xref: /linux/drivers/base/power/main.c (revision a8fe58cec351c25e09c393bf46117c0c47b5a17c)
1 /*
2  * drivers/base/power/main.c - Where the driver meets power management.
3  *
4  * Copyright (c) 2003 Patrick Mochel
5  * Copyright (c) 2003 Open Source Development Lab
6  *
7  * This file is released under the GPLv2
8  *
9  *
10  * The driver model core calls device_pm_add() when a device is registered.
11  * This will initialize the embedded device_pm_info object in the device
12  * and add it to the list of power-controlled devices. sysfs entries for
13  * controlling device power management will also be added.
14  *
15  * A separate list is used for keeping track of power info, because the power
16  * domain dependencies may differ from the ancestral dependencies that the
17  * subsystem list maintains.
18  */
19 
20 #include <linux/device.h>
21 #include <linux/kallsyms.h>
22 #include <linux/export.h>
23 #include <linux/mutex.h>
24 #include <linux/pm.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/pm-trace.h>
27 #include <linux/pm_wakeirq.h>
28 #include <linux/interrupt.h>
29 #include <linux/sched.h>
30 #include <linux/async.h>
31 #include <linux/suspend.h>
32 #include <trace/events/power.h>
33 #include <linux/cpufreq.h>
34 #include <linux/cpuidle.h>
35 #include <linux/timer.h>
36 
37 #include "../base.h"
38 #include "power.h"
39 
40 typedef int (*pm_callback_t)(struct device *);
41 
42 /*
43  * The entries in the dpm_list list are in a depth first order, simply
44  * because children are guaranteed to be discovered after parents, and
45  * are inserted at the back of the list on discovery.
46  *
47  * Since device_pm_add() may be called with a device lock held,
48  * we must never try to acquire a device lock while holding
49  * dpm_list_mutex.
50  */
51 
52 LIST_HEAD(dpm_list);
53 static LIST_HEAD(dpm_prepared_list);
54 static LIST_HEAD(dpm_suspended_list);
55 static LIST_HEAD(dpm_late_early_list);
56 static LIST_HEAD(dpm_noirq_list);
57 
58 struct suspend_stats suspend_stats;
59 static DEFINE_MUTEX(dpm_list_mtx);
60 static pm_message_t pm_transition;
61 
62 static int async_error;
63 
64 static char *pm_verb(int event)
65 {
66 	switch (event) {
67 	case PM_EVENT_SUSPEND:
68 		return "suspend";
69 	case PM_EVENT_RESUME:
70 		return "resume";
71 	case PM_EVENT_FREEZE:
72 		return "freeze";
73 	case PM_EVENT_QUIESCE:
74 		return "quiesce";
75 	case PM_EVENT_HIBERNATE:
76 		return "hibernate";
77 	case PM_EVENT_THAW:
78 		return "thaw";
79 	case PM_EVENT_RESTORE:
80 		return "restore";
81 	case PM_EVENT_RECOVER:
82 		return "recover";
83 	default:
84 		return "(unknown PM event)";
85 	}
86 }
87 
88 /**
89  * device_pm_sleep_init - Initialize system suspend-related device fields.
90  * @dev: Device object being initialized.
91  */
92 void device_pm_sleep_init(struct device *dev)
93 {
94 	dev->power.is_prepared = false;
95 	dev->power.is_suspended = false;
96 	dev->power.is_noirq_suspended = false;
97 	dev->power.is_late_suspended = false;
98 	init_completion(&dev->power.completion);
99 	complete_all(&dev->power.completion);
100 	dev->power.wakeup = NULL;
101 	INIT_LIST_HEAD(&dev->power.entry);
102 }
103 
104 /**
105  * device_pm_lock - Lock the list of active devices used by the PM core.
106  */
107 void device_pm_lock(void)
108 {
109 	mutex_lock(&dpm_list_mtx);
110 }
111 
112 /**
113  * device_pm_unlock - Unlock the list of active devices used by the PM core.
114  */
115 void device_pm_unlock(void)
116 {
117 	mutex_unlock(&dpm_list_mtx);
118 }
119 
120 /**
121  * device_pm_add - Add a device to the PM core's list of active devices.
122  * @dev: Device to add to the list.
123  */
124 void device_pm_add(struct device *dev)
125 {
126 	pr_debug("PM: Adding info for %s:%s\n",
127 		 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
128 	device_pm_check_callbacks(dev);
129 	mutex_lock(&dpm_list_mtx);
130 	if (dev->parent && dev->parent->power.is_prepared)
131 		dev_warn(dev, "parent %s should not be sleeping\n",
132 			dev_name(dev->parent));
133 	list_add_tail(&dev->power.entry, &dpm_list);
134 	mutex_unlock(&dpm_list_mtx);
135 }
136 
137 /**
138  * device_pm_remove - Remove a device from the PM core's list of active devices.
139  * @dev: Device to be removed from the list.
140  */
141 void device_pm_remove(struct device *dev)
142 {
143 	pr_debug("PM: Removing info for %s:%s\n",
144 		 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
145 	complete_all(&dev->power.completion);
146 	mutex_lock(&dpm_list_mtx);
147 	list_del_init(&dev->power.entry);
148 	mutex_unlock(&dpm_list_mtx);
149 	device_wakeup_disable(dev);
150 	pm_runtime_remove(dev);
151 	device_pm_check_callbacks(dev);
152 }
153 
154 /**
155  * device_pm_move_before - Move device in the PM core's list of active devices.
156  * @deva: Device to move in dpm_list.
157  * @devb: Device @deva should come before.
158  */
159 void device_pm_move_before(struct device *deva, struct device *devb)
160 {
161 	pr_debug("PM: Moving %s:%s before %s:%s\n",
162 		 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
163 		 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
164 	/* Delete deva from dpm_list and reinsert before devb. */
165 	list_move_tail(&deva->power.entry, &devb->power.entry);
166 }
167 
168 /**
169  * device_pm_move_after - Move device in the PM core's list of active devices.
170  * @deva: Device to move in dpm_list.
171  * @devb: Device @deva should come after.
172  */
173 void device_pm_move_after(struct device *deva, struct device *devb)
174 {
175 	pr_debug("PM: Moving %s:%s after %s:%s\n",
176 		 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
177 		 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
178 	/* Delete deva from dpm_list and reinsert after devb. */
179 	list_move(&deva->power.entry, &devb->power.entry);
180 }
181 
182 /**
183  * device_pm_move_last - Move device to end of the PM core's list of devices.
184  * @dev: Device to move in dpm_list.
185  */
186 void device_pm_move_last(struct device *dev)
187 {
188 	pr_debug("PM: Moving %s:%s to end of list\n",
189 		 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
190 	list_move_tail(&dev->power.entry, &dpm_list);
191 }
192 
193 static ktime_t initcall_debug_start(struct device *dev)
194 {
195 	ktime_t calltime = ktime_set(0, 0);
196 
197 	if (pm_print_times_enabled) {
198 		pr_info("calling  %s+ @ %i, parent: %s\n",
199 			dev_name(dev), task_pid_nr(current),
200 			dev->parent ? dev_name(dev->parent) : "none");
201 		calltime = ktime_get();
202 	}
203 
204 	return calltime;
205 }
206 
207 static void initcall_debug_report(struct device *dev, ktime_t calltime,
208 				  int error, pm_message_t state, char *info)
209 {
210 	ktime_t rettime;
211 	s64 nsecs;
212 
213 	rettime = ktime_get();
214 	nsecs = (s64) ktime_to_ns(ktime_sub(rettime, calltime));
215 
216 	if (pm_print_times_enabled) {
217 		pr_info("call %s+ returned %d after %Ld usecs\n", dev_name(dev),
218 			error, (unsigned long long)nsecs >> 10);
219 	}
220 }
221 
222 /**
223  * dpm_wait - Wait for a PM operation to complete.
