1 /* 2 * drivers/base/power/main.c - Where the driver meets power management. 3 * 4 * Copyright (c) 2003 Patrick Mochel 5 * Copyright (c) 2003 Open Source Development Lab 6 * 7 * This file is released under the GPLv2 8 * 9 * 10 * The driver model core calls device_pm_add() when a device is registered. 11 * This will initialize the embedded device_pm_info object in the device 12 * and add it to the list of power-controlled devices. sysfs entries for 13 * controlling device power management will also be added. 14 * 15 * A separate list is used for keeping track of power info, because the power 16 * domain dependencies may differ from the ancestral dependencies that the 17 * subsystem list maintains. 18 */ 19 20 #include <linux/device.h> 21 #include <linux/kallsyms.h> 22 #include <linux/mutex.h> 23 #include <linux/pm.h> 24 #include <linux/pm_runtime.h> 25 #include <linux/resume-trace.h> 26 #include <linux/interrupt.h> 27 #include <linux/sched.h> 28 #include <linux/async.h> 29 #include <linux/suspend.h> 30 31 #include "../base.h" 32 #include "power.h" 33 34 /* 35 * The entries in the dpm_list list are in a depth first order, simply 36 * because children are guaranteed to be discovered after parents, and 37 * are inserted at the back of the list on discovery. 38 * 39 * Since device_pm_add() may be called with a device lock held, 40 * we must never try to acquire a device lock while holding 41 * dpm_list_mutex. 42 */ 43 44 LIST_HEAD(dpm_list); 45 LIST_HEAD(dpm_prepared_list); 46 LIST_HEAD(dpm_suspended_list); 47 LIST_HEAD(dpm_noirq_list); 48 49 static DEFINE_MUTEX(dpm_list_mtx); 50 static pm_message_t pm_transition; 51 52 static int async_error; 53 54 /** 55 * device_pm_init - Initialize the PM-related part of a device object. 56 * @dev: Device object being initialized. 57 */ 58 void device_pm_init(struct device *dev) 59 { 60 dev->power.in_suspend = false; 61 init_completion(&dev->power.completion); 62 complete_all(&dev->power.completion); 63 dev->power.wakeup = NULL; 64 spin_lock_init(&dev->power.lock); 65 pm_runtime_init(dev); 66 } 67 68 /** 69 * device_pm_lock - Lock the list of active devices used by the PM core. 70 */ 71 void device_pm_lock(void) 72 { 73 mutex_lock(&dpm_list_mtx); 74 } 75 76 /** 77 * device_pm_unlock - Unlock the list of active devices used by the PM core. 78 */ 79 void device_pm_unlock(void) 80 { 81 mutex_unlock(&dpm_list_mtx); 82 } 83 84 /** 85 * device_pm_add - Add a device to the PM core's list of active devices. 86 * @dev: Device to add to the list. 87 */ 88 void device_pm_add(struct device *dev) 89 { 90 pr_debug("PM: Adding info for %s:%s\n", 91 dev->bus ? dev->bus->name : "No Bus", dev_name(dev)); 92 mutex_lock(&dpm_list_mtx); 93 if (dev->parent && dev->parent->power.in_suspend) 94 dev_warn(dev, "parent %s should not be sleeping\n", 95 dev_name(dev->parent)); 96 list_add_tail(&dev->power.entry, &dpm_list); 97 mutex_unlock(&dpm_list_mtx); 98 } 99 100 /** 101 * device_pm_remove - Remove a device from the PM core's list of active devices. 102 * @dev: Device to be removed from the list. 103 */ 104 void device_pm_remove(struct device *dev) 105 { 106 pr_debug("PM: Removing info for %s:%s\n", 107 dev->bus ? dev->bus->name : "No Bus", dev_name(dev)); 108 complete_all(&dev->power.completion); 109 mutex_lock(&dpm_list_mtx); 110 list_del_init(&dev->power.entry); 111 mutex_unlock(&dpm_list_mtx); 112 device_wakeup_disable(dev); 113 pm_runtime_remove(dev); 114 } 115 116 /** 117 * device_pm_move_before - Move device in the PM core's list of active devices. 118 * @deva: Device to move in dpm_list. 119 * @devb: Device @deva should come before. 