1 /* 2 * drivers/base/power/main.c - Where the driver meets power management. 3 * 4 * Copyright (c) 2003 Patrick Mochel 5 * Copyright (c) 2003 Open Source Development Lab 6 * 7 * This file is released under the GPLv2 8 * 9 * 10 * The driver model core calls device_pm_add() when a device is registered. 11 * This will initialize the embedded device_pm_info object in the device 12 * and add it to the list of power-controlled devices. sysfs entries for 13 * controlling device power management will also be added. 14 * 15 * A separate list is used for keeping track of power info, because the power 16 * domain dependencies may differ from the ancestral dependencies that the 17 * subsystem list maintains. 18 */ 19 20 #include <linux/device.h> 21 #include <linux/export.h> 22 #include <linux/mutex.h> 23 #include <linux/pm.h> 24 #include <linux/pm_runtime.h> 25 #include <linux/pm-trace.h> 26 #include <linux/pm_wakeirq.h> 27 #include <linux/interrupt.h> 28 #include <linux/sched.h> 29 #include <linux/sched/debug.h> 30 #include <linux/async.h> 31 #include <linux/suspend.h> 32 #include <trace/events/power.h> 33 #include <linux/cpufreq.h> 34 #include <linux/cpuidle.h> 35 #include <linux/devfreq.h> 36 #include <linux/timer.h> 37 38 #include "../base.h" 39 #include "power.h" 40 41 typedef int (*pm_callback_t)(struct device *); 42 43 /* 44 * The entries in the dpm_list list are in a depth first order, simply 45 * because children are guaranteed to be discovered after parents, and 46 * are inserted at the back of the list on discovery. 47 * 48 * Since device_pm_add() may be called with a device lock held, 49 * we must never try to acquire a device lock while holding 50 * dpm_list_mutex. 51 */ 52 53 LIST_HEAD(dpm_list); 54 static LIST_HEAD(dpm_prepared_list); 55 static LIST_HEAD(dpm_suspended_list); 56 static LIST_HEAD(dpm_late_early_list); 57 static LIST_HEAD(dpm_noirq_list); 58 59 struct suspend_stats suspend_stats; 60 static DEFINE_MUTEX(dpm_list_mtx); 61 static pm_message_t pm_transition; 62 63 static int async_error; 64 65 static const char *pm_verb(int event) 66 { 67 switch (event) { 68 case PM_EVENT_SUSPEND: 69 return "suspend"; 70 case PM_EVENT_RESUME: 71 return "resume"; 72 case PM_EVENT_FREEZE: 73 return "freeze"; 74 case PM_EVENT_QUIESCE: 75 return "quiesce"; 76 case PM_EVENT_HIBERNATE: 77 return "hibernate"; 78 case PM_EVENT_THAW: 79 return "thaw"; 80 case PM_EVENT_RESTORE: 81 return "restore"; 82 case PM_EVENT_RECOVER: 83 return "recover"; 84 default: 85 return "(unknown PM event)"; 86 } 87 } 88 89 /** 90 * device_pm_sleep_init - Initialize system suspend-related device fields. 91 * @dev: Device object being initialized. 92 */ 93 void device_pm_sleep_init(struct device *dev) 94 { 95 dev->power.is_prepared = false; 96 dev->power.is_suspended = false; 97 dev->power.is_noirq_suspended = false; 98 dev->power.is_late_suspended = false; 99 init_completion(&dev->power.completion); 100 complete_all(&dev->power.completion); 101 dev->power.wakeup = NULL; 102 INIT_LIST_HEAD(&dev->power.entry); 103 } 104 105 /** 106 * device_pm_lock - Lock the list of active devices used by the PM core. 107 */ 108 void device_pm_lock(void) 109 { 110 mutex_lock(&dpm_list_mtx); 111 } 112 113 /** 114 * device_pm_unlock - Unlock the list of active devices used by the PM core. 115 */ 116 void device_pm_unlock(void) 117 { 118 mutex_unlock(&dpm_list_mtx); 119 } 120 121 /** 122 * device_pm_add - Add a device to the PM core's list of active devices. 123 * @dev: Device to add to the list. 124 */ 125 void device_pm_add(struct device *dev) 126 { 127 pr_debug("PM: Adding info for %s:%s\n", 128 dev->bus ? dev->bus->name : "No Bus", dev_name(dev)); 129 device_pm_check_callbacks(dev); 130 mutex_lock(&dpm_list_mtx); 131 if (dev->parent && dev->parent->power.is_prepared) 132 dev_warn(dev, "parent %s should not be sleeping\n", 133 dev_name(dev->parent)); 134 list_add_tail(&dev->power.entry, &dpm_list); 135 dev->power.in_dpm_list = true; 136 mutex_unlock(&dpm_list_mtx); 137 } 138 139 /** 140 * device_pm_remove - Remove a device from the PM core's list of active devices. 141 * @dev: Device to be removed from the list. 142 */ 143 void device_pm_remove(struct device *dev) 144 { 145 pr_debug("PM: Removing info for %s:%s\n", 146 dev->bus ? dev->bus->name : "No Bus", dev_name(dev)); 147 complete_all(&dev->power.completion); 148 mutex_lock(&dpm_list_mtx); 149 list_del_init(&dev->power.entry); 150 dev->power.in_dpm_list = false; 151 mutex_unlock(&dpm_list_mtx); 152 device_wakeup_disable(dev); 153 pm_runtime_remove(dev); 154 device_pm_check_callbacks(dev); 155 } 156 157 /** 158 * device_pm_move_before - Move device in the PM core's list of active devices. 159 * @deva: Device to move in dpm_list. 160 * @devb: Device @deva should come before. 161 */ 162 void device_pm_move_before(struct device *deva, struct device *devb) 163 { 164 pr_debug("PM: Moving %s:%s before %s:%s\n", 165 deva->bus ? deva->bus->name : "No Bus", dev_name(deva), 166 devb->bus ? devb->bus->name : "No Bus", dev_name(devb)); 167 /* Delete deva from dpm_list and reinsert before devb. */ 168 list_move_tail(&deva->power.entry, &devb->power.entry); 169 } 170 171 /** 172 * device_pm_move_after - Move device in the PM core's list of active devices. 173 * @deva: Device to move in dpm_list. 174 * @devb: Device @deva should come after. 175 */ 176 void device_pm_move_after(struct device *deva, struct device *devb) 177 { 178 pr_debug("PM: Moving %s:%s after %s:%s\n", 179 deva->bus ? deva->bus->name : "No Bus", dev_name(deva), 180 devb->bus ? devb->bus->name : "No Bus", dev_name(devb)); 181 /* Delete deva from dpm_list and reinsert after devb. */ 182 list_move(&deva->power.entry, &devb->power.entry); 183 } 184 185 /** 186 * device_pm_move_last - Move device to end of the PM core's list of devices. 187 * @dev: Device to move in dpm_list. 188 */ 189 void device_pm_move_last(struct device *dev) 190 { 191 pr_debug("PM: Moving %s:%s to end of list\n", 192 dev->bus ? dev->bus->name : "No Bus", dev_name(dev)); 193 list_move_tail(&dev->power.entry, &dpm_list); 194 } 195 196 static ktime_t initcall_debug_start(struct device *dev, void *cb) 197 { 198 if (!pm_print_times_enabled) 199 return 0; 200 201 dev_info(dev, "calling %pF @ %i, parent: %s\n", cb, 202 task_pid_nr(current), 203 dev->parent ? dev_name(dev->parent) : "none"); 204 return ktime_get(); 205 } 206 207 static void initcall_debug_report(struct device *dev, ktime_t calltime, 208 void *cb, int error) 209 { 210 ktime_t rettime; 211 s64 nsecs; 212 213 if (!pm_print_times_enabled) 214 return; 215 216 rettime = ktime_get(); 217 nsecs = (s64) ktime_to_ns(ktime_sub(rettime, calltime)); 218 219 dev_info(dev, "%pF returned %d after %Ld usecs\n", cb, error, 220 (unsigned long long)nsecs >> 10); 221 } 222 223 /** 224 * dpm_wait - Wait for a PM operation to complete. 225 * @dev: Device to wait for. 226 * @async: If unset, wait only if the device's power.async_suspend flag is set. 227 */ 228 static void dpm_wait(struct device *dev, bool async) 229 { 230 if (!dev) 231 return; 232 233 if (async || (pm_async_enabled && dev->power.async_suspend)) 234 wait_for_completion(&dev->power.completion); 235 } 236 237 static int dpm_wait_fn(struct device *dev, void *async_ptr) 238 { 239 dpm_wait(dev, *((bool *)async_ptr)); 240 return 0; 241 } 242 243 static void dpm_wait_for_children(struct device *dev, bool async) 244 { 245 device_for_each_child(dev, &async, dpm_wait_fn); 246 } 247 248 static void dpm_wait_for_suppliers(struct device *dev, bool async) 249 { 250 struct device_link *link; 251 int idx; 252 253 idx = device_links_read_lock(); 254 255 /* 256 * If the supplier goes away right after we've checked the link to it, 257 * we'll wait for its completion to change the state, but that's fine, 258 * because the only things that will block as a result are the SRCU 259 * callbacks freeing the link objects for the links in the list we're 260 * walking. 