xref: /linux/drivers/base/power/main.c (revision bea00fab2b0e5359ee88a2b127f15a35cd48872b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * drivers/base/power/main.c - Where the driver meets power management.
4  *
5  * Copyright (c) 2003 Patrick Mochel
6  * Copyright (c) 2003 Open Source Development Lab
7  *
8  * The driver model core calls device_pm_add() when a device is registered.
9  * This will initialize the embedded device_pm_info object in the device
10  * and add it to the list of power-controlled devices. sysfs entries for
11  * controlling device power management will also be added.
12  *
13  * A separate list is used for keeping track of power info, because the power
14  * domain dependencies may differ from the ancestral dependencies that the
15  * subsystem list maintains.
16  */
17 
18 #define pr_fmt(fmt) "PM: " fmt
19 #define dev_fmt pr_fmt
20 
21 #include <linux/device.h>
22 #include <linux/export.h>
23 #include <linux/mutex.h>
24 #include <linux/pm.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/pm-trace.h>
27 #include <linux/pm_wakeirq.h>
28 #include <linux/interrupt.h>
29 #include <linux/sched.h>
30 #include <linux/sched/debug.h>
31 #include <linux/async.h>
32 #include <linux/suspend.h>
33 #include <trace/events/power.h>
34 #include <linux/cpufreq.h>
35 #include <linux/devfreq.h>
36 #include <linux/timer.h>
37 
38 #include "../base.h"
39 #include "power.h"
40 
41 typedef int (*pm_callback_t)(struct device *);
42 
43 #define list_for_each_entry_rcu_locked(pos, head, member) \
44 	list_for_each_entry_rcu(pos, head, member, \
45 			device_links_read_lock_held())
46 
47 /*
48  * The entries in the dpm_list list are in a depth first order, simply
49  * because children are guaranteed to be discovered after parents, and
50  * are inserted at the back of the list on discovery.
51  *
52  * Since device_pm_add() may be called with a device lock held,
53  * we must never try to acquire a device lock while holding
54  * dpm_list_mutex.
55  */
56 
57 LIST_HEAD(dpm_list);
58 static LIST_HEAD(dpm_prepared_list);
59 static LIST_HEAD(dpm_suspended_list);
60 static LIST_HEAD(dpm_late_early_list);
61 static LIST_HEAD(dpm_noirq_list);
62 
63 static DEFINE_MUTEX(dpm_list_mtx);
64 static pm_message_t pm_transition;
65 
66 static int async_error;
67 
68 static const char *pm_verb(int event)
69 {
70 	switch (event) {
71 	case PM_EVENT_SUSPEND:
72 		return "suspend";
73 	case PM_EVENT_RESUME:
74 		return "resume";
75 	case PM_EVENT_FREEZE:
76 		return "freeze";
77 	case PM_EVENT_QUIESCE:
78 		return "quiesce";
79 	case PM_EVENT_HIBERNATE:
80 		return "hibernate";
81 	case PM_EVENT_THAW:
82 		return "thaw";
83 	case PM_EVENT_RESTORE:
84 		return "restore";
85 	case PM_EVENT_RECOVER:
86 		return "recover";
87 	default:
88 		return "(unknown PM event)";
89 	}
90 }
91 
92 /**
93  * device_pm_sleep_init - Initialize system suspend-related device fields.
94  * @dev: Device object being initialized.
95  */
96 void device_pm_sleep_init(struct device *dev)
97 {
98 	dev->power.is_prepared = false;
99 	dev->power.is_suspended = false;
100 	dev->power.is_noirq_suspended = false;
101 	dev->power.is_late_suspended = false;
102 	init_completion(&dev->power.completion);
103 	complete_all(&dev->power.completion);
104 	dev->power.wakeup = NULL;
105 	INIT_LIST_HEAD(&dev->power.entry);
106 }
107 
108 /**
109  * device_pm_lock - Lock the list of active devices used by the PM core.
110  */
111 void device_pm_lock(void)
112 {
113 	mutex_lock(&dpm_list_mtx);
114 }
115 
116 /**
117  * device_pm_unlock - Unlock the list of active devices used by the PM core.
118  */
119 void device_pm_unlock(void)
120 {
121 	mutex_unlock(&dpm_list_mtx);
122 }
123 
124 /**
125  * device_pm_add - Add a device to the PM core's list of active devices.
126  * @dev: Device to add to the list.
127  */
128 void device_pm_add(struct device *dev)
129 {
130 	/* Skip PM setup/initialization. */
131 	if (device_pm_not_required(dev))
132 		return;
133 
134 	pr_debug("Adding info for %s:%s\n",
135 		 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
136 	device_pm_check_callbacks(dev);
137 	mutex_lock(&dpm_list_mtx);
138 	if (dev->parent && dev->parent->power.is_prepared)
139 		dev_warn(dev, "parent %s should not be sleeping\n",
140 			dev_name(dev->parent));
141 	list_add_tail(&dev->power.entry, &dpm_list);
142 	dev->power.in_dpm_list = true;
143 	mutex_unlock(&dpm_list_mtx);
144 }
145 
146 /**
147  * device_pm_remove - Remove a device from the PM core's list of active devices.
148  * @dev: Device to be removed from the list.
149  */
150 void device_pm_remove(struct device *dev)
151 {
152 	if (device_pm_not_required(dev))
153 		return;
154 
155 	pr_debug("Removing info for %s:%s\n",
156 		 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
157 	complete_all(&dev->power.completion);
158 	mutex_lock(&dpm_list_mtx);
159 	list_del_init(&dev->power.entry);
160 	dev->power.in_dpm_list = false;
161 	mutex_unlock(&dpm_list_mtx);
162 	device_wakeup_disable(dev);
163 	pm_runtime_remove(dev);
164 	device_pm_check_callbacks(dev);
165 }
166 
167 /**
168  * device_pm_move_before - Move device in the PM core's list of active devices.
169  * @deva: Device to move in dpm_list.
170  * @devb: Device @deva should come before.
171  */
172 void device_pm_move_before(struct device *deva, struct device *devb)
173 {
174 	pr_debug("Moving %s:%s before %s:%s\n",
175 		 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
176 		 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
177 	/* Delete deva from dpm_list and reinsert before devb. */
178 	list_move_tail(&deva->power.entry, &devb->power.entry);
179 }
180 
181 /**
182  * device_pm_move_after - Move device in the PM core's list of active devices.
183  * @deva: Device to move in dpm_list.
184  * @devb: Device @deva should come after.
185  */
186 void device_pm_move_after(struct device *deva, struct device *devb)
187 {
188 	pr_debug("Moving %s:%s after %s:%s\n",
189 		 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
190 		 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
191 	/* Delete deva from dpm_list and reinsert after devb. */
192 	list_move(&deva->power.entry, &devb->power.entry);
193 }
194 
195 /**
196  * device_pm_move_last - Move device to end of the PM core's list of devices.
197  * @dev: Device to move in dpm_list.
198  */
199 void device_pm_move_last(struct device *dev)
200 {
201 	pr_debug("Moving %s:%s to end of list\n",
202 		 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
203 	list_move_tail(&dev->power.entry, &dpm_list);
204 }
205 
206 static ktime_t initcall_debug_start(struct device *dev, void *cb)
207 {
208 	if (!pm_print_times_enabled)
209 		return 0;
210 
211 	dev_info(dev, "calling %pS @ %i, parent: %s\n", cb,
212 		 task_pid_nr(current),
213 		 dev->parent ? dev_name(dev->parent) : "none");
214 	return ktime_get();
215 }
216 
217 static void initcall_debug_report(struct device *dev, ktime_t calltime,
218 				  void *cb, int error)
219 {
220 	ktime_t rettime;
221 
222 	if (!pm_print_times_enabled)
223 		return;
224 
225 	rettime = ktime_get();
226 	dev_info(dev, "%pS returned %d after %Ld usecs\n", cb, error,
227 		 (unsigned long long)ktime_us_delta(rettime, calltime));
228 }
229 
230 /**
231  * dpm_wait - Wait for a PM operation to complete.
232  * @dev: Device to wait for.
233  * @async: If unset, wait only if the device's power.async_suspend flag is set.
234  */
235 static void dpm_wait(struct device *dev, bool async)
236 {
237 	if (!dev)
238 		return;
239 
240 	if (async || (pm_async_enabled && dev->power.async_suspend))
241 		wait_for_completion(&dev->power.completion);
242 }
243 
244 static int dpm_wait_fn(struct device *dev, void *async_ptr)
245 {
246 	dpm_wait(dev, *((bool *)async_ptr));
247 	return 0;
248 }
249 
250 static void dpm_wait_for_children(struct device *dev, bool async)
251 {
252        device_for_each_child(dev, &async, dpm_wait_fn);
253 }
254 
255 static void dpm_wait_for_suppliers(struct device *dev, bool async)
256 {
257 	struct device_link *link;
258 	int idx;
259 
260 	idx = device_links_read_lock();
261 
262 	/*
263 	 * If the supplier goes away right after we've checked the link to it,
264 	 * we'll wait for its completion to change the state, but that's fine,
265 	 * because the only things that will block as a result are the SRCU
266 	 * callbacks freeing the link objects for the links in the list we're
267 	 * walking.