120 */ 121 void device_pm_move_before(struct device *deva, struct device *devb) 122 { 123 pr_debug("PM: Moving %s:%s before %s:%s\n", 124 deva->bus ? deva->bus->name : "No Bus", dev_name(deva), 125 devb->bus ? devb->bus->name : "No Bus", dev_name(devb)); 126 /* Delete deva from dpm_list and reinsert before devb. */ 127 list_move_tail(&deva->power.entry, &devb->power.entry); 128 } 129 130 /** 131 * device_pm_move_after - Move device in the PM core's list of active devices. 132 * @deva: Device to move in dpm_list. 133 * @devb: Device @deva should come after. 134 */ 135 void device_pm_move_after(struct device *deva, struct device *devb) 136 { 137 pr_debug("PM: Moving %s:%s after %s:%s\n", 138 deva->bus ? deva->bus->name : "No Bus", dev_name(deva), 139 devb->bus ? devb->bus->name : "No Bus", dev_name(devb)); 140 /* Delete deva from dpm_list and reinsert after devb. */ 141 list_move(&deva->power.entry, &devb->power.entry); 142 } 143 144 /** 145 * device_pm_move_last - Move device to end of the PM core's list of devices. 146 * @dev: Device to move in dpm_list. 147 */ 148 void device_pm_move_last(struct device *dev) 149 { 150 pr_debug("PM: Moving %s:%s to end of list\n", 151 dev->bus ? dev->bus->name : "No Bus", dev_name(dev)); 152 list_move_tail(&dev->power.entry, &dpm_list); 153 } 154 155 static ktime_t initcall_debug_start(struct device *dev) 156 { 157 ktime_t calltime = ktime_set(0, 0); 158 159 if (initcall_debug) { 160 pr_info("calling %s+ @ %i\n", 161 dev_name(dev), task_pid_nr(current)); 162 calltime = ktime_get(); 163 } 164 165 return calltime; 166 } 167 168 static void initcall_debug_report(struct device *dev, ktime_t calltime, 169 int error) 170 { 171 ktime_t delta, rettime; 172 173 if (initcall_debug) { 174 rettime = ktime_get(); 175 delta = ktime_sub(rettime, calltime); 176 pr_info("call %s+ returned %d after %Ld usecs\n", dev_name(dev), 177 error, (unsigned long long)ktime_to_ns(delta) >> 10); 178 } 179 } 180 181 /** 182 * dpm_wait - Wait for a PM operation to complete. 183 * @dev: Device to wait for. 184 * @async: If unset, wait only if the device's power.async_suspend flag is set. 185 */ 186 static void dpm_wait(struct device *dev, bool async) 187 { 188 if (!dev) 189 return; 190 191 if (async || (pm_async_enabled && dev->power.async_suspend)) 192 wait_for_completion(&dev->power.completion); 193 } 194 195 static int dpm_wait_fn(struct device *dev, void *async_ptr) 196 { 197 dpm_wait(dev, *((bool *)async_ptr)); 198 return 0; 199 } 200 201 static void dpm_wait_for_children(struct device *dev, bool async) 202 { 203 device_for_each_child(dev, &async, dpm_wait_fn); 204 } 205 206 /** 207 * pm_op - Execute the PM operation appropriate for given PM event. 208 * @dev: Device to handle. 209 * @ops: PM operations to choose from. 210 * @state: PM transition of the system being carried out. 211 */ 212 static int pm_op(struct device *dev, 213 const struct dev_pm_ops *ops, 214 pm_message_t state) 215 { 216 int error = 0; 217 ktime_t calltime; 218 219 calltime = initcall_debug_start(dev); 220 221 switch (state.event) { 222 #ifdef CONFIG_SUSPEND 223 case PM_EVENT_SUSPEND: 224 if (ops->suspend) { 225 error = ops->suspend(dev); 226 suspend_report_result(ops->suspend, error); 227 } 228 break; 229 case PM_EVENT_RESUME: 230 if (ops->resume) { 231 error = ops->resume(dev); 232 suspend_report_result(ops->resume, error); 233 } 234 break; 235 #endif /* CONFIG_SUSPEND */ 236 #ifdef CONFIG_HIBERNATION 237 case PM_EVENT_FREEZE: 238 case PM_EVENT_QUIESCE: 239 if (ops->freeze) { 240 error = ops->freeze(dev); 241 suspend_report_result(ops->freeze, error); 242 } 243 break; 244 case PM_EVENT_HIBERNATE: 245 if (ops->poweroff) { 246 error = ops->poweroff(dev); 247 suspend_report_result(ops->poweroff, error); 248 } 249 break; 250 case PM_EVENT_THAW: 251 case PM_EVENT_RECOVER: 252 if (ops->thaw) { 253 error = ops->thaw(dev); 254 suspend_report_result(ops->thaw, error); 255 } 256 break; 257 case PM_EVENT_RESTORE: 258 if (ops->restore) { 259 error = ops->restore(dev); 260 suspend_report_result(ops->restore, error); 261 } 262 break; 263 #endif /* CONFIG_HIBERNATION */ 264 default: 265 error = -EINVAL; 266 } 267 268 initcall_debug_report(dev, calltime, error); 269 270 return error; 271 } 272 273 /** 274 * pm_noirq_op - Execute the PM operation appropriate for given PM event. 