261 */ 262 list_for_each_entry_rcu(link, &dev->links.suppliers, c_node) 263 if (READ_ONCE(link->status) != DL_STATE_DORMANT) 264 dpm_wait(link->supplier, async); 265 266 device_links_read_unlock(idx); 267 } 268 269 static void dpm_wait_for_superior(struct device *dev, bool async) 270 { 271 dpm_wait(dev->parent, async); 272 dpm_wait_for_suppliers(dev, async); 273 } 274 275 static void dpm_wait_for_consumers(struct device *dev, bool async) 276 { 277 struct device_link *link; 278 int idx; 279 280 idx = device_links_read_lock(); 281 282 /* 283 * The status of a device link can only be changed from "dormant" by a 284 * probe, but that cannot happen during system suspend/resume. In 285 * theory it can change to "dormant" at that time, but then it is 286 * reasonable to wait for the target device anyway (eg. if it goes 287 * away, it's better to wait for it to go away completely and then 288 * continue instead of trying to continue in parallel with its 289 * unregistration). 290 */ 291 list_for_each_entry_rcu(link, &dev->links.consumers, s_node) 292 if (READ_ONCE(link->status) != DL_STATE_DORMANT) 293 dpm_wait(link->consumer, async); 294 295 device_links_read_unlock(idx); 296 } 297 298 static void dpm_wait_for_subordinate(struct device *dev, bool async) 299 { 300 dpm_wait_for_children(dev, async); 301 dpm_wait_for_consumers(dev, async); 302 } 303 304 /** 305 * pm_op - Return the PM operation appropriate for given PM event. 306 * @ops: PM operations to choose from. 307 * @state: PM transition of the system being carried out. 308 */ 309 static pm_callback_t pm_op(const struct dev_pm_ops *ops, pm_message_t state) 310 { 311 switch (state.event) { 312 #ifdef CONFIG_SUSPEND 313 case PM_EVENT_SUSPEND: 314 return ops->suspend; 315 case PM_EVENT_RESUME: 316 return ops->resume; 317 #endif /* CONFIG_SUSPEND */ 318 #ifdef CONFIG_HIBERNATE_CALLBACKS 319 case PM_EVENT_FREEZE: 320 case PM_EVENT_QUIESCE: 321 return ops->freeze; 322 case PM_EVENT_HIBERNATE: 323 return ops->poweroff; 324 case PM_EVENT_THAW: 325 case PM_EVENT_RECOVER: 326 return ops->thaw; 327 break; 328 case PM_EVENT_RESTORE: 329 return ops->restore; 330 #endif /* CONFIG_HIBERNATE_CALLBACKS */ 331 } 332 333 return NULL; 334 } 335 336 /** 337 * pm_late_early_op - Return the PM operation appropriate for given PM event. 338 * @ops: PM operations to choose from. 339 * @state: PM transition of the system being carried out. 340 * 341 * Runtime PM is disabled for @dev while this function is being executed. 342 */ 343 static pm_callback_t pm_late_early_op(const struct dev_pm_ops *ops, 344 pm_message_t state) 345 { 346 switch (state.event) { 347 #ifdef CONFIG_SUSPEND 348 case PM_EVENT_SUSPEND: 349 return ops->suspend_late; 350 case PM_EVENT_RESUME: 351 return ops->resume_early; 352 #endif /* CONFIG_SUSPEND */ 353 #ifdef CONFIG_HIBERNATE_CALLBACKS 354 case PM_EVENT_FREEZE: 355 case PM_EVENT_QUIESCE: 356 return ops->freeze_late; 357 case PM_EVENT_HIBERNATE: 358 return ops->poweroff_late; 359 case PM_EVENT_THAW: 360 case PM_EVENT_RECOVER: 361 return ops->thaw_early; 362 case PM_EVENT_RESTORE: 363 return ops->restore_early; 364 #endif /* CONFIG_HIBERNATE_CALLBACKS */ 365 } 366 367 return NULL; 368 } 369 370 /** 371 * pm_noirq_op - Return the PM operation appropriate for given PM event. 372 * @ops: PM operations to choose from. 373 * @state: PM transition of the system being carried out. 374 * 375 * The driver of @dev will not receive interrupts while this function is being 376 * executed. 377 */ 378 static pm_callback_t pm_noirq_op(const struct dev_pm_ops *ops, pm_message_t state) 379 { 380 switch (state.event) { 381 #ifdef CONFIG_SUSPEND 382 case PM_EVENT_SUSPEND: 383 return ops->suspend_noirq; 384 case PM_EVENT_RESUME: 385 return ops->resume_noirq; 386 #endif /* CONFIG_SUSPEND */ 387 #ifdef CONFIG_HIBERNATE_CALLBACKS 388 case PM_EVENT_FREEZE: 389 case PM_EVENT_QUIESCE: 390 return ops->freeze_noirq; 391 case PM_EVENT_HIBERNATE: 392 return ops->poweroff_noirq; 393 case PM_EVENT_THAW: 394 case PM_EVENT_RECOVER: 395 return ops->thaw_noirq; 396 case PM_EVENT_RESTORE: 397 return ops->restore_noirq; 398 #endif /* CONFIG_HIBERNATE_CALLBACKS */ 399 } 400 401 return NULL; 402 } 403 404 static void pm_dev_dbg(struct device *dev, pm_message_t state, const char *info) 405 { 406 dev_dbg(dev, "%s%s%s\n", info, pm_verb(state.event), 407 ((state.event & PM_EVENT_SLEEP) && device_may_wakeup(dev)) ? 408 ", may wakeup" : ""); 409 } 410 411 static void pm_dev_err(struct device *dev, pm_message_t state, const char *info, 412 int error) 413 { 414 printk(KERN_ERR "PM: Device %s failed to %s%s: error %d\n", 415 dev_name(dev), pm_verb(state.event), info, error); 416 } 417 418 static void dpm_show_time(ktime_t starttime, pm_message_t state, int error, 419 const char *info) 420 { 421 ktime_t calltime; 422 u64 usecs64; 423 int usecs; 424 425 calltime = ktime_get(); 426 usecs64 = ktime_to_ns(ktime_sub(calltime, starttime)); 427 do_div(usecs64, NSEC_PER_USEC); 428 usecs = usecs64; 429 if (usecs == 0) 430 usecs = 1; 431 432 pm_pr_dbg("%s%s%s of devices %s after %ld.%03ld msecs\n", 433 info ?: "", info ? " " : "", pm_verb(state.event), 434 error ? "aborted" : "complete", 435 usecs / USEC_PER_MSEC, usecs % USEC_PER_MSEC); 436 } 437 438 static int dpm_run_callback(pm_callback_t cb, struct device *dev, 439 pm_message_t state, const char *info) 440 { 441 ktime_t calltime; 442 int error; 443 444 if (!cb) 445 return 0; 446 447 calltime = initcall_debug_start(dev, cb); 448 449 pm_dev_dbg(dev, state, info); 450 trace_device_pm_callback_start(dev, info, state.event); 451 error = cb(dev); 452 trace_device_pm_callback_end(dev, error); 453 suspend_report_result(cb, error); 454 455 initcall_debug_report(dev, calltime, cb, error); 456 457 return error; 458 } 459 460 #ifdef CONFIG_DPM_WATCHDOG 461 struct dpm_watchdog { 462 struct device *dev; 463 struct task_struct *tsk; 464 struct timer_list timer; 465 }; 466 467 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd) \ 468 struct dpm_watchdog wd 469 470 /** 471 * dpm_watchdog_handler - Driver suspend / resume watchdog handler. 472 * @data: Watchdog object address. 473 * 474 * Called when a driver has timed out suspending or resuming. 475 * There's not much we can do here to recover so panic() to 476 * capture a crash-dump in pstore. 477 */ 478 static void dpm_watchdog_handler(struct timer_list *t) 479 { 480 struct dpm_watchdog *wd = from_timer(wd, t, timer); 481 482 dev_emerg(wd->dev, "**** DPM device timeout ****\n"); 483 show_stack(wd->tsk, NULL); 484 panic("%s %s: unrecoverable failure\n", 485 dev_driver_string(wd->dev), dev_name(wd->dev)); 486 } 487 488 /** 489 * dpm_watchdog_set - Enable pm watchdog for given device. 490 * @wd: Watchdog. Must be allocated on the stack. 491 * @dev: Device to handle. 492 */ 493 static void dpm_watchdog_set(struct dpm_watchdog *wd, struct device *dev) 494 { 495 struct timer_list *timer = &wd->timer; 496 497 wd->dev = dev; 498 wd->tsk = current; 499 500 timer_setup_on_stack(timer, dpm_watchdog_handler, 0); 501 /* use same timeout value for both suspend and resume */ 502 timer->expires = jiffies + HZ * CONFIG_DPM_WATCHDOG_TIMEOUT; 503 add_timer(timer); 504 } 505 506 /** 507 * dpm_watchdog_clear - Disable suspend/resume watchdog. 