268 	 */
269 	list_for_each_entry_rcu_locked(link, &dev->links.suppliers, c_node)
270 		if (READ_ONCE(link->status) != DL_STATE_DORMANT)
271 			dpm_wait(link->supplier, async);
272 
273 	device_links_read_unlock(idx);
274 }
275 
276 static bool dpm_wait_for_superior(struct device *dev, bool async)
277 {
278 	struct device *parent;
279 
280 	/*
281 	 * If the device is resumed asynchronously and the parent's callback
282 	 * deletes both the device and the parent itself, the parent object may
283 	 * be freed while this function is running, so avoid that by reference
284 	 * counting the parent once more unless the device has been deleted
285 	 * already (in which case return right away).
286 	 */
287 	mutex_lock(&dpm_list_mtx);
288 
289 	if (!device_pm_initialized(dev)) {
290 		mutex_unlock(&dpm_list_mtx);
291 		return false;
292 	}
293 
294 	parent = get_device(dev->parent);
295 
296 	mutex_unlock(&dpm_list_mtx);
297 
298 	dpm_wait(parent, async);
299 	put_device(parent);
300 
301 	dpm_wait_for_suppliers(dev, async);
302 
303 	/*
304 	 * If the parent's callback has deleted the device, attempting to resume
305 	 * it would be invalid, so avoid doing that then.
306 	 */
307 	return device_pm_initialized(dev);
308 }
309 
310 static void dpm_wait_for_consumers(struct device *dev, bool async)
311 {
312 	struct device_link *link;
313 	int idx;
314 
315 	idx = device_links_read_lock();
316 
317 	/*
318 	 * The status of a device link can only be changed from "dormant" by a
319 	 * probe, but that cannot happen during system suspend/resume.  In
320 	 * theory it can change to "dormant" at that time, but then it is
321 	 * reasonable to wait for the target device anyway (eg. if it goes
322 	 * away, it's better to wait for it to go away completely and then
323 	 * continue instead of trying to continue in parallel with its
324 	 * unregistration).
325 	 */
326 	list_for_each_entry_rcu_locked(link, &dev->links.consumers, s_node)
327 		if (READ_ONCE(link->status) != DL_STATE_DORMANT)
328 			dpm_wait(link->consumer, async);
329 
330 	device_links_read_unlock(idx);
331 }
332 
333 static void dpm_wait_for_subordinate(struct device *dev, bool async)
334 {
335 	dpm_wait_for_children(dev, async);
336 	dpm_wait_for_consumers(dev, async);
337 }
338 
339 /**
340  * pm_op - Return the PM operation appropriate for given PM event.
341  * @ops: PM operations to choose from.
342  * @state: PM transition of the system being carried out.
343  */
344 static pm_callback_t pm_op(const struct dev_pm_ops *ops, pm_message_t state)
345 {
346 	switch (state.event) {
347 #ifdef CONFIG_SUSPEND
348 	case PM_EVENT_SUSPEND:
349 		return ops->suspend;
350 	case PM_EVENT_RESUME:
351 		return ops->resume;
352 #endif /* CONFIG_SUSPEND */
353 #ifdef CONFIG_HIBERNATE_CALLBACKS
354 	case PM_EVENT_FREEZE:
355 	case PM_EVENT_QUIESCE:
356 		return ops->freeze;
357 	case PM_EVENT_HIBERNATE:
358 		return ops->poweroff;
359 	case PM_EVENT_THAW:
360 	case PM_EVENT_RECOVER:
361 		return ops->thaw;
362 	case PM_EVENT_RESTORE:
363 		return ops->restore;
364 #endif /* CONFIG_HIBERNATE_CALLBACKS */
365 	}
366 
367 	return NULL;
368 }
369 
370 /**
371  * pm_late_early_op - Return the PM operation appropriate for given PM event.
372  * @ops: PM operations to choose from.
373  * @state: PM transition of the system being carried out.
374  *
375  * Runtime PM is disabled for @dev while this function is being executed.
376  */
377 static pm_callback_t pm_late_early_op(const struct dev_pm_ops *ops,
378 				      pm_message_t state)
379 {
380 	switch (state.event) {
381 #ifdef CONFIG_SUSPEND
382 	case PM_EVENT_SUSPEND:
383 		return ops->suspend_late;
384 	case PM_EVENT_RESUME:
385 		return ops->resume_early;
386 #endif /* CONFIG_SUSPEND */
387 #ifdef CONFIG_HIBERNATE_CALLBACKS
388 	case PM_EVENT_FREEZE:
389 	case PM_EVENT_QUIESCE:
390 		return ops->freeze_late;
391 	case PM_EVENT_HIBERNATE:
392 		return ops->poweroff_late;
393 	case PM_EVENT_THAW:
394 	case PM_EVENT_RECOVER:
395 		return ops->thaw_early;
396 	case PM_EVENT_RESTORE:
397 		return ops->restore_early;
398 #endif /* CONFIG_HIBERNATE_CALLBACKS */
399 	}
400 
401 	return NULL;
402 }
403 
404 /**
405  * pm_noirq_op - Return the PM operation appropriate for given PM event.
406  * @ops: PM operations to choose from.
407  * @state: PM transition of the system being carried out.
408  *
409  * The driver of @dev will not receive interrupts while this function is being
410  * executed.
411  */
412 static pm_callback_t pm_noirq_op(const struct dev_pm_ops *ops, pm_message_t state)
413 {
414 	switch (state.event) {
415 #ifdef CONFIG_SUSPEND
416 	case PM_EVENT_SUSPEND:
417 		return ops->suspend_noirq;
418 	case PM_EVENT_RESUME:
419 		return ops->resume_noirq;
420 #endif /* CONFIG_SUSPEND */
421 #ifdef CONFIG_HIBERNATE_CALLBACKS
422 	case PM_EVENT_FREEZE:
423 	case PM_EVENT_QUIESCE:
424 		return ops->freeze_noirq;
425 	case PM_EVENT_HIBERNATE:
426 		return ops->poweroff_noirq;
427 	case PM_EVENT_THAW:
428 	case PM_EVENT_RECOVER:
429 		return ops->thaw_noirq;
430 	case PM_EVENT_RESTORE:
431 		return ops->restore_noirq;
432 #endif /* CONFIG_HIBERNATE_CALLBACKS */
433 	}
434 
435 	return NULL;
436 }
437 
438 static void pm_dev_dbg(struct device *dev, pm_message_t state, const char *info)
439 {
440 	dev_dbg(dev, "%s%s%s driver flags: %x\n", info, pm_verb(state.event),
441 		((state.event & PM_EVENT_SLEEP) && device_may_wakeup(dev)) ?
442 		", may wakeup" : "", dev->power.driver_flags);
443 }
444 
445 static void pm_dev_err(struct device *dev, pm_message_t state, const char *info,
446 			int error)
447 {
448 	dev_err(dev, "failed to %s%s: error %d\n", pm_verb(state.event), info,
449 		error);
450 }
451 
452 static void dpm_show_time(ktime_t starttime, pm_message_t state, int error,
453 			  const char *info)
454 {
455 	ktime_t calltime;
456 	u64 usecs64;
457 	int usecs;
458 
459 	calltime = ktime_get();
460 	usecs64 = ktime_to_ns(ktime_sub(calltime, starttime));
461 	do_div(usecs64, NSEC_PER_USEC);
462 	usecs = usecs64;
463 	if (usecs == 0)
464 		usecs = 1;
465 
466 	pm_pr_dbg("%s%s%s of devices %s after %ld.%03ld msecs\n",
467 		  info ?: "", info ? " " : "", pm_verb(state.event),
468 		  error ? "aborted" : "complete",
469 		  usecs / USEC_PER_MSEC, usecs % USEC_PER_MSEC);
470 }
471 
472 static int dpm_run_callback(pm_callback_t cb, struct device *dev,
473 			    pm_message_t state, const char *info)
474 {
475 	ktime_t calltime;
476 	int error;
477 
478 	if (!cb)
479 		return 0;
480 
481 	calltime = initcall_debug_start(dev, cb);
482 
483 	pm_dev_dbg(dev, state, info);
484 	trace_device_pm_callback_start(dev, info, state.event);
485 	error = cb(dev);
486 	trace_device_pm_callback_end(dev, error);
487 	suspend_report_result(dev, cb, error);
488 
489 	initcall_debug_report(dev, calltime, cb, error);
490 
491 	return error;
492 }
493 
494 #ifdef CONFIG_DPM_WATCHDOG
495 struct dpm_watchdog {
496 	struct device		*dev;
497 	struct task_struct	*tsk;
498 	struct timer_list	timer;
499 };
500 
501 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd) \
502 	struct dpm_watchdog wd
503 
504 /**
505  * dpm_watchdog_handler - Driver suspend / resume watchdog handler.