275 * @dev: Device to handle. 276 * @ops: PM operations to choose from. 277 * @state: PM transition of the system being carried out. 278 * 279 * The driver of @dev will not receive interrupts while this function is being 280 * executed. 281 */ 282 static int pm_noirq_op(struct device *dev, 283 const struct dev_pm_ops *ops, 284 pm_message_t state) 285 { 286 int error = 0; 287 ktime_t calltime = ktime_set(0, 0), delta, rettime; 288 289 if (initcall_debug) { 290 pr_info("calling %s+ @ %i, parent: %s\n", 291 dev_name(dev), task_pid_nr(current), 292 dev->parent ? dev_name(dev->parent) : "none"); 293 calltime = ktime_get(); 294 } 295 296 switch (state.event) { 297 #ifdef CONFIG_SUSPEND 298 case PM_EVENT_SUSPEND: 299 if (ops->suspend_noirq) { 300 error = ops->suspend_noirq(dev); 301 suspend_report_result(ops->suspend_noirq, error); 302 } 303 break; 304 case PM_EVENT_RESUME: 305 if (ops->resume_noirq) { 306 error = ops->resume_noirq(dev); 307 suspend_report_result(ops->resume_noirq, error); 308 } 309 break; 310 #endif /* CONFIG_SUSPEND */ 311 #ifdef CONFIG_HIBERNATION 312 case PM_EVENT_FREEZE: 313 case PM_EVENT_QUIESCE: 314 if (ops->freeze_noirq) { 315 error = ops->freeze_noirq(dev); 316 suspend_report_result(ops->freeze_noirq, error); 317 } 318 break; 319 case PM_EVENT_HIBERNATE: 320 if (ops->poweroff_noirq) { 321 error = ops->poweroff_noirq(dev); 322 suspend_report_result(ops->poweroff_noirq, error); 323 } 324 break; 325 case PM_EVENT_THAW: 326 case PM_EVENT_RECOVER: 327 if (ops->thaw_noirq) { 328 error = ops->thaw_noirq(dev); 329 suspend_report_result(ops->thaw_noirq, error); 330 } 331 break; 332 case PM_EVENT_RESTORE: 333 if (ops->restore_noirq) { 334 error = ops->restore_noirq(dev); 335 suspend_report_result(ops->restore_noirq, error); 336 } 337 break; 338 #endif /* CONFIG_HIBERNATION */ 339 default: 340 error = -EINVAL; 341 } 342 343 if (initcall_debug) { 344 rettime = ktime_get(); 345 delta = ktime_sub(rettime, calltime); 346 printk("initcall %s_i+ returned %d after %Ld usecs\n", 347 dev_name(dev), error, 348 (unsigned long long)ktime_to_ns(delta) >> 10); 349 } 350 351 return error; 352 } 353 354 static char *pm_verb(int event) 355 { 356 switch (event) { 357 case PM_EVENT_SUSPEND: 358 return "suspend"; 359 case PM_EVENT_RESUME: 360 return "resume"; 361 case PM_EVENT_FREEZE: 362 return "freeze"; 363 case PM_EVENT_QUIESCE: 364 return "quiesce"; 365 case PM_EVENT_HIBERNATE: 366 return "hibernate"; 367 case PM_EVENT_THAW: 368 return "thaw"; 369 case PM_EVENT_RESTORE: 370 return "restore"; 371 case PM_EVENT_RECOVER: 372 return "recover"; 373 default: 374 return "(unknown PM event)"; 375 } 376 } 377 378 static void pm_dev_dbg(struct device *dev, pm_message_t state, char *info) 379 { 380 dev_dbg(dev, "%s%s%s\n", info, pm_verb(state.event), 381 ((state.event & PM_EVENT_SLEEP) && device_may_wakeup(dev)) ? 382 ", may wakeup" : ""); 383 } 384 385 static void pm_dev_err(struct device *dev, pm_message_t state, char *info, 386 int error) 387 { 388 printk(KERN_ERR "PM: Device %s failed to %s%s: error %d\n", 389 dev_name(dev), pm_verb(state.event), info, error); 390 } 391 392 static void dpm_show_time(ktime_t starttime, pm_message_t state, char *info) 393 { 394 ktime_t calltime; 395 u64 usecs64; 396 int usecs; 397 398 calltime = ktime_get(); 399 usecs64 = ktime_to_ns(ktime_sub(calltime, starttime)); 400 do_div(usecs64, NSEC_PER_USEC); 401 usecs = usecs64; 402 if (usecs == 0) 403 usecs = 1; 404 pr_info("PM: %s%s%s of devices complete after %ld.