xref: /linux/drivers/base/power/main.c (revision 95e9fd10f06cb5642028b6b851e32b8c8afb4571)
1 /*
2  * drivers/base/power/main.c - Where the driver meets power management.
3  *
4  * Copyright (c) 2003 Patrick Mochel
5  * Copyright (c) 2003 Open Source Development Lab
6  *
7  * This file is released under the GPLv2
8  *
9  *
10  * The driver model core calls device_pm_add() when a device is registered.
11  * This will initialize the embedded device_pm_info object in the device
12  * and add it to the list of power-controlled devices. sysfs entries for
13  * controlling device power management will also be added.
14  *
15  * A separate list is used for keeping track of power info, because the power
16  * domain dependencies may differ from the ancestral dependencies that the
17  * subsystem list maintains.
18  */
19 
20 #include <linux/device.h>
21 #include <linux/kallsyms.h>
22 #include <linux/export.h>
23 #include <linux/mutex.h>
24 #include <linux/pm.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/resume-trace.h>
27 #include <linux/interrupt.h>
28 #include <linux/sched.h>
29 #include <linux/async.h>
30 #include <linux/suspend.h>
31 #include <linux/cpuidle.h>
32 #include "../base.h"
33 #include "power.h"
34 
35 typedef int (*pm_callback_t)(struct device *);
36 
37 /*
38  * The entries in the dpm_list list are in a depth first order, simply
39  * because children are guaranteed to be discovered after parents, and
40  * are inserted at the back of the list on discovery.
41  *
42  * Since device_pm_add() may be called with a device lock held,
43  * we must never try to acquire a device lock while holding
44  * dpm_list_mutex.
45  */
46 
47 LIST_HEAD(dpm_list);
48 static LIST_HEAD(dpm_prepared_list);
49 static LIST_HEAD(dpm_suspended_list);
50 static LIST_HEAD(dpm_late_early_list);
51 static LIST_HEAD(dpm_noirq_list);
52 
53 struct suspend_stats suspend_stats;
54 static DEFINE_MUTEX(dpm_list_mtx);
55 static pm_message_t pm_transition;
56 
57 static int async_error;
58 
59 /**
60  * device_pm_init - Initialize the PM-related part of a device object.
61  * @dev: Device object being initialized.
62  */
63 void device_pm_init(struct device *dev)
64 {
65 	dev->power.is_prepared = false;
66 	dev->power.is_suspended = false;
67 	init_completion(&dev->power.completion);
68 	complete_all(&dev->power.completion);
69 	dev->power.wakeup = NULL;
70 	spin_lock_init(&dev->power.lock);
71 	pm_runtime_init(dev);
72 	INIT_LIST_HEAD(&dev->power.entry);
73 	dev->power.power_state = PMSG_INVALID;
74 }
75 
76 /**
77  * device_pm_lock - Lock the list of active devices used by the PM core.
78  */
79 void device_pm_lock(void)
80 {
81 	mutex_lock(&dpm_list_mtx);
82 }
83 
84 /**
85  * device_pm_unlock - Unlock the list of active devices used by the PM core.
86  */
87 void device_pm_unlock(void)
88 {
89 	mutex_unlock(&dpm_list_mtx);
90 }
91 
92 /**
93  * device_pm_add - Add a device to the PM core's list of active devices.
94  * @dev: Device to add to the list.
95  */
96 void device_pm_add(struct device *dev)
97 {
98 	pr_debug("PM: Adding info for %s:%s\n",
99 		 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
100 	mutex_lock(&dpm_list_mtx);
101 	if (dev->parent && dev->parent->power.is_prepared)
102 		dev_warn(dev, "parent %s should not be sleeping\n",
103 			dev_name(dev->parent));
104 	list_add_tail(&dev->power.entry, &dpm_list);
105 	dev_pm_qos_constraints_init(dev);
106 	mutex_unlock(&dpm_list_mtx);
107 }
108 
109 /**
110  * device_pm_remove - Remove a device from the PM core's list of active devices.
111  * @dev: Device to be removed from the list.
112  */
113 void device_pm_remove(struct device *dev)
114 {
115 	pr_debug("PM: Removing info for %s:%s\n",
116 		 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
117 	complete_all(&dev->power.completion);
118 	mutex_lock(&dpm_list_mtx);
119 	dev_pm_qos_constraints_destroy(dev);
120 	list_del_init(&dev->power.entry);
121 	mutex_unlock(&dpm_list_mtx);
122 	device_wakeup_disable(dev);
123 	pm_runtime_remove(dev);
124 }
125 
126 /**
127  * device_pm_move_before - Move device in the PM core's list of active devices.
128  * @deva: Device to move in dpm_list.
129  * @devb: Device @deva should come before.
130  */
131 void device_pm_move_before(struct device *deva, struct device *devb)
132 {
133 	pr_debug("PM: Moving %s:%s before %s:%s\n",
134 		 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
135 		 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
136 	/* Delete deva from dpm_list and reinsert before devb. */
137 	list_move_tail(&deva->power.entry, &devb->power.entry);
138 }
139 
140 /**
141  * device_pm_move_after - Move device in the PM core's list of active devices.
142  * @deva: Device to move in dpm_list.
143  * @devb: Device @deva should come after.
144  */
145 void device_pm_move_after(struct device *deva, struct device *devb)
146 {
147 	pr_debug("PM: Moving %s:%s after %s:%s\n",
148 		 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
149 		 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
150 	/* Delete deva from dpm_list and reinsert after devb. */
151 	list_move(&deva->power.entry, &devb->power.entry);
152 }
153 
154 /**
155  * device_pm_move_last - Move device to end of the PM core's list of devices.
156  * @dev: Device to move in dpm_list.