224  * @dev: Device to wait for.
225  * @async: If unset, wait only if the device's power.async_suspend flag is set.
226  */
227 static void dpm_wait(struct device *dev, bool async)
228 {
229 	if (!dev)
230 		return;
231 
232 	if (async || (pm_async_enabled && dev->power.async_suspend))
233 		wait_for_completion(&dev->power.completion);
234 }
235 
236 static int dpm_wait_fn(struct device *dev, void *async_ptr)
237 {
238 	dpm_wait(dev, *((bool *)async_ptr));
239 	return 0;
240 }
241 
242 static void dpm_wait_for_children(struct device *dev, bool async)
243 {
244        device_for_each_child(dev, &async, dpm_wait_fn);
245 }
246 
247 /**
248  * pm_op - Return the PM operation appropriate for given PM event.
249  * @ops: PM operations to choose from.
250  * @state: PM transition of the system being carried out.
251  */
252 static pm_callback_t pm_op(const struct dev_pm_ops *ops, pm_message_t state)
253 {
254 	switch (state.event) {
255 #ifdef CONFIG_SUSPEND
256 	case PM_EVENT_SUSPEND:
257 		return ops->suspend;
258 	case PM_EVENT_RESUME:
259 		return ops->resume;
260 #endif /* CONFIG_SUSPEND */
261 #ifdef CONFIG_HIBERNATE_CALLBACKS
262 	case PM_EVENT_FREEZE:
263 	case PM_EVENT_QUIESCE:
264 		return ops->freeze;
265 	case PM_EVENT_HIBERNATE:
266 		return ops->poweroff;
267 	case PM_EVENT_THAW:
268 	case PM_EVENT_RECOVER:
269 		return ops->thaw;
270 		break;
271 	case PM_EVENT_RESTORE:
272 		return ops->restore;
273 #endif /* CONFIG_HIBERNATE_CALLBACKS */
274 	}
275 
276 	return NULL;
277 }
278 
279 /**
280  * pm_late_early_op - Return the PM operation appropriate for given PM event.
281  * @ops: PM operations to choose from.
282  * @state: PM transition of the system being carried out.
283  *
284  * Runtime PM is disabled for @dev while this function is being executed.
285  */
286 static pm_callback_t pm_late_early_op(const struct dev_pm_ops *ops,
287 				      pm_message_t state)
288 {
289 	switch (state.event) {
290 #ifdef CONFIG_SUSPEND
291 	case PM_EVENT_SUSPEND:
292 		return ops->suspend_late;
293 	case PM_EVENT_RESUME:
294 		return ops->resume_early;
295 #endif /* CONFIG_SUSPEND */
296 #ifdef CONFIG_HIBERNATE_CALLBACKS
297 	case PM_EVENT_FREEZE:
298 	case PM_EVENT_QUIESCE:
299 		return ops->freeze_late;
300 	case PM_EVENT_HIBERNATE:
301 		return ops->poweroff_late;
302 	case PM_EVENT_THAW:
303 	case PM_EVENT_RECOVER:
304 		return ops->thaw_early;
305 	case PM_EVENT_RESTORE:
306 		return ops->restore_early;
307 #endif /* CONFIG_HIBERNATE_CALLBACKS */
308 	}
309 
310 	return NULL;
311 }
312 
313 /**
314  * pm_noirq_op - Return the PM operation appropriate for given PM event.
315  * @ops: PM operations to choose from.
316  * @state: PM transition of the system being carried out.
317  *
318  * The driver of @dev will not receive interrupts while this function is being
319  * executed.
320  */
321 static pm_callback_t pm_noirq_op(const struct dev_pm_ops *ops, pm_message_t state)
322 {
323 	switch (state.event) {
324 #ifdef CONFIG_SUSPEND
325 	case PM_EVENT_SUSPEND:
326 		return ops->suspend_noirq;
327 	case PM_EVENT_RESUME:
328 		return ops->resume_noirq;
329 #endif /* CONFIG_SUSPEND */
330 #ifdef CONFIG_HIBERNATE_CALLBACKS
331 	case PM_EVENT_FREEZE:
332 	case PM_EVENT_QUIESCE:
333 		return ops->freeze_noirq;
334 	case PM_EVENT_HIBERNATE:
335 		return ops->poweroff_noirq;
336 	case PM_EVENT_THAW:
337 	case PM_EVENT_RECOVER:
338 		return ops->thaw_noirq;
339 	case PM_EVENT_RESTORE:
340 		return ops->restore_noirq;
341 #endif /* CONFIG_HIBERNATE_CALLBACKS */
342 	}
343 
344 	return NULL;
345 }
346 
347 static void pm_dev_dbg(struct device *dev, pm_message_t state, char *info)
348 {
349 	dev_dbg(dev, "%s%s%s\n", info, pm_verb(state.event),
350 		((state.event & PM_EVENT_SLEEP) && device_may_wakeup(dev)) ?
351 		", may wakeup" : "");
352 }
353 
354 static void pm_dev_err(struct device *dev, pm_message_t state, char *info,
355 			int error)
356 {
357 	printk(KERN_ERR "PM: Device %s failed to %s%s: error %d\n",
358 		dev_name(dev), pm_verb(state.event), info, error);
359 }
360 
361 static void dpm_show_time(ktime_t starttime, pm_message_t state, char *info)
362 {
363 	ktime_t calltime;
364 	u64 usecs64;
365 	int usecs;
366 
367 	calltime = ktime_get();
368 	usecs64 = ktime_to_ns(ktime_sub(calltime, starttime));
369 	do_div(usecs64, NSEC_PER_USEC);
370 	usecs = usecs64;
371 	if (usecs == 0)
372 		usecs = 1;
373 	pr_info("PM: %s%s%s of devices complete after %ld.%03ld msecs\n",
374 		info ?: "", info ? " " : "", pm_verb(state.event),
375 		usecs / USEC_PER_MSEC, usecs % USEC_PER_MSEC);
376 }
377 
378 static int dpm_run_callback(pm_callback_t cb, struct device *dev,
379 			    pm_message_t state, char *info)
380 {
381 	ktime_t calltime;
382 	int error;
383 
384 	if (!cb)
385 		return 0;
386 
387 	calltime = initcall_debug_start(dev);
388 
389 	pm_dev_dbg(dev, state, info);
390 	trace_device_pm_callback_start(dev, info, state.event);
391 	error = cb(dev);
392 	trace_device_pm_callback_end(dev, error);
393 	suspend_report_result(cb, error);
394 
395 	initcall_debug_report(dev, calltime, error, state, info);
396 
397 	return error;
398 }
399 
400 #ifdef CONFIG_DPM_WATCHDOG
401 struct dpm_watchdog {
402 	struct device		*dev;
403 	struct task_struct	*tsk;
404 	struct timer_list	timer;
405 };
406 
407 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd) \
408 	struct dpm_watchdog wd
409 
410 /**
411  * dpm_watchdog_handler - Driver suspend / resume watchdog handler.
412  * @data: Watchdog object address.
413  *
414  * Called when a driver has timed out suspending or resuming.
415  * There's not much we can do here to recover so panic() to
416  * capture a crash-dump in pstore.
417  */
418 static void dpm_watchdog_handler(unsigned long data)
419 {
420 	struct dpm_watchdog *wd = (void *)data;
421 
422 	dev_emerg(wd->dev, "**** DPM device timeout ****\n");
423 	show_stack(wd->tsk, NULL);
424 	panic("%s %s: unrecoverable failure\n",
425 		dev_driver_string(wd->dev), dev_name(wd->dev));
426 }
427 
428 /**
429  * dpm_watchdog_set - Enable pm watchdog for given device.
430  * @wd: Watchdog. Must be allocated on the stack.
431  * @dev: Device to handle.