%03ld msecs\n", 405 info ?: "", info ? " " : "", pm_verb(state.event), 406 usecs / USEC_PER_MSEC, usecs % USEC_PER_MSEC); 407 } 408 409 /*------------------------- Resume routines -------------------------*/ 410 411 /** 412 * device_resume_noirq - Execute an "early resume" callback for given device. 413 * @dev: Device to handle. 414 * @state: PM transition of the system being carried out. 415 * 416 * The driver of @dev will not receive interrupts while this function is being 417 * executed. 418 */ 419 static int device_resume_noirq(struct device *dev, pm_message_t state) 420 { 421 int error = 0; 422 423 TRACE_DEVICE(dev); 424 TRACE_RESUME(0); 425 426 if (dev->pwr_domain) { 427 pm_dev_dbg(dev, state, "EARLY power domain "); 428 pm_noirq_op(dev, &dev->pwr_domain->ops, state); 429 } 430 431 if (dev->type && dev->type->pm) { 432 pm_dev_dbg(dev, state, "EARLY type "); 433 error = pm_noirq_op(dev, dev->type->pm, state); 434 } else if (dev->class && dev->class->pm) { 435 pm_dev_dbg(dev, state, "EARLY class "); 436 error = pm_noirq_op(dev, dev->class->pm, state); 437 } else if (dev->bus && dev->bus->pm) { 438 pm_dev_dbg(dev, state, "EARLY "); 439 error = pm_noirq_op(dev, dev->bus->pm, state); 440 } 441 442 TRACE_RESUME(error); 443 return error; 444 } 445 446 /** 447 * dpm_resume_noirq - Execute "early resume" callbacks for non-sysdev devices. 448 * @state: PM transition of the system being carried out. 449 * 450 * Call the "noirq" resume handlers for all devices marked as DPM_OFF_IRQ and 451 * enable device drivers to receive interrupts. 452 */ 453 void dpm_resume_noirq(pm_message_t state) 454 { 455 ktime_t starttime = ktime_get(); 456 457 mutex_lock(&dpm_list_mtx); 458 while (!list_empty(&dpm_noirq_list)) { 459 struct device *dev = to_device(dpm_noirq_list.next); 460 int error; 461 462 get_device(dev); 463 list_move_tail(&dev->power.entry, &dpm_suspended_list); 464 mutex_unlock(&dpm_list_mtx); 465 466 error = device_resume_noirq(dev, state); 467 if (error) 468 pm_dev_err(dev, state, " early", error); 469 470 mutex_lock(&dpm_list_mtx); 471 put_device(dev); 472 } 473 mutex_unlock(&dpm_list_mtx); 474 dpm_show_time(starttime, state, "early"); 475 resume_device_irqs(); 476 } 477 EXPORT_SYMBOL_GPL(dpm_resume_noirq); 478 479 /** 480 * legacy_resume - Execute a legacy (bus or class) resume callback for device. 481 * @dev: Device to resume. 482 * @cb: Resume callback to execute. 483 */ 484 static int legacy_resume(struct device *dev, int (*cb)(struct device *dev)) 485 { 486 int error; 487 ktime_t calltime; 488 489 calltime = initcall_debug_start(dev); 490 491 error = cb(dev); 492 suspend_report_result(cb, error); 493 494 initcall_debug_report(dev, calltime, error); 495 496 return error; 497 } 498 499 /** 500 * device_resume - Execute "resume" callbacks for given device. 501 * @dev: Device to handle. 502 * @state: PM transition of the system being carried out. 503 * @async: If true, the device is being resumed asynchronously. 504 */ 505 static int device_resume(struct device *dev, pm_message_t state, bool async) 506 { 507 int error = 0; 508 509 TRACE_DEVICE(dev); 510 TRACE_RESUME(0); 511 512 dpm_wait(dev->parent, async); 513 device_lock(dev); 514 515 dev->power.in_suspend = false; 516 517 if (dev->pwr_domain) { 518 pm_dev_dbg(dev, state, "power domain "); 519 pm_op(dev, &dev->pwr_domain->ops, state); 520 } 521 522 if (dev->type && dev->type->pm) { 523 pm_dev_dbg(dev, state, "type "); 524 error = pm_op(dev, dev->type->pm, state); 525 goto End; 526 } 527 528 if (dev->class) { 529 if (dev->class->pm) { 530 pm_dev_dbg(dev, state, "class "); 531 error = pm_op(dev, dev->class->pm, state); 532 goto