508 * @wd: Watchdog to disable. 509 */ 510 static void dpm_watchdog_clear(struct dpm_watchdog *wd) 511 { 512 struct timer_list *timer = &wd->timer; 513 514 del_timer_sync(timer); 515 destroy_timer_on_stack(timer); 516 } 517 #else 518 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd) 519 #define dpm_watchdog_set(x, y) 520 #define dpm_watchdog_clear(x) 521 #endif 522 523 /*------------------------- Resume routines -------------------------*/ 524 525 /** 526 * dev_pm_skip_next_resume_phases - Skip next system resume phases for device. 527 * @dev: Target device. 528 * 529 * Make the core skip the "early resume" and "resume" phases for @dev. 530 * 531 * This function can be called by middle-layer code during the "noirq" phase of 532 * system resume if necessary, but not by device drivers. 533 */ 534 void dev_pm_skip_next_resume_phases(struct device *dev) 535 { 536 dev->power.is_late_suspended = false; 537 dev->power.is_suspended = false; 538 } 539 540 /** 541 * suspend_event - Return a "suspend" message for given "resume" one. 542 * @resume_msg: PM message representing a system-wide resume transition. 543 */ 544 static pm_message_t suspend_event(pm_message_t resume_msg) 545 { 546 switch (resume_msg.event) { 547 case PM_EVENT_RESUME: 548 return PMSG_SUSPEND; 549 case PM_EVENT_THAW: 550 case PM_EVENT_RESTORE: 551 return PMSG_FREEZE; 552 case PM_EVENT_RECOVER: 553 return PMSG_HIBERNATE; 554 } 555 return PMSG_ON; 556 } 557 558 /** 559 * dev_pm_may_skip_resume - System-wide device resume optimization check. 560 * @dev: Target device. 561 * 562 * Checks whether or not the device may be left in suspend after a system-wide 563 * transition to the working state. 564 */ 565 bool dev_pm_may_skip_resume(struct device *dev) 566 { 567 return !dev->power.must_resume && pm_transition.event != PM_EVENT_RESTORE; 568 } 569 570 static pm_callback_t dpm_subsys_resume_noirq_cb(struct device *dev, 571 pm_message_t state, 572 const char **info_p) 573 { 574 pm_callback_t callback; 575 const char *info; 576 577 if (dev->pm_domain) { 578 info = "noirq power domain "; 579 callback = pm_noirq_op(&dev->pm_domain->ops, state); 580 } else if (dev->type && dev->type->pm) { 581 info = "noirq type "; 582 callback = pm_noirq_op(dev->type->pm, state); 583 } else if (dev->class && dev->class->pm) { 584 info = "noirq class "; 585 callback = pm_noirq_op(dev->class->pm, state); 586 } else if (dev->bus && dev->bus->pm) { 587 info = "noirq bus "; 588 callback = pm_noirq_op(dev->bus->pm, state); 589 } else { 590 return NULL; 591 } 592 593 if (info_p) 594 *info_p = info; 595 596 return callback; 597 } 598 599 static pm_callback_t dpm_subsys_suspend_noirq_cb(struct device *dev, 600 pm_message_t state, 601 const char **info_p); 602 603 static pm_callback_t dpm_subsys_suspend_late_cb(struct device *dev, 604 pm_message_t state, 605 const char **info_p); 606 607 /** 608 * device_resume_noirq - Execute a "noirq resume" callback for given device. 609 * @dev: Device to handle. 610 * @state: PM transition of the system being carried out. 611 * @async: If true, the device is being resumed asynchronously. 612 * 613 * The driver of @dev will not receive interrupts while this function is being 614 * executed. 615 */ 616 static int device_resume_noirq(struct device *dev, pm_message_t state, bool async) 617 { 618 pm_callback_t callback; 619 const char *info; 620 bool skip_resume; 621 int error = 0; 622 623 TRACE_DEVICE(dev); 624 TRACE_RESUME(0); 625 626 if (dev->power.syscore || dev->power.direct_complete) 627 goto Out; 628 629 if (!dev->power.is_noirq_suspended) 630 goto Out; 631 632 dpm_wait_for_superior(dev, async); 633 634 skip_resume = dev_pm_may_skip_resume(dev); 635 636 callback = dpm_subsys_resume_noirq_cb(dev, state, &info); 637 if (callback) 638 goto Run; 639 640 if (skip_resume) 641 goto Skip; 642 643 if (dev_pm_smart_suspend_and_suspended(dev)) { 644 pm_message_t suspend_msg = suspend_event(state); 645 646 /* 647 * If "freeze" callbacks have been skipped during a transition 648 * related to hibernation, the subsequent "thaw" callbacks must 649 * be skipped too or bad things may happen. Otherwise, resume 650 * callbacks are going to be run for the device, so its runtime 651 * PM status must be changed to reflect the new state after the 652 * transition under way. 653 */ 654 if (!dpm_subsys_suspend_late_cb(dev, suspend_msg, NULL) && 655 !dpm_subsys_suspend_noirq_cb(dev, suspend_msg, NULL)) { 656 if (state.event == PM_EVENT_THAW) { 657 skip_resume = true; 658 goto Skip; 659 } else { 660 pm_runtime_set_active(dev); 661 } 662 } 663 } 664 665 if (dev->driver && dev->driver->pm) { 666 info = "noirq driver "; 667 callback = pm_noirq_op(dev->driver->pm, state); 668 } 669 670 Run: 671 error = dpm_run_callback(callback, dev, state, info); 672 673 Skip: 674 dev->power.is_noirq_suspended = false; 675 676 if (skip_resume) { 677 /* 678 * The device is going to be left in suspend, but it might not 679 * have been in runtime suspend before the system suspended, so 680 * its runtime PM status needs to be updated to avoid confusing 681 * the runtime PM framework when runtime PM is enabled for the 682 * device again. 683 */ 684 pm_runtime_set_suspended(dev); 685 dev_pm_skip_next_resume_phases(dev); 686 } 687 688 Out: 689 complete_all(&dev->power.completion); 690 TRACE_RESUME(error); 691 return error; 692 } 693 694 static bool is_async(struct device *dev) 695 { 696 return dev->power.async_suspend && pm_async_enabled 697 && !pm_trace_is_enabled(); 698 } 699 700 static void async_resume_noirq(void *data, async_cookie_t cookie) 701 { 702 struct device *dev = (struct device *)data; 703 int error; 704 705 error = device_resume_noirq(dev, pm_transition, true); 706 if (error) 707 pm_dev_err(dev, pm_transition, " async", error); 708 709 put_device(dev); 710 } 711 712 void dpm_noirq_resume_devices(pm_message_t state) 713 { 714 struct device *dev; 715 ktime_t starttime = ktime_get(); 716 717 trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, true); 718 mutex_lock(&dpm_list_mtx); 719 pm_transition = state; 720 721 /* 722 * Advanced the async threads upfront, 723 * in case the starting of async threads is 724 * delayed by non-async resuming devices. 725 */ 726 list_for_each_entry(dev, &dpm_noirq_list, power.entry) { 727 reinit_completion(&dev->power.completion); 728 if (is_async(dev)) { 729 get_device(dev); 730 async_schedule(async_resume_noirq, dev); 731 } 732 } 733 734 while (!list_empty(&dpm_noirq_list)) { 735 dev = to_device(dpm_noirq_list.next); 736 get_device(dev); 737 list_move_tail(&dev->power.entry, &dpm_late_early_list); 738 mutex_unlock(&dpm_list_mtx); 739 740 if (!is_async(dev)) { 741 int error; 742 743 error = device_resume_noirq(dev, state, false); 744 if (error) { 745 suspend_stats.failed_resume_noirq++; 746 dpm_save_failed_step(SUSPEND_RESUME_NOIRQ); 747 dpm_save_failed_dev(dev_name(dev)); 748 pm_dev_err(dev, state, " noirq", error); 749 } 750 } 751 752 mutex_lock(&dpm_list_mtx); 753 put_device(dev); 754 } 755 mutex_unlock(&dpm_list_mtx); 756 async_synchronize_full(); 757 dpm_show_time(starttime, state, 0, "noirq"); 758 trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, false); 759 } 760 761 void dpm_noirq_end(void) 762 { 763 resume_device_irqs(); 764 device_wakeup_disarm_wake_irqs(); 765 cpuidle_resume(); 766 } 767 768 /** 769 * dpm_resume_noirq - Execute "noirq resume" callbacks for all devices. 770 * @state: PM transition of the system being carried out. 771 * 772 * Invoke the "noirq" resume callbacks for all devices in dpm_noirq_list and 773 * allow device drivers' interrupt handlers to be called. 