev: Device to handle. 223 * @ops: PM operations to choose from. 224 * @state: PM transition of the system being carried out. 225 */ 226 static int pm_op(struct device *dev, 227 const struct dev_pm_ops *ops, 228 pm_message_t state) 229 { 230 int error = 0; 231 ktime_t calltime; 232 233 calltime = initcall_debug_start(dev); 234 235 switch (state.event) { 236 #ifdef CONFIG_SUSPEND 237 case PM_EVENT_SUSPEND: 238 if (ops->suspend) { 239 error = ops->suspend(dev); 240 suspend_report_result(ops->suspend, error); 241 } 242 break; 243 case PM_EVENT_RESUME: 244 if (ops->resume) { 245 error = ops->resume(dev); 246 suspend_report_result(ops->resume, error); 247 } 248 break; 249 #endif /* CONFIG_SUSPEND */ 250 #ifdef CONFIG_HIBERNATION 251 case PM_EVENT_FREEZE: 252 case PM_EVENT_QUIESCE: 253 if (ops->freeze) { 254 error = ops->freeze(dev); 255 suspend_report_result(ops->freeze, error); 256 } 257 break; 258 case PM_EVENT_HIBERNATE: 259 if (ops->poweroff) { 260 error = ops->poweroff(dev); 261 suspend_report_result(ops->poweroff, error); 262 } 263 break; 264 case PM_EVENT_THAW: 265 case PM_EVENT_RECOVER: 266 if (ops->thaw) { 267 error = ops->thaw(dev); 268 suspend_report_result(ops->thaw, error); 269 } 270 break; 271 case PM_EVENT_RESTORE: 272 if (ops->restore) { 273 error = ops->restore(dev); 274 suspend_report_result(ops->restore, error); 275 } 276 break; 277 #endif /* CONFIG_HIBERNATION */ 278 default: 279 error = -EINVAL; 280 } 281 282 initcall_debug_report(dev, calltime, error); 283 284 return error; 285 } 286 287 /** 288 * pm_noirq_op - Execute the PM operation appropriate for given PM event. 289 * @dev: Device to handle. 290 * @ops: PM operations to choose from. 291 * @state: PM transition of the system being carried out. 292 * 293 * The driver of @dev will not receive interrupts while this function is being 294 * executed. 295 */ 296 static int pm_noirq_op(struct device *dev, 297 const struct dev_pm_ops *ops, 298 pm_message_t state) 299 { 300 int error = 0; 301 ktime_t calltime, delta, rettime; 302 303 if (initcall_debug) { 304 pr_info("calling %s+ @ %i, parent: %s\n", 305 dev_name(dev), task_pid_nr(current), 306 dev->parent ? dev_name(dev->parent) : "none"); 307 calltime = ktime_get(); 308 } 309 310 switch (state.event) { 311 #ifdef CONFIG_SUSPEND 312 case PM_EVENT_SUSPEND: 313 if (ops->suspend_noirq) { 314 error = ops->suspend_noirq(dev); 315 suspend_report_result(ops->suspend_noirq, error); 316 } 317 break; 318 case PM_EVENT_RESUME: 319 if (ops->resume_noirq) { 320 error = ops->resume_noirq(dev); 321 suspend_report_result(ops->resume_noirq, error); 322 } 323 break; 324 #endif /* CONFIG_SUSPEND */ 325 #ifdef CONFIG_HIBERNATION 326 case PM_EVENT_FREEZE: 327 case PM_EVENT_QUIESCE: 328 if (ops->freeze_noirq) { 329 error = ops->freeze_noirq(dev); 330 suspend_report_result(ops->freeze_noirq, error); 331 } 332 break; 333 case PM_EVENT_HIBERNATE: 334 if (ops->poweroff_noirq) { 335 error = ops->poweroff_noirq(dev); 336 suspend_report_result(ops->poweroff_noirq, error); 337 } 338 break; 339 case PM_EVENT_THAW: 340 case PM_EVENT_RECOVER: 341 if (ops->thaw_noirq) { 342 error = ops->thaw_noirq(dev); 343 suspend_report_result(ops->thaw_noirq, error); 344 } 345 break; 346 case PM_EVENT_RESTORE: 347 if (ops->restore_noirq) { 348 error = ops->restore_noirq(dev); 349 suspend_report_result(ops->restore_noirq, error); 