End; 533 } else if (dev->class->resume) { 534 pm_dev_dbg(dev, state, "legacy class "); 535 error = legacy_resume(dev, dev->class->resume); 536 goto End; 537 } 538 } 539 540 if (dev->bus) { 541 if (dev->bus->pm) { 542 pm_dev_dbg(dev, state, ""); 543 error = pm_op(dev, dev->bus->pm, state); 544 } else if (dev->bus->resume) { 545 pm_dev_dbg(dev, state, "legacy "); 546 error = legacy_resume(dev, dev->bus->resume); 547 } 548 } 549 550 End: 551 device_unlock(dev); 552 complete_all(&dev->power.completion); 553 554 TRACE_RESUME(error); 555 return error; 556 } 557 558 static void async_resume(void *data, async_cookie_t cookie) 559 { 560 struct device *dev = (struct device *)data; 561 int error; 562 563 error = device_resume(dev, pm_transition, true); 564 if (error) 565 pm_dev_err(dev, pm_transition, " async", error); 566 put_device(dev); 567 } 568 569 static bool is_async(struct device *dev) 570 { 571 return dev->power.async_suspend && pm_async_enabled 572 && !pm_trace_is_enabled(); 573 } 574 575 /** 576 * dpm_resume - Execute "resume" callbacks for non-sysdev devices. 577 * @state: PM transition of the system being carried out. 578 * 579 * Execute the appropriate "resume" callback for all devices whose status 580 * indicates that they are suspended. 581 */ 582 static void dpm_resume(pm_message_t state) 583 { 584 struct device *dev; 585 ktime_t starttime = ktime_get(); 586 587 mutex_lock(&dpm_list_mtx); 588 pm_transition = state; 589 async_error = 0; 590 591 list_for_each_entry(dev, &dpm_suspended_list, power.entry) { 592 INIT_COMPLETION(dev->power.completion); 593 if (is_async(dev)) { 594 get_device(dev); 595 async_schedule(async_resume, dev); 596 } 597 } 598 599 while (!list_empty(&dpm_suspended_list)) { 600 dev = to_device(dpm_suspended_list.next); 601 get_device(dev); 602 if (!is_async(dev)) { 603 int error; 604 605 mutex_unlock(&dpm_list_mtx); 606 607 error = device_resume(dev, state, false); 608 if (error) 609 pm_dev_err(dev, state, "", error); 610 611 mutex_lock(&dpm_list_mtx); 612 } 613 if (!list_empty(&dev->power.entry)) 614 list_move_tail(&dev->power.entry, &dpm_prepared_list); 615 put_device(dev); 616 } 617 mutex_unlock(&dpm_list_mtx); 618 async_synchronize_full(); 619 dpm_show_time(starttime, state, NULL); 620 } 621 622 /** 623 * device_complete - Complete a PM transition for given device. 624 * @dev: Device to handle. 625 * @state: PM transition of the system being carried out. 626 */ 627 static void device_complete(struct device *dev, pm_message_t state) 628 { 629 device_lock(dev); 630 631 if (dev->pwr_domain && dev->pwr_domain->ops.complete) { 632 pm_dev_dbg(dev, state, "completing power domain "); 633 dev->pwr_domain->ops.complete(dev); 634 } 635 636 if (dev->type && dev->type->pm) { 637 pm_dev_dbg(dev, state, "completing type "); 638 if (dev->type->pm->complete) 639 dev->type->pm->complete(dev); 640 } else if (dev->class && dev->class->pm) { 641 pm_dev_dbg(dev, state, "completing class "); 642 if (dev->class->pm->complete) 643 dev->class->pm->complete(dev); 644 } else if (dev->bus && dev->bus->pm) { 645 pm_dev_dbg(dev, state, "completing "); 646 if (dev->bus->pm->complete) 647 dev->bus->pm->complete(dev); 648 } 649 650 device_unlock(dev); 651 } 652 653 /** 654 * dpm_complete - Complete a PM transition for all non-sysdev devices. 655 * @state: PM transition of the system being carried out. 656 * 657 * Execute the ->complete() callbacks for all devices whose PM status is not 658 * DPM_ON (this allows new devices to be registered). 