774 */ 775 void dpm_resume_noirq(pm_message_t state) 776 { 777 dpm_noirq_resume_devices(state); 778 dpm_noirq_end(); 779 } 780 781 static pm_callback_t dpm_subsys_resume_early_cb(struct device *dev, 782 pm_message_t state, 783 const char **info_p) 784 { 785 pm_callback_t callback; 786 const char *info; 787 788 if (dev->pm_domain) { 789 info = "early power domain "; 790 callback = pm_late_early_op(&dev->pm_domain->ops, state); 791 } else if (dev->type && dev->type->pm) { 792 info = "early type "; 793 callback = pm_late_early_op(dev->type->pm, state); 794 } else if (dev->class && dev->class->pm) { 795 info = "early class "; 796 callback = pm_late_early_op(dev->class->pm, state); 797 } else if (dev->bus && dev->bus->pm) { 798 info = "early bus "; 799 callback = pm_late_early_op(dev->bus->pm, state); 800 } else { 801 return NULL; 802 } 803 804 if (info_p) 805 *info_p = info; 806 807 return callback; 808 } 809 810 /** 811 * device_resume_early - Execute an "early resume" callback for given device. 812 * @dev: Device to handle. 813 * @state: PM transition of the system being carried out. 814 * @async: If true, the device is being resumed asynchronously. 815 * 816 * Runtime PM is disabled for @dev while this function is being executed. 817 */ 818 static int device_resume_early(struct device *dev, pm_message_t state, bool async) 819 { 820 pm_callback_t callback; 821 const char *info; 822 int error = 0; 823 824 TRACE_DEVICE(dev); 825 TRACE_RESUME(0); 826 827 if (dev->power.syscore || dev->power.direct_complete) 828 goto Out; 829 830 if (!dev->power.is_late_suspended) 831 goto Out; 832 833 dpm_wait_for_superior(dev, async); 834 835 callback = dpm_subsys_resume_early_cb(dev, state, &info); 836 837 if (!callback && dev->driver && dev->driver->pm) { 838 info = "early driver "; 839 callback = pm_late_early_op(dev->driver->pm, state); 840 } 841 842 error = dpm_run_callback(callback, dev, state, info); 843 dev->power.is_late_suspended = false; 844 845 Out: 846 TRACE_RESUME(error); 847 848 pm_runtime_enable(dev); 849 complete_all(&dev->power.completion); 850 return error; 851 } 852 853 static void async_resume_early(void *data, async_cookie_t cookie) 854 { 855 struct device *dev = (struct device *)data; 856 int error; 857 858 error = device_resume_early(dev, pm_transition, true); 859 if (error) 860 pm_dev_err(dev, pm_transition, " async", error); 861 862 put_device(dev); 863 } 864 865 /** 866 * dpm_resume_early - Execute "early resume" callbacks for all devices. 867 * @state: PM transition of the system being carried out. 868 */ 869 void dpm_resume_early(pm_message_t state) 870 { 871 struct device *dev; 872 ktime_t starttime = ktime_get(); 873 874 trace_suspend_resume(TPS("dpm_resume_early"), state.event, true); 875 mutex_lock(&dpm_list_mtx); 876 pm_transition = state; 877 878 /* 879 * Advanced the async threads upfront, 880 * in case the starting of async threads is 881 * delayed by non-async resuming devices. 882 */ 883 list_for_each_entry(dev, &dpm_late_early_list, power.entry) { 884 reinit_completion(&dev->power.completion); 885 if (is_async(dev)) { 886 get_device(dev); 887 async_schedule(async_resume_early, dev); 888 } 889 } 890 891 while (!list_empty(&dpm_late_early_list)) { 892 dev = to_device(dpm_late_early_list.next); 893 get_device(dev); 894 list_move_tail(&dev->power.entry, &dpm_suspended_list); 895 mutex_unlock(&dpm_list_mtx); 896 897 if (!is_async(dev)) { 898 int error; 899 900 error = device_resume_early(dev, state, false); 901 if (error) { 902 suspend_stats.failed_resume_early++; 903 dpm_save_failed_step(SUSPEND_RESUME_EARLY); 904 dpm_save_failed_dev(dev_name(dev)); 905 pm_dev_err(dev, state, " early", error); 906 } 907 } 908 mutex_lock(&dpm_list_mtx); 909 put_device(dev); 910 } 911 mutex_unlock(&dpm_list_mtx); 912 async_synchronize_full(); 913 dpm_show_time(starttime, state, 0, "early"); 914 trace_suspend_resume(TPS("dpm_resume_early"), state.event, false); 915 } 916 917 /** 918 * dpm_resume_start - Execute "noirq" and "early" device callbacks. 919 * @state: PM transition of the system being carried out. 920 */ 921 void dpm_resume_start(pm_message_t state) 922 { 923 dpm_resume_noirq(state); 924 dpm_resume_early(state); 925 } 926 EXPORT_SYMBOL_GPL(dpm_resume_start); 927 928 /** 929 * device_resume - Execute "resume" callbacks for given device. 930 * @dev: Device to handle. 931 * @state: PM transition of the system being carried out. 932 * @async: If true, the device is being resumed asynchronously. 933 */ 934 static int device_resume(struct device *dev, pm_message_t state, bool async) 935 { 936 pm_callback_t callback = NULL; 937 const char *info = NULL; 938 int error = 0; 939 DECLARE_DPM_WATCHDOG_ON_STACK(wd); 940 941 TRACE_DEVICE(dev); 942 TRACE_RESUME(0); 943 944 if (dev->power.syscore) 945 goto Complete; 946 947 if (dev->power.direct_complete) { 948 /* Match the pm_runtime_disable() in __device_suspend(). */ 949 pm_runtime_enable(dev); 950 goto Complete; 951 } 952 953 dpm_wait_for_superior(dev, async); 954 dpm_watchdog_set(&wd, dev); 955 device_lock(dev); 956 957 /* 958 * This is a fib. But we'll allow new children to be added below 959 * a resumed device, even if the device hasn't been completed yet. 960 */ 961 dev->power.is_prepared = false; 962 963 if (!dev->power.is_suspended) 964 goto Unlock; 965 966 if (dev->pm_domain) { 967 info = "power domain "; 968 callback = pm_op(&dev->pm_domain->ops, state); 969 goto Driver; 970 } 971 972 if (dev->type && dev->type->pm) { 973 info = "type "; 974 callback = pm_op(dev->type->pm, state); 975 goto Driver; 976 } 977 978 if (dev->class && dev->class->pm) { 979 info = "class "; 980 callback = pm_op(dev->class->pm, state); 981 goto Driver; 982 } 983 984 if (dev->bus) { 985 if (dev->bus->pm) { 986 info = "bus "; 987 callback = pm_op(dev->bus->pm, state); 988 } else if (dev->bus->resume) { 989 info = "legacy bus "; 990 callback = dev->bus->resume; 991 goto End; 992 } 993 } 994 995 Driver: 996 if (!callback && dev->driver && dev->driver->pm) { 997 info = "driver "; 998 callback = pm_op(dev->driver->pm, state); 999 } 1000 1001 End: 1002 error = dpm_run_callback(callback, dev, state, info); 1003 dev->power.is_suspended = false; 1004 1005 Unlock: 1006 device_unlock(dev); 1007 dpm_watchdog_clear(&wd); 1008 1009 Complete: 1010 complete_all(&dev->power.completion); 1011 1012 TRACE_RESUME(error); 1013 1014 return error; 1015 } 1016 1017 static void async_resume(void *data, async_cookie_t cookie) 1018 { 1019 struct device *dev = (struct device *)data; 1020 int error; 1021 1022 error = device_resume(dev, pm_transition, true); 1023 if (error) 1024 pm_dev_err(dev, pm_transition, " async", error); 1025 put_device(dev); 1026 } 1027 1028 /** 1029 * dpm_resume - Execute "resume" callbacks for non-sysdev devices. 1030 * @state: PM transition of the system being carried out. 1031 * 1032 * Execute the appropriate "resume" callback for all devices whose status 1033 * indicates that they are suspended. 