506  * @t: The timer that PM watchdog depends on.
507  *
508  * Called when a driver has timed out suspending or resuming.
509  * There's not much we can do here to recover so panic() to
510  * capture a crash-dump in pstore.
511  */
512 static void dpm_watchdog_handler(struct timer_list *t)
513 {
514 	struct dpm_watchdog *wd = from_timer(wd, t, timer);
515 
516 	dev_emerg(wd->dev, "**** DPM device timeout ****\n");
517 	show_stack(wd->tsk, NULL, KERN_EMERG);
518 	panic("%s %s: unrecoverable failure\n",
519 		dev_driver_string(wd->dev), dev_name(wd->dev));
520 }
521 
522 /**
523  * dpm_watchdog_set - Enable pm watchdog for given device.
524  * @wd: Watchdog. Must be allocated on the stack.
525  * @dev: Device to handle.
526  */
527 static void dpm_watchdog_set(struct dpm_watchdog *wd, struct device *dev)
528 {
529 	struct timer_list *timer = &wd->timer;
530 
531 	wd->dev = dev;
532 	wd->tsk = current;
533 
534 	timer_setup_on_stack(timer, dpm_watchdog_handler, 0);
535 	/* use same timeout value for both suspend and resume */
536 	timer->expires = jiffies + HZ * CONFIG_DPM_WATCHDOG_TIMEOUT;
537 	add_timer(timer);
538 }
539 
540 /**
541  * dpm_watchdog_clear - Disable suspend/resume watchdog.
542  * @wd: Watchdog to disable.
543  */
544 static void dpm_watchdog_clear(struct dpm_watchdog *wd)
545 {
546 	struct timer_list *timer = &wd->timer;
547 
548 	del_timer_sync(timer);
549 	destroy_timer_on_stack(timer);
550 }
551 #else
552 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd)
553 #define dpm_watchdog_set(x, y)
554 #define dpm_watchdog_clear(x)
555 #endif
556 
557 /*------------------------- Resume routines -------------------------*/
558 
559 /**
560  * dev_pm_skip_resume - System-wide device resume optimization check.
561  * @dev: Target device.
562  *
563  * Return:
564  * - %false if the transition under way is RESTORE.
565  * - Return value of dev_pm_skip_suspend() if the transition under way is THAW.
566  * - The logical negation of %power.must_resume otherwise (that is, when the
567  *   transition under way is RESUME).
568  */
569 bool dev_pm_skip_resume(struct device *dev)
570 {
571 	if (pm_transition.event == PM_EVENT_RESTORE)
572 		return false;
573 
574 	if (pm_transition.event == PM_EVENT_THAW)
575 		return dev_pm_skip_suspend(dev);
576 
577 	return !dev->power.must_resume;
578 }
579 
580 static bool is_async(struct device *dev)
581 {
582 	return dev->power.async_suspend && pm_async_enabled
583 		&& !pm_trace_is_enabled();
584 }
585 
586 static bool dpm_async_fn(struct device *dev, async_func_t func)
587 {
588 	reinit_completion(&dev->power.completion);
589 
590 	if (is_async(dev)) {
591 		dev->power.async_in_progress = true;
592 
593 		get_device(dev);
594 
595 		if (async_schedule_dev_nocall(func, dev))
596 			return true;
597 
598 		put_device(dev);
599 	}
600 	/*
601 	 * Because async_schedule_dev_nocall() above has returned false or it
602 	 * has not been called at all, func() is not running and it is safe to
603 	 * update the async_in_progress flag without extra synchronization.
604 	 */
605 	dev->power.async_in_progress = false;
606 	return false;
607 }
608 
609 /**
610  * device_resume_noirq - Execute a "noirq resume" callback for given device.
611  * @dev: Device to handle.
612  * @state: PM transition of the system being carried out.
613  * @async: If true, the device is being resumed asynchronously.
614  *
615  * The driver of @dev will not receive interrupts while this function is being
616  * executed.
617  */
618 static void device_resume_noirq(struct device *dev, pm_message_t state, bool async)
619 {
620 	pm_callback_t callback = NULL;
621 	const char *info = NULL;
622 	bool skip_resume;
623 	int error = 0;
624 
625 	TRACE_DEVICE(dev);
626 	TRACE_RESUME(0);
627 
628 	if (dev->power.syscore || dev->power.direct_complete)
629 		goto Out;
630 
631 	if (!dev->power.is_noirq_suspended)
632 		goto Out;
633 
634 	if (!dpm_wait_for_superior(dev, async))
635 		goto Out;
636 
637 	skip_resume = dev_pm_skip_resume(dev);
638 	/*
639 	 * If the driver callback is skipped below or by the middle layer
640 	 * callback and device_resume_early() also skips the driver callback for
641 	 * this device later, it needs to appear as "suspended" to PM-runtime,
642 	 * so change its status accordingly.
643 	 *
644 	 * Otherwise, the device is going to be resumed, so set its PM-runtime
645 	 * status to "active", but do that only if DPM_FLAG_SMART_SUSPEND is set
646 	 * to avoid confusing drivers that don't use it.
647 	 */
648 	if (skip_resume)
649 		pm_runtime_set_suspended(dev);
650 	else if (dev_pm_skip_suspend(dev))
651 		pm_runtime_set_active(dev);
652 
653 	if (dev->pm_domain) {
654 		info = "noirq power domain ";
655 		callback = pm_noirq_op(&dev->pm_domain->ops, state);
656 	} else if (dev->type && dev->type->pm) {
657 		info = "noirq type ";
658 		callback = pm_noirq_op(dev->type->pm, state);
659 	} else if (dev->class && dev->class->pm) {
660 		info = "noirq class ";
661 		callback = pm_noirq_op(dev->class->pm, state);
662 	} else if (dev->bus && dev->bus->pm) {
663 		info = "noirq bus ";
664 		callback = pm_noirq_op(dev->bus->pm, state);
665 	}
666 	if (callback)
667 		goto Run;
668 
669 	if (skip_resume)
670 		goto Skip;
671 
672 	if (dev->driver && dev->driver->pm) {
673 		info = "noirq driver ";
674 		callback = pm_noirq_op(dev->driver->pm, state);
675 	}
676 
677 Run:
678 	error = dpm_run_callback(callback, dev, state, info);
679 
680 Skip:
681 	dev->power.is_noirq_suspended = false;
682 
683 Out:
684 	complete_all(&dev->power.completion);
685 	TRACE_RESUME(error);
686 
687 	if (error) {
688 		async_error = error;
689 		dpm_save_failed_dev(dev_name(dev));
690 		pm_dev_err(dev, state, async ? " async noirq" : " noirq", error);
691 	}
692 }
693 
694 static void async_resume_noirq(void *data, async_cookie_t cookie)
695 {
696 	struct device *dev = data;
697 
698 	device_resume_noirq(dev, pm_transition, true);
699 	put_device(dev);
700 }
701 
702 static void dpm_noirq_resume_devices(pm_message_t state)
703 {
704 	struct device *dev;
705 	ktime_t starttime = ktime_get();
706 
707 	trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, true);
708 
709 	async_error = 0;
710 	pm_transition = state;
711 
712 	mutex_lock(&dpm_list_mtx);
713 
714 	/*
715 	 * Trigger the resume of "async" devices upfront so they don't have to
716 	 * wait for the "non-async" ones they don't depend on.
717 	 */
718 	list_for_each_entry(dev, &dpm_noirq_list, power.entry)
719 		dpm_async_fn(dev, async_resume_noirq);
720 
721 	while (!list_empty(&dpm_noirq_list)) {
722 		dev = to_device(dpm_noirq_list.next);
723 		list_move_tail(&dev->power.entry, &dpm_late_early_list);
724 
725 		if (!dev->power.async_in_progress) {
726 			get_device(dev);
727 
728 			mutex_unlock(&dpm_list_mtx);
729 
730 			device_resume_noirq(dev, state, false);
731 
732 			put_device(dev);
733 
734 			mutex_lock(&dpm_list_mtx);
735 		}
736 	}
737 	mutex_unlock(&dpm_list_mtx);
738 	async_synchronize_full();
739 	dpm_show_time(starttime, state, 0, "noirq");
740 	if (async_error)
741 		dpm_save_failed_step(SUSPEND_RESUME_NOIRQ);
742 
743 	trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, false);
744 }
745 
746 /**
747  * dpm_resume_noirq - Execute "noirq resume" callbacks for all devices.
748  * @state: PM transition of the system being carried out.