157  */
158 void device_pm_move_last(struct device *dev)
159 {
160 	pr_debug("PM: Moving %s:%s to end of list\n",
161 		 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
162 	list_move_tail(&dev->power.entry, &dpm_list);
163 }
164 
165 static ktime_t initcall_debug_start(struct device *dev)
166 {
167 	ktime_t calltime = ktime_set(0, 0);
168 
169 	if (pm_print_times_enabled) {
170 		pr_info("calling  %s+ @ %i, parent: %s\n",
171 			dev_name(dev), task_pid_nr(current),
172 			dev->parent ? dev_name(dev->parent) : "none");
173 		calltime = ktime_get();
174 	}
175 
176 	return calltime;
177 }
178 
179 static void initcall_debug_report(struct device *dev, ktime_t calltime,
180 				  int error)
181 {
182 	ktime_t delta, rettime;
183 
184 	if (pm_print_times_enabled) {
185 		rettime = ktime_get();
186 		delta = ktime_sub(rettime, calltime);
187 		pr_info("call %s+ returned %d after %Ld usecs\n", dev_name(dev),
188 			error, (unsigned long long)ktime_to_ns(delta) >> 10);
189 	}
190 }
191 
192 /**
193  * dpm_wait - Wait for a PM operation to complete.
194  * @dev: Device to wait for.
195  * @async: If unset, wait only if the device's power.async_suspend flag is set.
196  */
197 static void dpm_wait(struct device *dev, bool async)
198 {
199 	if (!dev)
200 		return;
201 
202 	if (async || (pm_async_enabled && dev->power.async_suspend))
203 		wait_for_completion(&dev->power.completion);
204 }
205 
206 static int dpm_wait_fn(struct device *dev, void *async_ptr)
207 {
208 	dpm_wait(dev, *((bool *)async_ptr));
209 	return 0;
210 }
211 
212 static void dpm_wait_for_children(struct device *dev, bool async)
213 {
214        device_for_each_child(dev, &async, dpm_wait_fn);
215 }
216 
217 /**
218  * pm_op - Return the PM operation appropriate for given PM event.
219  * @ops: PM operations to choose from.
220  * @state: PM transition of the system being carried out.
221  */
222 static pm_callback_t pm_op(const struct dev_pm_ops *ops, pm_message_t state)
223 {
224 	switch (state.event) {
225 #ifdef CONFIG_SUSPEND
226 	case PM_EVENT_SUSPEND:
227 		return ops->suspend;
228 	case PM_EVENT_RESUME:
229 		return ops->resume;
230 #endif /* CONFIG_SUSPEND */
231 #ifdef CONFIG_HIBERNATE_CALLBACKS
232 	case PM_EVENT_FREEZE:
233 	case PM_EVENT_QUIESCE:
234 		return ops->freeze;
235 	case PM_EVENT_HIBERNATE:
236 		return ops->poweroff;
237 	case PM_EVENT_THAW:
238 	case PM_EVENT_RECOVER:
239 		return ops->thaw;
240 		break;
241 	case PM_EVENT_RESTORE:
242 		return ops->restore;
243 #endif /* CONFIG_HIBERNATE_CALLBACKS */
244 	}
245 
246 	return NULL;
247 }
248 
249 /**
250  * pm_late_early_op - Return the PM operation appropriate for given PM event.
251  * @ops: PM operations to choose from.
252  * @state: PM transition of the system being carried out.
253  *
254  * Runtime PM is disabled for @dev while this function is being executed.
255  */
256 static pm_callback_t pm_late_early_op(const struct dev_pm_ops *ops,
257 				      pm_message_t state)
258 {
259 	switch (state.event) {
260 #ifdef CONFIG_SUSPEND
261 	case PM_EVENT_SUSPEND:
262 		return ops->suspend_late;
263 	case PM_EVENT_RESUME:
264 		return ops->resume_early;
265 #endif /* CONFIG_SUSPEND */
266 #ifdef CONFIG_HIBERNATE_CALLBACKS
267 	case PM_EVENT_FREEZE:
268 	case PM_EVENT_QUIESCE:
269 		return ops->freeze_late;
270 	case PM_EVENT_HIBERNATE:
271 		return ops->poweroff_late;
272 	case PM_EVENT_THAW:
273 	case PM_EVENT_RECOVER:
274 		return ops->thaw_early;
275 	case PM_EVENT_RESTORE:
276 		return ops->restore_early;
277 #endif /* CONFIG_HIBERNATE_CALLBACKS */
278 	}
279 
280 	return NULL;
281 }
282 
283 /**
284  * pm_noirq_op - Return the PM operation appropriate for given PM event.
285  * @ops: PM operations to choose from.
286  * @state: PM transition of the system being carried out.
287  *
288  * The driver of @dev will not receive interrupts while this function is being
289  * executed.
290  */
291 static pm_callback_t pm_noirq_op(const struct dev_pm_ops *ops, pm_message_t state)
292 {
293 	switch (state.event) {
294 #ifdef CONFIG_SUSPEND
295 	case PM_EVENT_SUSPEND:
296 		return ops->suspend_noirq;
297 	case PM_EVENT_RESUME:
298 		return ops->resume_noirq;
299 #endif /* CONFIG_SUSPEND */
300 #ifdef CONFIG_HIBERNATE_CALLBACKS
301 	case PM_EVENT_FREEZE:
302 	case PM_EVENT_QUIESCE:
303 		return ops->freeze_noirq;
304 	case PM_EVENT_HIBERNATE:
305 		return ops->poweroff_noirq;
306 	case PM_EVENT_THAW:
307 	case PM_EVENT_RECOVER:
308 		return ops->thaw_noirq;
309 	case PM_EVENT_RESTORE:
310 		return ops->restore_noirq;
311 #endif /* CONFIG_HIBERNATE_CALLBACKS */
312 	}
313 
314 	return NULL;
315 }
316 
317 static char *pm_verb(int event)
318 {
319 	switch (event) {
320 	case PM_EVENT_SUSPEND:
321 		return "suspend";
322 	case PM_EVENT_RESUME:
323 		return "resume";
324 	case PM_EVENT_FREEZE:
325 		return "freeze";
326 	case PM_EVENT_QUIESCE:
327 		return "quiesce";
328 	case PM_EVENT_HIBERNATE:
329 		return "hibernate";
330 	case PM_EVENT_THAW:
331 		return "thaw";
332 	case PM_EVENT_RESTORE:
333 		return "restore";
334 	case PM_EVENT_RECOVER:
335 		return "recover";
336 	default:
337 		return "(unknown PM event)";
338 	}
339 }
340 
341 static void pm_dev_dbg(struct device *dev, pm_message_t state, char *info)
342 {
343 	dev_dbg(dev, "%s%s%s\n", info, pm_verb(state.event),
344 		((state.event & PM_EVENT_SLEEP) && device_may_wakeup(dev)) ?
