xref: /linux/drivers/base/power/main.c (revision 8fa5723aa7e053d498336b48448b292fc2e0458b)
1 /*
2  * drivers/base/power/main.c - Where the driver meets power management.
3  *
4  * Copyright (c) 2003 Patrick Mochel
5  * Copyright (c) 2003 Open Source Development Lab
6  *
7  * This file is released under the GPLv2
8  *
9  *
10  * The driver model core calls device_pm_add() when a device is registered.
11  * This will intialize the embedded device_pm_info object in the device
12  * and add it to the list of power-controlled devices. sysfs entries for
13  * controlling device power management will also be added.
14  *
15  * A separate list is used for keeping track of power info, because the power
16  * domain dependencies may differ from the ancestral dependencies that the
17  * subsystem list maintains.
18  */
19 
20 #include <linux/device.h>
21 #include <linux/kallsyms.h>
22 #include <linux/mutex.h>
23 #include <linux/pm.h>
24 #include <linux/resume-trace.h>
25 #include <linux/rwsem.h>
26 
27 #include "../base.h"
28 #include "power.h"
29 
30 /*
31  * The entries in the dpm_list list are in a depth first order, simply
32  * because children are guaranteed to be discovered after parents, and
33  * are inserted at the back of the list on discovery.
34  *
35  * Since device_pm_add() may be called with a device semaphore held,
36  * we must never try to acquire a device semaphore while holding
37  * dpm_list_mutex.
38  */
39 
40 LIST_HEAD(dpm_list);
41 
42 static DEFINE_MUTEX(dpm_list_mtx);
43 
44 /*
45  * Set once the preparation of devices for a PM transition has started, reset
46  * before starting to resume devices.  Protected by dpm_list_mtx.
47  */
48 static bool transition_started;
49 
50 /**
51  *	device_pm_lock - lock the list of active devices used by the PM core
52  */
53 void device_pm_lock(void)
54 {
55 	mutex_lock(&dpm_list_mtx);
56 }
57 
58 /**
59  *	device_pm_unlock - unlock the list of active devices used by the PM core
60  */
61 void device_pm_unlock(void)
62 {
63 	mutex_unlock(&dpm_list_mtx);
64 }
65 
66 /**
67  *	device_pm_add - add a device to the list of active devices
68  *	@dev:	Device to be added to the list
69  */
70 void device_pm_add(struct device *dev)
71 {
72 	pr_debug("PM: Adding info for %s:%s\n",
73 		 dev->bus ? dev->bus->name : "No Bus",
74 		 kobject_name(&dev->kobj));
75 	mutex_lock(&dpm_list_mtx);
76 	if (dev->parent) {
77 		if (dev->parent->power.status >= DPM_SUSPENDING)
78 			dev_warn(dev, "parent %s should not be sleeping\n",
79 				dev->parent->bus_id);
80 	} else if (transition_started) {
81 		/*
82 		 * We refuse to register parentless devices while a PM
83 		 * transition is in progress in order to avoid leaving them
84 		 * unhandled down the road
85 		 */
86 		dev_WARN(dev, "Parentless device registered during a PM transaction\n");
87 	}
88 
89 	list_add_tail(&dev->power.entry, &dpm_list);
90 	mutex_unlock(&dpm_list_mtx);
91 }
92 
93 /**
94  *	device_pm_remove - remove a device from the list of active devices
95  *	@dev:	Device to be removed from the list
96  *
97  *	This function also removes the device's PM-related sysfs attributes.
98  */
99 void device_pm_remove(struct device *dev)
100 {
101 	pr_debug("PM: Removing info for %s:%s\n",
102 		 dev->bus ? dev->bus->name : "No Bus",
103 		 kobject_name(&dev->kobj));
104 	mutex_lock(&dpm_list_mtx);
105 	list_del_init(&dev->power.entry);
106 	mutex_unlock(&dpm_list_mtx);
107 }
108 
109 /**
110  *	pm_op - execute the PM operation appropiate for given PM event
111  *	@dev:	Device.
112  *	@ops:	PM operations to choose from.
113  *	@state:	PM transition of the system being carried out.