1034 */ 1035 void dpm_resume(pm_message_t state) 1036 { 1037 struct device *dev; 1038 ktime_t starttime = ktime_get(); 1039 1040 trace_suspend_resume(TPS("dpm_resume"), state.event, true); 1041 might_sleep(); 1042 1043 mutex_lock(&dpm_list_mtx); 1044 pm_transition = state; 1045 async_error = 0; 1046 1047 list_for_each_entry(dev, &dpm_suspended_list, power.entry) { 1048 reinit_completion(&dev->power.completion); 1049 if (is_async(dev)) { 1050 get_device(dev); 1051 async_schedule(async_resume, dev); 1052 } 1053 } 1054 1055 while (!list_empty(&dpm_suspended_list)) { 1056 dev = to_device(dpm_suspended_list.next); 1057 get_device(dev); 1058 if (!is_async(dev)) { 1059 int error; 1060 1061 mutex_unlock(&dpm_list_mtx); 1062 1063 error = device_resume(dev, state, false); 1064 if (error) { 1065 suspend_stats.failed_resume++; 1066 dpm_save_failed_step(SUSPEND_RESUME); 1067 dpm_save_failed_dev(dev_name(dev)); 1068 pm_dev_err(dev, state, "", error); 1069 } 1070 1071 mutex_lock(&dpm_list_mtx); 1072 } 1073 if (!list_empty(&dev->power.entry)) 1074 list_move_tail(&dev->power.entry, &dpm_prepared_list); 1075 put_device(dev); 1076 } 1077 mutex_unlock(&dpm_list_mtx); 1078 async_synchronize_full(); 1079 dpm_show_time(starttime, state, 0, NULL); 1080 1081 cpufreq_resume(); 1082 devfreq_resume(); 1083 trace_suspend_resume(TPS("dpm_resume"), state.event, false); 1084 } 1085 1086 /** 1087 * device_complete - Complete a PM transition for given device. 1088 * @dev: Device to handle. 1089 * @state: PM transition of the system being carried out. 1090 */ 1091 static void device_complete(struct device *dev, pm_message_t state) 1092 { 1093 void (*callback)(struct device *) = NULL; 1094 const char *info = NULL; 1095 1096 if (dev->power.syscore) 1097 return; 1098 1099 device_lock(dev); 1100 1101 if (dev->pm_domain) { 1102 info = "completing power domain "; 1103 callback = dev->pm_domain->ops.complete; 1104 } else if (dev->type && dev->type->pm) { 1105 info = "completing type "; 1106 callback = dev->type->pm->complete; 1107 } else if (dev->class && dev->class->pm) { 1108 info = "completing class "; 1109 callback = dev->class->pm->complete; 1110 } else if (dev->bus && dev->bus->pm) { 1111 info = "completing bus "; 1112 callback = dev->bus->pm->complete; 1113 } 1114 1115 if (!callback && dev->driver && dev->driver->pm) { 1116 info = "completing driver "; 1117 callback = dev->driver->pm->complete; 1118 } 1119 1120 if (callback) { 1121 pm_dev_dbg(dev, state, info); 1122 callback(dev); 1123 } 1124 1125 device_unlock(dev); 1126 1127 pm_runtime_put(dev); 1128 } 1129 1130 /** 1131 * dpm_complete - Complete a PM transition for all non-sysdev devices. 1132 * @state: PM transition of the system being carried out. 1133 * 1134 * Execute the ->complete() callbacks for all devices whose PM status is not 1135 * DPM_ON (this allows new devices to be registered). 1136 */ 1137 void dpm_complete(pm_message_t state) 1138 { 1139 struct list_head list; 1140 1141 trace_suspend_resume(TPS("dpm_complete"), state.event, true); 1142 might_sleep(); 1143 1144 INIT_LIST_HEAD(&list); 1145 mutex_lock(&dpm_list_mtx); 1146 while (!list_empty(&dpm_prepared_list)) { 1147 struct device *dev = to_device(dpm_prepared_list.prev); 1148 1149 get_device(dev); 1150 dev->power.is_prepared = false; 1151 list_move(&dev->power.entry, &list); 1152 mutex_unlock(&dpm_list_mtx); 1153 1154 trace_device_pm_callback_start(dev, "", state.event); 1155 device_complete(dev, state); 1156 trace_device_pm_callback_end(dev, 0); 1157 1158 mutex_lock(&dpm_list_mtx); 1159 put_device(dev); 1160 } 1161 list_splice(&list, &dpm_list); 1162 mutex_unlock(&dpm_list_mtx); 1163 1164 /* Allow device probing and trigger re-probing of deferred devices */ 1165 device_unblock_probing(); 1166 trace_suspend_resume(TPS("dpm_complete"), state.event, false); 1167 } 1168 1169 /** 1170 * dpm_resume_end - Execute "resume" callbacks and complete system transition. 1171 * @state: PM transition of the system being carried out. 1172 * 1173 * Execute "resume" callbacks for all devices and complete the PM transition of 1174 * the system. 1175 */ 1176 void dpm_resume_end(pm_message_t state) 1177 { 1178 dpm_resume(state); 1179 dpm_complete(state); 1180 } 1181 EXPORT_SYMBOL_GPL(dpm_resume_end); 1182 1183 1184 /*------------------------- Suspend routines -------------------------*/ 1185 1186 /** 1187 * resume_event - Return a "resume" message for given "suspend" sleep state. 1188 * @sleep_state: PM message representing a sleep state. 1189 * 1190 * Return a PM message representing the resume event corresponding to given 1191 * sleep state. 1192 */ 1193 static pm_message_t resume_event(pm_message_t sleep_state) 1194 { 1195 switch (sleep_state.event) { 1196 case PM_EVENT_SUSPEND: 1197 return PMSG_RESUME; 1198 case PM_EVENT_FREEZE: 1199 case PM_EVENT_QUIESCE: 1200 return PMSG_RECOVER; 1201 case PM_EVENT_HIBERNATE: 1202 return PMSG_RESTORE; 1203 } 1204 return PMSG_ON; 1205 } 1206 1207 static void dpm_superior_set_must_resume(struct device *dev) 1208 { 1209 struct device_link *link; 1210 int idx; 1211 1212 if (dev->parent) 1213 dev->parent->power.must_resume = true; 1214 1215 idx = device_links_read_lock(); 1216 1217 list_for_each_entry_rcu(link, &dev->links.suppliers, c_node) 1218 link->supplier->power.must_resume = true; 1219 1220 device_links_read_unlock(idx); 1221 } 1222 1223 static pm_callback_t dpm_subsys_suspend_noirq_cb(struct device *dev, 1224 pm_message_t state, 1225 const char **info_p) 1226 { 1227 pm_callback_t callback; 1228 const char *info; 1229 1230 if (dev->pm_domain) { 1231 info = "noirq power domain "; 1232 callback = pm_noirq_op(&dev->pm_domain->ops, state); 1233 } else if (dev->type && dev->type->pm) { 1234 info = "noirq type "; 1235 callback = pm_noirq_op(dev->type->pm, state); 1236 } else if (dev->class && dev->class->pm) { 1237 info = "noirq class "; 1238 callback = pm_noirq_op(dev->class->pm, state); 1239 } else if (dev->bus && dev->bus->pm) { 1240 info = "noirq bus "; 1241 callback = pm_noirq_op(dev->bus->pm, state); 1242 } else { 1243 return NULL; 1244 } 1245 1246 if (info_p) 1247 *info_p = info; 1248 1249 return callback; 1250 } 1251 1252 static bool device_must_resume(struct device *dev, pm_message_t state, 1253 bool no_subsys_suspend_noirq) 1254 { 1255 pm_message_t resume_msg = resume_event(state); 1256 1257 /* 1258 * If all of the device driver's "noirq", "late" and "early" callbacks 1259 * are invoked directly by the core, the decision to allow the device to 1260 * stay in suspend can be based on its current runtime PM status and its 1261 * wakeup settings. 1262 */ 1263 if (no_subsys_suspend_noirq && 1264 !dpm_subsys_suspend_late_cb(dev, state, NULL) && 1265 !dpm_subsys_resume_early_cb(dev, resume_msg, NULL) && 1266 !dpm_subsys_resume_noirq_cb(dev, resume_msg, NULL)) 1267 return !pm_runtime_status_suspended(dev) && 1268 (resume_msg.event != PM_EVENT_RESUME || 1269 (device_can_wakeup(dev) && !device_may_wakeup(dev))); 1270 1271 /* 1272 * The only safe strategy here is to require that if the device may not 1273 * be left in suspend, resume callbacks must be invoked for it. 1274 */ 1275 return !dev->power.may_skip_resume; 1276 } 1277 1278 /** 1279 * __device_suspend_noirq - Execute a "noirq suspend" callback for given device. 1280 * @dev: Device to handle. 1281 * @state: PM transition of the system being carried out. 1282 * @async: If true, the device is being suspended asynchronously. 1283 * 1284 * The driver of @dev will not receive interrupts while this function is being 1285 * executed. 