345 		", may wakeup" : "");
346 }
347 
348 static void pm_dev_err(struct device *dev, pm_message_t state, char *info,
349 			int error)
350 {
351 	printk(KERN_ERR "PM: Device %s failed to %s%s: error %d\n",
352 		dev_name(dev), pm_verb(state.event), info, error);
353 }
354 
355 static void dpm_show_time(ktime_t starttime, pm_message_t state, char *info)
356 {
357 	ktime_t calltime;
358 	u64 usecs64;
359 	int usecs;
360 
361 	calltime = ktime_get();
362 	usecs64 = ktime_to_ns(ktime_sub(calltime, starttime));
363 	do_div(usecs64, NSEC_PER_USEC);
364 	usecs = usecs64;
365 	if (usecs == 0)
366 		usecs = 1;
367 	pr_info("PM: %s%s%s of devices complete after %ld.%03ld msecs\n",
368 		info ?: "", info ? " " : "", pm_verb(state.event),
369 		usecs / USEC_PER_MSEC, usecs % USEC_PER_MSEC);
370 }
371 
372 static int dpm_run_callback(pm_callback_t cb, struct device *dev,
373 			    pm_message_t state, char *info)
374 {
375 	ktime_t calltime;
376 	int error;
377 
378 	if (!cb)
379 		return 0;
380 
381 	calltime = initcall_debug_start(dev);
382 
383 	pm_dev_dbg(dev, state, info);
384 	error = cb(dev);
385 	suspend_report_result(cb, error);
386 
387 	initcall_debug_report(dev, calltime, error);
388 
389 	return error;
390 }
391 
392 /*------------------------- Resume routines -------------------------*/
393 
394 /**
395  * device_resume_noirq - Execute an "early resume" callback for given device.
396  * @dev: Device to handle.
397  * @state: PM transition of the system being carried out.
398  *
399  * The driver of @dev will not receive interrupts while this function is being
400  * executed.
401  */
402 static int device_resume_noirq(struct device *dev, pm_message_t state)
403 {
404 	pm_callback_t callback = NULL;
405 	char *info = NULL;
406 	int error = 0;
407 
408 	TRACE_DEVICE(dev);
409 	TRACE_RESUME(0);
410 
411 	if (dev->pm_domain) {
412 		info = "noirq power domain ";
413 		callback = pm_noirq_op(&dev->pm_domain->ops, state);
414 	} else if (dev->type && dev->type->pm) {
415 		info = "noirq type ";
416 		callback = pm_noirq_op(dev->type->pm, state);
417 	} else if (dev->class && dev->class->pm) {
418 		info = "noirq class ";
419 		callback = pm_noirq_op(dev->class->pm, state);
420 	} else if (dev->bus && dev->bus->pm) {
421 		info = "noirq bus ";
422 		callback = pm_noirq_op(dev->bus->pm, state);
423 	}
424 
425 	if (!callback && dev->driver && dev->driver->pm) {
426 		info = "noirq driver ";
427 		callback = pm_noirq_op(dev->driver->pm, state);
428 	}
429 
430 	error = dpm_run_callback(callback, dev, state, info);
431 
432 	TRACE_RESUME(error);
433 	return error;
434 }
435 
436 /**
437  * dpm_resume_noirq - Execute "noirq resume" callbacks for all devices.
438  * @state: PM transition of the system being carried out.
439  *
440  * Call the "noirq" resume handlers for all devices in dpm_noirq_list and
441  * enable device drivers to receive interrupts.
442  */
443 static void dpm_resume_noirq(pm_message_t state)
444 {
445 	ktime_t starttime = ktime_get();
446 
447 	mutex_lock(&dpm_list_mtx);
448 	while (!list_empty(&dpm_noirq_list)) {
449 		struct device *dev = to_device(dpm_noirq_list.next);
450 		int error;
451 
452 		get_device(dev);
453 		list_move_tail(&dev->power.entry, &dpm_late_early_list);
454 		mutex_unlock(&dpm_list_mtx);
455 
456 		error = device_resume_noirq(dev, state);
457 		if (error) {
458 			suspend_stats.failed_resume_noirq++;
459 			dpm_save_failed_step(SUSPEND_RESUME_NOIRQ);
460 			dpm_save_failed_dev(dev_name(dev));
461 			pm_dev_err(dev, state, " noirq", error);
462 		}
463 
464 		mutex_lock(&dpm_list_mtx);
465 		put_device(dev);
466 	}
467 	mutex_unlock(&dpm_list_mtx);
468 	dpm_show_time(starttime, state, "noirq");
469 	resume_device_irqs();
470 	cpuidle_resume();
471 }
472 
473 /**
474  * device_resume_early - Execute an "early resume" callback for given device.
475  * @dev: Device to handle.
476  * @state: PM transition of the system being carried out.
477  *
478  * Runtime PM is disabled for @dev while this function is being executed.