659 */ 660 static void dpm_complete(pm_message_t state) 661 { 662 struct list_head list; 663 664 INIT_LIST_HEAD(&list); 665 mutex_lock(&dpm_list_mtx); 666 while (!list_empty(&dpm_prepared_list)) { 667 struct device *dev = to_device(dpm_prepared_list.prev); 668 669 get_device(dev); 670 dev->power.in_suspend = false; 671 list_move(&dev->power.entry, &list); 672 mutex_unlock(&dpm_list_mtx); 673 674 device_complete(dev, state); 675 676 mutex_lock(&dpm_list_mtx); 677 put_device(dev); 678 } 679 list_splice(&list, &dpm_list); 680 mutex_unlock(&dpm_list_mtx); 681 } 682 683 /** 684 * dpm_resume_end - Execute "resume" callbacks and complete system transition. 685 * @state: PM transition of the system being carried out. 686 * 687 * Execute "resume" callbacks for all devices and complete the PM transition of 688 * the system. 689 */ 690 void dpm_resume_end(pm_message_t state) 691 { 692 might_sleep(); 693 dpm_resume(state); 694 dpm_complete(state); 695 } 696 EXPORT_SYMBOL_GPL(dpm_resume_end); 697 698 699 /*------------------------- Suspend routines -------------------------*/ 700 701 /** 702 * resume_event - Return a "resume" message for given "suspend" sleep state. 703 * @sleep_state: PM message representing a sleep state. 704 * 705 * Return a PM message representing the resume event corresponding to given 706 * sleep state. 707 */ 708 static pm_message_t resume_event(pm_message_t sleep_state) 709 { 710 switch (sleep_state.event) { 711 case PM_EVENT_SUSPEND: 712 return PMSG_RESUME; 713 case PM_EVENT_FREEZE: 714 case PM_EVENT_QUIESCE: 715 return PMSG_RECOVER; 716 case PM_EVENT_HIBERNATE: 717 return PMSG_RESTORE; 718 } 719 return PMSG_ON; 720 } 721 722 /** 723 * device_suspend_noirq - Execute a "late suspend" callback for given device. 724 * @dev: Device to handle. 725 * @state: PM transition of the system being carried out. 726 * 727 * The driver of @dev will not receive interrupts while this function is being 728 * executed. 729 */ 730 static int device_suspend_noirq(struct device *dev, pm_message_t state) 731 { 732 int error; 733 734 if (dev->type && dev->type->pm) { 735 pm_dev_dbg(dev, state, "LATE type "); 736 error = pm_noirq_op(dev, dev->type->pm, state); 737 if (error) 738 return error; 739 } else if (dev->class && dev->class->pm) { 740 pm_dev_dbg(dev, state, "LATE class "); 741 error = pm_noirq_op(dev, dev->class->pm, state); 742 if (error) 743 return error; 744 } else if (dev->bus && dev->bus->pm) { 745 pm_dev_dbg(dev, state, "LATE "); 746 error = pm_noirq_op(dev, dev->bus->pm, state); 747 if (error) 748 return error; 749 } 750 751 if (dev->pwr_domain) { 752 pm_dev_dbg(dev, state, "LATE power domain "); 753 pm_noirq_op(dev, &dev->pwr_domain->ops, state); 754 } 755 756 return 0; 757 } 758 759 /** 760 * dpm_suspend_noirq - Execute "late suspend" callbacks for non-sysdev devices. 761 * @state: PM transition of the system being carried out. 762 * 763 * Prevent device drivers from receiving interrupts and call the "noirq" suspend 764 * handlers for all non-sysdev devices. 765 */ 766 int dpm_suspend_noirq(pm_message_t state) 767 { 768 ktime_t starttime = ktime_get(); 769 int error = 0; 770 771 suspend_device_irqs(); 772 mutex_lock(&dpm_list_mtx); 773 while (!list_empty(&dpm_suspended_list)) { 774 struct device *dev = to_device(dpm_suspended_list.prev); 775 776 get_device(dev); 777 mutex_unlock(&dpm_list_mtx); 778 779 error = device_suspend_noirq(dev, state); 780 781 mutex_lock(&dpm_list_mtx); 782 if (error) { 783 pm_dev_err(dev, state, " late", error); 784 put_device(dev); 785 break; 786 } 787 if (!list_empty(&dev->power.entry)) 788 list_move(&dev->power.entry, &dpm_noirq_list); 789 put_device(dev); 790 } 791 mutex_unlock(&dpm_list_mtx); 792 if (error) 793 dpm_resume_noirq(resume_event(state)); 794 else 795 dpm_show_time(starttime, state, "late"); 796 return error; 797 } 798 EXPORT_SYMBOL_GPL(dpm_suspend_noirq); 799 800 /** 801 * legacy_suspend - Execute a legacy (bus or class) suspend callback for device. 802 * @dev: Device to suspend. 