114  */
115 static int pm_op(struct device *dev, struct pm_ops *ops, pm_message_t state)
116 {
117 	int error = 0;
118 
119 	switch (state.event) {
120 #ifdef CONFIG_SUSPEND
121 	case PM_EVENT_SUSPEND:
122 		if (ops->suspend) {
123 			error = ops->suspend(dev);
124 			suspend_report_result(ops->suspend, error);
125 		}
126 		break;
127 	case PM_EVENT_RESUME:
128 		if (ops->resume) {
129 			error = ops->resume(dev);
130 			suspend_report_result(ops->resume, error);
131 		}
132 		break;
133 #endif /* CONFIG_SUSPEND */
134 #ifdef CONFIG_HIBERNATION
135 	case PM_EVENT_FREEZE:
136 	case PM_EVENT_QUIESCE:
137 		if (ops->freeze) {
138 			error = ops->freeze(dev);
139 			suspend_report_result(ops->freeze, error);
140 		}
141 		break;
142 	case PM_EVENT_HIBERNATE:
143 		if (ops->poweroff) {
144 			error = ops->poweroff(dev);
145 			suspend_report_result(ops->poweroff, error);
146 		}
147 		break;
148 	case PM_EVENT_THAW:
149 	case PM_EVENT_RECOVER:
150 		if (ops->thaw) {
151 			error = ops->thaw(dev);
152 			suspend_report_result(ops->thaw, error);
153 		}
154 		break;
155 	case PM_EVENT_RESTORE:
156 		if (ops->restore) {
157 			error = ops->restore(dev);
158 			suspend_report_result(ops->restore, error);
159 		}
160 		break;
161 #endif /* CONFIG_HIBERNATION */
162 	default:
163 		error = -EINVAL;
164 	}
165 	return error;
166 }
167 
168 /**
169  *	pm_noirq_op - execute the PM operation appropiate for given PM event
170  *	@dev:	Device.
171  *	@ops:	PM operations to choose from.
172  *	@state: PM transition of the system being carried out.
173  *
174  *	The operation is executed with interrupts disabled by the only remaining
175  *	functional CPU in the system.
176  */
177 static int pm_noirq_op(struct device *dev, struct pm_ext_ops *ops,
178 			pm_message_t state)
179 {
180 	int error = 0;
181 
182 	switch (state.event) {
183 #ifdef CONFIG_SUSPEND
184 	case PM_EVENT_SUSPEND:
185 		if (ops->suspend_noirq) {
186 			error = ops->suspend_noirq(dev);
187 			suspend_report_result(ops->suspend_noirq, error);
188 		}
189 		break;
190 	case PM_EVENT_RESUME:
191 		if (ops->resume_noirq) {
192 			error = ops->resume_noirq(dev);
193 			suspend_report_result(ops->resume_noirq, error);
194 		}
195 		break;
196 #endif /* CONFIG_SUSPEND */
197 #ifdef CONFIG_HIBERNATION
198 	case PM_EVENT_FREEZE:
199 	case PM_EVENT_QUIESCE:
200 		if (ops->freeze_noirq) {
201 			error = ops->freeze_noirq(dev);
202 			suspend_report_result(ops->freeze_noirq, error);
203 		}
204 		break;
205 	case PM_EVENT_HIBERNATE:
206 		if (ops->poweroff_noirq) {
207 			error = ops->poweroff_noirq(dev);
208 			suspend_report_result(ops->poweroff_noirq, error);
209 		}
210 		break;
211 	case PM_EVENT_THAW:
212 	case PM_EVENT_RECOVER:
213 		if (ops->thaw_noirq) {
214 			error = ops->thaw_noirq(dev);
215 			suspend_report_result(ops->thaw_noirq, error);
216 		}
217 		break;
218 	case PM_EVENT_RESTORE:
219 		if (ops->restore_noirq) {
220 			error = ops->restore_noirq(dev);
221 			suspend_report_result(ops->restore_noirq, error);
222 		}
223 		break;
224 #endif /* CONFIG_HIBERNATION */
225 	default:
226 		error = -EINVAL;
227 	}
228 	return error;
229 }
230 
231 static char *pm_verb(int event)
232 {
233 	switch (event) {
234 	case PM_EVENT_SUSPEND:
235 		return "suspend";
236 	case PM_EVENT_RESUME:
237 		return "resume";
238 	case PM_EVENT_FREEZE:
239 		return "freeze";
240 	case PM_EVENT_QUIESCE:
241 		return "quiesce";
242 	case PM_EVENT_HIBERNATE:
243 		return "hibernate";
244 	case PM_EVENT_THAW:
245 		return "thaw";
246 	case PM_EVENT_RESTORE:
247 		return "restore";
248 	case PM_EVENT_RECOVER:
249 		return "recover";
250 	default:
251 		return "(unknown PM event)";
252 	}
253 }
254 
255 static void pm_dev_dbg(struct device *dev, pm_message_t state, char *info)
256 {
257 	dev_dbg(dev, "%s%s%s\n", info, pm_verb(state.event),
258 		((state.event & PM_EVENT_SLEEP) && device_may_wakeup(dev)) ?