479  */
480 static int device_resume_early(struct device *dev, pm_message_t state)
481 {
482 	pm_callback_t callback = NULL;
483 	char *info = NULL;
484 	int error = 0;
485 
486 	TRACE_DEVICE(dev);
487 	TRACE_RESUME(0);
488 
489 	if (dev->pm_domain) {
490 		info = "early power domain ";
491 		callback = pm_late_early_op(&dev->pm_domain->ops, state);
492 	} else if (dev->type && dev->type->pm) {
493 		info = "early type ";
494 		callback = pm_late_early_op(dev->type->pm, state);
495 	} else if (dev->class && dev->class->pm) {
496 		info = "early class ";
497 		callback = pm_late_early_op(dev->class->pm, state);
498 	} else if (dev->bus && dev->bus->pm) {
499 		info = "early bus ";
500 		callback = pm_late_early_op(dev->bus->pm, state);
501 	}
502 
503 	if (!callback && dev->driver && dev->driver->pm) {
504 		info = "early driver ";
505 		callback = pm_late_early_op(dev->driver->pm, state);
506 	}
507 
508 	error = dpm_run_callback(callback, dev, state, info);
509 
510 	TRACE_RESUME(error);
511 	return error;
512 }
513 
514 /**
515  * dpm_resume_early - Execute "early resume" callbacks for all devices.
516  * @state: PM transition of the system being carried out.
517  */
518 static void dpm_resume_early(pm_message_t state)
519 {
520 	ktime_t starttime = ktime_get();
521 
522 	mutex_lock(&dpm_list_mtx);
523 	while (!list_empty(&dpm_late_early_list)) {
524 		struct device *dev = to_device(dpm_late_early_list.next);
525 		int error;
526 
527 		get_device(dev);
528 		list_move_tail(&dev->power.entry, &dpm_suspended_list);
529 		mutex_unlock(&dpm_list_mtx);
530 
531 		error = device_resume_early(dev, state);
532 		if (error) {
533 			suspend_stats.failed_resume_early++;
534 			dpm_save_failed_step(SUSPEND_RESUME_EARLY);
535 			dpm_save_failed_dev(dev_name(dev));
536 			pm_dev_err(dev, state, " early", error);
537 		}
538 
539 		mutex_lock(&dpm_list_mtx);
540 		put_device(dev);
541 	}
542 	mutex_unlock(&dpm_list_mtx);
543 	dpm_show_time(starttime, state, "early");
544 }
545 
546 /**
547  * dpm_resume_start - Execute "noirq" and "early" device callbacks.
548  * @state: PM transition of the system being carried out.
549  */
550 void dpm_resume_start(pm_message_t state)
551 {
552 	dpm_resume_noirq(state);
553 	dpm_resume_early(state);
554 }
555 EXPORT_SYMBOL_GPL(dpm_resume_start);
556 
557 /**
558  * device_resume - Execute "resume" callbacks for given device.
559  * @dev: Device to handle.
560  * @state: PM transition of the system being carried out.
561  * @async: If true, the device is being resumed asynchronously.
562  */
563 static int device_resume(struct device *dev, pm_message_t state, bool async)
564 {
565 	pm_callback_t callback = NULL;
566 	char *info = NULL;
567 	int error = 0;
568 	bool put = false;
569 
570 	TRACE_DEVICE(dev);
571 	TRACE_RESUME(0);
572 
573 	dpm_wait(dev->parent, async);
574 	device_lock(dev);
575 
576 	/*
577 	 * This is a fib.  But we'll allow new children to be added below
578 	 * a resumed device, even if the device hasn't been completed yet.
579 	 */
580 	dev->power.is_prepared = false;
581 
582 	if (!dev->power.is_suspended)
583 		goto Unlock;
584 
585 	pm_runtime_enable(dev);
586 	put = true;
587 
588 	if (dev->pm_domain) {
589 		info = "power domain ";
590 		callback = pm_op(&dev->pm_domain->ops, state);
591 		goto Driver;
592 	}
593 
594 	if (dev->type && dev->type->pm) {
595 		info = "type ";
596 		callback = pm_op(dev->type->pm, state);
597 		goto Driver;
598 	}
599 
600 	if (dev->class) {
601 		if (dev->class->pm) {
602 			info = "class ";
603 			callback = pm_op(dev->class->pm, state);
604 			goto Driver;
605 		} else if (dev->class->resume) {
606 			info = "legacy class ";
607 			callback = dev->class->resume;
608 			goto End;
609 		}
610 	}
611 
612 	if (dev->bus) {
613 		if (dev->bus->pm) {
614 			info = "bus ";
615 			callback = pm_op(dev->bus->pm, state);
616 		} else if (dev->bus->resume) {
617 			info = "legacy bus ";
618 			callback = dev->bus->resume;
619 			goto End;
620 		}
621 	}
622 
623  Driver:
624 	if (!callback && dev->driver && dev->driver->pm) {
625 		info = "driver ";
626 		callback = pm_op(dev->driver->pm, state);
627 	}
628 
629  End:
630 	error = dpm_run_callback(callback, dev, state, info);
631 	dev->power.is_suspended = false;
632 
633  Unlock:
634 	device_unlock(dev);
635 	complete_all(&dev->power.completion);
636 
637 	TRACE_RESUME(error);
638 
639 	if (put)
640 		pm_runtime_put_sync(dev);
641 
642 	return error;
643 }
644 
645 static void async_resume(void *data, async_cookie_t cookie)
646 {
647 	struct device *dev = (struct device *)data;
648 	int error;
649 
650 	error = device_resume(dev, pm_transition, true);
651 	if (error)
652 		pm_dev_err(dev, pm_transition, " async", error);
653 	put_device(dev);
654 }
655 
656 static bool is_async(struct device *dev)
657 {
658 	return dev->power.async_suspend && pm_async_enabled
659 		&& !pm_trace_is_enabled();
660 }
661 
662 /**
663  * dpm_resume - Execute "resume" callbacks for non-sysdev devices.