432  */
433 static void dpm_watchdog_set(struct dpm_watchdog *wd, struct device *dev)
434 {
435 	struct timer_list *timer = &wd->timer;
436 
437 	wd->dev = dev;
438 	wd->tsk = current;
439 
440 	init_timer_on_stack(timer);
441 	/* use same timeout value for both suspend and resume */
442 	timer->expires = jiffies + HZ * CONFIG_DPM_WATCHDOG_TIMEOUT;
443 	timer->function = dpm_watchdog_handler;
444 	timer->data = (unsigned long)wd;
445 	add_timer(timer);
446 }
447 
448 /**
449  * dpm_watchdog_clear - Disable suspend/resume watchdog.
450  * @wd: Watchdog to disable.
451  */
452 static void dpm_watchdog_clear(struct dpm_watchdog *wd)
453 {
454 	struct timer_list *timer = &wd->timer;
455 
456 	del_timer_sync(timer);
457 	destroy_timer_on_stack(timer);
458 }
459 #else
460 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd)
461 #define dpm_watchdog_set(x, y)
462 #define dpm_watchdog_clear(x)
463 #endif
464 
465 /*------------------------- Resume routines -------------------------*/
466 
467 /**
468  * device_resume_noirq - Execute an "early resume" callback for given device.
469  * @dev: Device to handle.
470  * @state: PM transition of the system being carried out.
471  * @async: If true, the device is being resumed asynchronously.
472  *
473  * The driver of @dev will not receive interrupts while this function is being
474  * executed.
475  */
476 static int device_resume_noirq(struct device *dev, pm_message_t state, bool async)
477 {
478 	pm_callback_t callback = NULL;
479 	char *info = NULL;
480 	int error = 0;
481 
482 	TRACE_DEVICE(dev);
483 	TRACE_RESUME(0);
484 
485 	if (dev->power.syscore || dev->power.direct_complete)
486 		goto Out;
487 
488 	if (!dev->power.is_noirq_suspended)
489 		goto Out;
490 
491 	dpm_wait(dev->parent, async);
492 
493 	if (dev->pm_domain) {
494 		info = "noirq power domain ";
495 		callback = pm_noirq_op(&dev->pm_domain->ops, state);
496 	} else if (dev->type && dev->type->pm) {
497 		info = "noirq type ";
498 		callback = pm_noirq_op(dev->type->pm, state);
499 	} else if (dev->class && dev->class->pm) {
500 		info = "noirq class ";
501 		callback = pm_noirq_op(dev->class->pm, state);
502 	} else if (dev->bus && dev->bus->pm) {
503 		info = "noirq bus ";
504 		callback = pm_noirq_op(dev->bus->pm, state);
505 	}
506 
507 	if (!callback && dev->driver && dev->driver->pm) {
508 		info = "noirq driver ";
509 		callback = pm_noirq_op(dev->driver->pm, state);
510 	}
511 
512 	error = dpm_run_callback(callback, dev, state, info);
513 	dev->power.is_noirq_suspended = false;
514 
515  Out:
516 	complete_all(&dev->power.completion);
517 	TRACE_RESUME(error);
518 	return error;
519 }
520 
521 static bool is_async(struct device *dev)
522 {
523 	return dev->power.async_suspend && pm_async_enabled
524 		&& !pm_trace_is_enabled();
525 }
526 
527 static void async_resume_noirq(void *data, async_cookie_t cookie)
528 {
529 	struct device *dev = (struct device *)data;
530 	int error;
531 
532 	error = device_resume_noirq(dev, pm_transition, true);
533 	if (error)
534 		pm_dev_err(dev, pm_transition, " async", error);
535 
536 	put_device(dev);
537 }
538 
539 /**
540  * dpm_resume_noirq - Execute "noirq resume" callbacks for all devices.
541  * @state: PM transition of the system being carried out.
542  *
543  * Call the "noirq" resume handlers for all devices in dpm_noirq_list and
544  * enable device drivers to receive interrupts.
545  */
546 void dpm_resume_noirq(pm_message_t state)
547 {
548 	struct device *dev;
549 	ktime_t starttime = ktime_get();
550 
551 	trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, true);
552 	mutex_lock(&dpm_list_mtx);
553 	pm_transition = state;
554 
555 	/*
556 	 * Advanced the async threads upfront,
557 	 * in case the starting of async threads is
558 	 * delayed by non-async resuming devices.
559 	 */
560 	list_for_each_entry(dev, &dpm_noirq_list, power.entry) {
561 		reinit_completion(&dev->power.completion);
562 		if (is_async(dev)) {
563 			get_device(dev);
564 			async_schedule(async_resume_noirq, dev);
565 		}
566 	}
567 
568 	while (!list_empty(&dpm_noirq_list)) {
569 		dev = to_device(dpm_noirq_list.next);
570 		get_device(dev);
571 		list_move_tail(&dev->power.entry, &dpm_late_early_list);
572 		mutex_unlock(&dpm_list_mtx);
573 
574 		if (!is_async(dev)) {
575 			int error;
576 
577 			error = device_resume_noirq(dev, state, false);
578 			if (error) {
579 				suspend_stats.failed_resume_noirq++;
580 				dpm_save_failed_step(SUSPEND_RESUME_NOIRQ);
581 				dpm_save_failed_dev(dev_name(dev));
582 				pm_dev_err(dev, state, " noirq", error);
583 			}
584 		}
585 
586 		mutex_lock(&dpm_list_mtx);
587 		put_device(dev);
588 	}
589 	mutex_unlock(&dpm_list_mtx);
590 	async_synchronize_full();
591 	dpm_show_time(starttime, state, "noirq");
592 	resume_device_irqs();
593 	device_wakeup_disarm_wake_irqs();
594 	cpuidle_resume();
595 	trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, false);
596 }
597 
598 /**
599  * device_resume_early - Execute an "early resume" callback for given device.
600  * @dev: Device to handle.
601  * @state: PM transition of the system being carried out.
602  * @async: If true, the device is being resumed asynchronously.
603  *
604  * Runtime PM is disabled for @dev while this function is being executed.
605  */
606 static int device_resume_early(struct device *dev, pm_message_t state, bool async)
607 {
608 	pm_callback_t callback = NULL;
609 	char *info = NULL;
610 	int error = 0;
611 
612 	TRACE_DEVICE(dev);
613 	TRACE_RESUME(0);
614 
615 	if (dev->power.syscore || dev->power.direct_complete)
616 		goto Out;
617 
618 	if (!dev->power.is_late_suspended)
619 		goto Out;
620 
621 	dpm_wait(dev->parent, async);
622 
623 	if (dev->pm_domain) {
624 		info = "early power domain ";
625 		callback = pm_late_early_op(&dev->pm_domain->ops, state);
626 	} else if (dev->type && dev->type->pm) {
627 		info = "early type ";
628 		callback = pm_late_early_op(dev->type->pm, state);
629 	} else if (dev->class && dev->class->pm) {
630 		info = "early class ";
631 		callback = pm_late_early_op(dev->class->pm, state);
632 	} else if (dev->bus && dev->bus->pm) {
633 		info = "early bus ";
634 		callback = pm_late_early_op(dev->bus->pm, state);
635 	}
636 
637 	if (!callback && dev->driver && dev->driver->pm) {
638 		info = "early driver ";
639 		callback = pm_late_early_op(dev->driver->pm, state);
640 	}
641 
642 	error = dpm_run_callback(callback, dev, state, info);
643 	dev->power.is_late_suspended = false;
644 
645  Out:
646 	TRACE_RESUME(error);
647 
648 	pm_runtime_enable(dev);
649 	complete_all(&dev->power.completion);
650 	return error;
651 }
652 
653 static void async_resume_early(void *data, async_cookie_t cookie)
654 {
655 	struct device *dev = (struct device *)data;
656 	int error;
657 
658 	error = device_resume_early(dev, pm_transition, true);
659 	if (error)
660 		pm_dev_err(dev, pm_transition, " async", error);
661 
662 	put_device(dev);
663 }
664 
665 /**
666  * dpm_resume_early - Execute "early resume" callbacks for all devices.