749  *
750  * Invoke the "noirq" resume callbacks for all devices in dpm_noirq_list and
751  * allow device drivers' interrupt handlers to be called.
752  */
753 void dpm_resume_noirq(pm_message_t state)
754 {
755 	dpm_noirq_resume_devices(state);
756 
757 	resume_device_irqs();
758 	device_wakeup_disarm_wake_irqs();
759 }
760 
761 /**
762  * device_resume_early - Execute an "early resume" callback for given device.
763  * @dev: Device to handle.
764  * @state: PM transition of the system being carried out.
765  * @async: If true, the device is being resumed asynchronously.
766  *
767  * Runtime PM is disabled for @dev while this function is being executed.
768  */
769 static void device_resume_early(struct device *dev, pm_message_t state, bool async)
770 {
771 	pm_callback_t callback = NULL;
772 	const char *info = NULL;
773 	int error = 0;
774 
775 	TRACE_DEVICE(dev);
776 	TRACE_RESUME(0);
777 
778 	if (dev->power.syscore || dev->power.direct_complete)
779 		goto Out;
780 
781 	if (!dev->power.is_late_suspended)
782 		goto Out;
783 
784 	if (!dpm_wait_for_superior(dev, async))
785 		goto Out;
786 
787 	if (dev->pm_domain) {
788 		info = "early power domain ";
789 		callback = pm_late_early_op(&dev->pm_domain->ops, state);
790 	} else if (dev->type && dev->type->pm) {
791 		info = "early type ";
792 		callback = pm_late_early_op(dev->type->pm, state);
793 	} else if (dev->class && dev->class->pm) {
794 		info = "early class ";
795 		callback = pm_late_early_op(dev->class->pm, state);
796 	} else if (dev->bus && dev->bus->pm) {
797 		info = "early bus ";
798 		callback = pm_late_early_op(dev->bus->pm, state);
799 	}
800 	if (callback)
801 		goto Run;
802 
803 	if (dev_pm_skip_resume(dev))
804 		goto Skip;
805 
806 	if (dev->driver && dev->driver->pm) {
807 		info = "early driver ";
808 		callback = pm_late_early_op(dev->driver->pm, state);
809 	}
810 
811 Run:
812 	error = dpm_run_callback(callback, dev, state, info);
813 
814 Skip:
815 	dev->power.is_late_suspended = false;
816 
817 Out:
818 	TRACE_RESUME(error);
819 
820 	pm_runtime_enable(dev);
821 	complete_all(&dev->power.completion);
822 
823 	if (error) {
824 		async_error = error;
825 		dpm_save_failed_dev(dev_name(dev));
826 		pm_dev_err(dev, state, async ? " async early" : " early", error);
827 	}
828 }
829 
830 static void async_resume_early(void *data, async_cookie_t cookie)
831 {
832 	struct device *dev = data;
833 
834 	device_resume_early(dev, pm_transition, true);
835 	put_device(dev);
836 }
837 
838 /**
839  * dpm_resume_early - Execute "early resume" callbacks for all devices.
840  * @state: PM transition of the system being carried out.
841  */
842 void dpm_resume_early(pm_message_t state)
843 {
844 	struct device *dev;
845 	ktime_t starttime = ktime_get();
846 
847 	trace_suspend_resume(TPS("dpm_resume_early"), state.event, true);
848 
849 	async_error = 0;
850 	pm_transition = state;
851 
852 	mutex_lock(&dpm_list_mtx);
853 
854 	/*
855 	 * Trigger the resume of "async" devices upfront so they don't have to
856 	 * wait for the "non-async" ones they don't depend on.
857 	 */
858 	list_for_each_entry(dev, &dpm_late_early_list, power.entry)
859 		dpm_async_fn(dev, async_resume_early);
860 
861 	while (!list_empty(&dpm_late_early_list)) {
862 		dev = to_device(dpm_late_early_list.next);
863 		list_move_tail(&dev->power.entry, &dpm_suspended_list);
864 
865 		if (!dev->power.async_in_progress) {
866 			get_device(dev);
867 
868 			mutex_unlock(&dpm_list_mtx);
869 
870 			device_resume_early(dev, state, false);
871 
872 			put_device(dev);
873 
874 			mutex_lock(&dpm_list_mtx);
875 		}
876 	}
877 	mutex_unlock(&dpm_list_mtx);
878 	async_synchronize_full();
879 	dpm_show_time(starttime, state, 0, "early");
880 	if (async_error)
881 		dpm_save_failed_step(SUSPEND_RESUME_EARLY);
882 
883 	trace_suspend_resume(TPS("dpm_resume_early"), state.event, false);
884 }
885 
886 /**
887  * dpm_resume_start - Execute "noirq" and "early" device callbacks.
888  * @state: PM transition of the system being carried out.
889  */
890 void dpm_resume_start(pm_message_t state)
891 {
892 	dpm_resume_noirq(state);
893 	dpm_resume_early(state);
894 }
895 EXPORT_SYMBOL_GPL(dpm_resume_start);
896 
897 /**
898  * device_resume - Execute "resume" callbacks for given device.
899  * @dev: Device to handle.
900  * @state: PM transition of the system being carried out.
901  * @async: If true, the device is being resumed asynchronously.
902  */
903 static void device_resume(struct device *dev, pm_message_t state, bool async)
904 {
905 	pm_callback_t callback = NULL;
906 	const char *info = NULL;
907 	int error = 0;
908 	DECLARE_DPM_WATCHDOG_ON_STACK(wd);
909 
910 	TRACE_DEVICE(dev);
911 	TRACE_RESUME(0);
912 
913 	if (dev->power.syscore)
914 		goto Complete;
915 
916 	if (dev->power.direct_complete) {
917 		/* Match the pm_runtime_disable() in __device_suspend(). */
918 		pm_runtime_enable(dev);
919 		goto Complete;
920 	}
921 
922 	if (!dpm_wait_for_superior(dev, async))
923 		goto Complete;
924 
925 	dpm_watchdog_set(&wd, dev);
926 	device_lock(dev);
927 
928 	/*
929 	 * This is a fib.  But we'll allow new children to be added below
930 	 * a resumed device, even if the device hasn't been completed yet.
931 	 */
932 	dev->power.is_prepared = false;
933 
934 	if (!dev->power.is_suspended)
935 		goto Unlock;
936 
937 	if (dev->pm_domain) {
938 		info = "power domain ";
939 		callback = pm_op(&dev->pm_domain->ops, state);
940 		goto Driver;
941 	}
942 
943 	if (dev->type && dev->type->pm) {
944 		info = "type ";
945 		callback = pm_op(dev->type->pm, state);
946 		goto Driver;
947 	}
948 
949 	if (dev->class && dev->class->pm) {
950 		info = "class ";
951 		callback = pm_op(dev->class->pm, state);
952 		goto Driver;
953 	}
954 
955 	if (dev->bus) {
956 		if (dev->bus->pm) {
957 			info = "bus ";
958 			callback = pm_op(dev->bus->pm, state);
959 		} else if (dev->bus->resume) {
960 			info = "legacy bus ";
961 			callback = dev->bus->resume;
962 			goto End;
963 		}
964 	}
965 
966  Driver:
967 	if (!callback && dev->driver && dev->driver->pm) {
968 		info = "driver ";
969 		callback = pm_op(dev->driver->pm, state);
970 	}
971 
972  End:
973 	error = dpm_run_callback(callback, dev, state, info);
974 	dev->power.is_suspended = false;
975 
976  Unlock:
977 	device_unlock(dev);
978 	dpm_watchdog_clear(&wd);
979 
980  Complete:
981 	complete_all(&dev->power.completion);
982 
983 	TRACE_RESUME(error);
984 
985 	if (error) {
986 		async_error = error;
987 		dpm_save_failed_dev(dev_name(dev));
988 		pm_dev_err(dev, state, async ? " async" : "", error);
989 	}
990 }
991 
992 static void async_resume(void *data, async_cookie_t cookie)
993 {
994 	struct device *dev = data;
995 
996 	device_resume(dev, pm_transition, true);
997 	put_device(dev);
998 }
999 
1000 /**
1001  * dpm_resume - Execute "resume" callbacks for non-sysdev devices.
1002  * @state: PM transition of the system being carried out.
1003  *
1004  * Execute the appropriate "resume" callback for all devices whose status
1005  * indicates that they are suspended.
1006  */
1007 void dpm_resume(pm_message_t state)
1008 {
1009 	struct device *dev;
1010 	ktime_t starttime = ktime_get();
1011 
1012 	trace_suspend_resume(TPS("dpm_resume"), state.event, true);
1013 	might_sleep();
1014 
1015 	pm_transition = state;
1016 	async_error = 0;
1017 
1018 	mutex_lock(&dpm_list_mtx);
1019 
1020 	/*
1021 	 * Trigger the resume of "async" devices upfront so they don't have to
1022 	 * wait for the "non-async" ones they don't depend on.