259 		", may wakeup" : "");
260 }
261 
262 static void pm_dev_err(struct device *dev, pm_message_t state, char *info,
263 			int error)
264 {
265 	printk(KERN_ERR "PM: Device %s failed to %s%s: error %d\n",
266 		kobject_name(&dev->kobj), pm_verb(state.event), info, error);
267 }
268 
269 /*------------------------- Resume routines -------------------------*/
270 
271 /**
272  *	resume_device_noirq - Power on one device (early resume).
273  *	@dev:	Device.
274  *	@state: PM transition of the system being carried out.
275  *
276  *	Must be called with interrupts disabled.
277  */
278 static int resume_device_noirq(struct device *dev, pm_message_t state)
279 {
280 	int error = 0;
281 
282 	TRACE_DEVICE(dev);
283 	TRACE_RESUME(0);
284 
285 	if (!dev->bus)
286 		goto End;
287 
288 	if (dev->bus->pm) {
289 		pm_dev_dbg(dev, state, "EARLY ");
290 		error = pm_noirq_op(dev, dev->bus->pm, state);
291 	} else if (dev->bus->resume_early) {
292 		pm_dev_dbg(dev, state, "legacy EARLY ");
293 		error = dev->bus->resume_early(dev);
294 	}
295  End:
296 	TRACE_RESUME(error);
297 	return error;
298 }
299 
300 /**
301  *	dpm_power_up - Power on all regular (non-sysdev) devices.
302  *	@state: PM transition of the system being carried out.
303  *
304  *	Execute the appropriate "noirq resume" callback for all devices marked
305  *	as DPM_OFF_IRQ.
306  *
307  *	Must be called with interrupts disabled and only one CPU running.
308  */
309 static void dpm_power_up(pm_message_t state)
310 {
311 	struct device *dev;
312 
313 	list_for_each_entry(dev, &dpm_list, power.entry)
314 		if (dev->power.status > DPM_OFF) {
315 			int error;
316 
317 			dev->power.status = DPM_OFF;
318 			error = resume_device_noirq(dev, state);
319 			if (error)
320 				pm_dev_err(dev, state, " early", error);
321 		}
322 }
323 
324 /**
325  *	device_power_up - Turn on all devices that need special attention.
326  *	@state: PM transition of the system being carried out.
327  *
328  *	Power on system devices, then devices that required we shut them down
329  *	with interrupts disabled.
330  *
331  *	Must be called with interrupts disabled.
332  */
333 void device_power_up(pm_message_t state)
334 {
335 	sysdev_resume();
336 	dpm_power_up(state);
337 }
338 EXPORT_SYMBOL_GPL(device_power_up);
339 
340 /**
341  *	resume_device - Restore state for one device.
342  *	@dev:	Device.
343  *	@state: PM transition of the system being carried out.
344  */
345 static int resume_device(struct device *dev, pm_message_t state)
346 {
347 	int error = 0;
348 
349 	TRACE_DEVICE(dev);
350 	TRACE_RESUME(0);
351 
352 	down(&dev->sem);
353 
354 	if (dev->bus) {
355 		if (dev->bus->pm) {
356 			pm_dev_dbg(dev, state, "");
357 			error = pm_op(dev, &dev->bus->pm->base, state);
358 		} else if (dev->bus->resume) {
359 			pm_dev_dbg(dev, state, "legacy ");
360 			error = dev->bus->resume(dev);
361 		}
362 		if (error)
363 			goto End;
364 	}
365 
366 	if (dev->type) {
367 		if (dev->type->pm) {
368 			pm_dev_dbg(dev, state, "type ");
369 			error = pm_op(dev, dev->type->pm, state);
370 		} else if (dev->type->resume) {
371 			pm_dev_dbg(dev, state, "legacy type ");
372 			error = dev->type->resume(dev);
373 		}
374 		if (error)
375 			goto End;
376 	}
377 
378 	if (dev->class) {
379 		if (dev->class->pm) {
380 			pm_dev_dbg(dev, state, "class ");
381 			error = pm_op(dev, dev->class->pm, state);
382 		} else if (dev->class->resume) {
383 			pm_dev_dbg(dev, state, "legacy class ");
384 			error = dev->class->resume(dev);
385 		}
386 	}
387  End:
388 	up(&dev->sem);
389 
390 	TRACE_RESUME(error);
391 	return error;
392 }
393 
394 /**
395  *	dpm_resume - Resume every device.