350 } 351 break; 352 #endif /* CONFIG_HIBERNATION */ 353 default: 354 error = -EINVAL; 355 } 356 357 if (initcall_debug) { 358 rettime = ktime_get(); 359 delta = ktime_sub(rettime, calltime); 360 printk("initcall %s_i+ returned %d after %Ld usecs\n", 361 dev_name(dev), error, 362 (unsigned long long)ktime_to_ns(delta) >> 10); 363 } 364 365 return error; 366 } 367 368 static char *pm_verb(int event) 369 { 370 switch (event) { 371 case PM_EVENT_SUSPEND: 372 return "suspend"; 373 case PM_EVENT_RESUME: 374 return "resume"; 375 case PM_EVENT_FREEZE: 376 return "freeze"; 377 case PM_EVENT_QUIESCE: 378 return "quiesce"; 379 case PM_EVENT_HIBERNATE: 380 return "hibernate"; 381 case PM_EVENT_THAW: 382 return "thaw"; 383 case PM_EVENT_RESTORE: 384 return "restore"; 385 case PM_EVENT_RECOVER: 386 return "recover"; 387 default: 388 return "(unknown PM event)"; 389 } 390 } 391 392 static void pm_dev_dbg(struct device *dev, pm_message_t state, char *info) 393 { 394 dev_dbg(dev, "%s%s%s\n", info, pm_verb(state.event), 395 ((state.event & PM_EVENT_SLEEP) && device_may_wakeup(dev)) ? 396 ", may wakeup" : ""); 397 } 398 399 static void pm_dev_err(struct device *dev, pm_message_t state, char *info, 400 int error) 401 { 402 printk(KERN_ERR "PM: Device %s failed to %s%s: error %d\n", 403 kobject_name(&dev->kobj), pm_verb(state.event), info, error); 404 } 405 406 static void dpm_show_time(ktime_t starttime, pm_message_t state, char *info) 407 { 408 ktime_t calltime; 409 s64 usecs64; 410 int usecs; 411 412 calltime = ktime_get(); 413 usecs64 = ktime_to_ns(ktime_sub(calltime, starttime)); 414 do_div(usecs64, NSEC_PER_USEC); 415 usecs = usecs64; 416 if (usecs == 0) 417 usecs = 1; 418 pr_info("PM: %s%s%s of devices complete after %ld.%03ld msecs\n", 419 info ?: "", info ? " " : "", pm_verb(state.event), 420 usecs / USEC_PER_MSEC, usecs % USEC_PER_MSEC); 421 } 422 423 /*------------------------- Resume routines -------------------------*/ 424 425 /** 426 * device_resume_noirq - Execute an "early resume" callback for given device. 427 * @dev: Device to handle. 428 * @state: PM transition of the system being carried out. 429 * 430 * The driver of @dev will not receive interrupts while this function is being 431 * executed. 432 */ 433 static int device_resume_noirq(struct device *dev, pm_message_t state) 434 { 435 int error = 0; 436 437 TRACE_DEVICE(dev); 438 TRACE_RESUME(0); 439 440 if (dev->bus && dev->bus->pm) { 441 pm_dev_dbg(dev, state, "EARLY "); 442 error = pm_noirq_op(dev, dev->bus->pm, state); 443 if (error) 444 goto End; 445 } 446 447 if (dev->type && dev->type->pm) { 448 pm_dev_dbg(dev, state, "EARLY type "); 449 error = pm_noirq_op(dev, dev->type->pm, state); 450 if (error) 451 goto End; 452 } 453 454 if (dev->class && dev->class->pm) { 455 pm_dev_dbg(dev, state, "EARLY class "); 456 error = pm_noirq_op(dev, dev->class->pm, state); 457 } 458 459 End: 460 TRACE_RESUME(error); 461 return error; 462 } 463 464 /** 465 * dpm_resume_noirq - Execute "early resume" callbacks for non-sysdev devices. 466 * @state: PM transition of the system being carried out. 467 * 468 * Call the "noirq" resume handlers for all devices marked as DPM_OFF_IRQ and 469 * enable device drivers to receive interrupts. 