1023 	 */
1024 	list_for_each_entry(dev, &dpm_suspended_list, power.entry)
1025 		dpm_async_fn(dev, async_resume);
1026 
1027 	while (!list_empty(&dpm_suspended_list)) {
1028 		dev = to_device(dpm_suspended_list.next);
1029 		list_move_tail(&dev->power.entry, &dpm_prepared_list);
1030 
1031 		if (!dev->power.async_in_progress) {
1032 			get_device(dev);
1033 
1034 			mutex_unlock(&dpm_list_mtx);
1035 
1036 			device_resume(dev, state, false);
1037 
1038 			put_device(dev);
1039 
1040 			mutex_lock(&dpm_list_mtx);
1041 		}
1042 	}
1043 	mutex_unlock(&dpm_list_mtx);
1044 	async_synchronize_full();
1045 	dpm_show_time(starttime, state, 0, NULL);
1046 	if (async_error)
1047 		dpm_save_failed_step(SUSPEND_RESUME);
1048 
1049 	cpufreq_resume();
1050 	devfreq_resume();
1051 	trace_suspend_resume(TPS("dpm_resume"), state.event, false);
1052 }
1053 
1054 /**
1055  * device_complete - Complete a PM transition for given device.
1056  * @dev: Device to handle.
1057  * @state: PM transition of the system being carried out.
1058  */
1059 static void device_complete(struct device *dev, pm_message_t state)
1060 {
1061 	void (*callback)(struct device *) = NULL;
1062 	const char *info = NULL;
1063 
1064 	if (dev->power.syscore)
1065 		goto out;
1066 
1067 	device_lock(dev);
1068 
1069 	if (dev->pm_domain) {
1070 		info = "completing power domain ";
1071 		callback = dev->pm_domain->ops.complete;
1072 	} else if (dev->type && dev->type->pm) {
1073 		info = "completing type ";
1074 		callback = dev->type->pm->complete;
1075 	} else if (dev->class && dev->class->pm) {
1076 		info = "completing class ";
1077 		callback = dev->class->pm->complete;
1078 	} else if (dev->bus && dev->bus->pm) {
1079 		info = "completing bus ";
1080 		callback = dev->bus->pm->complete;
1081 	}
1082 
1083 	if (!callback && dev->driver && dev->driver->pm) {
1084 		info = "completing driver ";
1085 		callback = dev->driver->pm->complete;
1086 	}
1087 
1088 	if (callback) {
1089 		pm_dev_dbg(dev, state, info);
1090 		callback(dev);
1091 	}
1092 
1093 	device_unlock(dev);
1094 
1095 out:
1096 	pm_runtime_put(dev);
1097 }
1098 
1099 /**
1100  * dpm_complete - Complete a PM transition for all non-sysdev devices.
1101  * @state: PM transition of the system being carried out.
1102  *
1103  * Execute the ->complete() callbacks for all devices whose PM status is not
1104  * DPM_ON (this allows new devices to be registered).
1105  */
1106 void dpm_complete(pm_message_t state)
1107 {
1108 	struct list_head list;
1109 
1110 	trace_suspend_resume(TPS("dpm_complete"), state.event, true);
1111 	might_sleep();
1112 
1113 	INIT_LIST_HEAD(&list);
1114 	mutex_lock(&dpm_list_mtx);
1115 	while (!list_empty(&dpm_prepared_list)) {
1116 		struct device *dev = to_device(dpm_prepared_list.prev);
1117 
1118 		get_device(dev);
1119 		dev->power.is_prepared = false;
1120 		list_move(&dev->power.entry, &list);
1121 
1122 		mutex_unlock(&dpm_list_mtx);
1123 
1124 		trace_device_pm_callback_start(dev, "", state.event);
1125 		device_complete(dev, state);
1126 		trace_device_pm_callback_end(dev, 0);
1127 
1128 		put_device(dev);
1129 
1130 		mutex_lock(&dpm_list_mtx);
1131 	}
1132 	list_splice(&list, &dpm_list);
1133 	mutex_unlock(&dpm_list_mtx);
1134 
1135 	/* Allow device probing and trigger re-probing of deferred devices */
1136 	device_unblock_probing();
1137 	trace_suspend_resume(TPS("dpm_complete"), state.event, false);
1138 }
1139 
1140 /**
1141  * dpm_resume_end - Execute "resume" callbacks and complete system transition.
1142  * @state: PM transition of the system being carried out.
1143  *
1144  * Execute "resume" callbacks for all devices and complete the PM transition of
1145  * the system.
1146  */
1147 void dpm_resume_end(pm_message_t state)
1148 {
1149 	dpm_resume(state);
1150 	dpm_complete(state);
1151 }
1152 EXPORT_SYMBOL_GPL(dpm_resume_end);
1153 
1154 
1155 /*------------------------- Suspend routines -------------------------*/
1156 
1157 /**
1158  * resume_event - Return a "resume" message for given "suspend" sleep state.
1159  * @sleep_state: PM message representing a sleep state.
1160  *
1161  * Return a PM message representing the resume event corresponding to given
1162  * sleep state.
1163  */
1164 static pm_message_t resume_event(pm_message_t sleep_state)
1165 {
1166 	switch (sleep_state.event) {
1167 	case PM_EVENT_SUSPEND:
1168 		return PMSG_RESUME;
1169 	case PM_EVENT_FREEZE:
1170 	case PM_EVENT_QUIESCE:
1171 		return PMSG_RECOVER;
1172 	case PM_EVENT_HIBERNATE:
1173 		return PMSG_RESTORE;
1174 	}
1175 	return PMSG_ON;
1176 }
1177 
1178 static void dpm_superior_set_must_resume(struct device *dev)
1179 {
1180 	struct device_link *link;
1181 	int idx;
1182 
1183 	if (dev->parent)
1184 		dev->parent->power.must_resume = true;
1185 
1186 	idx = device_links_read_lock();
1187 
1188 	list_for_each_entry_rcu_locked(link, &dev->links.suppliers, c_node)
1189 		link->supplier->power.must_resume = true;
1190 
1191 	device_links_read_unlock(idx);
1192 }
1193 
1194 /**
1195  * device_suspend_noirq - Execute a "noirq suspend" callback for given device.
1196  * @dev: Device to handle.
1197  * @state: PM transition of the system being carried out.
1198  * @async: If true, the device is being suspended asynchronously.
1199  *
1200  * The driver of @dev will not receive interrupts while this function is being
1201  * executed.
1202  */
1203 static int device_suspend_noirq(struct device *dev, pm_message_t state, bool async)
1204 {
1205 	pm_callback_t callback = NULL;
1206 	const char *info = NULL;
1207 	int error = 0;
1208 
1209 	TRACE_DEVICE(dev);
1210 	TRACE_SUSPEND(0);
1211 
1212 	dpm_wait_for_subordinate(dev, async);
1213 
1214 	if (async_error)
1215 		goto Complete;
1216 
1217 	if (dev->power.syscore || dev->power.direct_complete)
1218 		goto Complete;
1219 
1220 	if (dev->pm_domain) {
1221 		info = "noirq power domain ";
1222 		callback = pm_noirq_op(&dev->pm_domain->ops, state);
1223 	} else if (dev->type && dev->type->pm) {
1224 		info = "noirq type ";
1225 		callback = pm_noirq_op(dev->type->pm, state);
1226 	} else if (dev->class && dev->class->pm) {
1227 		info = "noirq class ";
1228 		callback = pm_noirq_op(dev->class->pm, state);
1229 	} else if (dev->bus && dev->bus->pm) {
1230 		info = "noirq bus ";
1231 		callback = pm_noirq_op(dev->bus->pm, state);
1232 	}
1233 	if (callback)
1234 		goto Run;
1235 
1236 	if (dev_pm_skip_suspend(dev))
1237 		goto Skip;
1238 
1239 	if (dev->driver && dev->driver->pm) {
1240 		info = "noirq driver ";
1241 		callback = pm_noirq_op(dev->driver->pm, state);
1242 	}
1243 
1244 Run:
1245 	error = dpm_run_callback(callback, dev, state, info);
1246 	if (error) {
1247 		async_error = error;
1248 		dpm_save_failed_dev(dev_name(dev));
1249 		pm_dev_err(dev, state, async ? " async noirq" : " noirq", error);
1250 		goto Complete;
1251 	}
1252 
1253 Skip:
1254 	dev->power.is_noirq_suspended = true;
1255 
1256 	/*
1257 	 * Skipping the resume of devices that were in use right before the
1258 	 * system suspend (as indicated by their PM-runtime usage counters)
1259 	 * would be suboptimal.  Also resume them if doing that is not allowed
1260 	 * to be skipped.