664  * @state: PM transition of the system being carried out.
665  *
666  * Execute the appropriate "resume" callback for all devices whose status
667  * indicates that they are suspended.
668  */
669 void dpm_resume(pm_message_t state)
670 {
671 	struct device *dev;
672 	ktime_t starttime = ktime_get();
673 
674 	might_sleep();
675 
676 	mutex_lock(&dpm_list_mtx);
677 	pm_transition = state;
678 	async_error = 0;
679 
680 	list_for_each_entry(dev, &dpm_suspended_list, power.entry) {
681 		INIT_COMPLETION(dev->power.completion);
682 		if (is_async(dev)) {
683 			get_device(dev);
684 			async_schedule(async_resume, dev);
685 		}
686 	}
687 
688 	while (!list_empty(&dpm_suspended_list)) {
689 		dev = to_device(dpm_suspended_list.next);
690 		get_device(dev);
691 		if (!is_async(dev)) {
692 			int error;
693 
694 			mutex_unlock(&dpm_list_mtx);
695 
696 			error = device_resume(dev, state, false);
697 			if (error) {
698 				suspend_stats.failed_resume++;
699 				dpm_save_failed_step(SUSPEND_RESUME);
700 				dpm_save_failed_dev(dev_name(dev));
701 				pm_dev_err(dev, state, "", error);
702 			}
703 
704 			mutex_lock(&dpm_list_mtx);
705 		}
706 		if (!list_empty(&dev->power.entry))
707 			list_move_tail(&dev->power.entry, &dpm_prepared_list);
708 		put_device(dev);
709 	}
710 	mutex_unlock(&dpm_list_mtx);
711 	async_synchronize_full();
712 	dpm_show_time(starttime, state, NULL);
713 }
714 
715 /**
716  * device_complete - Complete a PM transition for given device.
717  * @dev: Device to handle.
718  * @state: PM transition of the system being carried out.
719  */
720 static void device_complete(struct device *dev, pm_message_t state)
721 {
722 	void (*callback)(struct device *) = NULL;
723 	char *info = NULL;
724 
725 	device_lock(dev);
726 
727 	if (dev->pm_domain) {
728 		info = "completing power domain ";
729 		callback = dev->pm_domain->ops.complete;
730 	} else if (dev->type && dev->type->pm) {
731 		info = "completing type ";
732 		callback = dev->type->pm->complete;
733 	} else if (dev->class && dev->class->pm) {
734 		info = "completing class ";
735 		callback = dev->class->pm->complete;
736 	} else if (dev->bus && dev->bus->pm) {
737 		info = "completing bus ";
738 		callback = dev->bus->pm->complete;
739 	}
740 
741 	if (!callback && dev->driver && dev->driver->pm) {
742 		info = "completing driver ";
743 		callback = dev->driver->pm->complete;
744 	}
745 
746 	if (callback) {
747 		pm_dev_dbg(dev, state, info);
748 		callback(dev);
749 	}
750 
751 	device_unlock(dev);
752 }
753 
754 /**
755  * dpm_complete - Complete a PM transition for all non-sysdev devices.
756  * @state: PM transition of the system being carried out.
757  *
758  * Execute the ->complete() callbacks for all devices whose PM status is not
759  * DPM_ON (this allows new devices to be registered).
760  */
761 void dpm_complete(pm_message_t state)
762 {
763 	struct list_head list;
764 
765 	might_sleep();
766 
767 	INIT_LIST_HEAD(&list);
768 	mutex_lock(&dpm_list_mtx);
769 	while (!list_empty(&dpm_prepared_list)) {
770 		struct device *dev = to_device(dpm_prepared_list.prev);
771 
772 		get_device(dev);
773 		dev->power.is_prepared = false;
774 		list_move(&dev->power.entry, &list);
775 		mutex_unlock(&dpm_list_mtx);
776 
777 		device_complete(dev, state);
778 
779 		mutex_lock(&dpm_list_mtx);
780 		put_device(dev);
781 	}
782 	list_splice(&list, &dpm_list);
783 	mutex_unlock(&dpm_list_mtx);
784 }
785 
786 /**
787  * dpm_resume_end - Execute "resume" callbacks and complete system transition.
788  * @state: PM transition of the system being carried out.
789  *
790  * Execute "resume" callbacks for all devices and complete the PM transition of
791  * the system.
792  */
793 void dpm_resume_end(pm_message_t state)
794 {
795 	dpm_resume(state);
796 	dpm_complete(state);
797 }
798 EXPORT_SYMBOL_GPL(dpm_resume_end);
799 
800 
801 /*------------------------- Suspend routines -------------------------*/
802 
803 /**
804  * resume_event - Return a "resume" message for given "suspend" sleep state.
805  * @sleep_state: PM message representing a sleep state.
806  *
807  * Return a PM message representing the resume event corresponding to given
808  * sleep state.
809  */
810 static pm_message_t resume_event(pm_message_t sleep_state)
811 {
812 	switch (sleep_state.event) {
813 	case PM_EVENT_SUSPEND:
814 		return PMSG_RESUME;
815 	case PM_EVENT_FREEZE:
816 	case PM_EVENT_QUIESCE:
817 		return PMSG_RECOVER;
818 	case PM_EVENT_HIBERNATE:
819 		return PMSG_RESTORE;
820 	}
821 	return PMSG_ON;
822 }
823 
824 /**
825  * device_suspend_noirq - Execute a "late suspend" callback for given device.
826  * @dev: Device to handle.
827  * @state: PM transition of the system being carried out.
828  *
829  * The driver of @dev will not receive interrupts while this function is being
830  * executed.