396  *	@state: PM transition of the system being carried out.
397  *
398  *	Execute the appropriate "resume" callback for all devices the status of
399  *	which indicates that they are inactive.
400  */
401 static void dpm_resume(pm_message_t state)
402 {
403 	struct list_head list;
404 
405 	INIT_LIST_HEAD(&list);
406 	mutex_lock(&dpm_list_mtx);
407 	transition_started = false;
408 	while (!list_empty(&dpm_list)) {
409 		struct device *dev = to_device(dpm_list.next);
410 
411 		get_device(dev);
412 		if (dev->power.status >= DPM_OFF) {
413 			int error;
414 
415 			dev->power.status = DPM_RESUMING;
416 			mutex_unlock(&dpm_list_mtx);
417 
418 			error = resume_device(dev, state);
419 
420 			mutex_lock(&dpm_list_mtx);
421 			if (error)
422 				pm_dev_err(dev, state, "", error);
423 		} else if (dev->power.status == DPM_SUSPENDING) {
424 			/* Allow new children of the device to be registered */
425 			dev->power.status = DPM_RESUMING;
426 		}
427 		if (!list_empty(&dev->power.entry))
428 			list_move_tail(&dev->power.entry, &list);
429 		put_device(dev);
430 	}
431 	list_splice(&list, &dpm_list);
432 	mutex_unlock(&dpm_list_mtx);
433 }
434 
435 /**
436  *	complete_device - Complete a PM transition for given device
437  *	@dev:	Device.
438  *	@state: PM transition of the system being carried out.
439  */
440 static void complete_device(struct device *dev, pm_message_t state)
441 {
442 	down(&dev->sem);
443 
444 	if (dev->class && dev->class->pm && dev->class->pm->complete) {
445 		pm_dev_dbg(dev, state, "completing class ");
446 		dev->class->pm->complete(dev);
447 	}
448 
449 	if (dev->type && dev->type->pm && dev->type->pm->complete) {
450 		pm_dev_dbg(dev, state, "completing type ");
451 		dev->type->pm->complete(dev);
452 	}
453 
454 	if (dev->bus && dev->bus->pm && dev->bus->pm->base.complete) {
455 		pm_dev_dbg(dev, state, "completing ");
456 		dev->bus->pm->base.complete(dev);
457 	}
458 
459 	up(&dev->sem);
460 }
461 
462 /**
463  *	dpm_complete - Complete a PM transition for all devices.
464  *	@state: PM transition of the system being carried out.
465  *
466  *	Execute the ->complete() callbacks for all devices that are not marked
467  *	as DPM_ON.
468  */
469 static void dpm_complete(pm_message_t state)
470 {
471 	struct list_head list;
472 
473 	INIT_LIST_HEAD(&list);
474 	mutex_lock(&dpm_list_mtx);
475 	while (!list_empty(&dpm_list)) {
476 		struct device *dev = to_device(dpm_list.prev);
477 
478 		get_device(dev);
479 		if (dev->power.status > DPM_ON) {
480 			dev->power.status = DPM_ON;
481 			mutex_unlock(&dpm_list_mtx);
482 
483 			complete_device(dev, state);
484 
485 			mutex_lock(&dpm_list_mtx);
486 		}
487 		if (!list_empty(&dev->power.entry))
488 			list_move(&dev->power.entry, &list);
489 		put_device(dev);
490 	}
491 	list_splice(&list, &dpm_list);
492 	mutex_unlock(&dpm_list_mtx);
493 }
494 
495 /**
496  *	device_resume - Restore state of each device in system.
497  *	@state: PM transition of the system being carried out.
498  *
499  *	Resume all the devices, unlock them all, and allow new
500  *	devices to be registered once again.
501  */
502 void device_resume(pm_message_t state)
503 {
504 	might_sleep();
505 	dpm_resume(state);
506 	dpm_complete(state);
507 }
508 EXPORT_SYMBOL_GPL(device_resume);
509 
510 
511 /*------------------------- Suspend routines -------------------------*/
512 
513 /**
514  *	resume_event - return a PM message representing the resume event
515  *	               corresponding to given sleep state.
516  *	@sleep_state: PM message representing a sleep state.
