xref: /linux/drivers/base/power/main.c (revision b233b28eac0cc37d07c2d007ea08c86c778c5af4)
1 /*
2  * drivers/base/power/main.c - Where the driver meets power management.
3  *
4  * Copyright (c) 2003 Patrick Mochel
5  * Copyright (c) 2003 Open Source Development Lab
6  *
7  * This file is released under the GPLv2
8  *
9  *
10  * The driver model core calls device_pm_add() when a device is registered.
11  * This will intialize the embedded device_pm_info object in the device
12  * and add it to the list of power-controlled devices. sysfs entries for
13  * controlling device power management will also be added.
14  *
15  * A separate list is used for keeping track of power info, because the power
16  * domain dependencies may differ from the ancestral dependencies that the
17  * subsystem list maintains.
18  */
19 
20 #include <linux/device.h>
21 #include <linux/kallsyms.h>
22 #include <linux/mutex.h>
23 #include <linux/pm.h>
24 #include <linux/resume-trace.h>
25 #include <linux/rwsem.h>
26 
27 #include "../base.h"
28 #include "power.h"
29 
30 /*
31  * The entries in the dpm_list list are in a depth first order, simply
32  * because children are guaranteed to be discovered after parents, and
33  * are inserted at the back of the list on discovery.
34  *
35  * Since device_pm_add() may be called with a device semaphore held,
36  * we must never try to acquire a device semaphore while holding
37  * dpm_list_mutex.
38  */
39 
40 LIST_HEAD(dpm_list);
41 
42 static DEFINE_MUTEX(dpm_list_mtx);
43 
44 /*
45  * Set once the preparation of devices for a PM transition has started, reset
46  * before starting to resume devices.  Protected by dpm_list_mtx.
47  */
48 static bool transition_started;
49 
50 /**
51  *	device_pm_lock - lock the list of active devices used by the PM core
52  */
53 void device_pm_lock(void)
54 {
55 	mutex_lock(&dpm_list_mtx);
56 }
57 
58 /**
59  *	device_pm_unlock - unlock the list of active devices used by the PM core
60  */
61 void device_pm_unlock(void)
62 {
63 	mutex_unlock(&dpm_list_mtx);
64 }
65 
66 /**
67  *	device_pm_add - add a device to the list of active devices
68  *	@dev:	Device to be added to the list
69  */
70 void device_pm_add(struct device *dev)
71 {
72 	pr_debug("PM: Adding info for %s:%s\n",
73 		 dev->bus ? dev->bus->name : "No Bus",
74 		 kobject_name(&dev->kobj));
75 	mutex_lock(&dpm_list_mtx);
76 	if (dev->parent) {
77 		if (dev->parent->power.status >= DPM_SUSPENDING)
78 			dev_warn(dev, "parent %s should not be sleeping\n",
79 				 dev_name(dev->parent));
80 	} else if (transition_started) {
81 		/*
82 		 * We refuse to register parentless devices while a PM
83 		 * transition is in progress in order to avoid leaving them
84 		 * unhandled down the road
85 		 */
86 		dev_WARN(dev, "Parentless device registered during a PM transaction\n");
87 	}
88 
89 	list_add_tail(&dev->power.entry, &dpm_list);
90 	mutex_unlock(&dpm_list_mtx);
91 }
92 
93 /**
94  *	device_pm_remove - remove a device from the list of active devices
95  *	@dev:	Device to be removed from the list
96  *
97  *	This function also removes the device's PM-related sysfs attributes.
98  */
99 void device_pm_remove(struct device *dev)
100 {
101 	pr_debug("PM: Removing info for %s:%s\n",
102 		 dev->bus ? dev->bus->name : "No Bus",
103 		 kobject_name(&dev->kobj));
104 	mutex_lock(&dpm_list_mtx);
105 	list_del_init(&dev->power.entry);
106 	mutex_unlock(&dpm_list_mtx);
107 }
108 
109 /**
110  *	pm_op - execute the PM operation appropiate for given PM event
111  *	@dev:	Device.
112  *	@ops:	PM operations to choose from.
113  *	@state:	PM transition of the system being carried out.