831  */
832 static int device_suspend_noirq(struct device *dev, pm_message_t state)
833 {
834 	pm_callback_t callback = NULL;
835 	char *info = NULL;
836 
837 	if (dev->pm_domain) {
838 		info = "noirq power domain ";
839 		callback = pm_noirq_op(&dev->pm_domain->ops, state);
840 	} else if (dev->type && dev->type->pm) {
841 		info = "noirq type ";
842 		callback = pm_noirq_op(dev->type->pm, state);
843 	} else if (dev->class && dev->class->pm) {
844 		info = "noirq class ";
845 		callback = pm_noirq_op(dev->class->pm, state);
846 	} else if (dev->bus && dev->bus->pm) {
847 		info = "noirq bus ";
848 		callback = pm_noirq_op(dev->bus->pm, state);
849 	}
850 
851 	if (!callback && dev->driver && dev->driver->pm) {
852 		info = "noirq driver ";
853 		callback = pm_noirq_op(dev->driver->pm, state);
854 	}
855 
856 	return dpm_run_callback(callback, dev, state, info);
857 }
858 
859 /**
860  * dpm_suspend_noirq - Execute "noirq suspend" callbacks for all devices.
861  * @state: PM transition of the system being carried out.
862  *
863  * Prevent device drivers from receiving interrupts and call the "noirq" suspend
864  * handlers for all non-sysdev devices.
865  */
866 static int dpm_suspend_noirq(pm_message_t state)
867 {
868 	ktime_t starttime = ktime_get();
869 	int error = 0;
870 
871 	cpuidle_pause();
872 	suspend_device_irqs();
873 	mutex_lock(&dpm_list_mtx);
874 	while (!list_empty(&dpm_late_early_list)) {
875 		struct device *dev = to_device(dpm_late_early_list.prev);
876 
877 		get_device(dev);
878 		mutex_unlock(&dpm_list_mtx);
879 
880 		error = device_suspend_noirq(dev, state);
881 
882 		mutex_lock(&dpm_list_mtx);
883 		if (error) {
884 			pm_dev_err(dev, state, " noirq", error);
885 			suspend_stats.failed_suspend_noirq++;
886 			dpm_save_failed_step(SUSPEND_SUSPEND_NOIRQ);
887 			dpm_save_failed_dev(dev_name(dev));
888 			put_device(dev);
889 			break;
890 		}
891 		if (!list_empty(&dev->power.entry))
892 			list_move(&dev->power.entry, &dpm_noirq_list);
893 		put_device(dev);
894 
895 		if (pm_wakeup_pending()) {
896 			error = -EBUSY;
897 			break;
898 		}
899 	}
900 	mutex_unlock(&dpm_list_mtx);
901 	if (error)
902 		dpm_resume_noirq(resume_event(state));
903 	else
904 		dpm_show_time(starttime, state, "noirq");
905 	return error;
906 }
907 
908 /**
909  * device_suspend_late - Execute a "late suspend" callback for given device.
910  * @dev: Device to handle.
911  * @state: PM transition of the system being carried out.
912  *
913  * Runtime PM is disabled for @dev while this function is being executed.
914  */
915 static int device_suspend_late(struct device *dev, pm_message_t state)
916 {
917 	pm_callback_t callback = NULL;
918 	char *info = NULL;
919 
920 	if (dev->pm_domain) {
921 		info = "late power domain ";
922 		callback = pm_late_early_op(&dev->pm_domain->ops, state);
923 	} else if (dev->type && dev->type->pm) {
924 		info = "late type ";
925 		callback = pm_late_early_op(dev->type->pm, state);
926 	} else if (dev->class && dev->class->pm) {
927 		info = "late class ";
928 		callback = pm_late_early_op(dev->class->pm, state);
929 	} else if (dev->bus && dev->bus->pm) {
930 		info = "late bus ";
931 		callback = pm_late_early_op(dev->bus->pm, state);
932 	}
933 
934 	if (!callback && dev->driver && dev->driver->pm) {
935 		info = "late driver ";
936 		callback = pm_late_early_op(dev->driver->pm, state);
937 	}
938 
939 	return dpm_run_callback(callback, dev, state, info);
940 }
941 
942 /**
943  * dpm_suspend_late - Execute "late suspend" callbacks for all devices.
944  * @state: PM transition of the system being carried out.
945  */
946 static int dpm_suspend_late(pm_message_t state)
947 {
948 	ktime_t starttime = ktime_get();
949 	int error = 0;
950 
951 	mutex_lock(&dpm_list_mtx);
952 	while (!list_empty(&dpm_suspended_list)) {
953 		struct device *dev = to_device(dpm_suspended_list.prev);
954 
955 		get_device(dev);
956 		mutex_unlock(&dpm_list_mtx);
957 
958 		error = device_suspend_late(dev, state);
959 
960 		mutex_lock(&dpm_list_mtx);
961 		if (error) {
962 			pm_dev_err(dev, state, " late", error);
963 			suspend_stats.failed_suspend_late++;
964 			dpm_save_failed_step(SUSPEND_SUSPEND_LATE);
965 			dpm_save_failed_dev(dev_name(dev));
966 			put_device(dev);
967 			break;
968 		}
969 		if (!list_empty(&dev->power.entry))
970 			list_move(&dev->power.entry, &dpm_late_early_list);
971 		put_device(dev);
972 
973 		if (pm_wakeup_pending()) {
974 			error = -EBUSY;
975 			break;
976 		}
977 	}
978 	mutex_unlock(&dpm_list_mtx);
979 	if (error)
980 		dpm_resume_early(resume_event(state));
981 	else
982 		dpm_show_time(starttime, state, "late");
983 
984 	return error;
985 }
986 
987 /**
988  * dpm_suspend_end - Execute "late" and "noirq" device suspend callbacks.
989  * @state: PM transition of the system being carried out.