667  * @state: PM transition of the system being carried out.
668  */
669 void dpm_resume_early(pm_message_t state)
670 {
671 	struct device *dev;
672 	ktime_t starttime = ktime_get();
673 
674 	trace_suspend_resume(TPS("dpm_resume_early"), state.event, true);
675 	mutex_lock(&dpm_list_mtx);
676 	pm_transition = state;
677 
678 	/*
679 	 * Advanced the async threads upfront,
680 	 * in case the starting of async threads is
681 	 * delayed by non-async resuming devices.
682 	 */
683 	list_for_each_entry(dev, &dpm_late_early_list, power.entry) {
684 		reinit_completion(&dev->power.completion);
685 		if (is_async(dev)) {
686 			get_device(dev);
687 			async_schedule(async_resume_early, dev);
688 		}
689 	}
690 
691 	while (!list_empty(&dpm_late_early_list)) {
692 		dev = to_device(dpm_late_early_list.next);
693 		get_device(dev);
694 		list_move_tail(&dev->power.entry, &dpm_suspended_list);
695 		mutex_unlock(&dpm_list_mtx);
696 
697 		if (!is_async(dev)) {
698 			int error;
699 
700 			error = device_resume_early(dev, state, false);
701 			if (error) {
702 				suspend_stats.failed_resume_early++;
703 				dpm_save_failed_step(SUSPEND_RESUME_EARLY);
704 				dpm_save_failed_dev(dev_name(dev));
705 				pm_dev_err(dev, state, " early", error);
706 			}
707 		}
708 		mutex_lock(&dpm_list_mtx);
709 		put_device(dev);
710 	}
711 	mutex_unlock(&dpm_list_mtx);
712 	async_synchronize_full();
713 	dpm_show_time(starttime, state, "early");
714 	trace_suspend_resume(TPS("dpm_resume_early"), state.event, false);
715 }
716 
717 /**
718  * dpm_resume_start - Execute "noirq" and "early" device callbacks.
719  * @state: PM transition of the system being carried out.
720  */
721 void dpm_resume_start(pm_message_t state)
722 {
723 	dpm_resume_noirq(state);
724 	dpm_resume_early(state);
725 }
726 EXPORT_SYMBOL_GPL(dpm_resume_start);
727 
728 /**
729  * device_resume - Execute "resume" callbacks for given device.
730  * @dev: Device to handle.
731  * @state: PM transition of the system being carried out.
732  * @async: If true, the device is being resumed asynchronously.
733  */
734 static int device_resume(struct device *dev, pm_message_t state, bool async)
735 {
736 	pm_callback_t callback = NULL;
737 	char *info = NULL;
738 	int error = 0;
739 	DECLARE_DPM_WATCHDOG_ON_STACK(wd);
740 
741 	TRACE_DEVICE(dev);
742 	TRACE_RESUME(0);
743 
744 	if (dev->power.syscore)
745 		goto Complete;
746 
747 	if (dev->power.direct_complete) {
748 		/* Match the pm_runtime_disable() in __device_suspend(). */
749 		pm_runtime_enable(dev);
750 		goto Complete;
751 	}
752 
753 	dpm_wait(dev->parent, async);
754 	dpm_watchdog_set(&wd, dev);
755 	device_lock(dev);
756 
757 	/*
758 	 * This is a fib.  But we'll allow new children to be added below
759 	 * a resumed device, even if the device hasn't been completed yet.
760 	 */
761 	dev->power.is_prepared = false;
762 
763 	if (!dev->power.is_suspended)
764 		goto Unlock;
765 
766 	if (dev->pm_domain) {
767 		info = "power domain ";
768 		callback = pm_op(&dev->pm_domain->ops, state);
769 		goto Driver;
770 	}
771 
772 	if (dev->type && dev->type->pm) {
773 		info = "type ";
774 		callback = pm_op(dev->type->pm, state);
775 		goto Driver;
776 	}
777 
778 	if (dev->class) {
779 		if (dev->class->pm) {
780 			info = "class ";
781 			callback = pm_op(dev->class->pm, state);
782 			goto Driver;
783 		} else if (dev->class->resume) {
784 			info = "legacy class ";
785 			callback = dev->class->resume;
786 			goto End;
787 		}
788 	}
789 
790 	if (dev->bus) {
791 		if (dev->bus->pm) {
792 			info = "bus ";
793 			callback = pm_op(dev->bus->pm, state);
794 		} else if (dev->bus->resume) {
795 			info = "legacy bus ";
796 			callback = dev->bus->resume;
797 			goto End;
798 		}
799 	}
800 
801  Driver:
802 	if (!callback && dev->driver && dev->driver->pm) {
803 		info = "driver ";
804 		callback = pm_op(dev->driver->pm, state);
805 	}
806 
807  End:
808 	error = dpm_run_callback(callback, dev, state, info);
809 	dev->power.is_suspended = false;
810 
811  Unlock:
812 	device_unlock(dev);
813 	dpm_watchdog_clear(&wd);
814 
815  Complete:
816 	complete_all(&dev->power.completion);
817 
818 	TRACE_RESUME(error);
819 
820 	return error;
821 }
822 
823 static void async_resume(void *data, async_cookie_t cookie)
824 {
825 	struct device *dev = (struct device *)data;
826 	int error;
827 
828 	error = device_resume(dev, pm_transition, true);
829 	if (error)
830 		pm_dev_err(dev, pm_transition, " async", error);
831 	put_device(dev);
832 }
833 
834 /**
835  * dpm_resume - Execute "resume" callbacks for non-sysdev devices.
836  * @state: PM transition of the system being carried out.
837  *
838  * Execute the appropriate "resume" callback for all devices whose status
839  * indicates that they are suspended.
840  */
841 void dpm_resume(pm_message_t state)
842 {
843 	struct device *dev;
844 	ktime_t starttime = ktime_get();
845 
846 	trace_suspend_resume(TPS("dpm_resume"), state.event, true);
847 	might_sleep();
848 
849 	mutex_lock(&dpm_list_mtx);
850 	pm_transition = state;
851 	async_error = 0;
852 
853 	list_for_each_entry(dev, &dpm_suspended_list, power.entry) {
854 		reinit_completion(&dev->power.completion);
855 		if (is_async(dev)) {
856 			get_device(dev);
857 			async_schedule(async_resume, dev);
858 		}
859 	}
860 
861 	while (!list_empty(&dpm_suspended_list)) {
862 		dev = to_device(dpm_suspended_list.next);
863 		get_device(dev);
864 		if (!is_async(dev)) {
865 			int error;
866 
867 			mutex_unlock(&dpm_list_mtx);
868 
869 			error = device_resume(dev, state, false);
870 			if (error) {
871 				suspend_stats.failed_resume++;
872 				dpm_save_failed_step(SUSPEND_RESUME);
873 				dpm_save_failed_dev(dev_name(dev));
874 				pm_dev_err(dev, state, "", error);
875 			}
876 
877 			mutex_lock(&dpm_list_mtx);
878 		}
879 		if (!list_empty(&dev->power.entry))
880 			list_move_tail(&dev->power.entry, &dpm_prepared_list);
881 		put_device(dev);
882 	}
883 	mutex_unlock(&dpm_list_mtx);
884 	async_synchronize_full();
885 	dpm_show_time(starttime, state, NULL);
886 
887 	cpufreq_resume();
888 	trace_suspend_resume(TPS("dpm_resume"), state.event, false);
889 }
890 
891 /**
892  * device_complete - Complete a PM transition for given device.
893  * @dev: Device to handle.
894  * @state: PM transition of the system being carried out.