114  */
115 static int pm_op(struct device *dev, struct dev_pm_ops *ops,
116 			pm_message_t state)
117 {
118 	int error = 0;
119 
120 	switch (state.event) {
121 #ifdef CONFIG_SUSPEND
122 	case PM_EVENT_SUSPEND:
123 		if (ops->suspend) {
124 			error = ops->suspend(dev);
125 			suspend_report_result(ops->suspend, error);
126 		}
127 		break;
128 	case PM_EVENT_RESUME:
129 		if (ops->resume) {
130 			error = ops->resume(dev);
131 			suspend_report_result(ops->resume, error);
132 		}
133 		break;
134 #endif /* CONFIG_SUSPEND */
135 #ifdef CONFIG_HIBERNATION
136 	case PM_EVENT_FREEZE:
137 	case PM_EVENT_QUIESCE:
138 		if (ops->freeze) {
139 			error = ops->freeze(dev);
140 			suspend_report_result(ops->freeze, error);
141 		}
142 		break;
143 	case PM_EVENT_HIBERNATE:
144 		if (ops->poweroff) {
145 			error = ops->poweroff(dev);
146 			suspend_report_result(ops->poweroff, error);
147 		}
148 		break;
149 	case PM_EVENT_THAW:
150 	case PM_EVENT_RECOVER:
151 		if (ops->thaw) {
152 			error = ops->thaw(dev);
153 			suspend_report_result(ops->thaw, error);
154 		}
155 		break;
156 	case PM_EVENT_RESTORE:
157 		if (ops->restore) {
158 			error = ops->restore(dev);
159 			suspend_report_result(ops->restore, error);
160 		}
161 		break;
162 #endif /* CONFIG_HIBERNATION */
163 	default:
164 		error = -EINVAL;
165 	}
166 	return error;
167 }
168 
169 /**
170  *	pm_noirq_op - execute the PM operation appropiate for given PM event
171  *	@dev:	Device.
172  *	@ops:	PM operations to choose from.
173  *	@state: PM transition of the system being carried out.
174  *
175  *	The operation is executed with interrupts disabled by the only remaining
176  *	functional CPU in the system.
177  */
178 static int pm_noirq_op(struct device *dev, struct dev_pm_ops *ops,
179 			pm_message_t state)
180 {
181 	int error = 0;
182 
183 	switch (state.event) {
184 #ifdef CONFIG_SUSPEND
185 	case PM_EVENT_SUSPEND:
186 		if (ops->suspend_noirq) {
187 			error = ops->suspend_noirq(dev);
188 			suspend_report_result(ops->suspend_noirq, error);
189 		}
190 		break;
191 	case PM_EVENT_RESUME:
192 		if (ops->resume_noirq) {
193 			error = ops->resume_noirq(dev);
194 			suspend_report_result(ops->resume_noirq, error);
195 		}
196 		break;
197 #endif /* CONFIG_SUSPEND */
198 #ifdef CONFIG_HIBERNATION
199 	case PM_EVENT_FREEZE:
200 	case PM_EVENT_QUIESCE:
201 		if (ops->freeze_noirq) {
202 			error = ops->freeze_noirq(dev);
203 			suspend_report_result(ops->freeze_noirq, error);
204 		}
205 		break;
206 	case PM_EVENT_HIBERNATE:
207 		if (ops->poweroff_noirq) {
208 			error = ops->poweroff_noirq(dev);
209 			suspend_report_result(ops->poweroff_noirq, error);
210 		}
211 		break;
212 	case PM_EVENT_THAW:
213 	case PM_EVENT_RECOVER:
214 		if (ops->thaw_noirq) {
215 			error = ops->thaw_noirq(dev);
216 			suspend_report_result(ops->thaw_noirq, error);
217 		}
218 		break;
219 	case PM_EVENT_RESTORE:
220 		if (ops->restore_noirq) {
221 			error = ops->restore_noirq(dev);
222 			suspend_report_result(ops->restore_noirq, error);
223 		}
224 		break;
225 #endif /* CONFIG_HIBERNATION */
226 	default:
227 		error = -EINVAL;
228 	}
229 	return error;
230 }
231 
232 static char *pm_verb(int event)
233 {
234 	switch (event) {
235 	case PM_EVENT_SUSPEND:
236 		return "suspend";
237 	case PM_EVENT_RESUME:
238 		return "resume";
239 	case PM_EVENT_FREEZE:
240 		return "freeze";
241 	case PM_EVENT_QUIESCE:
242 		return "quiesce";
243 	case PM_EVENT_HIBERNATE:
244 		return "hibernate";
245 	case PM_EVENT_THAW:
246 		return "thaw";
247 	case PM_EVENT_RESTORE:
248 		return "restore";
249 	case PM_EVENT_RECOVER:
250 		return "recover";
251 	default:
252 		return "(unknown PM event)";
253 	}
254 }
255 
256 static void pm_dev_dbg(struct device *dev, pm_message_t state, char *info)
257 {
258 	dev_dbg(dev, "%s%s%s\n", info, pm_verb(state.event),
259 		((state.event & PM_EVENT_SLEEP) && device_may_wakeup(dev)) ?