1261 	 */
1262 	if (atomic_read(&dev->power.usage_count) > 1 ||
1263 	    !(dev_pm_test_driver_flags(dev, DPM_FLAG_MAY_SKIP_RESUME) &&
1264 	      dev->power.may_skip_resume))
1265 		dev->power.must_resume = true;
1266 
1267 	if (dev->power.must_resume)
1268 		dpm_superior_set_must_resume(dev);
1269 
1270 Complete:
1271 	complete_all(&dev->power.completion);
1272 	TRACE_SUSPEND(error);
1273 	return error;
1274 }
1275 
1276 static void async_suspend_noirq(void *data, async_cookie_t cookie)
1277 {
1278 	struct device *dev = data;
1279 
1280 	device_suspend_noirq(dev, pm_transition, true);
1281 	put_device(dev);
1282 }
1283 
1284 static int dpm_noirq_suspend_devices(pm_message_t state)
1285 {
1286 	ktime_t starttime = ktime_get();
1287 	int error = 0;
1288 
1289 	trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, true);
1290 
1291 	pm_transition = state;
1292 	async_error = 0;
1293 
1294 	mutex_lock(&dpm_list_mtx);
1295 
1296 	while (!list_empty(&dpm_late_early_list)) {
1297 		struct device *dev = to_device(dpm_late_early_list.prev);
1298 
1299 		list_move(&dev->power.entry, &dpm_noirq_list);
1300 
1301 		if (dpm_async_fn(dev, async_suspend_noirq))
1302 			continue;
1303 
1304 		get_device(dev);
1305 
1306 		mutex_unlock(&dpm_list_mtx);
1307 
1308 		error = device_suspend_noirq(dev, state, false);
1309 
1310 		put_device(dev);
1311 
1312 		mutex_lock(&dpm_list_mtx);
1313 
1314 		if (error || async_error)
1315 			break;
1316 	}
1317 
1318 	mutex_unlock(&dpm_list_mtx);
1319 
1320 	async_synchronize_full();
1321 	if (!error)
1322 		error = async_error;
1323 
1324 	if (error)
1325 		dpm_save_failed_step(SUSPEND_SUSPEND_NOIRQ);
1326 
1327 	dpm_show_time(starttime, state, error, "noirq");
1328 	trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, false);
1329 	return error;
1330 }
1331 
1332 /**
1333  * dpm_suspend_noirq - Execute "noirq suspend" callbacks for all devices.
1334  * @state: PM transition of the system being carried out.
1335  *
1336  * Prevent device drivers' interrupt handlers from being called and invoke
1337  * "noirq" suspend callbacks for all non-sysdev devices.
1338  */
1339 int dpm_suspend_noirq(pm_message_t state)
1340 {
1341 	int ret;
1342 
1343 	device_wakeup_arm_wake_irqs();
1344 	suspend_device_irqs();
1345 
1346 	ret = dpm_noirq_suspend_devices(state);
1347 	if (ret)
1348 		dpm_resume_noirq(resume_event(state));
1349 
1350 	return ret;
1351 }
1352 
1353 static void dpm_propagate_wakeup_to_parent(struct device *dev)
1354 {
1355 	struct device *parent = dev->parent;
1356 
1357 	if (!parent)
1358 		return;
1359 
1360 	spin_lock_irq(&parent->power.lock);
1361 
1362 	if (device_wakeup_path(dev) && !parent->power.ignore_children)
1363 		parent->power.wakeup_path = true;
1364 
1365 	spin_unlock_irq(&parent->power.lock);
1366 }
1367 
1368 /**
1369  * device_suspend_late - Execute a "late suspend" callback for given device.
1370  * @dev: Device to handle.
1371  * @state: PM transition of the system being carried out.
1372  * @async: If true, the device is being suspended asynchronously.
1373  *
1374  * Runtime PM is disabled for @dev while this function is being executed.
1375  */
1376 static int device_suspend_late(struct device *dev, pm_message_t state, bool async)
1377 {
1378 	pm_callback_t callback = NULL;
1379 	const char *info = NULL;
1380 	int error = 0;
1381 
1382 	TRACE_DEVICE(dev);
1383 	TRACE_SUSPEND(0);
1384 
1385 	__pm_runtime_disable(dev, false);
1386 
1387 	dpm_wait_for_subordinate(dev, async);
1388 
1389 	if (async_error)
1390 		goto Complete;
1391 
1392 	if (pm_wakeup_pending()) {
1393 		async_error = -EBUSY;
1394 		goto Complete;
1395 	}
1396 
1397 	if (dev->power.syscore || dev->power.direct_complete)
1398 		goto Complete;
1399 
1400 	if (dev->pm_domain) {
1401 		info = "late power domain ";
1402 		callback = pm_late_early_op(&dev->pm_domain->ops, state);
1403 	} else if (dev->type && dev->type->pm) {
1404 		info = "late type ";
1405 		callback = pm_late_early_op(dev->type->pm, state);
1406 	} else if (dev->class && dev->class->pm) {
1407 		info = "late class ";
1408 		callback = pm_late_early_op(dev->class->pm, state);
1409 	} else if (dev->bus && dev->bus->pm) {
1410 		info = "late bus ";
1411 		callback = pm_late_early_op(dev->bus->pm, state);
1412 	}
1413 	if (callback)
1414 		goto Run;
1415 
1416 	if (dev_pm_skip_suspend(dev))
1417 		goto Skip;
1418 
1419 	if (dev->driver && dev->driver->pm) {
1420 		info = "late driver ";
1421 		callback = pm_late_early_op(dev->driver->pm, state);
1422 	}
1423 
1424 Run:
1425 	error = dpm_run_callback(callback, dev, state, info);
1426 	if (error) {
1427 		async_error = error;
1428 		dpm_save_failed_dev(dev_name(dev));
1429 		pm_dev_err(dev, state, async ? " async late" : " late", error);
1430 		goto Complete;
1431 	}
1432 	dpm_propagate_wakeup_to_parent(dev);
1433 
1434 Skip:
1435 	dev->power.is_late_suspended = true;
1436 
1437 Complete:
1438 	TRACE_SUSPEND(error);
1439 	complete_all(&dev->power.completion);
1440 	return error;
1441 }
1442 
1443 static void async_suspend_late(void *data, async_cookie_t cookie)
1444 {
1445 	struct device *dev = data;
1446 
1447 	device_suspend_late(dev, pm_transition, true);
1448 	put_device(dev);
1449 }
1450 
1451 /**
1452  * dpm_suspend_late - Execute "late suspend" callbacks for all devices.
1453  * @state: PM transition of the system being carried out.
1454  */
1455 int dpm_suspend_late(pm_message_t state)
1456 {
1457 	ktime_t starttime = ktime_get();
1458 	int error = 0;
1459 
1460 	trace_suspend_resume(TPS("dpm_suspend_late"), state.event, true);
1461 
1462 	pm_transition = state;
1463 	async_error = 0;
1464 
1465 	wake_up_all_idle_cpus();
1466 
1467 	mutex_lock(&dpm_list_mtx);
1468 
1469 	while (!list_empty(&dpm_suspended_list)) {
1470 		struct device *dev = to_device(dpm_suspended_list.prev);
1471 
1472 		list_move(&dev->power.entry, &dpm_late_early_list);
1473 
1474 		if (dpm_async_fn(dev, async_suspend_late))
1475 			continue;
1476 
1477 		get_device(dev);
1478 
1479 		mutex_unlock(&dpm_list_mtx);
1480 
1481 		error = device_suspend_late(dev, state, false);
1482 
1483 		put_device(dev);
1484 
1485 		mutex_lock(&dpm_list_mtx);
1486 
1487 		if (error || async_error)
1488 			break;
1489 	}
1490 
1491 	mutex_unlock(&dpm_list_mtx);
1492 
1493 	async_synchronize_full();
1494 	if (!error)
1495 		error = async_error;
1496 
1497 	if (error) {
1498 		dpm_save_failed_step(SUSPEND_SUSPEND_LATE);
1499 		dpm_resume_early(resume_event(state));
1500 	}
1501 	dpm_show_time(starttime, state, error, "late");
1502 	trace_suspend_resume(TPS("dpm_suspend_late"), state.event, false);
1503 	return error;
1504 }
1505 
1506 /**
1507  * dpm_suspend_end - Execute "late" and "noirq" device suspend callbacks.
1508  * @state: PM transition of the system being carried out.
1509  */
1510 int dpm_suspend_end(pm_message_t state)
1511 {
1512 	ktime_t starttime = ktime_get();
1513 	int error;
1514 
1515 	error = dpm_suspend_late(state);
1516 	if (error)
1517 		goto out;
1518 
1519 	error = dpm_suspend_noirq(state);
1520 	if (error)
1521 		dpm_resume_early(resume_event(state));
1522 
1523 out:
1524 	dpm_show_time(starttime, state, error, "end");
1525 	return error;
1526 }
1527 EXPORT_SYMBOL_GPL(dpm_suspend_end);
1528 
1529 /**
1530  * legacy_suspend - Execute a legacy (bus or class) suspend callback for device.