895  */
896 static void device_complete(struct device *dev, pm_message_t state)
897 {
898 	void (*callback)(struct device *) = NULL;
899 	char *info = NULL;
900 
901 	if (dev->power.syscore)
902 		return;
903 
904 	device_lock(dev);
905 
906 	if (dev->pm_domain) {
907 		info = "completing power domain ";
908 		callback = dev->pm_domain->ops.complete;
909 	} else if (dev->type && dev->type->pm) {
910 		info = "completing type ";
911 		callback = dev->type->pm->complete;
912 	} else if (dev->class && dev->class->pm) {
913 		info = "completing class ";
914 		callback = dev->class->pm->complete;
915 	} else if (dev->bus && dev->bus->pm) {
916 		info = "completing bus ";
917 		callback = dev->bus->pm->complete;
918 	}
919 
920 	if (!callback && dev->driver && dev->driver->pm) {
921 		info = "completing driver ";
922 		callback = dev->driver->pm->complete;
923 	}
924 
925 	if (callback) {
926 		pm_dev_dbg(dev, state, info);
927 		callback(dev);
928 	}
929 
930 	device_unlock(dev);
931 
932 	pm_runtime_put(dev);
933 }
934 
935 /**
936  * dpm_complete - Complete a PM transition for all non-sysdev devices.
937  * @state: PM transition of the system being carried out.
938  *
939  * Execute the ->complete() callbacks for all devices whose PM status is not
940  * DPM_ON (this allows new devices to be registered).
941  */
942 void dpm_complete(pm_message_t state)
943 {
944 	struct list_head list;
945 
946 	trace_suspend_resume(TPS("dpm_complete"), state.event, true);
947 	might_sleep();
948 
949 	INIT_LIST_HEAD(&list);
950 	mutex_lock(&dpm_list_mtx);
951 	while (!list_empty(&dpm_prepared_list)) {
952 		struct device *dev = to_device(dpm_prepared_list.prev);
953 
954 		get_device(dev);
955 		dev->power.is_prepared = false;
956 		list_move(&dev->power.entry, &list);
957 		mutex_unlock(&dpm_list_mtx);
958 
959 		trace_device_pm_callback_start(dev, "", state.event);
960 		device_complete(dev, state);
961 		trace_device_pm_callback_end(dev, 0);
962 
963 		mutex_lock(&dpm_list_mtx);
964 		put_device(dev);
965 	}
966 	list_splice(&list, &dpm_list);
967 	mutex_unlock(&dpm_list_mtx);
968 
969 	/* Allow device probing and trigger re-probing of deferred devices */
970 	device_unblock_probing();
971 	trace_suspend_resume(TPS("dpm_complete"), state.event, false);
972 }
973 
974 /**
975  * dpm_resume_end - Execute "resume" callbacks and complete system transition.
976  * @state: PM transition of the system being carried out.
977  *
978  * Execute "resume" callbacks for all devices and complete the PM transition of
979  * the system.
980  */
981 void dpm_resume_end(pm_message_t state)
982 {
983 	dpm_resume(state);
984 	dpm_complete(state);
985 }
986 EXPORT_SYMBOL_GPL(dpm_resume_end);
987 
988 
989 /*------------------------- Suspend routines -------------------------*/
990 
991 /**
992  * resume_event - Return a "resume" message for given "suspend" sleep state.
993  * @sleep_state: PM message representing a sleep state.
994  *
995  * Return a PM message representing the resume event corresponding to given
996  * sleep state.
997  */
998 static pm_message_t resume_event(pm_message_t sleep_state)
999 {
1000 	switch (sleep_state.event) {
1001 	case PM_EVENT_SUSPEND:
1002 		return PMSG_RESUME;
1003 	case PM_EVENT_FREEZE:
1004 	case PM_EVENT_QUIESCE:
1005 		return PMSG_RECOVER;
1006 	case PM_EVENT_HIBERNATE:
1007 		return PMSG_RESTORE;
1008 	}
1009 	return PMSG_ON;
1010 }
1011 
1012 /**
1013  * device_suspend_noirq - Execute a "late suspend" callback for given device.
1014  * @dev: Device to handle.
1015  * @state: PM transition of the system being carried out.
1016  * @async: If true, the device is being suspended asynchronously.
1017  *
1018  * The driver of @dev will not receive interrupts while this function is being
1019  * executed.
1020  */
1021 static int __device_suspend_noirq(struct device *dev, pm_message_t state, bool async)
1022 {
1023 	pm_callback_t callback = NULL;
1024 	char *info = NULL;
1025 	int error = 0;
1026 
1027 	TRACE_DEVICE(dev);
1028 	TRACE_SUSPEND(0);
1029 
1030 	if (async_error)
1031 		goto Complete;
1032 
1033 	if (pm_wakeup_pending()) {
1034 		async_error = -EBUSY;
1035 		goto Complete;
1036 	}
1037 
1038 	if (dev->power.syscore || dev->power.direct_complete)
1039 		goto Complete;
1040 
1041 	dpm_wait_for_children(dev, async);
1042 
1043 	if (dev->pm_domain) {
1044 		info = "noirq power domain ";
1045 		callback = pm_noirq_op(&dev->pm_domain->ops, state);
1046 	} else if (dev->type && dev->type->pm) {
1047 		info = "noirq type ";
1048 		callback = pm_noirq_op(dev->type->pm, state);
1049 	} else if (dev->class && dev->class->pm) {
1050 		info = "noirq class ";
1051 		callback = pm_noirq_op(dev->class->pm, state);
1052 	} else if (dev->bus && dev->bus->pm) {
1053 		info = "noirq bus ";
1054 		callback = pm_noirq_op(dev->bus->pm, state);
1055 	}
1056 
1057 	if (!callback && dev->driver && dev->driver->pm) {
1058 		info = "noirq driver ";
1059 		callback = pm_noirq_op(dev->driver->pm, state);
1060 	}
1061 
1062 	error = dpm_run_callback(callback, dev, state, info);
1063 	if (!error)
1064 		dev->power.is_noirq_suspended = true;
1065 	else
1066 		async_error = error;
1067 
1068 Complete:
1069 	complete_all(&dev->power.completion);
1070 	TRACE_SUSPEND(error);
1071 	return error;
1072 }
1073 
1074 static void async_suspend_noirq(void *data, async_cookie_t cookie)
1075 {
1076 	struct device *dev = (struct device *)data;
1077 	int error;
1078 
1079 	error = __device_suspend_noirq(dev, pm_transition, true);
1080 	if (error) {
1081 		dpm_save_failed_dev(dev_name(dev));
1082 		pm_dev_err(dev, pm_transition, " async", error);
1083 	}
1084 
1085 	put_device(dev);
1086 }
1087 
1088 static int device_suspend_noirq(struct device *dev)
1089 {
1090 	reinit_completion(&dev->power.completion);
1091 
1092 	if (is_async(dev)) {
1093 		get_device(dev);
1094 		async_schedule(async_suspend_noirq, dev);
1095 		return 0;
1096 	}
1097 	return __device_suspend_noirq(dev, pm_transition, false);
1098 }
1099 
1100 /**
1101  * dpm_suspend_noirq - Execute "noirq suspend" callbacks for all devices.
1102  * @state: PM transition of the system being carried out.
1103  *
1104  * Prevent device drivers from receiving interrupts and call the "noirq" suspend
1105  * handlers for all non-sysdev devices.