260 		", may wakeup" : "");
261 }
262 
263 static void pm_dev_err(struct device *dev, pm_message_t state, char *info,
264 			int error)
265 {
266 	printk(KERN_ERR "PM: Device %s failed to %s%s: error %d\n",
267 		kobject_name(&dev->kobj), pm_verb(state.event), info, error);
268 }
269 
270 /*------------------------- Resume routines -------------------------*/
271 
272 /**
273  *	resume_device_noirq - Power on one device (early resume).
274  *	@dev:	Device.
275  *	@state: PM transition of the system being carried out.
276  *
277  *	Must be called with interrupts disabled.
278  */
279 static int resume_device_noirq(struct device *dev, pm_message_t state)
280 {
281 	int error = 0;
282 
283 	TRACE_DEVICE(dev);
284 	TRACE_RESUME(0);
285 
286 	if (!dev->bus)
287 		goto End;
288 
289 	if (dev->bus->pm) {
290 		pm_dev_dbg(dev, state, "EARLY ");
291 		error = pm_noirq_op(dev, dev->bus->pm, state);
292 	} else if (dev->bus->resume_early) {
293 		pm_dev_dbg(dev, state, "legacy EARLY ");
294 		error = dev->bus->resume_early(dev);
295 	}
296  End:
297 	TRACE_RESUME(error);
298 	return error;
299 }
300 
301 /**
302  *	dpm_power_up - Power on all regular (non-sysdev) devices.
303  *	@state: PM transition of the system being carried out.
304  *
305  *	Execute the appropriate "noirq resume" callback for all devices marked
306  *	as DPM_OFF_IRQ.
307  *
308  *	Must be called with interrupts disabled and only one CPU running.
309  */
310 static void dpm_power_up(pm_message_t state)
311 {
312 	struct device *dev;
313 
314 	list_for_each_entry(dev, &dpm_list, power.entry)
315 		if (dev->power.status > DPM_OFF) {
316 			int error;
317 
318 			dev->power.status = DPM_OFF;
319 			error = resume_device_noirq(dev, state);
320 			if (error)
321 				pm_dev_err(dev, state, " early", error);
322 		}
323 }
324 
325 /**
326  *	device_power_up - Turn on all devices that need special attention.
327  *	@state: PM transition of the system being carried out.
328  *
329  *	Power on system devices, then devices that required we shut them down
330  *	with interrupts disabled.
331  *
332  *	Must be called with interrupts disabled.
333  */
334 void device_power_up(pm_message_t state)
335 {
336 	sysdev_resume();
337 	dpm_power_up(state);
338 }
339 EXPORT_SYMBOL_GPL(device_power_up);
340 
341 /**
342  *	resume_device - Restore state for one device.
343  *	@dev:	Device.
344  *	@state: PM transition of the system being carried out.
345  */
346 static int resume_device(struct device *dev, pm_message_t state)
347 {
348 	int error = 0;
349 
350 	TRACE_DEVICE(dev);
351 	TRACE_RESUME(0);
352 
353 	down(&dev->sem);
354 
355 	if (dev->bus) {
356 		if (dev->bus->pm) {
357 			pm_dev_dbg(dev, state, "");
358 			error = pm_op(dev, dev->bus->pm, state);
359 		} else if (dev->bus->resume) {
360 			pm_dev_dbg(dev, state, "legacy ");
361 			error = dev->bus->resume(dev);
362 		}
363 		if (error)
364 			goto End;
365 	}
366 
367 	if (dev->type) {
368 		if (dev->type->pm) {
369 			pm_dev_dbg(dev, state, "type ");
370 			error = pm_op(dev, dev->type->pm, state);
371 		} else if (dev->type->resume) {
372 			pm_dev_dbg(dev, state, "legacy type ");
373 			error = dev->type->resume(dev);
374 		}
375 		if (error)
376 			goto End;
377 	}
378 
379 	if (dev->class) {
380 		if (dev->class->pm) {
381 			pm_dev_dbg(dev, state, "class ");
382 			error = pm_op(dev, dev->class->pm, state);
383 		} else if (dev->class->resume) {
384 			pm_dev_dbg(dev, state, "legacy class ");
385 			error = dev->class->resume(dev);
386 		}
387 	}
388  End:
389 	up(&dev->sem);
390 
391 	TRACE_RESUME(error);
392 	return error;
393 }
394 
395 /**
396  *	dpm_resume - Resume every device.