1286 */ 1287 static int __device_suspend_noirq(struct device *dev, pm_message_t state, bool async) 1288 { 1289 pm_callback_t callback; 1290 const char *info; 1291 bool no_subsys_cb = false; 1292 int error = 0; 1293 1294 TRACE_DEVICE(dev); 1295 TRACE_SUSPEND(0); 1296 1297 dpm_wait_for_subordinate(dev, async); 1298 1299 if (async_error) 1300 goto Complete; 1301 1302 if (pm_wakeup_pending()) { 1303 async_error = -EBUSY; 1304 goto Complete; 1305 } 1306 1307 if (dev->power.syscore || dev->power.direct_complete) 1308 goto Complete; 1309 1310 callback = dpm_subsys_suspend_noirq_cb(dev, state, &info); 1311 if (callback) 1312 goto Run; 1313 1314 no_subsys_cb = !dpm_subsys_suspend_late_cb(dev, state, NULL); 1315 1316 if (dev_pm_smart_suspend_and_suspended(dev) && no_subsys_cb) 1317 goto Skip; 1318 1319 if (dev->driver && dev->driver->pm) { 1320 info = "noirq driver "; 1321 callback = pm_noirq_op(dev->driver->pm, state); 1322 } 1323 1324 Run: 1325 error = dpm_run_callback(callback, dev, state, info); 1326 if (error) { 1327 async_error = error; 1328 goto Complete; 1329 } 1330 1331 Skip: 1332 dev->power.is_noirq_suspended = true; 1333 1334 if (dev_pm_test_driver_flags(dev, DPM_FLAG_LEAVE_SUSPENDED)) { 1335 dev->power.must_resume = dev->power.must_resume || 1336 atomic_read(&dev->power.usage_count) > 1 || 1337 device_must_resume(dev, state, no_subsys_cb); 1338 } else { 1339 dev->power.must_resume = true; 1340 } 1341 1342 if (dev->power.must_resume) 1343 dpm_superior_set_must_resume(dev); 1344 1345 Complete: 1346 complete_all(&dev->power.completion); 1347 TRACE_SUSPEND(error); 1348 return error; 1349 } 1350 1351 static void async_suspend_noirq(void *data, async_cookie_t cookie) 1352 { 1353 struct device *dev = (struct device *)data; 1354 int error; 1355 1356 error = __device_suspend_noirq(dev, pm_transition, true); 1357 if (error) { 1358 dpm_save_failed_dev(dev_name(dev)); 1359 pm_dev_err(dev, pm_transition, " async", error); 1360 } 1361 1362 put_device(dev); 1363 } 1364 1365 static int device_suspend_noirq(struct device *dev) 1366 { 1367 reinit_completion(&dev->power.completion); 1368 1369 if (is_async(dev)) { 1370 get_device(dev); 1371 async_schedule(async_suspend_noirq, dev); 1372 return 0; 1373 } 1374 return __device_suspend_noirq(dev, pm_transition, false); 1375 } 1376 1377 void dpm_noirq_begin(void) 1378 { 1379 cpuidle_pause(); 1380 device_wakeup_arm_wake_irqs(); 1381 suspend_device_irqs(); 1382 } 1383 1384 int dpm_noirq_suspend_devices(pm_message_t state) 1385 { 1386 ktime_t starttime = ktime_get(); 1387 int error = 0; 1388 1389 trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, true); 1390 mutex_lock(&dpm_list_mtx); 1391 pm_transition = state; 1392 async_error = 0; 1393 1394 while (!list_empty(&dpm_late_early_list)) { 1395 struct device *dev = to_device(dpm_late_early_list.prev); 1396 1397 get_device(dev); 1398 mutex_unlock(&dpm_list_mtx); 1399 1400 error = device_suspend_noirq(dev); 1401 1402 mutex_lock(&dpm_list_mtx); 1403 if (error) { 1404 pm_dev_err(dev, state, " noirq", error); 1405 dpm_save_failed_dev(dev_name(dev)); 1406 put_device(dev); 1407 break; 1408 } 1409 if (!list_empty(&dev->power.entry)) 1410 list_move(&dev->power.entry, &dpm_noirq_list); 1411 put_device(dev); 1412 1413 if (async_error) 1414 break; 1415 } 1416 mutex_unlock(&dpm_list_mtx); 1417 async_synchronize_full(); 1418 if (!error) 1419 error = async_error; 1420 1421 if (error) { 1422 suspend_stats.failed_suspend_noirq++; 1423 dpm_save_failed_step(SUSPEND_SUSPEND_NOIRQ); 1424 } 1425 dpm_show_time(starttime, state, error, "noirq"); 1426 trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, false); 1427 return error; 1428 } 1429 1430 /** 1431 * dpm_suspend_noirq - Execute "noirq suspend" callbacks for all devices. 1432 * @state: PM transition of the system being carried out. 1433 * 1434 * Prevent device drivers' interrupt handlers from being called and invoke 1435 * "noirq" suspend callbacks for all non-sysdev devices. 1436 */ 1437 int dpm_suspend_noirq(pm_message_t state) 1438 { 1439 int ret; 1440 1441 dpm_noirq_begin(); 1442 ret = dpm_noirq_suspend_devices(state); 1443 if (ret) 1444 dpm_resume_noirq(resume_event(state)); 1445 1446 return ret; 1447 } 1448 1449 static void dpm_propagate_wakeup_to_parent(struct device *dev) 1450 { 1451 struct device *parent = dev->parent; 1452 1453 if (!parent) 1454 return; 1455 1456 spin_lock_irq(&parent->power.lock); 1457 1458 if (dev->power.wakeup_path && !parent->power.ignore_children) 1459 parent->power.wakeup_path = true; 1460 1461 spin_unlock_irq(&parent->power.lock); 1462 } 1463 1464 static pm_callback_t dpm_subsys_suspend_late_cb(struct device *dev, 1465 pm_message_t state, 1466 const char **info_p) 1467 { 1468 pm_callback_t callback; 1469 const char *info; 1470 1471 if (dev->pm_domain) { 1472 info = "late power domain "; 1473 callback = pm_late_early_op(&dev->pm_domain->ops, state); 1474 } else if (dev->type && dev->type->pm) { 1475 info = "late type "; 1476 callback = pm_late_early_op(dev->type->pm, state); 1477 } else if (dev->class && dev->class->pm) { 1478 info = "late class "; 1479 callback = pm_late_early_op(dev->class->pm, state); 1480 } else if (dev->bus && dev->bus->pm) { 1481 info = "late bus "; 1482 callback = pm_late_early_op(dev->bus->pm, state); 1483 } else { 1484 return NULL; 1485 } 1486 1487 if (info_p) 1488 *info_p = info; 1489 1490 return callback; 1491 } 1492 1493 /** 1494 * __device_suspend_late - Execute a "late suspend" callback for given device. 1495 * @dev: Device to handle. 1496 * @state: PM transition of the system being carried out. 1497 * @async: If true, the device is being suspended asynchronously. 1498 * 1499 * Runtime PM is disabled for @dev while this function is being executed. 1500 */ 1501 static int __device_suspend_late(struct device *dev, pm_message_t state, bool async) 1502 { 1503 pm_callback_t callback; 1504 const char *info; 1505 int error = 0; 1506 1507 TRACE_DEVICE(dev); 1508 TRACE_SUSPEND(0); 1509 1510 __pm_runtime_disable(dev, false); 1511 1512 dpm_wait_for_subordinate(dev, async); 1513 1514 if (async_error) 1515 goto Complete; 1516 1517 if (pm_wakeup_pending()) { 1518 async_error = -EBUSY; 1519 goto Complete; 1520 } 1521 1522 if (dev->power.syscore || dev->power.direct_complete) 1523 goto Complete; 1524 1525 callback = dpm_subsys_suspend_late_cb(dev, state, &info); 1526 if (callback) 1527 goto Run; 1528 1529 if (dev_pm_smart_suspend_and_suspended(dev) && 1530 !dpm_subsys_suspend_noirq_cb(dev, state, NULL)) 1531 goto Skip; 1532 1533 if (dev->driver && dev->driver->pm) { 1534 info = "late driver "; 1535 callback = pm_late_early_op(dev->driver->pm, state); 1536 } 1537 1538 Run: 1539 error = dpm_run_callback(callback, dev, state, info); 1540 if (error) { 1541 async_error = error; 1542 goto Complete; 1543 } 1544 dpm_propagate_wakeup_to_parent(dev); 1545 1546 Skip: 1547 dev->power.is_late_suspended = true; 1548 1549 Complete: 1550 TRACE_SUSPEND(error); 1551 complete_all(&dev->power.completion); 1552 return error; 1553 } 1554 1555 static void async_suspend_late(void *data, async_cookie_t cookie) 1556 { 1557 struct device *dev = (struct device *)data; 1558 int error; 1559 1560 error = __device_suspend_late(dev, pm_transition, true); 1561 if (error) { 1562 dpm_save_failed_dev(dev_name(dev)); 1563 pm_dev_err(dev, pm_transition, " async", error); 1564 } 1565 put_device(dev); 1566 } 1567 1568 static int device_suspend_late(struct device *dev) 1569 { 1570 reinit_completion(&dev->power.completion); 1571 1572 if (is_async(dev)) { 1573 get_device(dev); 1574 async_schedule(async_suspend_late, dev); 1575 return 0; 1576 } 1577 1578 return __device_suspend_late(dev, pm_transition, false); 1579 } 1580 1581 /** 1582 * dpm_suspend_late - Execute "late suspend" callbacks for all devices. 