1106  */
1107 int dpm_suspend_noirq(pm_message_t state)
1108 {
1109 	ktime_t starttime = ktime_get();
1110 	int error = 0;
1111 
1112 	trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, true);
1113 	cpuidle_pause();
1114 	device_wakeup_arm_wake_irqs();
1115 	suspend_device_irqs();
1116 	mutex_lock(&dpm_list_mtx);
1117 	pm_transition = state;
1118 	async_error = 0;
1119 
1120 	while (!list_empty(&dpm_late_early_list)) {
1121 		struct device *dev = to_device(dpm_late_early_list.prev);
1122 
1123 		get_device(dev);
1124 		mutex_unlock(&dpm_list_mtx);
1125 
1126 		error = device_suspend_noirq(dev);
1127 
1128 		mutex_lock(&dpm_list_mtx);
1129 		if (error) {
1130 			pm_dev_err(dev, state, " noirq", error);
1131 			dpm_save_failed_dev(dev_name(dev));
1132 			put_device(dev);
1133 			break;
1134 		}
1135 		if (!list_empty(&dev->power.entry))
1136 			list_move(&dev->power.entry, &dpm_noirq_list);
1137 		put_device(dev);
1138 
1139 		if (async_error)
1140 			break;
1141 	}
1142 	mutex_unlock(&dpm_list_mtx);
1143 	async_synchronize_full();
1144 	if (!error)
1145 		error = async_error;
1146 
1147 	if (error) {
1148 		suspend_stats.failed_suspend_noirq++;
1149 		dpm_save_failed_step(SUSPEND_SUSPEND_NOIRQ);
1150 		dpm_resume_noirq(resume_event(state));
1151 	} else {
1152 		dpm_show_time(starttime, state, "noirq");
1153 	}
1154 	trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, false);
1155 	return error;
1156 }
1157 
1158 /**
1159  * device_suspend_late - Execute a "late suspend" callback for given device.
1160  * @dev: Device to handle.
1161  * @state: PM transition of the system being carried out.
1162  * @async: If true, the device is being suspended asynchronously.
1163  *
1164  * Runtime PM is disabled for @dev while this function is being executed.
1165  */
1166 static int __device_suspend_late(struct device *dev, pm_message_t state, bool async)
1167 {
1168 	pm_callback_t callback = NULL;
1169 	char *info = NULL;
1170 	int error = 0;
1171 
1172 	TRACE_DEVICE(dev);
1173 	TRACE_SUSPEND(0);
1174 
1175 	__pm_runtime_disable(dev, false);
1176 
1177 	if (async_error)
1178 		goto Complete;
1179 
1180 	if (pm_wakeup_pending()) {
1181 		async_error = -EBUSY;
1182 		goto Complete;
1183 	}
1184 
1185 	if (dev->power.syscore || dev->power.direct_complete)
1186 		goto Complete;
1187 
1188 	dpm_wait_for_children(dev, async);
1189 
1190 	if (dev->pm_domain) {
1191 		info = "late power domain ";
1192 		callback = pm_late_early_op(&dev->pm_domain->ops, state);
1193 	} else if (dev->type && dev->type->pm) {
1194 		info = "late type ";
1195 		callback = pm_late_early_op(dev->type->pm, state);
1196 	} else if (dev->class && dev->class->pm) {
1197 		info = "late class ";
1198 		callback = pm_late_early_op(dev->class->pm, state);
1199 	} else if (dev->bus && dev->bus->pm) {
1200 		info = "late bus ";
1201 		callback = pm_late_early_op(dev->bus->pm, state);
1202 	}
1203 
1204 	if (!callback && dev->driver && dev->driver->pm) {
1205 		info = "late driver ";
1206 		callback = pm_late_early_op(dev->driver->pm, state);
1207 	}
1208 
1209 	error = dpm_run_callback(callback, dev, state, info);
1210 	if (!error)
1211 		dev->power.is_late_suspended = true;
1212 	else
1213 		async_error = error;
1214 
1215 Complete:
1216 	TRACE_SUSPEND(error);
1217 	complete_all(&dev->power.completion);
1218 	return error;
1219 }
1220 
1221 static void async_suspend_late(void *data, async_cookie_t cookie)
1222 {
1223 	struct device *dev = (struct device *)data;
1224 	int error;
1225 
1226 	error = __device_suspend_late(dev, pm_transition, true);
1227 	if (error) {
1228 		dpm_save_failed_dev(dev_name(dev));
1229 		pm_dev_err(dev, pm_transition, " async", error);
1230 	}
1231 	put_device(dev);
1232 }
1233 
1234 static int device_suspend_late(struct device *dev)
1235 {
1236 	reinit_completion(&dev->power.completion);
1237 
1238 	if (is_async(dev)) {
1239 		get_device(dev);
1240 		async_schedule(async_suspend_late, dev);
1241 		return 0;
1242 	}
1243 
1244 	return __device_suspend_late(dev, pm_transition, false);
1245 }
1246 
1247 /**
1248  * dpm_suspend_late - Execute "late suspend" callbacks for all devices.
1249  * @state: PM transition of the system being carried out.
1250  */
1251 int dpm_suspend_late(pm_message_t state)
1252 {
1253 	ktime_t starttime = ktime_get();
1254 	int error = 0;
1255 
1256 	trace_suspend_resume(TPS("dpm_suspend_late"), state.event, true);
1257 	mutex_lock(&dpm_list_mtx);
1258 	pm_transition = state;
1259 	async_error = 0;
1260 
1261 	while (!list_empty(&dpm_suspended_list)) {
1262 		struct device *dev = to_device(dpm_suspended_list.prev);
1263 
1264 		get_device(dev);
1265 		mutex_unlock(&dpm_list_mtx);
1266 
1267 		error = device_suspend_late(dev);
1268 
1269 		mutex_lock(&dpm_list_mtx);
1270 		if (error) {
1271 			pm_dev_err(dev, state, " late", error);
1272 			dpm_save_failed_dev(dev_name(dev));
1273 			put_device(dev);
1274 			break;
1275 		}
1276 		if (!list_empty(&dev->power.entry))
1277 			list_move(&dev->power.entry, &dpm_late_early_list);
1278 		put_device(dev);
1279 
1280 		if (async_error)
1281 			break;
1282 	}
1283 	mutex_unlock(&dpm_list_mtx);
1284 	async_synchronize_full();
1285 	if (!error)
1286 		error = async_error;
1287 	if (error) {
1288 		suspend_stats.failed_suspend_late++;
1289 		dpm_save_failed_step(SUSPEND_SUSPEND_LATE);
1290 		dpm_resume_early(resume_event(state));
1291 	} else {
1292 		dpm_show_time(starttime, state, "late");
1293 	}
1294 	trace_suspend_resume(TPS("dpm_suspend_late"), state.event, false);
1295 	return error;
1296 }
1297 
1298 /**
1299  * dpm_suspend_end - Execute "late" and "noirq" device suspend callbacks.
1300  * @state: PM transition of the system being carried out.
1301  */
1302 int dpm_suspend_end(pm_message_t state)
1303 {
1304 	int error = dpm_suspend_late(state);
1305 	if (error)
1306 		return error;
1307 
1308 	error = dpm_suspend_noirq(state);
1309 	if (error) {
1310 		dpm_resume_early(resume_event(state));
1311 		return error;
1312 	}
1313 
1314 	return 0;
1315 }
1316 EXPORT_SYMBOL_GPL(dpm_suspend_end);
1317 
1318 /**
1319  * legacy_suspend - Execute a legacy (bus or class) suspend callback for device.
1320  * @dev: Device to suspend.
1321  * @state: PM transition of the system being carried out.
1322  * @cb: Suspend callback to execute.
1323  * @info: string description of caller.
1324  */
1325 static int legacy_suspend(struct device *dev, pm_message_t state,
1326 			  int (*cb)(struct device *dev, pm_message_t state),
1327 			  char *info)
1328 {
1329 	int error;
1330 	ktime_t calltime;
1331 
1332 	calltime = initcall_debug_start(dev);
1333 
1334 	trace_device_pm_callback_start(dev, info, state.event);
1335 	error = cb(dev, state);
1336 	trace_device_pm_callback_end(dev, error);
1337 	suspend_report_result(cb, error);
1338 
1339 	initcall_debug_report(dev, calltime, error, state, info);
1340 
1341 	return error;
1342 }
1343 
1344 /**
1345  * device_suspend - Execute "suspend" callbacks for given device.