990  */
991 int dpm_suspend_end(pm_message_t state)
992 {
993 	int error = dpm_suspend_late(state);
994 	if (error)
995 		return error;
996 
997 	error = dpm_suspend_noirq(state);
998 	if (error) {
999 		dpm_resume_early(state);
1000 		return error;
1001 	}
1002 
1003 	return 0;
1004 }
1005 EXPORT_SYMBOL_GPL(dpm_suspend_end);
1006 
1007 /**
1008  * legacy_suspend - Execute a legacy (bus or class) suspend callback for device.
1009  * @dev: Device to suspend.
1010  * @state: PM transition of the system being carried out.
1011  * @cb: Suspend callback to execute.
1012  */
1013 static int legacy_suspend(struct device *dev, pm_message_t state,
1014 			  int (*cb)(struct device *dev, pm_message_t state))
1015 {
1016 	int error;
1017 	ktime_t calltime;
1018 
1019 	calltime = initcall_debug_start(dev);
1020 
1021 	error = cb(dev, state);
1022 	suspend_report_result(cb, error);
1023 
1024 	initcall_debug_report(dev, calltime, error);
1025 
1026 	return error;
1027 }
1028 
1029 /**
1030  * device_suspend - Execute "suspend" callbacks for given device.
1031  * @dev: Device to handle.
1032  * @state: PM transition of the system being carried out.
1033  * @async: If true, the device is being suspended asynchronously.
1034  */
1035 static int __device_suspend(struct device *dev, pm_message_t state, bool async)
1036 {
1037 	pm_callback_t callback = NULL;
1038 	char *info = NULL;
1039 	int error = 0;
1040 
1041 	dpm_wait_for_children(dev, async);
1042 
1043 	if (async_error)
1044 		goto Complete;
1045 
1046 	pm_runtime_get_noresume(dev);
1047 	if (pm_runtime_barrier(dev) && device_may_wakeup(dev))
1048 		pm_wakeup_event(dev, 0);
1049 
1050 	if (pm_wakeup_pending()) {
1051 		pm_runtime_put_sync(dev);
1052 		async_error = -EBUSY;
1053 		goto Complete;
1054 	}
1055 
1056 	device_lock(dev);
1057 
1058 	if (dev->pm_domain) {
1059 		info = "power domain ";
1060 		callback = pm_op(&dev->pm_domain->ops, state);
1061 		goto Run;
1062 	}
1063 
1064 	if (dev->type && dev->type->pm) {
1065 		info = "type ";
1066 		callback = pm_op(dev->type->pm, state);
1067 		goto Run;
1068 	}
1069 
1070 	if (dev->class) {
1071 		if (dev->class->pm) {
1072 			info = "class ";
1073 			callback = pm_op(dev->class->pm, state);
1074 			goto Run;
1075 		} else if (dev->class->suspend) {
1076 			pm_dev_dbg(dev, state, "legacy class ");
1077 			error = legacy_suspend(dev, state, dev->class->suspend);
1078 			goto End;
1079 		}
1080 	}
1081 
1082 	if (dev->bus) {
1083 		if (dev->bus->pm) {
1084 			info = "bus ";
1085 			callback = pm_op(dev->bus->pm, state);
1086 		} else if (dev->bus->suspend) {
1087 			pm_dev_dbg(dev, state, "legacy bus ");
1088 			error = legacy_suspend(dev, state, dev->bus->suspend);
1089 			goto End;
1090 		}
1091 	}
1092 
1093  Run:
1094 	if (!callback && dev->driver && dev->driver->pm) {
1095 		info = "driver ";
1096 		callback = pm_op(dev->driver->pm, state);
1097 	}
1098 
1099 	error = dpm_run_callback(callback, dev, state, info);
1100 
1101  End:
1102 	if (!error) {
1103 		dev->power.is_suspended = true;
1104 		if (dev->power.wakeup_path
1105 		    && dev->parent && !dev->parent->power.ignore_children)
1106 			dev->parent->power.wakeup_path = true;
1107 	}
1108 
1109 	device_unlock(dev);
1110 
1111  Complete:
1112 	complete_all(&dev->power.completion);
1113 
1114 	if (error) {
1115 		pm_runtime_put_sync(dev);
1116 		async_error = error;
1117 	} else if (dev->power.is_suspended) {
1118 		__pm_runtime_disable(dev, false);
1119 	}
1120 
1121 	return error;
1122 }
1123 
1124 static void async_suspend(void *data, async_cookie_t cookie)
1125 {
1126 	struct device *dev = (struct device *)data;
1127 	int error;
1128 
1129 	error = __device_suspend(dev, pm_transition, true);
1130 	if (error) {
1131 		dpm_save_failed_dev(dev_name(dev));
1132 		pm_dev_err(dev, pm_transition, " async", error);
1133 	}
1134 
1135 	put_device(dev);
1136 }
1137 
1138 static int device_suspend(struct device *dev)
1139 {
1140 	INIT_COMPLETION(dev->power.completion);
1141 
1142 	if (pm_async_enabled && dev->power.async_suspend) {
1143 		get_device(dev);
1144 		async_schedule(async_suspend, dev);
1145 		return 0;
1146 	}
1147 
1148 	return __device_suspend(dev, pm_transition, false);
1149 }
1150 
1151 /**
1152  * dpm_suspend - Execute "suspend" callbacks for all non-sysdev devices.
1153  * @state: PM transition of the system being carried out.