470 */ 471 void dpm_resume_noirq(pm_message_t state) 472 { 473 struct device *dev; 474 ktime_t starttime = ktime_get(); 475 476 mutex_lock(&dpm_list_mtx); 477 transition_started = false; 478 list_for_each_entry(dev, &dpm_list, power.entry) 479 if (dev->power.status > DPM_OFF) { 480 int error; 481 482 dev->power.status = DPM_OFF; 483 error = device_resume_noirq(dev, state); 484 if (error) 485 pm_dev_err(dev, state, " early", error); 486 } 487 mutex_unlock(&dpm_list_mtx); 488 dpm_show_time(starttime, state, "early"); 489 resume_device_irqs(); 490 } 491 EXPORT_SYMBOL_GPL(dpm_resume_noirq); 492 493 /** 494 * legacy_resume - Execute a legacy (bus or class) resume callback for device. 495 * @dev: Device to resume. 496 * @cb: Resume callback to execute. 497 */ 498 static int legacy_resume(struct device *dev, int (*cb)(struct device *dev)) 499 { 500 int error; 501 ktime_t calltime; 502 503 calltime = initcall_debug_start(dev); 504 505 error = cb(dev); 506 suspend_report_result(cb, error); 507 508 initcall_debug_report(dev, calltime, error); 509 510 return error; 511 } 512 513 /** 514 * device_resume - Execute "resume" callbacks for given device. 515 * @dev: Device to handle. 516 * @state: PM transition of the system being carried out. 517 * @async: If true, the device is being resumed asynchronously. 518 */ 519 static int device_resume(struct device *dev, pm_message_t state, bool async) 520 { 521 int error = 0; 522 523 TRACE_DEVICE(dev); 524 TRACE_RESUME(0); 525 526 dpm_wait(dev->parent, async); 527 device_lock(dev); 528 529 dev->power.status = DPM_RESUMING; 530 531 if (dev->bus) { 532 if (dev->bus->pm) { 533 pm_dev_dbg(dev, state, ""); 534 error = pm_op(dev, dev->bus->pm, state); 535 } else if (dev->bus->resume) { 536 pm_dev_dbg(dev, state, "legacy "); 537 error = legacy_resume(dev, dev->bus->resume); 538 } 539 if (error) 540 goto End; 541 } 542 543 if (dev->type) { 544 if (dev->type->pm) { 545 pm_dev_dbg(dev, state, "type "); 546 error = pm_op(dev, dev->type->pm, state); 547 } 548 if (error) 549 goto End; 550 } 551 552 if (dev->class) { 553 if (dev->class->pm) { 554 pm_dev_dbg(dev, state, "class "); 555 error = pm_op(dev, dev->class->pm, state); 556 } else if (dev->class->resume) { 557 pm_dev_dbg(dev, state, "legacy class "); 558 error = legacy_resume(dev, dev->class->resume); 559 } 560 } 561 End: 562 device_unlock(dev); 563 complete_all(&dev->power.completion); 564 565 TRACE_RESUME(error); 566 return error; 567 } 568 569 static void async_resume(void *data, async_cookie_t cookie) 570 { 571 struct device *dev = (struct device *)data; 572 int error; 573 574 error = device_resume(dev, pm_transition, true); 575 if (error) 576 pm_dev_err(dev, pm_transition, " async", error); 577 put_device(dev); 578 } 579 580 static bool is_async(struct device *dev) 581 { 582 return dev->power.async_suspend && pm_async_enabled 583 && !pm_trace_is_enabled(); 584 } 585 586 /** 587 * dpm_resume - Execute "resume" callbacks for non-sysdev devices. 588 * @state: PM transition of the system being carried out. 589 * 590 * Execute the appropriate "resume" callback for all devices whose status 591 * indicates that they are suspended. 