1583 * @state: PM transition of the system being carried out. 1584 */ 1585 int dpm_suspend_late(pm_message_t state) 1586 { 1587 ktime_t starttime = ktime_get(); 1588 int error = 0; 1589 1590 trace_suspend_resume(TPS("dpm_suspend_late"), state.event, true); 1591 mutex_lock(&dpm_list_mtx); 1592 pm_transition = state; 1593 async_error = 0; 1594 1595 while (!list_empty(&dpm_suspended_list)) { 1596 struct device *dev = to_device(dpm_suspended_list.prev); 1597 1598 get_device(dev); 1599 mutex_unlock(&dpm_list_mtx); 1600 1601 error = device_suspend_late(dev); 1602 1603 mutex_lock(&dpm_list_mtx); 1604 if (!list_empty(&dev->power.entry)) 1605 list_move(&dev->power.entry, &dpm_late_early_list); 1606 1607 if (error) { 1608 pm_dev_err(dev, state, " late", error); 1609 dpm_save_failed_dev(dev_name(dev)); 1610 put_device(dev); 1611 break; 1612 } 1613 put_device(dev); 1614 1615 if (async_error) 1616 break; 1617 } 1618 mutex_unlock(&dpm_list_mtx); 1619 async_synchronize_full(); 1620 if (!error) 1621 error = async_error; 1622 if (error) { 1623 suspend_stats.failed_suspend_late++; 1624 dpm_save_failed_step(SUSPEND_SUSPEND_LATE); 1625 dpm_resume_early(resume_event(state)); 1626 } 1627 dpm_show_time(starttime, state, error, "late"); 1628 trace_suspend_resume(TPS("dpm_suspend_late"), state.event, false); 1629 return error; 1630 } 1631 1632 /** 1633 * dpm_suspend_end - Execute "late" and "noirq" device suspend callbacks. 1634 * @state: PM transition of the system being carried out. 1635 */ 1636 int dpm_suspend_end(pm_message_t state) 1637 { 1638 int error = dpm_suspend_late(state); 1639 if (error) 1640 return error; 1641 1642 error = dpm_suspend_noirq(state); 1643 if (error) { 1644 dpm_resume_early(resume_event(state)); 1645 return error; 1646 } 1647 1648 return 0; 1649 } 1650 EXPORT_SYMBOL_GPL(dpm_suspend_end); 1651 1652 /** 1653 * legacy_suspend - Execute a legacy (bus or class) suspend callback for device. 1654 * @dev: Device to suspend. 1655 * @state: PM transition of the system being carried out. 1656 * @cb: Suspend callback to execute. 1657 * @info: string description of caller. 1658 */ 1659 static int legacy_suspend(struct device *dev, pm_message_t state, 1660 int (*cb)(struct device *dev, pm_message_t state), 1661 const char *info) 1662 { 1663 int error; 1664 ktime_t calltime; 1665 1666 calltime = initcall_debug_start(dev, cb); 1667 1668 trace_device_pm_callback_start(dev, info, state.event); 1669 error = cb(dev, state); 1670 trace_device_pm_callback_end(dev, error); 1671 suspend_report_result(cb, error); 1672 1673 initcall_debug_report(dev, calltime, cb, error); 1674 1675 return error; 1676 } 1677 1678 static void dpm_clear_superiors_direct_complete(struct device *dev) 1679 { 1680 struct device_link *link; 1681 int idx; 1682 1683 if (dev->parent) { 1684 spin_lock_irq(&dev->parent->power.lock); 1685 dev->parent->power.direct_complete = false; 1686 spin_unlock_irq(&dev->parent->power.lock); 1687 } 1688 1689 idx = device_links_read_lock(); 1690 1691 list_for_each_entry_rcu(link, &dev->links.suppliers, c_node) { 1692 spin_lock_irq(&link->supplier->power.lock); 1693 link->supplier->power.direct_complete = false; 1694 spin_unlock_irq(&link->supplier->power.lock); 1695 } 1696 1697 device_links_read_unlock(idx); 1698 } 1699 1700 /** 1701 * __device_suspend - Execute "suspend" callbacks for given device. 1702 * @dev: Device to handle. 1703 * @state: PM transition of the system being carried out. 1704 * @async: If true, the device is being suspended asynchronously. 1705 */ 1706 static int __device_suspend(struct device *dev, pm_message_t state, bool async) 1707 { 1708 pm_callback_t callback = NULL; 1709 const char *info = NULL; 1710 int error = 0; 1711 DECLARE_DPM_WATCHDOG_ON_STACK(wd); 1712 1713 TRACE_DEVICE(dev); 1714 TRACE_SUSPEND(0); 1715 1716 dpm_wait_for_subordinate(dev, async); 1717 1718 if (async_error) { 1719 dev->power.direct_complete = false; 1720 goto Complete; 1721 } 1722 1723 /* 1724 * If a device configured to wake up the system from sleep states 1725 * has been suspended at run time and there's a resume request pending 1726 * for it, this is equivalent to the device signaling wakeup, so the 1727 * system suspend operation should be aborted. 1728 */ 1729 if (pm_runtime_barrier(dev) && device_may_wakeup(dev)) 1730 pm_wakeup_event(dev, 0); 1731 1732 if (pm_wakeup_pending()) { 1733 dev->power.direct_complete = false; 1734 async_error = -EBUSY; 1735 goto Complete; 1736 } 1737 1738 if (dev->power.syscore) 1739 goto Complete; 1740 1741 if (dev->power.direct_complete) { 1742 if (pm_runtime_status_suspended(dev)) { 1743 pm_runtime_disable(dev); 1744 if (pm_runtime_status_suspended(dev)) 1745 goto Complete; 1746 1747 pm_runtime_enable(dev); 1748 } 1749 dev->power.direct_complete = false; 1750 } 1751 1752 dev->power.may_skip_resume = false; 1753 dev->power.must_resume = false; 1754 1755 dpm_watchdog_set(&wd, dev); 1756 device_lock(dev); 1757 1758 if (dev->pm_domain) { 1759 info = "power domain "; 1760 callback = pm_op(&dev->pm_domain->ops, state); 1761 goto Run; 1762 } 1763 1764 if (dev->type && dev->type->pm) { 1765 info = "type "; 1766 callback = pm_op(dev->type->pm, state); 1767 goto Run; 1768 } 1769 1770 if (dev->class && dev->class->pm) { 1771 info = "class "; 1772 callback = pm_op(dev->class->pm, state); 1773 goto Run; 1774 } 1775 1776 if (dev->bus) { 1777 if (dev->bus->pm) { 1778 info = "bus "; 1779 callback = pm_op(dev->bus->pm, state); 1780 } else if (dev->bus->suspend) { 1781 pm_dev_dbg(dev, state, "legacy bus "); 1782 error = legacy_suspend(dev, state, dev->bus->suspend, 1783 "legacy bus "); 1784 goto End; 1785 } 1786 } 1787 1788 Run: 1789 if (!callback && dev->driver && dev->driver->pm) { 1790 info = "driver "; 1791 callback = pm_op(dev->driver->pm, state); 1792 } 1793 1794 error = dpm_run_callback(callback, dev, state, info); 1795 1796 End: 1797 if (!error) { 1798 dev->power.is_suspended = true; 1799 if (device_may_wakeup(dev)) 1800 dev->power.wakeup_path = true; 1801 1802 dpm_propagate_wakeup_to_parent(dev); 1803 dpm_clear_superiors_direct_complete(dev); 1804 } 1805 1806 device_unlock(dev); 1807 dpm_watchdog_clear(&wd); 1808 1809 Complete: 1810 if (error) 1811 async_error = error; 1812 1813 complete_all(&dev->power.completion); 1814 TRACE_SUSPEND(error); 1815 return error; 1816 } 1817 1818 static void async_suspend(void *data, async_cookie_t cookie) 1819 { 1820 struct device *dev = (struct device *)data; 1821 int error; 1822 1823 error = __device_suspend(dev, pm_transition, true); 1824 if (error) { 1825 dpm_save_failed_dev(dev_name(dev)); 1826 pm_dev_err(dev, pm_transition, " async", error); 1827 } 1828 1829 put_device(dev); 1830 } 1831 1832 static int device_suspend(struct device *dev) 1833 { 1834 reinit_completion(&dev->power.completion); 1835 1836 if (is_async(dev)) { 1837 get_device(dev); 1838 async_schedule(async_suspend, dev); 1839 return 0; 1840 } 1841 1842 return __device_suspend(dev, pm_transition, false); 1843 } 1844 1845 /** 1846 * dpm_suspend - Execute "suspend" callbacks for all non-sysdev devices. 1847 * @state: PM transition of the system being carried out. 1848 */ 1849 int dpm_suspend(pm_message_t state) 1850 { 1851 ktime_t starttime = ktime_get(); 1852 int error = 0; 1853 1854 trace_suspend_resume(TPS("dpm_suspend"), state.event, true); 1855 might_sleep(); 1856 1857 devfreq_suspend(); 1858 cpufreq_suspend(); 1859 1860 mutex_lock(&dpm_list_mtx); 1861 pm_transition = state; 1862 async_error = 0; 1863 while (!list_empty(&dpm_prepared_list)) { 1864 struct device *dev = to_device(dpm_prepared_list.prev); 1865 1866 get_device(dev); 1867 mutex_unlock(&dpm_list_mtx); 1868 1869 error = device_suspend(dev); 1870 1871 mutex_lock(&dpm_list_mtx); 1872 if (error) { 1873 pm_dev_err(dev, state, "", error); 1874 dpm_save_failed_dev(dev_name(dev)); 1875 put_device(dev); 1876 break; 1877 } 1878 if (!list_empty(&dev->power.entry)) 1879 list_move(&dev->power.entry, &dpm_suspended_list); 1880 put_device(dev); 1881 if (async_error) 1882 break; 1883 } 1884 mutex_unlock(&dpm_list_mtx); 1885 async_synchronize_full(); 1886 if (!error) 1887 error = async_error; 1888 if (error) { 1889 suspend_stats.failed_suspend++; 1890 dpm_save_failed_step(SUSPEND_SUSPEND); 1891 } 1892 dpm_show_time(starttime, state, error, NULL); 1893 trace_suspend_resume(TPS("dpm_suspend"), state.event, false); 1894 return error; 1895 } 1896 1897 /** 1898 * device_prepare - Prepare a device for system power transition. 