1154  */
1155 int dpm_suspend(pm_message_t state)
1156 {
1157 	ktime_t starttime = ktime_get();
1158 	int error = 0;
1159 
1160 	might_sleep();
1161 
1162 	mutex_lock(&dpm_list_mtx);
1163 	pm_transition = state;
1164 	async_error = 0;
1165 	while (!list_empty(&dpm_prepared_list)) {
1166 		struct device *dev = to_device(dpm_prepared_list.prev);
1167 
1168 		get_device(dev);
1169 		mutex_unlock(&dpm_list_mtx);
1170 
1171 		error = device_suspend(dev);
1172 
1173 		mutex_lock(&dpm_list_mtx);
1174 		if (error) {
1175 			pm_dev_err(dev, state, "", error);
1176 			dpm_save_failed_dev(dev_name(dev));
1177 			put_device(dev);
1178 			break;
1179 		}
1180 		if (!list_empty(&dev->power.entry))
1181 			list_move(&dev->power.entry, &dpm_suspended_list);
1182 		put_device(dev);
1183 		if (async_error)
1184 			break;
1185 	}
1186 	mutex_unlock(&dpm_list_mtx);
1187 	async_synchronize_full();
1188 	if (!error)
1189 		error = async_error;
1190 	if (error) {
1191 		suspend_stats.failed_suspend++;
1192 		dpm_save_failed_step(SUSPEND_SUSPEND);
1193 	} else
1194 		dpm_show_time(starttime, state, NULL);
1195 	return error;
1196 }
1197 
1198 /**
1199  * device_prepare - Prepare a device for system power transition.
1200  * @dev: Device to handle.
1201  * @state: PM transition of the system being carried out.
1202  *
1203  * Execute the ->prepare() callback(s) for given device.  No new children of the
1204  * device may be registered after this function has returned.
1205  */
1206 static int device_prepare(struct device *dev, pm_message_t state)
1207 {
1208 	int (*callback)(struct device *) = NULL;
1209 	char *info = NULL;
1210 	int error = 0;
1211 
1212 	device_lock(dev);
1213 
1214 	dev->power.wakeup_path = device_may_wakeup(dev);
1215 
1216 	if (dev->pm_domain) {
1217 		info = "preparing power domain ";
1218 		callback = dev->pm_domain->ops.prepare;
1219 	} else if (dev->type && dev->type->pm) {
1220 		info = "preparing type ";
1221 		callback = dev->type->pm->prepare;
1222 	} else if (dev->class && dev->class->pm) {
1223 		info = "preparing class ";
1224 		callback = dev->class->pm->prepare;
1225 	} else if (dev->bus && dev->bus->pm) {
1226 		info = "preparing bus ";
1227 		callback = dev->bus->pm->prepare;
1228 	}
1229 
1230 	if (!callback && dev->driver && dev->driver->pm) {
1231 		info = "preparing driver ";
1232 		callback = dev->driver->pm->prepare;
1233 	}
1234 
1235 	if (callback) {
1236 		error = callback(dev);
1237 		suspend_report_result(callback, error);
1238 	}
1239 
1240 	device_unlock(dev);
1241 
1242 	return error;
1243 }
1244 
1245 /**
1246  * dpm_prepare - Prepare all non-sysdev devices for a system PM transition.
1247  * @state: PM transition of the system being carried out.
1248  *
1249  * Execute the ->prepare() callback(s) for all devices.
1250  */
1251 int dpm_prepare(pm_message_t state)
1252 {
1253 	int error = 0;
1254 
1255 	might_sleep();
1256 
1257 	mutex_lock(&dpm_list_mtx);
1258 	while (!list_empty(&dpm_list)) {
1259 		struct device *dev = to_device(dpm_list.next);
1260 
1261 		get_device(dev);
1262 		mutex_unlock(&dpm_list_mtx);
1263 
1264 		error = device_prepare(dev, state);
1265 
1266 		mutex_lock(&dpm_list_mtx);
1267 		if (error) {
1268 			if (error == -EAGAIN) {
1269 				put_device(dev);
1270 				error = 0;
1271 				continue;
1272 			}
1273 			printk(KERN_INFO "PM: Device %s not prepared "
1274 				"for power transition: code %d\n",
1275 				dev_name(dev), error);
1276 			put_device(dev);
1277 			break;
1278 		}
1279 		dev->power.is_prepared = true;
1280 		if (!list_empty(&dev->power.entry))
1281 			list_move_tail(&dev->power.entry, &dpm_prepared_list);
1282 		put_device(dev);
1283 	}
1284 	mutex_unlock(&dpm_list_mtx);
1285 	return error;
1286 }
1287 
1288 /**
1289  * dpm_suspend_start - Prepare devices for PM transition and suspend them.
1290  * @state: PM transition of the system being carried out.
1291  *
1292  * Prepare all non-sysdev devices for system PM transition and execute "suspend"
1293  * callbacks for them.
1294  */
1295 int dpm_suspend_start(pm_message_t state)
1296 {
1297 	int error;
1298 
1299 	error = dpm_prepare(state);
1300 	if (error) {
1301 		suspend_stats.failed_prepare++;
1302 		dpm_save_failed_step(SUSPEND_PREPARE);
1303 	} else
1304 		error = dpm_suspend(state);
1305 	return error;
1306 }
1307 EXPORT_SYMBOL_GPL(dpm_suspend_start);
1308 
1309 void __suspend_report_result(const char *function, void *fn, int ret)
1310 {
1311 	if (ret)
1312 		printk(KERN_ERR "%s(): %pF returns %d\n", function, fn, ret);
1313 }
1314 EXPORT_SYMBOL_GPL(__suspend_report_result);
1315 
1316 /**
1317  * device_pm_wait_for_dev - Wait for suspend/resume of a device to complete.
1318  * @dev: Device to wait for.
1319  * @subordinate: Device that needs to wait for @dev.
1320  */
1321 int device_pm_wait_for_dev(struct device *subordinate, struct device *dev)
1322 {
1323 	dpm_wait(dev, subordinate->power.async_suspend);
1324 	return async_error;
1325 }
1326 EXPORT_SYMBOL_GPL(device_pm_wait_for_dev);
1327