517  */
518 static pm_message_t resume_event(pm_message_t sleep_state)
519 {
520 	switch (sleep_state.event) {
521 	case PM_EVENT_SUSPEND:
522 		return PMSG_RESUME;
523 	case PM_EVENT_FREEZE:
524 	case PM_EVENT_QUIESCE:
525 		return PMSG_RECOVER;
526 	case PM_EVENT_HIBERNATE:
527 		return PMSG_RESTORE;
528 	}
529 	return PMSG_ON;
530 }
531 
532 /**
533  *	suspend_device_noirq - Shut down one device (late suspend).
534  *	@dev:	Device.
535  *	@state: PM transition of the system being carried out.
536  *
537  *	This is called with interrupts off and only a single CPU running.
538  */
539 static int suspend_device_noirq(struct device *dev, pm_message_t state)
540 {
541 	int error = 0;
542 
543 	if (!dev->bus)
544 		return 0;
545 
546 	if (dev->bus->pm) {
547 		pm_dev_dbg(dev, state, "LATE ");
548 		error = pm_noirq_op(dev, dev->bus->pm, state);
549 	} else if (dev->bus->suspend_late) {
550 		pm_dev_dbg(dev, state, "legacy LATE ");
551 		error = dev->bus->suspend_late(dev, state);
552 		suspend_report_result(dev->bus->suspend_late, error);
553 	}
554 	return error;
555 }
556 
557 /**
558  *	device_power_down - Shut down special devices.
559  *	@state: PM transition of the system being carried out.
560  *
561  *	Power down devices that require interrupts to be disabled.
562  *	Then power down system devices.
563  *
564  *	Must be called with interrupts disabled and only one CPU running.
565  */
566 int device_power_down(pm_message_t state)
567 {
568 	struct device *dev;
569 	int error = 0;
570 
571 	list_for_each_entry_reverse(dev, &dpm_list, power.entry) {
572 		error = suspend_device_noirq(dev, state);
573 		if (error) {
574 			pm_dev_err(dev, state, " late", error);
575 			break;
576 		}
577 		dev->power.status = DPM_OFF_IRQ;
578 	}
579 	if (!error)
580 		error = sysdev_suspend(state);
581 	if (error)
582 		dpm_power_up(resume_event(state));
583 	return error;
584 }
585 EXPORT_SYMBOL_GPL(device_power_down);
586 
587 /**
588  *	suspend_device - Save state of one device.
589  *	@dev:	Device.
590  *	@state: PM transition of the system being carried out.
591  */
592 static int suspend_device(struct device *dev, pm_message_t state)
593 {
594 	int error = 0;
595 
596 	down(&dev->sem);
597 
598 	if (dev->class) {
599 		if (dev->class->pm) {
600 			pm_dev_dbg(dev, state, "class ");
601 			error = pm_op(dev, dev->class->pm, state);
602 		} else if (dev->class->suspend) {
603 			pm_dev_dbg(dev, state, "legacy class ");
604 			error = dev->class->suspend(dev, state);
605 			suspend_report_result(dev->class->suspend, error);
606 		}
607 		if (error)
608 			goto End;
609 	}
610 
611 	if (dev->type) {
612 		if (dev->type->pm) {
613 			pm_dev_dbg(dev, state, "type ");
614 			error = pm_op(dev, dev->type->pm, state);
615 		} else if (dev->type->suspend) {
616 			pm_dev_dbg(dev, state, "legacy type ");
617 			error = dev->type->suspend(dev, state);
618 			suspend_report_result(dev->type->suspend, error);
619 		}
620 		if (error)
621 			goto End;
622 	}
623 
624 	if (dev->bus) {
625 		if (dev->bus->pm) {
626 			pm_dev_dbg(dev, state, "");
627 			error = pm_op(dev, &dev->bus->pm->base, state);
628 		} else if (dev->bus->suspend) {
629 			pm_dev_dbg(dev, state, "legacy ");
630 			error = dev->bus->suspend(dev, state);
631 			suspend_report_result(dev->bus->suspend, error);
632 		}
633 	}
634  End:
635 	up(&dev->sem);
636 
637 	return error;
638 }
639 
640 /**
641  *	dpm_suspend - Suspend every device.
642  *	@state: PM transition of the system being carried out.
643  *
644  *	Execute the appropriate "suspend" callbacks for all devices.