592 */ 593 static void dpm_resume(pm_message_t state) 594 { 595 struct list_head list; 596 struct device *dev; 597 ktime_t starttime = ktime_get(); 598 599 INIT_LIST_HEAD(&list); 600 mutex_lock(&dpm_list_mtx); 601 pm_transition = state; 602 603 list_for_each_entry(dev, &dpm_list, power.entry) { 604 if (dev->power.status < DPM_OFF) 605 continue; 606 607 INIT_COMPLETION(dev->power.completion); 608 if (is_async(dev)) { 609 get_device(dev); 610 async_schedule(async_resume, dev); 611 } 612 } 613 614 while (!list_empty(&dpm_list)) { 615 dev = to_device(dpm_list.next); 616 get_device(dev); 617 if (dev->power.status >= DPM_OFF && !is_async(dev)) { 618 int error; 619 620 mutex_unlock(&dpm_list_mtx); 621 622 error = device_resume(dev, state, false); 623 624 mutex_lock(&dpm_list_mtx); 625 if (error) 626 pm_dev_err(dev, state, "", error); 627 } else if (dev->power.status == DPM_SUSPENDING) { 628 /* Allow new children of the device to be registered */ 629 dev->power.status = DPM_RESUMING; 630 } 631 if (!list_empty(&dev->power.entry)) 632 list_move_tail(&dev->power.entry, &list); 633 put_device(dev); 634 } 635 list_splice(&list, &dpm_list); 636 mutex_unlock(&dpm_list_mtx); 637 async_synchronize_full(); 638 dpm_show_time(starttime, state, NULL); 639 } 640 641 /** 642 * device_complete - Complete a PM transition for given device. 643 * @dev: Device to handle. 644 * @state: PM transition of the system being carried out. 645 */ 646 static void device_complete(struct device *dev, pm_message_t state) 647 { 648 device_lock(dev); 649 650 if (dev->class && dev->class->pm && dev->class->pm->complete) { 651 pm_dev_dbg(dev, state, "completing class "); 652 dev->class->pm->complete(dev); 653 } 654 655 if (dev->type && dev->type->pm && dev->type->pm->complete) { 656 pm_dev_dbg(dev, state, "completing type "); 657 dev->type->pm->complete(dev); 658 } 659 660 if (dev->bus && dev->bus->pm && dev->bus->pm->complete) { 661 pm_dev_dbg(dev, state, "completing "); 662 dev->bus->pm->complete(dev); 663 } 664 665 device_unlock(dev); 666 } 667 668 /** 669 * dpm_complete - Complete a PM transition for all non-sysdev devices. 670 * @state: PM transition of the system being carried out. 671 * 672 * Execute the ->complete() callbacks for all devices whose PM status is not 673 * DPM_ON (this allows new devices to be registered). 674 */ 675 static void dpm_complete(pm_message_t state) 676 { 677 struct list_head list; 678 679 INIT_LIST_HEAD(&list); 680 mutex_lock(&dpm_list_mtx); 681 transition_started = false; 682 while (!list_empty(&dpm_list)) { 683 struct device *dev = to_device(dpm_list.prev); 684 685 get_device(dev); 686 if (dev->power.status > DPM_ON) { 687 dev->power.status = DPM_ON; 688 mutex_unlock(&dpm_list_mtx); 689 690 device_complete(dev, state); 691 pm_runtime_put_sync(dev); 692 693 mutex_lock(&dpm_list_mtx); 694 } 695 if (!list_empty(&dev->power.entry)) 696 list_move(&dev->power.entry, &list); 697 put_device(dev); 698 } 699 list_splice(&list, &dpm_list); 700 mutex_unlock(&dpm_list_mtx); 701 } 702 703 /** 704 * dpm_resume_end - Execute "resume" callbacks and complete system transition. 705 * @state: PM transition of the system being carried out. 706 * 707 * Execute "resume" callbacks for all devices and complete the PM transition of 708 * the system. 709 */ 710 void dpm_resume_end(pm_message_t state) 711 { 712 might_sleep(); 713 dpm_resume(state); 714 dpm_complete(state); 715 } 716 EXPORT_SYMBOL_GPL(dpm_resume_end); 717 718 719 /*------------------------- Suspend routines -------------------------*/ 720 721 /** 722 * resume_event - Return a "resume" message for given "suspend" sleep state. 