397  *	@state: PM transition of the system being carried out.
398  *
399  *	Execute the appropriate "resume" callback for all devices the status of
400  *	which indicates that they are inactive.
401  */
402 static void dpm_resume(pm_message_t state)
403 {
404 	struct list_head list;
405 
406 	INIT_LIST_HEAD(&list);
407 	mutex_lock(&dpm_list_mtx);
408 	transition_started = false;
409 	while (!list_empty(&dpm_list)) {
410 		struct device *dev = to_device(dpm_list.next);
411 
412 		get_device(dev);
413 		if (dev->power.status >= DPM_OFF) {
414 			int error;
415 
416 			dev->power.status = DPM_RESUMING;
417 			mutex_unlock(&dpm_list_mtx);
418 
419 			error = resume_device(dev, state);
420 
421 			mutex_lock(&dpm_list_mtx);
422 			if (error)
423 				pm_dev_err(dev, state, "", error);
424 		} else if (dev->power.status == DPM_SUSPENDING) {
425 			/* Allow new children of the device to be registered */
426 			dev->power.status = DPM_RESUMING;
427 		}
428 		if (!list_empty(&dev->power.entry))
429 			list_move_tail(&dev->power.entry, &list);
430 		put_device(dev);
431 	}
432 	list_splice(&list, &dpm_list);
433 	mutex_unlock(&dpm_list_mtx);
434 }
435 
436 /**
437  *	complete_device - Complete a PM transition for given device
438  *	@dev:	Device.
439  *	@state: PM transition of the system being carried out.
440  */
441 static void complete_device(struct device *dev, pm_message_t state)
442 {
443 	down(&dev->sem);
444 
445 	if (dev->class && dev->class->pm && dev->class->pm->complete) {
446 		pm_dev_dbg(dev, state, "completing class ");
447 		dev->class->pm->complete(dev);
448 	}
449 
450 	if (dev->type && dev->type->pm && dev->type->pm->complete) {
451 		pm_dev_dbg(dev, state, "completing type ");
452 		dev->type->pm->complete(dev);
453 	}
454 
455 	if (dev->bus && dev->bus->pm && dev->bus->pm->complete) {
456 		pm_dev_dbg(dev, state, "completing ");
457 		dev->bus->pm->complete(dev);
458 	}
459 
460 	up(&dev->sem);
461 }
462 
463 /**
464  *	dpm_complete - Complete a PM transition for all devices.
465  *	@state: PM transition of the system being carried out.
466  *
467  *	Execute the ->complete() callbacks for all devices that are not marked
468  *	as DPM_ON.
469  */
470 static void dpm_complete(pm_message_t state)
471 {
472 	struct list_head list;
473 
474 	INIT_LIST_HEAD(&list);
475 	mutex_lock(&dpm_list_mtx);
476 	while (!list_empty(&dpm_list)) {
477 		struct device *dev = to_device(dpm_list.prev);
478 
479 		get_device(dev);
480 		if (dev->power.status > DPM_ON) {
481 			dev->power.status = DPM_ON;
482 			mutex_unlock(&dpm_list_mtx);
483 
484 			complete_device(dev, state);
485 
486 			mutex_lock(&dpm_list_mtx);
487 		}
488 		if (!list_empty(&dev->power.entry))
489 			list_move(&dev->power.entry, &list);
490 		put_device(dev);
491 	}
492 	list_splice(&list, &dpm_list);
493 	mutex_unlock(&dpm_list_mtx);
494 }
495 
496 /**
497  *	device_resume - Restore state of each device in system.
498  *	@state: PM transition of the system being carried out.
499  *
500  *	Resume all the devices, unlock them all, and allow new
501  *	devices to be registered once again.
502  */
503 void device_resume(pm_message_t state)
504 {
505 	might_sleep();
506 	dpm_resume(state);
507 	dpm_complete(state);
508 }
509 EXPORT_SYMBOL_GPL(device_resume);
510 
511 
512 /*------------------------- Suspend routines -------------------------*/
513 
514 /**
515  *	resume_event - return a PM message representing the resume event
516  *	               corresponding to given sleep state.
517  *	@sleep_state: PM message representing a sleep state.