1531  * @dev: Device to suspend.
1532  * @state: PM transition of the system being carried out.
1533  * @cb: Suspend callback to execute.
1534  * @info: string description of caller.
1535  */
1536 static int legacy_suspend(struct device *dev, pm_message_t state,
1537 			  int (*cb)(struct device *dev, pm_message_t state),
1538 			  const char *info)
1539 {
1540 	int error;
1541 	ktime_t calltime;
1542 
1543 	calltime = initcall_debug_start(dev, cb);
1544 
1545 	trace_device_pm_callback_start(dev, info, state.event);
1546 	error = cb(dev, state);
1547 	trace_device_pm_callback_end(dev, error);
1548 	suspend_report_result(dev, cb, error);
1549 
1550 	initcall_debug_report(dev, calltime, cb, error);
1551 
1552 	return error;
1553 }
1554 
1555 static void dpm_clear_superiors_direct_complete(struct device *dev)
1556 {
1557 	struct device_link *link;
1558 	int idx;
1559 
1560 	if (dev->parent) {
1561 		spin_lock_irq(&dev->parent->power.lock);
1562 		dev->parent->power.direct_complete = false;
1563 		spin_unlock_irq(&dev->parent->power.lock);
1564 	}
1565 
1566 	idx = device_links_read_lock();
1567 
1568 	list_for_each_entry_rcu_locked(link, &dev->links.suppliers, c_node) {
1569 		spin_lock_irq(&link->supplier->power.lock);
1570 		link->supplier->power.direct_complete = false;
1571 		spin_unlock_irq(&link->supplier->power.lock);
1572 	}
1573 
1574 	device_links_read_unlock(idx);
1575 }
1576 
1577 /**
1578  * device_suspend - Execute "suspend" callbacks for given device.
1579  * @dev: Device to handle.
1580  * @state: PM transition of the system being carried out.
1581  * @async: If true, the device is being suspended asynchronously.
1582  */
1583 static int device_suspend(struct device *dev, pm_message_t state, bool async)
1584 {
1585 	pm_callback_t callback = NULL;
1586 	const char *info = NULL;
1587 	int error = 0;
1588 	DECLARE_DPM_WATCHDOG_ON_STACK(wd);
1589 
1590 	TRACE_DEVICE(dev);
1591 	TRACE_SUSPEND(0);
1592 
1593 	dpm_wait_for_subordinate(dev, async);
1594 
1595 	if (async_error) {
1596 		dev->power.direct_complete = false;
1597 		goto Complete;
1598 	}
1599 
1600 	/*
1601 	 * Wait for possible runtime PM transitions of the device in progress
1602 	 * to complete and if there's a runtime resume request pending for it,
1603 	 * resume it before proceeding with invoking the system-wide suspend
1604 	 * callbacks for it.
1605 	 *
1606 	 * If the system-wide suspend callbacks below change the configuration
1607 	 * of the device, they must disable runtime PM for it or otherwise
1608 	 * ensure that its runtime-resume callbacks will not be confused by that
1609 	 * change in case they are invoked going forward.
1610 	 */
1611 	pm_runtime_barrier(dev);
1612 
1613 	if (pm_wakeup_pending()) {
1614 		dev->power.direct_complete = false;
1615 		async_error = -EBUSY;
1616 		goto Complete;
1617 	}
1618 
1619 	if (dev->power.syscore)
1620 		goto Complete;
1621 
1622 	/* Avoid direct_complete to let wakeup_path propagate. */
1623 	if (device_may_wakeup(dev) || device_wakeup_path(dev))
1624 		dev->power.direct_complete = false;
1625 
1626 	if (dev->power.direct_complete) {
1627 		if (pm_runtime_status_suspended(dev)) {
1628 			pm_runtime_disable(dev);
1629 			if (pm_runtime_status_suspended(dev)) {
1630 				pm_dev_dbg(dev, state, "direct-complete ");
1631 				goto Complete;
1632 			}
1633 
1634 			pm_runtime_enable(dev);
1635 		}
1636 		dev->power.direct_complete = false;
1637 	}
1638 
1639 	dev->power.may_skip_resume = true;
1640 	dev->power.must_resume = !dev_pm_test_driver_flags(dev, DPM_FLAG_MAY_SKIP_RESUME);
1641 
1642 	dpm_watchdog_set(&wd, dev);
1643 	device_lock(dev);
1644 
1645 	if (dev->pm_domain) {
1646 		info = "power domain ";
1647 		callback = pm_op(&dev->pm_domain->ops, state);
1648 		goto Run;
1649 	}
1650 
1651 	if (dev->type && dev->type->pm) {
1652 		info = "type ";
1653 		callback = pm_op(dev->type->pm, state);
1654 		goto Run;
1655 	}
1656 
1657 	if (dev->class && dev->class->pm) {
1658 		info = "class ";
1659 		callback = pm_op(dev->class->pm, state);
1660 		goto Run;
1661 	}
1662 
1663 	if (dev->bus) {
1664 		if (dev->bus->pm) {
1665 			info = "bus ";
1666 			callback = pm_op(dev->bus->pm, state);
1667 		} else if (dev->bus->suspend) {
1668 			pm_dev_dbg(dev, state, "legacy bus ");
1669 			error = legacy_suspend(dev, state, dev->bus->suspend,
1670 						"legacy bus ");
1671 			goto End;
1672 		}
1673 	}
1674 
1675  Run:
1676 	if (!callback && dev->driver && dev->driver->pm) {
1677 		info = "driver ";
1678 		callback = pm_op(dev->driver->pm, state);
1679 	}
1680 
1681 	error = dpm_run_callback(callback, dev, state, info);
1682 
1683  End:
1684 	if (!error) {
1685 		dev->power.is_suspended = true;
1686 		if (device_may_wakeup(dev))
1687 			dev->power.wakeup_path = true;
1688 
1689 		dpm_propagate_wakeup_to_parent(dev);
1690 		dpm_clear_superiors_direct_complete(dev);
1691 	}
1692 
1693 	device_unlock(dev);
1694 	dpm_watchdog_clear(&wd);
1695 
1696  Complete:
1697 	if (error) {
1698 		async_error = error;
1699 		dpm_save_failed_dev(dev_name(dev));
1700 		pm_dev_err(dev, state, async ? " async" : "", error);
1701 	}
1702 
1703 	complete_all(&dev->power.completion);
1704 	TRACE_SUSPEND(error);
1705 	return error;
1706 }
1707 
1708 static void async_suspend(void *data, async_cookie_t cookie)
1709 {
1710 	struct device *dev = data;
1711 
1712 	device_suspend(dev, pm_transition, true);
1713 	put_device(dev);
1714 }
1715 
1716 /**
1717  * dpm_suspend - Execute "suspend" callbacks for all non-sysdev devices.
1718  * @state: PM transition of the system being carried out.
1719  */
1720 int dpm_suspend(pm_message_t state)
1721 {
1722 	ktime_t starttime = ktime_get();
1723 	int error = 0;
1724 
1725 	trace_suspend_resume(TPS("dpm_suspend"), state.event, true);
1726 	might_sleep();
1727 
1728 	devfreq_suspend();
1729 	cpufreq_suspend();
1730 
1731 	pm_transition = state;
1732 	async_error = 0;
1733 
1734 	mutex_lock(&dpm_list_mtx);
1735 
1736 	while (!list_empty(&dpm_prepared_list)) {
1737 		struct device *dev = to_device(dpm_prepared_list.prev);
1738 
1739 		list_move(&dev->power.entry, &dpm_suspended_list);
1740 
1741 		if (dpm_async_fn(dev, async_suspend))
1742 			continue;
1743 
1744 		get_device(dev);
1745 
1746 		mutex_unlock(&dpm_list_mtx);
1747 
1748 		error = device_suspend(dev, state, false);
1749 
1750 		put_device(dev);
1751 
1752 		mutex_lock(&dpm_list_mtx);
1753 
1754 		if (error || async_error)
1755 			break;
1756 	}
1757 
1758 	mutex_unlock(&dpm_list_mtx);
1759 
1760 	async_synchronize_full();
1761 	if (!error)
1762 		error = async_error;
1763 
1764 	if (error)
1765 		dpm_save_failed_step(SUSPEND_SUSPEND);
1766 
1767 	dpm_show_time(starttime, state, error, NULL);
1768 	trace_suspend_resume(TPS("dpm_suspend"), state.event, false);
1769 	return error;
1770 }
1771 
1772 /**
1773  * device_prepare - Prepare a device for system power transition.
1774  * @dev: Device to handle.
1775  * @state: PM transition of the system being carried out.