723 * @sleep_state: PM message representing a sleep state. 724 * 725 * Return a PM message representing the resume event corresponding to given 726 * sleep state. 727 */ 728 static pm_message_t resume_event(pm_message_t sleep_state) 729 { 730 switch (sleep_state.event) { 731 case PM_EVENT_SUSPEND: 732 return PMSG_RESUME; 733 case PM_EVENT_FREEZE: 734 case PM_EVENT_QUIESCE: 735 return PMSG_RECOVER; 736 case PM_EVENT_HIBERNATE: 737 return PMSG_RESTORE; 738 } 739 return PMSG_ON; 740 } 741 742 /** 743 * device_suspend_noirq - Execute a "late suspend" callback for given device. 744 * @dev: Device to handle. 745 * @state: PM transition of the system being carried out. 746 * 747 * The driver of @dev will not receive interrupts while this function is being 748 * executed. 749 */ 750 static int device_suspend_noirq(struct device *dev, pm_message_t state) 751 { 752 int error = 0; 753 754 if (dev->class && dev->class->pm) { 755 pm_dev_dbg(dev, state, "LATE class "); 756 error = pm_noirq_op(dev, dev->class->pm, state); 757 if (error) 758 goto End; 759 } 760 761 if (dev->type && dev->type->pm) { 762 pm_dev_dbg(dev, state, "LATE type "); 763 error = pm_noirq_op(dev, dev->type->pm, state); 764 if (error) 765 goto End; 766 } 767 768 if (dev->bus && dev->bus->pm) { 769 pm_dev_dbg(dev, state, "LATE "); 770 error = pm_noirq_op(dev, dev->bus->pm, state); 771 } 772 773 End: 774 return error; 775 } 776 777 /** 778 * dpm_suspend_noirq - Execute "late suspend" callbacks for non-sysdev devices. 779 * @state: PM transition of the system being carried out. 780 * 781 * Prevent device drivers from receiving interrupts and call the "noirq" suspend 782 * handlers for all non-sysdev devices. 783 */ 784 int dpm_suspend_noirq(pm_message_t state) 785 { 786 struct device *dev; 787 ktime_t starttime = ktime_get(); 788 int error = 0; 789 790 suspend_device_irqs(); 791 mutex_lock(&dpm_list_mtx); 792 list_for_each_entry_reverse(dev, &dpm_list, power.entry) { 793 error = device_suspend_noirq(dev, state); 794 if (error) { 795 pm_dev_err(dev, state, " late", error); 796 break; 797 } 798 dev->power.status = DPM_OFF_IRQ; 799 } 800 mutex_unlock(&dpm_list_mtx); 801 if (error) 802 dpm_resume_noirq(resume_event(state)); 803 else 804 dpm_show_time(starttime, state, "late"); 805 return error; 806 } 807 EXPORT_SYMBOL_GPL(dpm_suspend_noirq); 808 809 /** 810 * legacy_suspend - Execute a legacy (bus or class) suspend callback for device. 811 * @dev: Device to suspend. 812 * @state: PM transition of the system being carried out. 813 * @cb: Suspend callback to execute. 814 */ 815 static int legacy_suspend(struct device *dev, pm_message_t state, 816 int (*cb)(struct device *dev, pm_message_t state)) 817 { 818 int error; 819 ktime_t calltime; 820 821 calltime = initcall_debug_start(dev); 822 823 error = cb(dev, state); 824 suspend_report_result(cb, error); 825 826 initcall_debug_report(dev, calltime, error); 827 828 return error; 829 } 830 831 static int async_error; 832 833 /** 834 * device_suspend - Execute "suspend" callbacks for given device. 835 * @dev: Device to handle. 836 * @state: PM transition of the system being carried out. 837 * @async: If true, the device is being suspended asynchronously. 