645  */
646 static int dpm_suspend(pm_message_t state)
647 {
648 	struct list_head list;
649 	int error = 0;
650 
651 	INIT_LIST_HEAD(&list);
652 	mutex_lock(&dpm_list_mtx);
653 	while (!list_empty(&dpm_list)) {
654 		struct device *dev = to_device(dpm_list.prev);
655 
656 		get_device(dev);
657 		mutex_unlock(&dpm_list_mtx);
658 
659 		error = suspend_device(dev, state);
660 
661 		mutex_lock(&dpm_list_mtx);
662 		if (error) {
663 			pm_dev_err(dev, state, "", error);
664 			put_device(dev);
665 			break;
666 		}
667 		dev->power.status = DPM_OFF;
668 		if (!list_empty(&dev->power.entry))
669 			list_move(&dev->power.entry, &list);
670 		put_device(dev);
671 	}
672 	list_splice(&list, dpm_list.prev);
673 	mutex_unlock(&dpm_list_mtx);
674 	return error;
675 }
676 
677 /**
678  *	prepare_device - Execute the ->prepare() callback(s) for given device.
679  *	@dev:	Device.
680  *	@state: PM transition of the system being carried out.
681  */
682 static int prepare_device(struct device *dev, pm_message_t state)
683 {
684 	int error = 0;
685 
686 	down(&dev->sem);
687 
688 	if (dev->bus && dev->bus->pm && dev->bus->pm->base.prepare) {
689 		pm_dev_dbg(dev, state, "preparing ");
690 		error = dev->bus->pm->base.prepare(dev);
691 		suspend_report_result(dev->bus->pm->base.prepare, error);
692 		if (error)
693 			goto End;
694 	}
695 
696 	if (dev->type && dev->type->pm && dev->type->pm->prepare) {
697 		pm_dev_dbg(dev, state, "preparing type ");
698 		error = dev->type->pm->prepare(dev);
699 		suspend_report_result(dev->type->pm->prepare, error);
700 		if (error)
701 			goto End;
702 	}
703 
704 	if (dev->class && dev->class->pm && dev->class->pm->prepare) {
705 		pm_dev_dbg(dev, state, "preparing class ");
706 		error = dev->class->pm->prepare(dev);
707 		suspend_report_result(dev->class->pm->prepare, error);
708 	}
709  End:
710 	up(&dev->sem);
711 
712 	return error;
713 }
714 
715 /**
716  *	dpm_prepare - Prepare all devices for a PM transition.
717  *	@state: PM transition of the system being carried out.
718  *
719  *	Execute the ->prepare() callback for all devices.
720  */
721 static int dpm_prepare(pm_message_t state)
722 {
723 	struct list_head list;
724 	int error = 0;
725 
726 	INIT_LIST_HEAD(&list);
727 	mutex_lock(&dpm_list_mtx);
728 	transition_started = true;
729 	while (!list_empty(&dpm_list)) {
730 		struct device *dev = to_device(dpm_list.next);
731 
732 		get_device(dev);
733 		dev->power.status = DPM_PREPARING;
734 		mutex_unlock(&dpm_list_mtx);
735 
736 		error = prepare_device(dev, state);
737 
738 		mutex_lock(&dpm_list_mtx);
739 		if (error) {
740 			dev->power.status = DPM_ON;
741 			if (error == -EAGAIN) {
742 				put_device(dev);
743 				continue;
744 			}
745 			printk(KERN_ERR "PM: Failed to prepare device %s "
746 				"for power transition: error %d\n",
747 				kobject_name(&dev->kobj), error);
748 			put_device(dev);
749 			break;
750 		}
751 		dev->power.status = DPM_SUSPENDING;
752 		if (!list_empty(&dev->power.entry))
753 			list_move_tail(&dev->power.entry, &list);
754 		put_device(dev);
755 	}
756 	list_splice(&list, &dpm_list);
757 	mutex_unlock(&dpm_list_mtx);
758 	return error;
759 }
760 
761 /**
762  *	device_suspend - Save state and stop all devices in system.
763  *	@state: PM transition of the system being carried out.
764  *
765  *	Prepare and suspend all devices.
766  */
767 int device_suspend(pm_message_t state)
768 {
769 	int error;
770 
771 	might_sleep();
772 	error = dpm_prepare(state);
773 	if (!error)
774 		error = dpm_suspend(state);
775 	return error;
776 }
777 EXPORT_SYMBOL_GPL(device_suspend);
778 
779 void __suspend_report_result(const char *function, void *fn, int ret)
780 {
781 	if (ret)
782 		printk(KERN_ERR "%s(): %pF returns %d\n", function, fn, ret);
783 }
784 EXPORT_SYMBOL_GPL(__suspend_report_result);
785