803 * @state: PM transition of the system being carried out. 804 * @cb: Suspend callback to execute. 805 */ 806 static int legacy_suspend(struct device *dev, pm_message_t state, 807 int (*cb)(struct device *dev, pm_message_t state)) 808 { 809 int error; 810 ktime_t calltime; 811 812 calltime = initcall_debug_start(dev); 813 814 error = cb(dev, state); 815 suspend_report_result(cb, error); 816 817 initcall_debug_report(dev, calltime, error); 818 819 return error; 820 } 821 822 /** 823 * device_suspend - Execute "suspend" callbacks for given device. 824 * @dev: Device to handle. 825 * @state: PM transition of the system being carried out. 826 * @async: If true, the device is being suspended asynchronously. 827 */ 828 static int __device_suspend(struct device *dev, pm_message_t state, bool async) 829 { 830 int error = 0; 831 832 dpm_wait_for_children(dev, async); 833 device_lock(dev); 834 835 if (async_error) 836 goto End; 837 838 if (pm_wakeup_pending()) { 839 async_error = -EBUSY; 840 goto End; 841 } 842 843 if (dev->type && dev->type->pm) { 844 pm_dev_dbg(dev, state, "type "); 845 error = pm_op(dev, dev->type->pm, state); 846 goto Domain; 847 } 848 849 if (dev->class) { 850 if (dev->class->pm) { 851 pm_dev_dbg(dev, state, "class "); 852 error = pm_op(dev, dev->class->pm, state); 853 goto Domain; 854 } else if (dev->class->suspend) { 855 pm_dev_dbg(dev, state, "legacy class "); 856 error = legacy_suspend(dev, state, dev->class->suspend); 857 goto Domain; 858 } 859 } 860 861 if (dev->bus) { 862 if (dev->bus->pm) { 863 pm_dev_dbg(dev, state, ""); 864 error = pm_op(dev, dev->bus->pm, state); 865 } else if (dev->bus->suspend) { 866 pm_dev_dbg(dev, state, "legacy "); 867 error = legacy_suspend(dev, state, dev->bus->suspend); 868 } 869 } 870 871 Domain: 872 if (!error && dev->pwr_domain) { 873 pm_dev_dbg(dev, state, "power domain "); 874 pm_op(dev, &dev->pwr_domain->ops, state); 875 } 876 877 End: 878 device_unlock(dev); 879 complete_all(&dev->power.completion); 880 881 if (error) 882 async_error = error; 883 884 return error; 885 } 886 887 static void async_suspend(void *data, async_cookie_t cookie) 888 { 889 struct device *dev = (struct device *)data; 890 int error; 891 892 error = __device_suspend(dev, pm_transition, true); 893 if (error) 894 pm_dev_err(dev, pm_transition, " async", error); 895 896 put_device(dev); 897 } 898 899 static int device_suspend(struct device *dev) 900 { 901 INIT_COMPLETION(dev->power.completion); 902 903 if (pm_async_enabled && dev->power.async_suspend) { 904 get_device(dev); 905 async_schedule(async_suspend, dev); 906 return 0; 907 } 908 909 return __device_suspend(dev, pm_transition, false); 910 } 911 912 /** 913 * dpm_suspend - Execute "suspend" callbacks for all non-sysdev devices. 914 * @state: PM transition of the system being carried out. 915 */ 916 static int dpm_suspend(pm_message_t state) 917 { 918 ktime_t starttime = ktime_get(); 919 int error = 0; 920 921 mutex_lock(&dpm_list_mtx); 922 pm_transition = state; 923 async_error = 0; 924 while (!list_empty(&dpm_prepared_list)) { 925 struct device *dev = to_device(dpm_prepared_list.prev); 926 927 get_device(dev); 928 mutex_unlock(&dpm_list_mtx); 929 930 error = device_suspend(dev); 931 932 mutex_lock(&dpm_list_mtx); 933 if (error) { 934 pm_dev_err(dev, state, "", error); 935 put_device(dev); 936 break; 937 } 938 if (!list_empty(&dev->power.entry)) 939 list_move(&dev->power.entry, &dpm_suspended_list); 940 put_device(dev); 941 if (async_error) 942 break; 943 } 944 mutex_unlock(&dpm_list_mtx); 945 async_synchronize_full(); 946 if (!error) 947 error = async_error; 948 if (!error) 949 dpm_show_time(starttime, state, NULL); 950 return error; 951 } 952 953 /** 954 * device_prepare - Prepare a device for system power transition. 955 * @dev: Device to handle. 