838 */ 839 static int __device_suspend(struct device *dev, pm_message_t state, bool async) 840 { 841 int error = 0; 842 843 dpm_wait_for_children(dev, async); 844 device_lock(dev); 845 846 if (async_error) 847 goto End; 848 849 if (dev->class) { 850 if (dev->class->pm) { 851 pm_dev_dbg(dev, state, "class "); 852 error = pm_op(dev, dev->class->pm, state); 853 } else if (dev->class->suspend) { 854 pm_dev_dbg(dev, state, "legacy class "); 855 error = legacy_suspend(dev, state, dev->class->suspend); 856 } 857 if (error) 858 goto End; 859 } 860 861 if (dev->type) { 862 if (dev->type->pm) { 863 pm_dev_dbg(dev, state, "type "); 864 error = pm_op(dev, dev->type->pm, state); 865 } 866 if (error) 867 goto End; 868 } 869 870 if (dev->bus) { 871 if (dev->bus->pm) { 872 pm_dev_dbg(dev, state, ""); 873 error = pm_op(dev, dev->bus->pm, state); 874 } else if (dev->bus->suspend) { 875 pm_dev_dbg(dev, state, "legacy "); 876 error = legacy_suspend(dev, state, dev->bus->suspend); 877 } 878 } 879 880 if (!error) 881 dev->power.status = DPM_OFF; 882 883 End: 884 device_unlock(dev); 885 complete_all(&dev->power.completion); 886 887 return error; 888 } 889 890 static void async_suspend(void *data, async_cookie_t cookie) 891 { 892 struct device *dev = (struct device *)data; 893 int error; 894 895 error = __device_suspend(dev, pm_transition, true); 896 if (error) { 897 pm_dev_err(dev, pm_transition, " async", error); 898 async_error = error; 899 } 900 901 put_device(dev); 902 } 903 904 static int device_suspend(struct device *dev) 905 { 906 INIT_COMPLETION(dev->power.completion); 907 908 if (pm_async_enabled && dev->power.async_suspend) { 909 get_device(dev); 910 async_schedule(async_suspend, dev); 911 return 0; 912 } 913 914 return __device_suspend(dev, pm_transition, false); 915 } 916 917 /** 918 * dpm_suspend - Execute "suspend" callbacks for all non-sysdev devices. 919 * @state: PM transition of the system being carried out. 920 */ 921 static int dpm_suspend(pm_message_t state) 922 { 923 struct list_head list; 924 ktime_t starttime = ktime_get(); 925 int error = 0; 926 927 INIT_LIST_HEAD(&list); 928 mutex_lock(&dpm_list_mtx); 929 pm_transition = state; 930 async_error = 0; 931 while (!list_empty(&dpm_list)) { 932 struct device *dev = to_device(dpm_list.prev); 933 934 get_device(dev); 935 mutex_unlock(&dpm_list_mtx); 936 937 error = device_suspend(dev); 938 939 mutex_lock(&dpm_list_mtx); 940 if (error) { 941 pm_dev_err(dev, state, "", error); 942 put_device(dev); 943 break; 944 } 945 if (!list_empty(&dev->power.entry)) 946 list_move(&dev->power.entry, &list); 947 put_device(dev); 948 if (async_error) 949 break; 950 } 951 list_splice(&list, dpm_list.prev); 952 mutex_unlock(&dpm_list_mtx); 953 async_synchronize_full(); 954 if (!error) 955 error = async_error; 956 if (!error) 957 dpm_show_time(starttime, state, NULL); 958 return error; 959 } 960 961 /** 962 * device_prepare - Prepare a device for system power transition. 963 * @dev: Device to handle. 964 * @state: PM transition of the system being carried out. 965 * 966 * Execute the ->prepare() callback(s) for given device. No new children of the 967 * device may be registered after this function has returned. 