518  */
519 static pm_message_t resume_event(pm_message_t sleep_state)
520 {
521 	switch (sleep_state.event) {
522 	case PM_EVENT_SUSPEND:
523 		return PMSG_RESUME;
524 	case PM_EVENT_FREEZE:
525 	case PM_EVENT_QUIESCE:
526 		return PMSG_RECOVER;
527 	case PM_EVENT_HIBERNATE:
528 		return PMSG_RESTORE;
529 	}
530 	return PMSG_ON;
531 }
532 
533 /**
534  *	suspend_device_noirq - Shut down one device (late suspend).
535  *	@dev:	Device.
536  *	@state: PM transition of the system being carried out.
537  *
538  *	This is called with interrupts off and only a single CPU running.
539  */
540 static int suspend_device_noirq(struct device *dev, pm_message_t state)
541 {
542 	int error = 0;
543 
544 	if (!dev->bus)
545 		return 0;
546 
547 	if (dev->bus->pm) {
548 		pm_dev_dbg(dev, state, "LATE ");
549 		error = pm_noirq_op(dev, dev->bus->pm, state);
550 	} else if (dev->bus->suspend_late) {
551 		pm_dev_dbg(dev, state, "legacy LATE ");
552 		error = dev->bus->suspend_late(dev, state);
553 		suspend_report_result(dev->bus->suspend_late, error);
554 	}
555 	return error;
556 }
557 
558 /**
559  *	device_power_down - Shut down special devices.
560  *	@state: PM transition of the system being carried out.
561  *
562  *	Power down devices that require interrupts to be disabled.
563  *	Then power down system devices.
564  *
565  *	Must be called with interrupts disabled and only one CPU running.
566  */
567 int device_power_down(pm_message_t state)
568 {
569 	struct device *dev;
570 	int error = 0;
571 
572 	list_for_each_entry_reverse(dev, &dpm_list, power.entry) {
573 		error = suspend_device_noirq(dev, state);
574 		if (error) {
575 			pm_dev_err(dev, state, " late", error);
576 			break;
577 		}
578 		dev->power.status = DPM_OFF_IRQ;
579 	}
580 	if (!error)
581 		error = sysdev_suspend(state);
582 	if (error)
583 		dpm_power_up(resume_event(state));
584 	return error;
585 }
586 EXPORT_SYMBOL_GPL(device_power_down);
587 
588 /**
589  *	suspend_device - Save state of one device.
590  *	@dev:	Device.
591  *	@state: PM transition of the system being carried out.
592  */
593 static int suspend_device(struct device *dev, pm_message_t state)
594 {
595 	int error = 0;
596 
597 	down(&dev->sem);
598 
599 	if (dev->class) {
600 		if (dev->class->pm) {
601 			pm_dev_dbg(dev, state, "class ");
602 			error = pm_op(dev, dev->class->pm, state);
603 		} else if (dev->class->suspend) {
604 			pm_dev_dbg(dev, state, "legacy class ");
605 			error = dev->class->suspend(dev, state);
606 			suspend_report_result(dev->class->suspend, error);
607 		}
608 		if (error)
609 			goto End;
610 	}
611 
612 	if (dev->type) {
613 		if (dev->type->pm) {
614 			pm_dev_dbg(dev, state, "type ");
615 			error = pm_op(dev, dev->type->pm, state);
616 		} else if (dev->type->suspend) {
617 			pm_dev_dbg(dev, state, "legacy type ");
618 			error = dev->type->suspend(dev, state);
619 			suspend_report_result(dev->type->suspend, error);
620 		}
621 		if (error)
622 			goto End;
623 	}
624 
625 	if (dev->bus) {
626 		if (dev->bus->pm) {
627 			pm_dev_dbg(dev, state, "");
628 			error = pm_op(dev, dev->bus->pm, state);
629 		} else if (dev->bus->suspend) {
630 			pm_dev_dbg(dev, state, "legacy ");
631 			error = dev->bus->suspend(dev, state);
632 			suspend_report_result(dev->bus->suspend, error);
633 		}
634 	}
635  End:
636 	up(&dev->sem);
637 
638 	return error;
639 }
640 
641 /**
642  *	dpm_suspend - Suspend every device.
643  *	@state: PM transition of the system being carried out.
644  *
645  *	Execute the appropriate "suspend" callbacks for all devices.