1776  *
1777  * Execute the ->prepare() callback(s) for given device.  No new children of the
1778  * device may be registered after this function has returned.
1779  */
1780 static int device_prepare(struct device *dev, pm_message_t state)
1781 {
1782 	int (*callback)(struct device *) = NULL;
1783 	int ret = 0;
1784 
1785 	/*
1786 	 * If a device's parent goes into runtime suspend at the wrong time,
1787 	 * it won't be possible to resume the device.  To prevent this we
1788 	 * block runtime suspend here, during the prepare phase, and allow
1789 	 * it again during the complete phase.
1790 	 */
1791 	pm_runtime_get_noresume(dev);
1792 
1793 	if (dev->power.syscore)
1794 		return 0;
1795 
1796 	device_lock(dev);
1797 
1798 	dev->power.wakeup_path = false;
1799 
1800 	if (dev->power.no_pm_callbacks)
1801 		goto unlock;
1802 
1803 	if (dev->pm_domain)
1804 		callback = dev->pm_domain->ops.prepare;
1805 	else if (dev->type && dev->type->pm)
1806 		callback = dev->type->pm->prepare;
1807 	else if (dev->class && dev->class->pm)
1808 		callback = dev->class->pm->prepare;
1809 	else if (dev->bus && dev->bus->pm)
1810 		callback = dev->bus->pm->prepare;
1811 
1812 	if (!callback && dev->driver && dev->driver->pm)
1813 		callback = dev->driver->pm->prepare;
1814 
1815 	if (callback)
1816 		ret = callback(dev);
1817 
1818 unlock:
1819 	device_unlock(dev);
1820 
1821 	if (ret < 0) {
1822 		suspend_report_result(dev, callback, ret);
1823 		pm_runtime_put(dev);
1824 		return ret;
1825 	}
1826 	/*
1827 	 * A positive return value from ->prepare() means "this device appears
1828 	 * to be runtime-suspended and its state is fine, so if it really is
1829 	 * runtime-suspended, you can leave it in that state provided that you
1830 	 * will do the same thing with all of its descendants".  This only
1831 	 * applies to suspend transitions, however.
1832 	 */
1833 	spin_lock_irq(&dev->power.lock);
1834 	dev->power.direct_complete = state.event == PM_EVENT_SUSPEND &&
1835 		(ret > 0 || dev->power.no_pm_callbacks) &&
1836 		!dev_pm_test_driver_flags(dev, DPM_FLAG_NO_DIRECT_COMPLETE);
1837 	spin_unlock_irq(&dev->power.lock);
1838 	return 0;
1839 }
1840 
1841 /**
1842  * dpm_prepare - Prepare all non-sysdev devices for a system PM transition.
1843  * @state: PM transition of the system being carried out.
1844  *
1845  * Execute the ->prepare() callback(s) for all devices.
1846  */
1847 int dpm_prepare(pm_message_t state)
1848 {
1849 	int error = 0;
1850 
1851 	trace_suspend_resume(TPS("dpm_prepare"), state.event, true);
1852 	might_sleep();
1853 
1854 	/*
1855 	 * Give a chance for the known devices to complete their probes, before
1856 	 * disable probing of devices. This sync point is important at least
1857 	 * at boot time + hibernation restore.
1858 	 */
1859 	wait_for_device_probe();
1860 	/*
1861 	 * It is unsafe if probing of devices will happen during suspend or
1862 	 * hibernation and system behavior will be unpredictable in this case.
1863 	 * So, let's prohibit device's probing here and defer their probes
1864 	 * instead. The normal behavior will be restored in dpm_complete().
1865 	 */
1866 	device_block_probing();
1867 
1868 	mutex_lock(&dpm_list_mtx);
1869 	while (!list_empty(&dpm_list) && !error) {
1870 		struct device *dev = to_device(dpm_list.next);
1871 
1872 		get_device(dev);
1873 
1874 		mutex_unlock(&dpm_list_mtx);
1875 
1876 		trace_device_pm_callback_start(dev, "", state.event);
1877 		error = device_prepare(dev, state);
1878 		trace_device_pm_callback_end(dev, error);
1879 
1880 		mutex_lock(&dpm_list_mtx);
1881 
1882 		if (!error) {
1883 			dev->power.is_prepared = true;
1884 			if (!list_empty(&dev->power.entry))
1885 				list_move_tail(&dev->power.entry, &dpm_prepared_list);
1886 		} else if (error == -EAGAIN) {
1887 			error = 0;
1888 		} else {
1889 			dev_info(dev, "not prepared for power transition: code %d\n",
1890 				 error);
1891 		}
1892 
1893 		mutex_unlock(&dpm_list_mtx);
1894 
1895 		put_device(dev);
1896 
1897 		mutex_lock(&dpm_list_mtx);
1898 	}
1899 	mutex_unlock(&dpm_list_mtx);
1900 	trace_suspend_resume(TPS("dpm_prepare"), state.event, false);
1901 	return error;
1902 }
1903 
1904 /**
1905  * dpm_suspend_start - Prepare devices for PM transition and suspend them.
1906  * @state: PM transition of the system being carried out.
1907  *
1908  * Prepare all non-sysdev devices for system PM transition and execute "suspend"
1909  * callbacks for them.
1910  */
1911 int dpm_suspend_start(pm_message_t state)
1912 {
1913 	ktime_t starttime = ktime_get();
1914 	int error;
1915 
1916 	error = dpm_prepare(state);
1917 	if (error)
1918 		dpm_save_failed_step(SUSPEND_PREPARE);
1919 	else
1920 		error = dpm_suspend(state);
1921 
1922 	dpm_show_time(starttime, state, error, "start");
1923 	return error;
1924 }
1925 EXPORT_SYMBOL_GPL(dpm_suspend_start);
1926 
1927 void __suspend_report_result(const char *function, struct device *dev, void *fn, int ret)
1928 {
1929 	if (ret)
1930 		dev_err(dev, "%s(): %pS returns %d\n", function, fn, ret);
1931 }
1932 EXPORT_SYMBOL_GPL(__suspend_report_result);
1933 
1934 /**
1935  * device_pm_wait_for_dev - Wait for suspend/resume of a device to complete.
1936  * @subordinate: Device that needs to wait for @dev.
1937  * @dev: Device to wait for.
1938  */
1939 int device_pm_wait_for_dev(struct device *subordinate, struct device *dev)
1940 {
1941 	dpm_wait(dev, subordinate->power.async_suspend);
1942 	return async_error;
1943 }
1944 EXPORT_SYMBOL_GPL(device_pm_wait_for_dev);
1945 
1946 /**
1947  * dpm_for_each_dev - device iterator.
1948  * @data: data for the callback.
1949  * @fn: function to be called for each device.
1950  *
1951  * Iterate over devices in dpm_list, and call @fn for each device,
1952  * passing it @data.
1953  */
1954 void dpm_for_each_dev(void *data, void (*fn)(struct device *, void *))
1955 {
1956 	struct device *dev;
1957 
1958 	if (!fn)
1959 		return;
1960 
1961 	device_pm_lock();
1962 	list_for_each_entry(dev, &dpm_list, power.entry)
1963 		fn(dev, data);
1964 	device_pm_unlock();
1965 }
1966 EXPORT_SYMBOL_GPL(dpm_for_each_dev);
1967 
1968 static bool pm_ops_is_empty(const struct dev_pm_ops *ops)
1969 {
1970 	if (!ops)
1971 		return true;
1972 
1973 	return !ops->prepare &&
1974 	       !ops->suspend &&
1975 	       !ops->suspend_late &&
1976 	       !ops->suspend_noirq &&
1977 	       !ops->resume_noirq &&
1978 	       !ops->resume_early &&
1979 	       !ops->resume &&
1980 	       !ops->complete;
1981 }
1982 
1983 void device_pm_check_callbacks(struct device *dev)
1984 {
1985 	unsigned long flags;
1986 
1987 	spin_lock_irqsave(&dev->power.lock, flags);
1988 	dev->power.no_pm_callbacks =
1989 		(!dev->bus || (pm_ops_is_empty(dev->bus->pm) &&
1990 		 !dev->bus->suspend && !dev->bus->resume)) &&
1991 		(!dev->class || pm_ops_is_empty(dev->class->pm)) &&
1992 		(!dev->type || pm_ops_is_empty(dev->type->pm)) &&
1993 		(!dev->pm_domain || pm_ops_is_empty(&dev->pm_domain->ops)) &&
1994 		(!dev->driver || (pm_ops_is_empty(dev->driver->pm) &&
1995 		 !dev->driver->suspend && !dev->driver->resume));
1996 	spin_unlock_irqrestore(&dev->power.lock, flags);
1997 }
1998 
1999 bool dev_pm_skip_suspend(struct device *dev)
2000 {
2001 	return dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND) &&
2002 		pm_runtime_status_suspended(dev);
2003 }
2004