1346  * @dev: Device to handle.
1347  * @state: PM transition of the system being carried out.
1348  * @async: If true, the device is being suspended asynchronously.
1349  */
1350 static int __device_suspend(struct device *dev, pm_message_t state, bool async)
1351 {
1352 	pm_callback_t callback = NULL;
1353 	char *info = NULL;
1354 	int error = 0;
1355 	DECLARE_DPM_WATCHDOG_ON_STACK(wd);
1356 
1357 	TRACE_DEVICE(dev);
1358 	TRACE_SUSPEND(0);
1359 
1360 	dpm_wait_for_children(dev, async);
1361 
1362 	if (async_error)
1363 		goto Complete;
1364 
1365 	/*
1366 	 * If a device configured to wake up the system from sleep states
1367 	 * has been suspended at run time and there's a resume request pending
1368 	 * for it, this is equivalent to the device signaling wakeup, so the
1369 	 * system suspend operation should be aborted.
1370 	 */
1371 	if (pm_runtime_barrier(dev) && device_may_wakeup(dev))
1372 		pm_wakeup_event(dev, 0);
1373 
1374 	if (pm_wakeup_pending()) {
1375 		async_error = -EBUSY;
1376 		goto Complete;
1377 	}
1378 
1379 	if (dev->power.syscore)
1380 		goto Complete;
1381 
1382 	if (dev->power.direct_complete) {
1383 		if (pm_runtime_status_suspended(dev)) {
1384 			pm_runtime_disable(dev);
1385 			if (pm_runtime_status_suspended(dev))
1386 				goto Complete;
1387 
1388 			pm_runtime_enable(dev);
1389 		}
1390 		dev->power.direct_complete = false;
1391 	}
1392 
1393 	dpm_watchdog_set(&wd, dev);
1394 	device_lock(dev);
1395 
1396 	if (dev->pm_domain) {
1397 		info = "power domain ";
1398 		callback = pm_op(&dev->pm_domain->ops, state);
1399 		goto Run;
1400 	}
1401 
1402 	if (dev->type && dev->type->pm) {
1403 		info = "type ";
1404 		callback = pm_op(dev->type->pm, state);
1405 		goto Run;
1406 	}
1407 
1408 	if (dev->class) {
1409 		if (dev->class->pm) {
1410 			info = "class ";
1411 			callback = pm_op(dev->class->pm, state);
1412 			goto Run;
1413 		} else if (dev->class->suspend) {
1414 			pm_dev_dbg(dev, state, "legacy class ");
1415 			error = legacy_suspend(dev, state, dev->class->suspend,
1416 						"legacy class ");
1417 			goto End;
1418 		}
1419 	}
1420 
1421 	if (dev->bus) {
1422 		if (dev->bus->pm) {
1423 			info = "bus ";
1424 			callback = pm_op(dev->bus->pm, state);
1425 		} else if (dev->bus->suspend) {
1426 			pm_dev_dbg(dev, state, "legacy bus ");
1427 			error = legacy_suspend(dev, state, dev->bus->suspend,
1428 						"legacy bus ");
1429 			goto End;
1430 		}
1431 	}
1432 
1433  Run:
1434 	if (!callback && dev->driver && dev->driver->pm) {
1435 		info = "driver ";
1436 		callback = pm_op(dev->driver->pm, state);
1437 	}
1438 
1439 	error = dpm_run_callback(callback, dev, state, info);
1440 
1441  End:
1442 	if (!error) {
1443 		struct device *parent = dev->parent;
1444 
1445 		dev->power.is_suspended = true;
1446 		if (parent) {
1447 			spin_lock_irq(&parent->power.lock);
1448 
1449 			dev->parent->power.direct_complete = false;
1450 			if (dev->power.wakeup_path
1451 			    && !dev->parent->power.ignore_children)
1452 				dev->parent->power.wakeup_path = true;
1453 
1454 			spin_unlock_irq(&parent->power.lock);
1455 		}
1456 	}
1457 
1458 	device_unlock(dev);
1459 	dpm_watchdog_clear(&wd);
1460 
1461  Complete:
1462 	complete_all(&dev->power.completion);
1463 	if (error)
1464 		async_error = error;
1465 
1466 	TRACE_SUSPEND(error);
1467 	return error;
1468 }
1469 
1470 static void async_suspend(void *data, async_cookie_t cookie)
1471 {
1472 	struct device *dev = (struct device *)data;
1473 	int error;
1474 
1475 	error = __device_suspend(dev, pm_transition, true);
1476 	if (error) {
1477 		dpm_save_failed_dev(dev_name(dev));
1478 		pm_dev_err(dev, pm_transition, " async", error);
1479 	}
1480 
1481 	put_device(dev);
1482 }
1483 
1484 static int device_suspend(struct device *dev)
1485 {
1486 	reinit_completion(&dev->power.completion);
1487 
1488 	if (is_async(dev)) {
1489 		get_device(dev);
1490 		async_schedule(async_suspend, dev);
1491 		return 0;
1492 	}
1493 
1494 	return __device_suspend(dev, pm_transition, false);
1495 }
1496 
1497 /**
1498  * dpm_suspend - Execute "suspend" callbacks for all non-sysdev devices.
1499  * @state: PM transition of the system being carried out.
1500  */
1501 int dpm_suspend(pm_message_t state)
1502 {
1503 	ktime_t starttime = ktime_get();
1504 	int error = 0;
1505 
1506 	trace_suspend_resume(TPS("dpm_suspend"), state.event, true);
1507 	might_sleep();
1508 
1509 	cpufreq_suspend();
1510 
1511 	mutex_lock(&dpm_list_mtx);
1512 	pm_transition = state;
1513 	async_error = 0;
1514 	while (!list_empty(&dpm_prepared_list)) {
1515 		struct device *dev = to_device(dpm_prepared_list.prev);
1516 
1517 		get_device(dev);
1518 		mutex_unlock(&dpm_list_mtx);
1519 
1520 		error = device_suspend(dev);
1521 
1522 		mutex_lock(&dpm_list_mtx);
1523 		if (error) {
1524 			pm_dev_err(dev, state, "", error);
1525 			dpm_save_failed_dev(dev_name(dev));
1526 			put_device(dev);
1527 			break;
1528 		}
1529 		if (!list_empty(&dev->power.entry))
1530 			list_move(&dev->power.entry, &dpm_suspended_list);
1531 		put_device(dev);
1532 		if (async_error)
1533 			break;
1534 	}
1535 	mutex_unlock(&dpm_list_mtx);
1536 	async_synchronize_full();
1537 	if (!error)
1538 		error = async_error;
1539 	if (error) {
1540 		suspend_stats.failed_suspend++;
1541 		dpm_save_failed_step(SUSPEND_SUSPEND);
1542 	} else
1543 		dpm_show_time(starttime, state, NULL);
1544 	trace_suspend_resume(TPS("dpm_suspend"), state.event, false);
1545 	return error;
1546 }
1547 
1548 /**
1549  * device_prepare - Prepare a device for system power transition.
1550  * @dev: Device to handle.
1551  * @state: PM transition of the system being carried out.
1552  *
1553  * Execute the ->prepare() callback(s) for given device.  No new children of the
1554  * device may be registered after this function has returned.
1555  */
1556 static int device_prepare(struct device *dev, pm_message_t state)
1557 {
1558 	int (*callback)(struct device *) = NULL;
1559 	char *info = NULL;
1560 	int ret = 0;
1561 
1562 	if (dev->power.syscore)
1563 		return 0;
1564 
1565 	/*
1566 	 * If a device's parent goes into runtime suspend at the wrong time,
1567 	 * it won't be possible to resume the device.  To prevent this we
1568 	 * block runtime suspend here, during the prepare phase, and allow
1569 	 * it again during the complete phase.