968 */ 969 static int device_prepare(struct device *dev, pm_message_t state) 970 { 971 int error = 0; 972 973 device_lock(dev); 974 975 if (dev->bus && dev->bus->pm && dev->bus->pm->prepare) { 976 pm_dev_dbg(dev, state, "preparing "); 977 error = dev->bus->pm->prepare(dev); 978 suspend_report_result(dev->bus->pm->prepare, error); 979 if (error) 980 goto End; 981 } 982 983 if (dev->type && dev->type->pm && dev->type->pm->prepare) { 984 pm_dev_dbg(dev, state, "preparing type "); 985 error = dev->type->pm->prepare(dev); 986 suspend_report_result(dev->type->pm->prepare, error); 987 if (error) 988 goto End; 989 } 990 991 if (dev->class && dev->class->pm && dev->class->pm->prepare) { 992 pm_dev_dbg(dev, state, "preparing class "); 993 error = dev->class->pm->prepare(dev); 994 suspend_report_result(dev->class->pm->prepare, error); 995 } 996 End: 997 device_unlock(dev); 998 999 return error; 1000 } 1001 1002 /** 1003 * dpm_prepare - Prepare all non-sysdev devices for a system PM transition. 1004 * @state: PM transition of the system being carried out. 1005 * 1006 * Execute the ->prepare() callback(s) for all devices. 1007 */ 1008 static int dpm_prepare(pm_message_t state) 1009 { 1010 struct list_head list; 1011 int error = 0; 1012 1013 INIT_LIST_HEAD(&list); 1014 mutex_lock(&dpm_list_mtx); 1015 transition_started = true; 1016 while (!list_empty(&dpm_list)) { 1017 struct device *dev = to_device(dpm_list.next); 1018 1019 get_device(dev); 1020 dev->power.status = DPM_PREPARING; 1021 mutex_unlock(&dpm_list_mtx); 1022 1023 pm_runtime_get_noresume(dev); 1024 if (pm_runtime_barrier(dev) && device_may_wakeup(dev)) { 1025 /* Wake-up requested during system sleep transition. */ 1026 pm_runtime_put_sync(dev); 1027 error = -EBUSY; 1028 } else { 1029 error = device_prepare(dev, state); 1030 } 1031 1032 mutex_lock(&dpm_list_mtx); 1033 if (error) { 1034 dev->power.status = DPM_ON; 1035 if (error == -EAGAIN) { 1036 put_device(dev); 1037 error = 0; 1038 continue; 1039 } 1040 printk(KERN_ERR "PM: Failed to prepare device %s " 1041 "for power transition: error %d\n", 1042 kobject_name(&dev->kobj), error); 1043 put_device(dev); 1044 break; 1045 } 1046 dev->power.status = DPM_SUSPENDING; 1047 if (!list_empty(&dev->power.entry)) 1048 list_move_tail(&dev->power.entry, &list); 1049 put_device(dev); 1050 } 1051 list_splice(&list, &dpm_list); 1052 mutex_unlock(&dpm_list_mtx); 1053 return error; 1054 } 1055 1056 /** 1057 * dpm_suspend_start - Prepare devices for PM transition and suspend them. 1058 * @state: PM transition of the system being carried out. 1059 * 1060 * Prepare all non-sysdev devices for system PM transition and execute "suspend" 1061 * callbacks for them. 1062 */ 1063 int dpm_suspend_start(pm_message_t state) 1064 { 1065 int error; 1066 1067 might_sleep(); 1068 error = dpm_prepare(state); 1069 if (!error) 1070 error = dpm_suspend(state); 1071 return error; 1072 } 1073 EXPORT_SYMBOL_GPL(dpm_suspend_start); 1074 1075 void __suspend_report_result(const char *function, void *fn, int ret) 1076 { 1077 if (ret) 1078 printk(KERN_ERR "%s(): %pF returns %d\n", function, fn, ret); 1079 } 1080 EXPORT_SYMBOL_GPL(__suspend_report_result); 1081 1082 /** 1083 * device_pm_wait_for_dev - Wait for suspend/resume of a device to complete. 1084 * @dev: Device to wait for. 1085 * @subordinate: Device that needs to wait for @dev. 1086 */ 1087 void device_pm_wait_for_dev(struct device *subordinate, struct device *dev) 1088 { 1089 dpm_wait(dev, subordinate->power.async_suspend); 1090 } 1091 EXPORT_SYMBOL_GPL(device_pm_wait_for_dev); 1092