1899 * @dev: Device to handle. 1900 * @state: PM transition of the system being carried out. 1901 * 1902 * Execute the ->prepare() callback(s) for given device. No new children of the 1903 * device may be registered after this function has returned. 1904 */ 1905 static int device_prepare(struct device *dev, pm_message_t state) 1906 { 1907 int (*callback)(struct device *) = NULL; 1908 int ret = 0; 1909 1910 if (dev->power.syscore) 1911 return 0; 1912 1913 WARN_ON(!pm_runtime_enabled(dev) && 1914 dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND | 1915 DPM_FLAG_LEAVE_SUSPENDED)); 1916 1917 /* 1918 * If a device's parent goes into runtime suspend at the wrong time, 1919 * it won't be possible to resume the device. To prevent this we 1920 * block runtime suspend here, during the prepare phase, and allow 1921 * it again during the complete phase. 1922 */ 1923 pm_runtime_get_noresume(dev); 1924 1925 device_lock(dev); 1926 1927 dev->power.wakeup_path = false; 1928 1929 if (dev->power.no_pm_callbacks) 1930 goto unlock; 1931 1932 if (dev->pm_domain) 1933 callback = dev->pm_domain->ops.prepare; 1934 else if (dev->type && dev->type->pm) 1935 callback = dev->type->pm->prepare; 1936 else if (dev->class && dev->class->pm) 1937 callback = dev->class->pm->prepare; 1938 else if (dev->bus && dev->bus->pm) 1939 callback = dev->bus->pm->prepare; 1940 1941 if (!callback && dev->driver && dev->driver->pm) 1942 callback = dev->driver->pm->prepare; 1943 1944 if (callback) 1945 ret = callback(dev); 1946 1947 unlock: 1948 device_unlock(dev); 1949 1950 if (ret < 0) { 1951 suspend_report_result(callback, ret); 1952 pm_runtime_put(dev); 1953 return ret; 1954 } 1955 /* 1956 * A positive return value from ->prepare() means "this device appears 1957 * to be runtime-suspended and its state is fine, so if it really is 1958 * runtime-suspended, you can leave it in that state provided that you 1959 * will do the same thing with all of its descendants". This only 1960 * applies to suspend transitions, however. 1961 */ 1962 spin_lock_irq(&dev->power.lock); 1963 dev->power.direct_complete = state.event == PM_EVENT_SUSPEND && 1964 ((pm_runtime_suspended(dev) && ret > 0) || 1965 dev->power.no_pm_callbacks) && 1966 !dev_pm_test_driver_flags(dev, DPM_FLAG_NEVER_SKIP); 1967 spin_unlock_irq(&dev->power.lock); 1968 return 0; 1969 } 1970 1971 /** 1972 * dpm_prepare - Prepare all non-sysdev devices for a system PM transition. 1973 * @state: PM transition of the system being carried out. 1974 * 1975 * Execute the ->prepare() callback(s) for all devices. 1976 */ 1977 int dpm_prepare(pm_message_t state) 1978 { 1979 int error = 0; 1980 1981 trace_suspend_resume(TPS("dpm_prepare"), state.event, true); 1982 might_sleep(); 1983 1984 /* 1985 * Give a chance for the known devices to complete their probes, before 1986 * disable probing of devices. This sync point is important at least 1987 * at boot time + hibernation restore. 1988 */ 1989 wait_for_device_probe(); 1990 /* 1991 * It is unsafe if probing of devices will happen during suspend or 1992 * hibernation and system behavior will be unpredictable in this case. 1993 * So, let's prohibit device's probing here and defer their probes 1994 * instead. The normal behavior will be restored in dpm_complete(). 1995 */ 1996 device_block_probing(); 1997 1998 mutex_lock(&dpm_list_mtx); 1999 while (!list_empty(&dpm_list)) { 2000 struct device *dev = to_device(dpm_list.next); 2001 2002 get_device(dev); 2003 mutex_unlock(&dpm_list_mtx); 2004 2005 trace_device_pm_callback_start(dev, "", state.event); 2006 error = device_prepare(dev, state); 2007 trace_device_pm_callback_end(dev, error); 2008 2009 mutex_lock(&dpm_list_mtx); 2010 if (error) { 2011 if (error == -EAGAIN) { 2012 put_device(dev); 2013 error = 0; 2014 continue; 2015 } 2016 printk(KERN_INFO "PM: Device %s not prepared " 2017 "for power transition: code %d\n", 2018 dev_name(dev), error); 2019 put_device(dev); 2020 break; 2021 } 2022 dev->power.is_prepared = true; 2023 if (!list_empty(&dev->power.entry)) 2024 list_move_tail(&dev->power.entry, &dpm_prepared_list); 2025 put_device(dev); 2026 } 2027 mutex_unlock(&dpm_list_mtx); 2028 trace_suspend_resume(TPS("dpm_prepare"), state.event, false); 2029 return error; 2030 } 2031 2032 /** 2033 * dpm_suspend_start - Prepare devices for PM transition and suspend them. 2034 * @state: PM transition of the system being carried out. 2035 * 2036 * Prepare all non-sysdev devices for system PM transition and execute "suspend" 2037 * callbacks for them. 2038 */ 2039 int dpm_suspend_start(pm_message_t state) 2040 { 2041 int error; 2042 2043 error = dpm_prepare(state); 2044 if (error) { 2045 suspend_stats.failed_prepare++; 2046 dpm_save_failed_step(SUSPEND_PREPARE); 2047 } else 2048 error = dpm_suspend(state); 2049 return error; 2050 } 2051 EXPORT_SYMBOL_GPL(dpm_suspend_start); 2052 2053 void __suspend_report_result(const char *function, void *fn, int ret) 2054 { 2055 if (ret) 2056 printk(KERN_ERR "%s(): %pF returns %d\n", function, fn, ret); 2057 } 2058 EXPORT_SYMBOL_GPL(__suspend_report_result); 2059 2060 /** 2061 * device_pm_wait_for_dev - Wait for suspend/resume of a device to complete. 2062 * @dev: Device to wait for. 2063 * @subordinate: Device that needs to wait for @dev. 2064 */ 2065 int device_pm_wait_for_dev(struct device *subordinate, struct device *dev) 2066 { 2067 dpm_wait(dev, subordinate->power.async_suspend); 2068 return async_error; 2069 } 2070 EXPORT_SYMBOL_GPL(device_pm_wait_for_dev); 2071 2072 /** 2073 * dpm_for_each_dev - device iterator. 2074 * @data: data for the callback. 2075 * @fn: function to be called for each device. 2076 * 2077 * Iterate over devices in dpm_list, and call @fn for each device, 2078 * passing it @data. 2079 */ 2080 void dpm_for_each_dev(void *data, void (*fn)(struct device *, void *)) 2081 { 2082 struct device *dev; 2083 2084 if (!fn) 2085 return; 2086 2087 device_pm_lock(); 2088 list_for_each_entry(dev, &dpm_list, power.entry) 2089 fn(dev, data); 2090 device_pm_unlock(); 2091 } 2092 EXPORT_SYMBOL_GPL(dpm_for_each_dev); 2093 2094 static bool pm_ops_is_empty(const struct dev_pm_ops *ops) 2095 { 2096 if (!ops) 2097 return true; 2098 2099 return !ops->prepare && 2100 !ops->suspend && 2101 !ops->suspend_late && 2102 !ops->suspend_noirq && 2103 !ops->resume_noirq && 2104 !ops->resume_early && 2105 !ops->resume && 2106 !ops->complete; 2107 } 2108 2109 void device_pm_check_callbacks(struct device *dev) 2110 { 2111 spin_lock_irq(&dev->power.lock); 2112 dev->power.no_pm_callbacks = 2113 (!dev->bus || (pm_ops_is_empty(dev->bus->pm) && 2114 !dev->bus->suspend && !dev->bus->resume)) && 2115 (!dev->class || pm_ops_is_empty(dev->class->pm)) && 2116 (!dev->type || pm_ops_is_empty(dev->type->pm)) && 2117 (!dev->pm_domain || pm_ops_is_empty(&dev->pm_domain->ops)) && 2118 (!dev->driver || (pm_ops_is_empty(dev->driver->pm) && 2119 !dev->driver->suspend && !dev->driver->resume)); 2120 spin_unlock_irq(&dev->power.lock); 2121 } 2122 2123 bool dev_pm_smart_suspend_and_suspended(struct device *dev) 2124 { 2125 return dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND) && 2126 pm_runtime_status_suspended(dev); 2127 } 2128