1570 	 */
1571 	pm_runtime_get_noresume(dev);
1572 
1573 	device_lock(dev);
1574 
1575 	dev->power.wakeup_path = device_may_wakeup(dev);
1576 
1577 	if (dev->power.no_pm_callbacks) {
1578 		ret = 1;	/* Let device go direct_complete */
1579 		goto unlock;
1580 	}
1581 
1582 	if (dev->pm_domain) {
1583 		info = "preparing power domain ";
1584 		callback = dev->pm_domain->ops.prepare;
1585 	} else if (dev->type && dev->type->pm) {
1586 		info = "preparing type ";
1587 		callback = dev->type->pm->prepare;
1588 	} else if (dev->class && dev->class->pm) {
1589 		info = "preparing class ";
1590 		callback = dev->class->pm->prepare;
1591 	} else if (dev->bus && dev->bus->pm) {
1592 		info = "preparing bus ";
1593 		callback = dev->bus->pm->prepare;
1594 	}
1595 
1596 	if (!callback && dev->driver && dev->driver->pm) {
1597 		info = "preparing driver ";
1598 		callback = dev->driver->pm->prepare;
1599 	}
1600 
1601 	if (callback)
1602 		ret = callback(dev);
1603 
1604 unlock:
1605 	device_unlock(dev);
1606 
1607 	if (ret < 0) {
1608 		suspend_report_result(callback, ret);
1609 		pm_runtime_put(dev);
1610 		return ret;
1611 	}
1612 	/*
1613 	 * A positive return value from ->prepare() means "this device appears
1614 	 * to be runtime-suspended and its state is fine, so if it really is
1615 	 * runtime-suspended, you can leave it in that state provided that you
1616 	 * will do the same thing with all of its descendants".  This only
1617 	 * applies to suspend transitions, however.
1618 	 */
1619 	spin_lock_irq(&dev->power.lock);
1620 	dev->power.direct_complete = ret > 0 && state.event == PM_EVENT_SUSPEND;
1621 	spin_unlock_irq(&dev->power.lock);
1622 	return 0;
1623 }
1624 
1625 /**
1626  * dpm_prepare - Prepare all non-sysdev devices for a system PM transition.
1627  * @state: PM transition of the system being carried out.
1628  *
1629  * Execute the ->prepare() callback(s) for all devices.
1630  */
1631 int dpm_prepare(pm_message_t state)
1632 {
1633 	int error = 0;
1634 
1635 	trace_suspend_resume(TPS("dpm_prepare"), state.event, true);
1636 	might_sleep();
1637 
1638 	/*
1639 	 * Give a chance for the known devices to complete their probes, before
1640 	 * disable probing of devices. This sync point is important at least
1641 	 * at boot time + hibernation restore.
1642 	 */
1643 	wait_for_device_probe();
1644 	/*
1645 	 * It is unsafe if probing of devices will happen during suspend or
1646 	 * hibernation and system behavior will be unpredictable in this case.
1647 	 * So, let's prohibit device's probing here and defer their probes
1648 	 * instead. The normal behavior will be restored in dpm_complete().
1649 	 */
1650 	device_block_probing();
1651 
1652 	mutex_lock(&dpm_list_mtx);
1653 	while (!list_empty(&dpm_list)) {
1654 		struct device *dev = to_device(dpm_list.next);
1655 
1656 		get_device(dev);
1657 		mutex_unlock(&dpm_list_mtx);
1658 
1659 		trace_device_pm_callback_start(dev, "", state.event);
1660 		error = device_prepare(dev, state);
1661 		trace_device_pm_callback_end(dev, error);
1662 
1663 		mutex_lock(&dpm_list_mtx);
1664 		if (error) {
1665 			if (error == -EAGAIN) {
1666 				put_device(dev);
1667 				error = 0;
1668 				continue;
1669 			}
1670 			printk(KERN_INFO "PM: Device %s not prepared "
1671 				"for power transition: code %d\n",
1672 				dev_name(dev), error);
1673 			put_device(dev);
1674 			break;
1675 		}
1676 		dev->power.is_prepared = true;
1677 		if (!list_empty(&dev->power.entry))
1678 			list_move_tail(&dev->power.entry, &dpm_prepared_list);
1679 		put_device(dev);
1680 	}
1681 	mutex_unlock(&dpm_list_mtx);
1682 	trace_suspend_resume(TPS("dpm_prepare"), state.event, false);
1683 	return error;
1684 }
1685 
1686 /**
1687  * dpm_suspend_start - Prepare devices for PM transition and suspend them.
1688  * @state: PM transition of the system being carried out.
1689  *
1690  * Prepare all non-sysdev devices for system PM transition and execute "suspend"
1691  * callbacks for them.
1692  */
1693 int dpm_suspend_start(pm_message_t state)
1694 {
1695 	int error;
1696 
1697 	error = dpm_prepare(state);
1698 	if (error) {
1699 		suspend_stats.failed_prepare++;
1700 		dpm_save_failed_step(SUSPEND_PREPARE);
1701 	} else
1702 		error = dpm_suspend(state);
1703 	return error;
1704 }
1705 EXPORT_SYMBOL_GPL(dpm_suspend_start);
1706 
1707 void __suspend_report_result(const char *function, void *fn, int ret)
1708 {
1709 	if (ret)
1710 		printk(KERN_ERR "%s(): %pF returns %d\n", function, fn, ret);
1711 }
1712 EXPORT_SYMBOL_GPL(__suspend_report_result);
1713 
1714 /**
1715  * device_pm_wait_for_dev - Wait for suspend/resume of a device to complete.
1716  * @dev: Device to wait for.
1717  * @subordinate: Device that needs to wait for @dev.
1718  */
1719 int device_pm_wait_for_dev(struct device *subordinate, struct device *dev)
1720 {
1721 	dpm_wait(dev, subordinate->power.async_suspend);
1722 	return async_error;
1723 }
1724 EXPORT_SYMBOL_GPL(device_pm_wait_for_dev);
1725 
1726 /**
1727  * dpm_for_each_dev - device iterator.
1728  * @data: data for the callback.
1729  * @fn: function to be called for each device.
1730  *
1731  * Iterate over devices in dpm_list, and call @fn for each device,
1732  * passing it @data.
1733  */
1734 void dpm_for_each_dev(void *data, void (*fn)(struct device *, void *))
1735 {
1736 	struct device *dev;
1737 
1738 	if (!fn)
1739 		return;
1740 
1741 	device_pm_lock();
1742 	list_for_each_entry(dev, &dpm_list, power.entry)
1743 		fn(dev, data);
1744 	device_pm_unlock();
1745 }
1746 EXPORT_SYMBOL_GPL(dpm_for_each_dev);
1747 
1748 static bool pm_ops_is_empty(const struct dev_pm_ops *ops)
1749 {
1750 	if (!ops)
1751 		return true;
1752 
1753 	return !ops->prepare &&
1754 	       !ops->suspend &&
1755 	       !ops->suspend_late &&
1756 	       !ops->suspend_noirq &&
1757 	       !ops->resume_noirq &&
1758 	       !ops->resume_early &&
1759 	       !ops->resume &&
1760 	       !ops->complete;
1761 }
1762 
1763 void device_pm_check_callbacks(struct device *dev)
1764 {
1765 	spin_lock_irq(&dev->power.lock);
1766 	dev->power.no_pm_callbacks =
1767 		(!dev->bus || pm_ops_is_empty(dev->bus->pm)) &&
1768 		(!dev->class || pm_ops_is_empty(dev->class->pm)) &&
1769 		(!dev->type || pm_ops_is_empty(dev->type->pm)) &&
1770 		(!dev->pm_domain || pm_ops_is_empty(&dev->pm_domain->ops)) &&
1771 		(!dev->driver || pm_ops_is_empty(dev->driver->pm));
1772 	spin_unlock_irq(&dev->power.lock);
1773 }
1774