956 * @state: PM transition of the system being carried out. 957 * 958 * Execute the ->prepare() callback(s) for given device. No new children of the 959 * device may be registered after this function has returned. 960 */ 961 static int device_prepare(struct device *dev, pm_message_t state) 962 { 963 int error = 0; 964 965 device_lock(dev); 966 967 if (dev->type && dev->type->pm) { 968 pm_dev_dbg(dev, state, "preparing type "); 969 if (dev->type->pm->prepare) 970 error = dev->type->pm->prepare(dev); 971 suspend_report_result(dev->type->pm->prepare, error); 972 if (error) 973 goto End; 974 } else if (dev->class && dev->class->pm) { 975 pm_dev_dbg(dev, state, "preparing class "); 976 if (dev->class->pm->prepare) 977 error = dev->class->pm->prepare(dev); 978 suspend_report_result(dev->class->pm->prepare, error); 979 if (error) 980 goto End; 981 } else if (dev->bus && dev->bus->pm) { 982 pm_dev_dbg(dev, state, "preparing "); 983 if (dev->bus->pm->prepare) 984 error = dev->bus->pm->prepare(dev); 985 suspend_report_result(dev->bus->pm->prepare, error); 986 if (error) 987 goto End; 988 } 989 990 if (dev->pwr_domain && dev->pwr_domain->ops.prepare) { 991 pm_dev_dbg(dev, state, "preparing power domain "); 992 dev->pwr_domain->ops.prepare(dev); 993 } 994 995 End: 996 device_unlock(dev); 997 998 return error; 999 } 1000 1001 /** 1002 * dpm_prepare - Prepare all non-sysdev devices for a system PM transition. 1003 * @state: PM transition of the system being carried out. 1004 * 1005 * Execute the ->prepare() callback(s) for all devices. 1006 */ 1007 static int dpm_prepare(pm_message_t state) 1008 { 1009 int error = 0; 1010 1011 mutex_lock(&dpm_list_mtx); 1012 while (!list_empty(&dpm_list)) { 1013 struct device *dev = to_device(dpm_list.next); 1014 1015 get_device(dev); 1016 mutex_unlock(&dpm_list_mtx); 1017 1018 pm_runtime_get_noresume(dev); 1019 if (pm_runtime_barrier(dev) && device_may_wakeup(dev)) 1020 pm_wakeup_event(dev, 0); 1021 1022 pm_runtime_put_sync(dev); 1023 error = pm_wakeup_pending() ? 1024 -EBUSY : device_prepare(dev, state); 1025 1026 mutex_lock(&dpm_list_mtx); 1027 if (error) { 1028 if (error == -EAGAIN) { 1029 put_device(dev); 1030 error = 0; 1031 continue; 1032 } 1033 printk(KERN_INFO "PM: Device %s not prepared " 1034 "for power transition: code %d\n", 1035 dev_name(dev), error); 1036 put_device(dev); 1037 break; 1038 } 1039 dev->power.in_suspend = true; 1040 if (!list_empty(&dev->power.entry)) 1041 list_move_tail(&dev->power.entry, &dpm_prepared_list); 1042 put_device(dev); 1043 } 1044 mutex_unlock(&dpm_list_mtx); 1045 return error; 1046 } 1047 1048 /** 1049 * dpm_suspend_start - Prepare devices for PM transition and suspend them. 1050 * @state: PM transition of the system being carried out. 1051 * 1052 * Prepare all non-sysdev devices for system PM transition and execute "suspend" 1053 * callbacks for them. 1054 */ 1055 int dpm_suspend_start(pm_message_t state) 1056 { 1057 int error; 1058 1059 might_sleep(); 1060 error = dpm_prepare(state); 1061 if (!error) 1062 error = dpm_suspend(state); 1063 return error; 1064 } 1065 EXPORT_SYMBOL_GPL(dpm_suspend_start); 1066 1067 void __suspend_report_result(const char *function, void *fn, int ret) 1068 { 1069 if (ret) 1070 printk(KERN_ERR "%s(): %pF returns %d\n", function, fn, ret); 1071 } 1072 EXPORT_SYMBOL_GPL(__suspend_report_result); 1073 1074 /** 1075 * device_pm_wait_for_dev - Wait for suspend/resume of a device to complete. 1076 * @dev: Device to wait for. 1077 * @subordinate: Device that needs to wait for @dev. 1078 */ 1079 int device_pm_wait_for_dev(struct device *subordinate, struct device *dev) 1080 { 1081 dpm_wait(dev, subordinate->power.async_suspend); 1082 return async_error; 1083 } 1084 EXPORT_SYMBOL_GPL(device_pm_wait_for_dev); 1085