646  */
647 static int dpm_suspend(pm_message_t state)
648 {
649 	struct list_head list;
650 	int error = 0;
651 
652 	INIT_LIST_HEAD(&list);
653 	mutex_lock(&dpm_list_mtx);
654 	while (!list_empty(&dpm_list)) {
655 		struct device *dev = to_device(dpm_list.prev);
656 
657 		get_device(dev);
658 		mutex_unlock(&dpm_list_mtx);
659 
660 		error = suspend_device(dev, state);
661 
662 		mutex_lock(&dpm_list_mtx);
663 		if (error) {
664 			pm_dev_err(dev, state, "", error);
665 			put_device(dev);
666 			break;
667 		}
668 		dev->power.status = DPM_OFF;
669 		if (!list_empty(&dev->power.entry))
670 			list_move(&dev->power.entry, &list);
671 		put_device(dev);
672 	}
673 	list_splice(&list, dpm_list.prev);
674 	mutex_unlock(&dpm_list_mtx);
675 	return error;
676 }
677 
678 /**
679  *	prepare_device - Execute the ->prepare() callback(s) for given device.
680  *	@dev:	Device.
681  *	@state: PM transition of the system being carried out.
682  */
683 static int prepare_device(struct device *dev, pm_message_t state)
684 {
685 	int error = 0;
686 
687 	down(&dev->sem);
688 
689 	if (dev->bus && dev->bus->pm && dev->bus->pm->prepare) {
690 		pm_dev_dbg(dev, state, "preparing ");
691 		error = dev->bus->pm->prepare(dev);
692 		suspend_report_result(dev->bus->pm->prepare, error);
693 		if (error)
694 			goto End;
695 	}
696 
697 	if (dev->type && dev->type->pm && dev->type->pm->prepare) {
698 		pm_dev_dbg(dev, state, "preparing type ");
699 		error = dev->type->pm->prepare(dev);
700 		suspend_report_result(dev->type->pm->prepare, error);
701 		if (error)
702 			goto End;
703 	}
704 
705 	if (dev->class && dev->class->pm && dev->class->pm->prepare) {
706 		pm_dev_dbg(dev, state, "preparing class ");
707 		error = dev->class->pm->prepare(dev);
708 		suspend_report_result(dev->class->pm->prepare, error);
709 	}
710  End:
711 	up(&dev->sem);
712 
713 	return error;
714 }
715 
716 /**
717  *	dpm_prepare - Prepare all devices for a PM transition.
718  *	@state: PM transition of the system being carried out.
719  *
720  *	Execute the ->prepare() callback for all devices.
721  */
722 static int dpm_prepare(pm_message_t state)
723 {
724 	struct list_head list;
725 	int error = 0;
726 
727 	INIT_LIST_HEAD(&list);
728 	mutex_lock(&dpm_list_mtx);
729 	transition_started = true;
730 	while (!list_empty(&dpm_list)) {
731 		struct device *dev = to_device(dpm_list.next);
732 
733 		get_device(dev);
734 		dev->power.status = DPM_PREPARING;
735 		mutex_unlock(&dpm_list_mtx);
736 
737 		error = prepare_device(dev, state);
738 
739 		mutex_lock(&dpm_list_mtx);
740 		if (error) {
741 			dev->power.status = DPM_ON;
742 			if (error == -EAGAIN) {
743 				put_device(dev);
744 				continue;
745 			}
746 			printk(KERN_ERR "PM: Failed to prepare device %s "
747 				"for power transition: error %d\n",
748 				kobject_name(&dev->kobj), error);
749 			put_device(dev);
750 			break;
751 		}
752 		dev->power.status = DPM_SUSPENDING;
753 		if (!list_empty(&dev->power.entry))
754 			list_move_tail(&dev->power.entry, &list);
755 		put_device(dev);
756 	}
757 	list_splice(&list, &dpm_list);
758 	mutex_unlock(&dpm_list_mtx);
759 	return error;
760 }
761 
762 /**
763  *	device_suspend - Save state and stop all devices in system.
764  *	@state: PM transition of the system being carried out.
765  *
766  *	Prepare and suspend all devices.
767  */
768 int device_suspend(pm_message_t state)
769 {
770 	int error;
771 
772 	might_sleep();
773 	error = dpm_prepare(state);
774 	if (!error)
775 		error = dpm_suspend(state);
776 	return error;
777 }
778 EXPORT_SYMBOL_GPL(device_suspend);
779 
780 void __suspend_report_result(const char *function, void *fn, int ret)
781 {
782 	if (ret)
783 		printk(KERN_ERR "%s(): %pF returns %d\n", function, fn, ret);
784 }
785 EXPORT_SYMBOL_GPL(__suspend_report_result);
786